
The Web as a graph: measurements, models, andmethodsJon M. Kleinberg1, Ravi Kumar2, Prabhakar Raghavan2, SridharRajagopalan2, and Andrew S. Tomkins21 Department of Computer Science, Cornell University, Ithaca, NY 14853.2 IBM Almaden Research Center K53/B1, 650 Harry Road, San Jose CA 95120.Abstract. The pages and hyperlinks of the World-Wide Web may beviewed as nodes and edges in a directed graph. This graph is a fascinatingobject of study: it has several hundred million nodes today, over a billionlinks, and appears to grow exponentially with time. There are many rea-sons | mathematical, sociological, and commercial | for studying theevolution of this graph. In this paper we begin by describing two algo-rithms that operate on the Web graph, addressing problems from Websearch and automatic community discovery. We then report a number ofmeasurements and properties of this graph that manifested themselvesas we ran these algorithms on the Web. Finally, we observe that tradi-tional random graph models do not explain these observations, and wepropose a new family of random graph models. These models point toa rich new sub-�eld of the study of random graphs, and raise questionsabout the analysis of graph algorithms on the Web.1 OverviewFew events in the history of computing have wrought as profound an in
uenceon society as the advent and growth of the World-Wide Web. For the �rst time,millions | soon to be billions | of individuals are creating, annotating andexploiting hyperlinked content in a distributed fashion. A particular Web pagemight be authored in any language, dialect, or style by an individual with anybackground, culture, motivation, interest, and education; might range from afew characters to a few hundred thousand; might contain truth, falsehood, lies,propaganda, wisdom, or sheer nonsense; and might point to none, few, or severalother Web pages. The hyperlinks of the Web endow it with additional structure;and the network of these links is rich in latent information content. Our focusin this paper is on the directed graph induced by the hyperlinks between Webpages; we refer to this as the Web graph.For our purposes, nodes represent static html pages and hyperlinks representdirected edges. Recent estimates [4] suggest that there are several hundred mil-lion nodes in the Web graph; this quantity is growing by a few percent a month.The average node has roughly seven hyperlinks (directed edges) to other pages,making for a total of several billion hyperlinks in all.



There are several reasons for studying the Web graph. The structure ofthis graph has already led to improved Web search [6,8, 21, 29], more accuratetopic-classi�cation algorithms [11] and has inspired algorithms for enumeratingemergent cyber-communities [23]. The hyperlinks themselves represent a fecundsource of sociological information. Beyond the intrinsic interest of the structureof the Web graph, measurements of the graph and of the behavior of users asthey traverse the graph, are of growing commercial interest.1.1 Guided tour of this paperIn Section 2 we review two algorithms that have been applied to the Webgraph: Kleinberg's HITS method [21] and the enumeration of certain bipartitecliques [23]. We have chosen these algorithms here because they are both drivenby the presence of certain structures in the Web graph. These structures (whichwe will detail below) appear to be a fundamental by-product of the manner inwhich Web content is created.In Section 3 we summarize a number of measurements we have made on theentire Web graph, and on particular local subgraphs of interest. We show, for in-stance, that the in- and out-degrees of nodes follow Zip�an (inverse polynomial)distributions [12, 17, 26, 31]. This and other measurements of the frequency ofoccurrence of certain structures suggest that traditional random graph modelssuch as Gn;p [7] are likely to do a poor job of modeling the Web graph.In Section 4 we lay down a framework for a class of random graph models,and give evidence that at least some of our observations about the Web (forinstance, the degree distributions) can be established in these models. A notableaspect of these models is that they embody some version of a copying process:we add links to a node v by picking a random (other) node u in the graph, andcopying some links from u to v (i.e., we add edges from v to some of the nodesthat u points to). Such copying operations seem to be fundamental both to theprocess of content-creation on the Web and to the explanation of the statisticswe have observed. One consequence is that the mathematical analysis of thesegraph models promises to be far harder than in traditional graph models inwhich the edges emanating from a node are drawn independently.We conclude in Section 5 with a number of directions for further work.1.2 Related workAnalysis of the structure of the Web graph has been used to enhance the qualityof Web search [5, 6, 8, 9, 21, 29]. The topics of pages pointed to by a Web pagecan be used to improve the accuracy of determining the (unknown) topic of thispage in the setting of supervised classi�cation [11].Statistical analysis of the structure of the academic citation graph has beenthe subject of much work in the Sociometrics community. As we discuss below,Zipf distributions seem to characterize Web citation frequency. Interestingly, thesame distributions have also been observed for citations in the academic litera-ture. This fact, known as Lotka's law, was demonstrated by Lotka in 1926 [26].



Gilbert [17] presents a probabilistic model explaining Lotka's law, which is sim-ilar in spirit to our proposal, though di�erent in details and application. The�eld of bibliometrics [14, 16] has studied phenomena in citation; some of theseinsights have been applied to the Web as well [25].A view of the Web as a semi-structured database has been advanced bymany authors. In particular, LORE [1] and WebSQL [27] use graph-theoreticand relational views of the Web respectively. These views support structuredquery interfaces to the Web (Lorel [1] and WebSQL [27]) that are evocative ofand similar to SQL. An advantage of this approach is that many interestingqueries can be expressed as simple expressions in the very powerful SQL syntax.The corresponding disadvantage is that the generality comes with an associatedcomputational cost which can be prohibitive until we develop query optimizersfor Web graph computations that similar to those available for relational data.LORE and WebSQL are but two examples of projects in this space. Some otherexamples are W3QS [22], WebQuery [8], Weblog [24], and ParaSite/Squeal [29].Traditional data mining research (see for instance Agrawal and Srikant [2])focuses largely on algorithms for �nding association rules and related statisticalcorrelation measures in a given dataset. However, e�cient methods such as apriori [2] or even more general methodologies such as query 
ocks [30], do notscale to the numbers of \items" (pages) in the Web graph. This number is alreadytwo to three orders of magnitude more than the number of items in a typicalmarket basket analysis.The work of Mendelzon and Wood [28] is an instance of structural methodsin mining. They argue that the traditional SQL query interface to databases isinadequate in its power to specify several structural queries that are interestingin the context of the Web. They provide the example of path connectivity be-tween nodes subject to some constraints on the sequence of edges on the path(expressible in their case as a regular expression). They describe G+, a languagewith greater expressibility than SQL for graph queries.2 AlgorithmsWe have observed the following recurrent phenomenon on the Web. For anyparticular topic, there tend to be a set of \authoritative" pages focused on thetopic, and a set of \hub" pages, each containing links to useful, relevant pages onthe topic. This observation motivated the development of two algorithms whichwe describe below. The �rst is a search algorithm that distils high-quality pagesfor a topic query (Section 2.1), and the second enumerates all topics that arerepresented on the Web in terms of suitably dense sets of such hub/authoritypages (Section 2.2).2.1 The HITS algorithmBeginning with a search topic, speci�ed by one or more query terms, Kleinberg'sHITS algorithm [21] applies two main steps: a sampling step, which constructs



a focused collection of several thousand Web pages likely to be rich in relevantauthorities; and a weight-propagation step, which determines numerical estimatesof hub and authority scores by an iterative procedure. The pages with the highestscores are returned as hubs and authorities for the search topic.Any subset S of nodes induces a subgraph containing all edges that connecttwo nodes in S. The �rst step of the HITS algorithm constructs a subgraphexpected to be rich in relevant, authoritative pages, in which it will search forhubs and authorities. To construct this subgraph, the algorithm �rst uses key-word queries to collect a root set of, say, 200 pages from a traditional index-basedsearch engine. This set does not necessarily contain authoritative pages; how-ever, since many of these pages are presumably relevant to the search topic,one can expect some to contain links to prominent authorities, and others to belinked to by prominent hubs. The root set is therefore expanded into a base setby including all pages that are linked to by pages in the root set, and all pagesthat link to a page in the root set (up to a designated size cut-o�). This followsthe intuition that the prominence of authoritative pages is typically due to theendorsements of many relevant pages that are not, in themselves, prominent. Werestrict our attention to this base set for the remainder of the algorithm; thisset typically contains roughly 1000{3000 pages, and that (hidden) among theseare a large number of pages that one would subjectively view as authoritativefor the search topic.We begin with one modi�cation to the subgraph induced by the base set.Links between two pages on the same Web site very often serve a purely nav-igational function, and typically do not represent conferral of authority. Wetherefore delete all such links from the subgraph induced by the base set, andapply the remainder of the algorithm to this modi�ed subgraph.Good hubs and authorities can be extracted from the base set by giving aconcrete numerical de�nition to the intuitive notions of hub and authority fromthe beginning of this section. The algorithm associates a non-negative authorityweight xp and a non-negative hub weight yp with each page p 2 V . We will onlybe interested in the relative values of these weights, not their actual magnitudes;so in the manipulation of the weights, we apply a normalization to prevent theweights from over
owing. (The actual choice of normalization does not a�ect theresults; we maintain the invariant that the squares of all weights sum to 1.) Apage p with a large weight xp (resp. yp) will be viewed as a \better" authority(resp. hub). Since we do not impose any a priori estimates, all x- and y-valuesare set to a uniform constant initially. As will be seen later, however, the �nalresults are essentially una�ected by this initialization.The authority and hub weights are updated as follows. If a page is pointedto by many good hubs, we would like to increase its authority weight; thus fora page p, the value of xp is updated to be to be the sum of yq over all pages qthat link to p: xp = Xq such that q!p yq ; (1)



where the notation q ! p indicates that q links to p. In a strictly dual fashion,if a page points to many good authorities, its hub weight is increased viayp = Xq such that p!q xq : (2)There is a more compact way to write these updates, and it turns out to shedmore light on the mathematical process. Let us number the pages f1; 2; : : :; ngand de�ne their adjacency matrix A to be the n� n matrix whose (i; j)th entryis equal to 1 if page i links to page j, and is 0 otherwise. Let us also writethe set of all x-values as a vector x = (x1; x2; : : : ; xn), and similarly de�ney = (y1; y2; : : : ; yn). Then the update rule for x can be written as x  AT yand the update rule for y can be written as y  Ax. Unwinding these one stepfurther, we have x AT y  ATAx = (ATA)x (3)and y  Ax AAT y = (AAT )y: (4)Thus the vector x after multiple iterations is precisely the result of applying thepower iteration technique to ATA| we multiply our initial iterate by larger andlarger powers of ATA | and a standard result in linear algebra tells us that thissequence of iterates, when normalized, converges to the principal eigenvector ofATA. Similarly, the sequence of values for the normalized vector y converges tothe principal eigenvector of AAT . (See the book by Golub and Van Loan [18] forbackground on eigenvectors and power iteration.)In fact, power iteration will converge to the principal eigenvector for any\non-degenerate" choice of initial vector | in our case, for example, for anyvector all of whose entries are positive. This says that the hub and authorityweights computed are truly an intrinsic feature of the collection of linked pages,not an artifact of the choice of initial weights or the tuning of arbitrary param-eters. Intuitively, the pages with large weights represent a very \dense" patternof linkage, from pages of large hub weight to pages of large authority weight.This type of structure | a densely linked community of thematically relatedhubs and authorities | will be the motivation underlying Section 2.2 below.Finally, the output of HITS algorithm for the given search topic is a shortlist consisting of the pages with the largest hub weights and the pages with thelargest authority weights. Thus the algorithm has the following interesting fea-ture: after using the query terms to collect the root set, the algorithm completelyignores textual content thereafter. In other words, HITS is a purely link-basedcomputation once the root set has been assembled, with no further regard to thequery terms. Nevertheless, HITS provides surprisingly good search results for awide range of queries. For instance, when tested on the sample query \searchengines", the top authorities returned by HITS were Yahoo!, Excite, Magellan,Lycos, and AltaVista | even though none of these pages (at the time of theexperiment) contained the phrase \search engines."



In subsequent work [5, 9, 10], the HITS algorithm has been generalized bymodifying the entries of A so that they are no longer boolean. These modi�-cations take into account the content of the pages in the base set, the internetdomains in which they reside, and so on. Nevertheless, most of these modi�ca-tions retain the basic power iteration process and the interpretation of hub andauthority scores as components of a principal eigenvector, as above.2.2 Trawling the Web for cyber-communitiesIn this section we turn to a second algorithm developed for the Web graph. Incontrast to HITS, which is a search algorithm designed to �nd high-quality pagesabout a �xed topic, the trawling algorithm described below seeks to enumerateall topics (under a certain de�nition), and therefore processes the entire Webgraph.We begin with a more concrete de�nition of the types of topic we wish toenumerate. Recall that a complete bipartite clique Ki;j is a graph in which everyone of i nodes has an edge directed to each of j nodes (in the following treatmentit is simplest to think of the �rst i nodes as being distinct from the second j;in fact this is not essential to our algorithms or models). We further de�ne abipartite core Ci;j to be a graph on i + j nodes that contains at least one Ki;jas a subgraph. The intuition motivating this notion is the following: on anysu�ciently well represented topic on the Web, there will (for some appropriatevalues of i and j) be a bipartite core in the Web graph. Figure 1 illustrates aninstance of a C4;3 in which the four nodes on the left have hyperlinks to thehome pages of three major commercial aircraft manufacturers. Such a subgraph
www.boeing.com

www.airbus.com

www.embraer.comFig. 1. A bipartite core.of the Web graph would be suggestive of a \cyber-community" of a�cionados ofcommercial aircraft manufacturers who create hub-like pages like the four on theleft side of Figure 1. These pages co-cite the authoritative pages on the right.



Loosely speaking, such a community emerges in the Web graph when many (hub)pages link to many of the same (authority) pages. In most cases, the hub pagesin such communities may not co-cite all the authoritative pages for that topic.Nevertheless, it is tempting to subscribe to the following weaker hypothesis:every such community will contain a bipartite core Ci;j for non-trivial values ofi and j. Turning this around, we could attempt to identify a large fraction ofcyber-communities by enumerating all the bipartite cores in the Web for, sayi = j = 3; we call this process trawling. Why these choices of i and j? Might itnot be that for such small values of i and j, we discover a number of coincidentalco-citations, which do not truly correspond to communities?In fact, in our experiment [23] we enumerated Ci;j's for values of i rangingfrom 3 to 9, for j ranging from 3 to 20. The results suggest that (1) the Webgraph has several hundred thousand such cores, and (2) it appears that onlya minuscule fraction of these are coincidences | the vast majority do in factcorrespond to communities with a de�nite topic focus. Below we give a shortdescription of this experiment, followed by some of the principal �ndings.From an algorithmic perspective, the naive \search" algorithm for enumer-ation su�ers from two fatal problems. First, the size of the search space is fartoo large | using the naive algorithm to enumerate all bipartite cores with twoWeb pages pointing to three pages would require examining approximately 1040possibilities on a graph with 108 nodes. A theoretical question (open as far aswe know): does the work on �xed-parameter intractability [13] imply that wecannot { in the worst case { improve on naive enumeration for bipartite cores?Such a result would argue that algorithms that are provably e�cient on the Webgraph must exploit some feature that distinguishes it from the \bad" inputs for�xed-parameter intractability. Second, and more practically, the algorithm re-quires random access to edges in the graph, which implies that a large fractionof the graph must e�ectively reside in main memory to avoid the overhead ofseeking a disk on every edge access.We call our algorithmic methodology the elimination-generation paradigm.An algorithm in the elimination/generation paradigm performs a number of se-quential passes over the Web graph, stored as a binary relation. During eachpass, the algorithm writes a modi�ed version of the dataset to disk for the nextpass. It also collects some metadata which resides in main memory and servesas state during the next pass. Passes over the data are interleaved with sortoperations, which change the order in which the data is scanned, and constitutethe bulk of the processing cost. We view the sort operations as alternately or-dering directed edges by source and by destination, allowing us alternately toconsider out-edges and in-edges at each node. During each pass over the data,we interleave elimination operations and generation operations, which we nowdetail.Elimination. There are often easy necessary (though not su�cient) conditionsthat have to be satis�ed in order for a node to participate in a subgraph ofinterest to us. Consider the example of C4;4's. Any node with in-degree 3 orsmaller cannot participate on the right side of a C4;4. Thus, edges that are



directed into such nodes can be pruned from the graph. Likewise, nodes without-degree 3 or smaller cannot participate on the left side of a C4;4. We refer tothese necessary conditions as elimination �lters.Generation. Generation is a counterpoint to elimination.Nodes that barely qual-ify for potential membership in an interesting subgraph can easily be veri�ed toeither belong in such a subgraph or not. Consider again the example of a C4;4.Let u be a node of in-degree exactly 4. Then, u can belong to a C4;4 if and only ifthe 4 nodes that point to it have a neighborhood intersection of size at least 4. Itis possible to test this property relatively cheaply, even if we allow the in-degreeto be slightly more than 4. We de�ne a generation �lter to be a procedure thatidenti�es barely-qualifying nodes, and for all such nodes, either outputs a coreor proves that such a core cannot exist. If the test embodied in the generation�lter is successful, we have identi�ed a core. Further, regardless of the outcome,the node can be pruned since all potential interesting cores containing it havealready been enumerated.Note that if edges appear in an arbitrary order, it is not clear that theelimination �lter can be easily applied. If, however, the edges are sorted bysource (resp. destination), it is clear that the outlink (resp. inlink) �lter can beapplied in a single scan. Details of how this can be implemented with few passesover the data (most of which is resident on disk, and must be streamed throughmain memory for processing) may be found in [23].After an elimination/generation pass, the remaining nodes have fewer neigh-bors than before in the residual graph, which may present new opportunitiesduring the next pass. We can continue to iterate until we do not make signi�-cant progress. Depending on the �lters, one of two things could happen: (1) werepeatedly remove nodes from the graph until nothing is left, or (2) after severalpasses, the bene�ts of elimination/generation \tail o�" as fewer and fewer nodesare eliminated at each phase. In our trawling experiments, the latter phenomenondominates.Why should such algorithms run fast? We make a number of observationsabout their behavior:1. The in/out-degree of every node drops monotonically during each elimina-tion/generation phase.2. During each generation test, we either eliminate a node u from further con-sideration (by developing a proof that it can belong to no core), or we outputa subgraph that contains u. Thus, the total work in generation is linear inthe size of the Web graph plus the number of cores enumerated, assumingthat each generation test runs in constant time.3. In practice, elimination phases rapidly eliminate most nodes in the Webgraph. A complete mathematical analysis of iterated elimination is beyondthe scope of this paper, and requires a detailed understanding of the kindsof random graph models we propose in Section 4.Kumar et al. [23] report trawling a copy of the Web graph derived from aWeb crawl obtained fromAlexa, inc. This experiment generated well over 100,000



bipartite cores C3;3. Note that since these cores are the result of enumeration(rather than querying), they lack any form of context or topic with which one cantag them. Indeed, as noted in [23], the only certain way of determining whethera core is coincidental or real is manual inspection. The results of [23] suggestthat over 90% of the cores enumerated in this experiment are not coincidental,but in fact bear de�nite themes.We conclude this section by remarking that bipartite cores are not necessar-ily the only subgraph enumeration problems that are interesting in the setting ofthe Web graph. The subgraphs corresponding to Webrings look like bidirectionalstars, in which there is a central page with links to and from a number of \spoke"pages. Cliques, and directed trees, are other interesting structures for enumera-tion. Devising general paradigms for such enumeration problems appears to bedi�cult, unless one understands and exploits the peculiarities of the Web graph.The next two sections address this issue.3 MeasurementsIn the course of experiments with the algorithms of Section 2, we were able tostudy many of the local properties of the Web graph. In this section we surveythese observations, and point out that traditional random graph models like Gn;pwould do a poor job of explaining them.3.1 Degree distributionsWe begin with the in- and out-degrees of nodes in the Web graph. Figure 2is a log-log plot (with the x-axis negated) of the in-degree distribution. Theplot suggests that the probability that a node has degree i is proportional to1=i�, where � is approximately 2. Such a Zip�an distribution [31] cannot arisein a model such as Gn;p, where (due to the superposition of Bernoulli trials)in-degrees exhibit either a Poisson or a binomial distribution. Consider next the
Fig. 2. In-degree distribution.



out-degree distribution (Figure 3). Again the distribution looks faintly Zip�an,although here the variations seem larger. The average out-degree we observed isabout 7.2. A natural question now arises: if Gn;p will not result in such Zip�an
Fig. 3. Out-degree distribution.distributions, what is a natural stochastic process that will? We provide a partialanswer in Section 4.3.2 Number of bipartite coresWe turn next to the distribution of cores Ci;j, based on the numbers discoveredin the trawling experiment [23]. Figures 4 and 5 depict these distributions as

Fig. 4. Core distribution by left side.functions of i and j; these quantities are from a crawl of the Web that is roughly



two years old, obtained fromAlexa, inc. The number of Web pages in this crawl isroughly 100 million.How does this compare with the numbers one might observein a graph generated using Gn;p, say for np = 7:2 (our observed out-degree)? Asimple calculation yields that the expected number of Ci;j's is�ni��nj��7:2n �ij ;which is negligible for ij > i + j. Clearly, one cannot explain the multitude ofCi;j's in the Web graph using Gn;p; once again, we hope that the models wepropose in Section 4 can explain these observations.
Fig. 5. Core distribution by right side.3.3 Connectivity of local subgraphsWe now consider some relating to the connectivity of local subgraphs of theWeb graph. We begin by �xing our set of local subgraphs to be the base setsarising in the HITS algorithm of Section 2. To recapitulate, we begin with cnodes obtained by issuing a keyword query to a text-based search engine. Wethen expand this root set to the base set by adding any page linked to by a pagein the root set, and any page linking to a page in the root set (up to a cut-o� ofd pages per element of the root set). In experiments, we have applied this withc, the size of the root set, equal to 200; and d, the cut-o�, equal to 50. As above,the resulting base set typically consists of roughly 1000 to 3000 pages, and sincewe wish to focus on cross-site links we discard links between two pages withinthe same site.



We now ask how well-connected these local subgraphs are. We will view Gprimarily as a directed graph, but we also de�ne the undirected version Guobtained by ignoring the direction of all edges.A collection of graphs constructed in this way for an ensemble of �fty samplequery terms reveals some consistently occurring structural properties; we willdiscuss several of these here at a qualitative level.A range of connectivity relations. A �rst observation is that the graphs Gu arenot, in general, connected. This is intuitively very natural: the initial root settypically induces very few edges; and while the expansion to the base set servesto connect many of these nodes, others remain in small isolated components.A graphGu of this form, however, does typically contain a \giant component"| a connected component that contains a signi�cant constant fraction of all thenodes. In all the cases considered, there was only a single giant component ofGu.Turning to a stronger measure, we consider biconnectivity : we say that twonodes u and v are biconnected if there is no third node w so that w lies onall u-v paths. We will call the equivalence classes of nodes under this relationthe biconnected components. The graph Gu typically has a \giant biconnectedcomponent," again unique. Thus, we can intuitively picture the structure of Guas consisting of a central biconnected \nucleus," with small pieces connectedto this nucleus by cut-nodes, and with other small pieces not connected to thisnucleus at all.The biconnected nucleus contains much of the interesting structure in G;for example, it generally contains all the top hubs and authorities computed byHITS. We will use H to denote the subgraph of G induced on this biconnectednucleus; H is thus a directed graph, and we use Hu to denote its undirectedversion.We can try to further re�ne the structure of H by looking at strongly con-nected components. In this we make crucial use of the orientation of edges: u andv are related under strong connectivity if each can reach the other by a directedpath. For this relation, however, we discover the following: the subgraphs H donot contain \giant strongly connected components." Indeed, for many of thegraphs we considered, the largest strongly connected component had size lessthan 20.Thus, while G is not connected when viewed in its entirety, it can be viewed ashaving a large subgraph that is biconnected as an undirected graph. G, however,does not generally contain any large strongly connected subgraphs.Alternating connectivity. Biconnectivity yielded a giant component; strong con-nectivity pulverized the graph into tiny components. It is natural to ask whetherthere is a natural connectivity measure that takes some account of the orienta-tion of edges and still results in large \components." We now describe one suchmeasure, alternating connectivity, and observe a sense in which it is di�cult to�nd the right de�nition of \component" under this measure.



If u and v are nodes, we say that a sequence P of edges in G is an alternatingpath from u to v if (1) P is a path in Gu with endpoints u and v, and (2)the orientations of the edges of P strictly alternate in G. Thus, P leads fromu to v via a sequence of link traversals that alternate forward and backwarddirections. This de�nition corresponds closely to the HITS algorithm. Intuitively,the strict alternation of edge orientations parallels the way in which hub andauthority weight 
ows between nodes; and indeed, the hub and authority weightse�ectively compute the relative growth rates of alternating paths from each node.Furthermore, two steps in an alternating path connect two nodes that either citethe same page, or are cited by the same page | this notion of co-citation hasbeen used as a similarity measure among documents [14] and among web pages(e.g. [11,21, 25]).Suppose we write u � v if there is an alternating path between u and v. It isclear immediately from the de�nition that the relation � is symmetric; however,it is easy to construct examples with nodes u; v; w so that u � v and v � w, butu 6� w. As a result, � is not transitive and hence not an equivalence relation.However, we can show a sense in which � is \nearly" an equivalence relation:we can prove that if a node u is related to three nodes v1; v2; v3, then at leastone pair among fv1; v2; v3g is also related. We can call such a relation claw-free| no node is related to three nodes that are themselves mutually unrelated.In tests on the subgraphs H, we �nd that a large fraction of all pairs ofnodes u; v 2 H are related by alternating connectivity. Among pairs that arerelated, we can de�ne their undirected distance as the length of the shortest u-v path in Hu; and we can de�ne their alternating distance as the length of theshortest alternating u-v path in H. We �nd that the average alternating distancebetween related pairs is generally at most a factor of two more than the averageundirected distance between them; this indicates that the biconnected nuclei Hare rich in short, alternating paths.4 ModelIn this section we lay the foundation for a class of plausible random graphmodels in which we can hope to establish many of our observations about thelocal structure of the Web graph. There are a number of reasons for developingsuch a model:1. It allows us to model various structural properties of the Web graph | nodedegrees, neighborhood structures, etc. Of particular interest to us is thedistribution of Web structures such as Ci;j's which are signatures of Webcommunities or other Web phenomena of interest.2. It allows us to predict the behavior of algorithms on the Web; this is is ofparticular interest when these algorithms are doomed to perform poorly onworst-case graphs.3. It suggests structural properties of today's Web that we might be able toverify and then exploit.



4. It allows us to make predictions about the shape of the Web graph in thefuture.Desiderata for a Web graph model. We begin by reviewing some criteria thatare desirable in such a graph model; many of these are motivated by empiricalobservations on the structure of the Web graph. Next we present our model.Note that we do not seek to model the text or the sizes of the pages; we areonly interested here in the interconnection patterns of links between pages. Wewould like our model to have the following features:1. It should have a succinct and fairly natural description.2. It should be rooted in a plausible macro-level process for the creation ofcontent on the Web. We cannot hope to model the detailed behavior of themany users creating Web content. Instead, we only desire that the aggregateformation of Web structure be captured well by our graph model. Thus, whilethe model is described as a stochastic process for the creation of individualpages, we are really only concerned with the aggregate consequences of theseindividual actions.3. It should not require some a priori static set of \topics" that are part of themodel description | the evolution of interesting topics and communitiesshould instead be an emergent feature of the model.1 Such a model hasseveral advantages:{ It is extremely di�cult to characterize the set of topics on the Web;thus it would be useful to draw statistical conclusions without such acharacterization.{ The set of topics re
ected in Web content has proven to be fairly dy-namic. Thus, the shifting landscape of actual topics will need to be ad-dressed in any topic-aware model of time-dependent growth.4. We would like the model to re
ect many of the structural phenomena wehave observed in the Web graph.4.1 A class of random graph modelsIn our model, we seek to capture the following intuition:{ some page creators on today's Web may link to other sites without regardto the topics that are already represented on the Web, but{ most page creators will be drawn to Web pages covering existing topics ofinterest to them, and will link to pages within some of these existing topics.We have already observed that the Web graph has many hub pages thatcontain resource lists focused on a topic. Here is the dominant phenomenon forlink-creation in our model: a user encounters a resource list for a topic of interestto him, and includes many links from this list in his/her page.1 In particular, we avoid models of the form \Assume each node is some combinationof topics, and add an edge from one page to another with probability dependent onsome function of their respective combinations."



We reiterate that this process is not meant to re
ect individual user behavioron the Web; rather, it is a local procedure which in aggregate works well indescribing page creation on the Web and which implicitly captures topic creationas follows: �rst, a few scattered pages begin to appear about the topic. Then,as users interested in the topic reach critical mass, they begin linking thesescattered pages together, and other interested users are able to discover andlink to the topic more easily. This creates a \locally dense" subgraph aroundthe topic of interest. This intuitive view summarizes the process from a page-creator's standpoint; we now recast this formulation in terms of a random graphmodel that | again, on aggregate | captures the above intuition.Indeed, it is our thesis that random copying is a simple, plausible stochasticmechanism for creating Zip�an degree distributions. Below, we state at a highlevel our model for the evolution of the Web graph. We are unable to providecomplete probabilistic analyses of the graphs generated by even the simplestconcrete instantiations of such models. Heuristic calculations, however, yielddistributions for degree sequences, Ci;j's and other local structures that conformremarkably well with our observations.Our model is characterized by four stochastic processes | creation processesCv and Ce for node- and edge-creation, and deletion processes Dv and De for node-and edge-deletion. These processes are discrete-time processes. Each process isa function of the time step, and of the current graph.A simple node-creation process would be the following: independently at eachstep, create a node with probability �c(t). We could have a similar Bernoullimodel with probability �d(t) for node deletion; upon deleting a node, we alsodelete all its incident edges. Clearly we could tailor these probabilities to re
ectthe growth rates of the Web, the half-life of pages, etc.The edge processes are rather more interesting. We begin with the edge-creation process Ce. At each step we sample a probability distribution to deter-mine a node v to add edges out of, and a number of edges k that will be added.With probability � we add k edges from v to nodes chosen independently anduniformly at random. With probability 1� �, we copy k edges from a randomlychosen node to v. By this we mean that we choose a node u at random, andcreate edges from v to nodes w such that (u;w) is an edge. One might reasonablyexpect that much of the time, u will not have out-degree exactly k; if the out-degree of u exceeds k we pick a random subset of size k. If on the other hand theout-degree of u is less than k we �rst copy the edges out of u, then pick anotherrandom node u0 to copy from, and so on until we have enough edges. Such acopying process is not unnatural, and consistent with the qualitative intuitionat the beginning of this section.A simple edge-deletion process De would again be a Bernoulli process inwhich at each step, with probability �, we delete a randomly chosen node. Theprobability that a particular node v is deleted would ideally be non-increasingin its in-degree.We illustrate these ideas with a very simple special case. Consider a modelin which a node is created at every step. Nodes and edges are never deleted,



so the graph keeps on growing. Consider the following edge process: for some� 2 (0; 1), at each step the newly-created node points to a node chosen uniformlyat random. With probability 1 � �, it copies a uniform random edge out of arandom node. Simulations (and heuristic calculations) suggest that under thismodel, the probability that a node has in-degree i converges to i�1=(1��). Similarcalculations suggest that the numbers of cores Ci;j are signi�cantly larger thanrandom graphs in which edges go to uniform, independent random destinations.Clearly the processes creating these graphs, as well as the statistics andstructures observed, di�er signi�cantly from those of traditional random graphmodels. This is both a feature and a challenge. On the one hand, the relationshipbetween copying and Zip�an distributions is of intrinsic interest for a variety ofreasons (given such distributions also arise in a number of settings outside ofthe Web | in term frequencies, in the genome, etc.). On the other hand, theprocess of copying also generates a myriad of dependencies between the randomvariables of interest, so that the study of such graphs calls for a whole new suiteof analytical tools.5 ConclusionOur work raises a number of areas for further work:1. How can we annotate and organize the communities discovered by the trawl-ing process of Section 2.2?2. What extensions and applications can be found for the connectivity measuresdiscussed in Section 3.3?3. What are the properties and evolution of random graphs generated by spe-ci�c versions of our models in Section 4? This would be the analogue of thestudy of traditional random graph models such as Gn;p.4. How do we devise and analyze algorithms that are e�cient on such graphs?Again, this study has an analogue with traditional random graph models.5. What can we infer about the distributed sociological process of creatingcontent on the Web?We thank Byron Dom and Ron Fagin for their comments. The work of JonKleinberg was supported in part by an Alfred P. Sloan Research Fellowship andby NSF Faculty Early Career Development Award CCR-9701399.References1. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Weiner. The Lorel Querylanguage for semistructured data. Intl. J. on Digital Libraries, 1(1):68-88, 1997.2. R. Agrawal and R. Srikanth. Fast algorithms for mining association rules. Proc.VLDB, 1994.3. G. O. Arocena, A. O. Mendelzon, G. A. Mihaila. Applications of a Web querylanguage. Proc. 6th WWW Conf., 1997.
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