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ABSTRACT sions [3, 5, 15, 20, 27, 32]. This is also extended to classifin

Currently, most research on nonnegative matrix factdrgtNMF) [30]. NMF can be traced back to 1970s (Notes from G. Golub) and
focus on 2-factoX = FG' factorization. We provide a systematicis studied extensively by Paatero [27]. The work of Lee anth§e
analysis of 3-factoX = FSG' NMF. While unconstraine®-factor [18, 19] brought much attention to NMF in machine learning an
NMF is equivalent taunconstrained-factor NMF,constrained3-  data mining fields. They suggest that NMF factors contairecoh
factor NMF brings new features tnstrained2-factor NMF. We ¢ parts of the original data (images). They emphasize itfe-d

study the orthogonality constraint because it leads taoig® clus- ence between NMF and vector quantization (which is esdantia

tering interpretation. We provide new rules for updatifngs, G h | ) | ) q
and prove the convergence of these algorithms. Experinnts € K-means clustering). However, later experiments [16, 20] do

5 datasets and a real world case study are performed to sleow Rt support the coherent part interpretation of NMF. In facost

capability of bi-orthogonal 3-factor NMF on simultaneouslus-  applications make use of the clustering aspect of NMF, wisch

tering rows and columns of the input data matrix. We provide de-emphasized by Lee and Seung [18]. A recent theoretiedy-an

new approach of evaluating the quality of clustering on ware-  sjs [9] shows the equivalence between NMF ntheans / spectral

ing class.aggregate Qistributiorj and multi-peak. distrdut We _clustering.

fﬂse?r ‘r)(;?a\{tli%?]sar::p?s\{emew of various NMF extensions and erami Below we briefly outline NMF which provides notations and-fur
ther motivations. In general, NMF factorizes input nonrizga

Categones al’ld SUbjeCt DeSCI’IptOYS data matrixX into 2 nonnegative matrices,

1.2 [Artificial Intelligence ]: Learning; 1.5.3 Pattern Recogni- X~FG', 1)

tion]: Clustering
whereX € R”", F € R”* and G € Rk ( RT*¥ is the set of

all n-by-k matrices whose elements are nonnegative). Generally,

General Terms the rank of matrice$, G is much lower than the rank of (i.e.,

Algorithms, Experimentation, Theory k < min(p,n)).

In this paper, we emphasize the orthogonality of matrixdesct
Keywords in NMF. Specifically, we solve the one-sid&lorthogonal NMF,
nonnegative matrix factorization (NMF), orthogonal fazation, min _[|X — FGTHZ st.GTg=1. )
clustering, tri-factorization, multi-peak distribution F>0,G>0 ’

The main advantages are (1) uniqueness of the solution. (&} C
1. INTRODUCTION tering interpretations. We will show it is equivalent to keems
The nonnegative matrix factorization (NMF) has been showeiustering.
recently to be useful for many applications in environmeatt- Furthermore, it is natural to consider imposing orthogityaln
tern recognition, multimedia, text mining, and DNA genem@s bothF andG simultaneously in NMF.
min [X—FG"|%, st.FTF=1,G'G=1I. 3)
F>0,G>0
o o _ _ This corresponds to the simultanedUsneans clustering [9] of the
Permission to make digital or hard copies of all or part of tork for ¢ and columns ok, whereF is the cluster indicator matrix for
personal or classroom use is granted without fee providatidbpies are . . L . )
not made or distributed for profit or commercial advantage that copies clustering rows ang is the cluster indicator matrix for clustering
bear this notice and the full citation on the first page. Toycoiherwise, to  columns. However, this double orthogonality is very resire and
republish, to post on servers or to redistribute to listguies prior specific it gives a rather poor matrix low-rank approximation. Onedan

permission and/or a fee. j .
Copyright 200X ACM X-XXXXX-XX-XIXX/XX ... $5.00. extra factorS to absorb the different scales ¥fF,G. S provides



additional degrees of freedom such that the low-rank matyixe-
sentation remains accurate whitegives row clusters an@ gives
column clusters. Thus we consider the following nonnegaBiv
factor decomposition

X ~FSG. 4
For the objective of the function approximation, we optieniz
min _ |[X—FSG|?, st.FTF=1,G'G=1. (5)
F>0,G>0,5>0

We noteX € R?”", F € R”* andS e RX*! andG € R7*'. This
allows the number of row clustek)differ from the number of col-
umn cluster {). In most cases, we skt ¢. This form gives a good
framework for simultaneously clustering the rows and coiarof

X. Simultaneously rows and columns clustering using Laplaci

matrix has been studied in [7, 35].

elementis nonzero. Thy&A)i,, = SkFi, kA = Fiy ke Aty <0
Thus there can be no negative elementA.in D

We note that for any matrix factorization, the freedom of-col
umn/row permutation always exists.

3. ORTHOGONAL NMF AND CLUSTER-
ING

Lee and Seung [18] emphasizes the difference between NMF and
vector quantization (which iK-means clustering). Later experi-
ments [16, 20] empirically show that NMF has clear clustgefr
fects. Theoretically, NMF is inherently related to kernehi€ans
clustering.

Theorem 1 Orthogonal NMF,

min [X—FG'||?, st.G'G=1.
F>0,G>0

(@)

NMF is one type of matrix factorizations. There are othees/p is equivalent to K-means clustering.

of factorizations [6, 17, 33, 24, 23, 21]. Others includedrt

This theorem has been previously proved[9] with additiamat

Semantic Indexing [1], scaled PCA [10], generalized SVD],[28malization conditions. Here we give a simpler and more ganer

etc.

Here are some more notations. We often whte= (f,---,fy)
andG = (g, ,0). The matrix norm|A| = |/3; aﬁ- . In the fol-
lowing, we emphasize the benefit of orthogonality for thequei

proof, which can easily generalize to bi-orthogonality.

Proof. We writed = ||[X —FGT||2 = Tr(XTX —2FTXG+FTF).
The zero gradient conditiodL /OF = —2XG+ 2F = 0 givesF =
XG. Thusd = Tr(XTX —GTXTXG). Since T(XTX) is a constant,

ness of the solution i§2. In §3 the benefits of orthogonality are the optimization problem becomes

discussed in detail.

NMF are discussed and the computing algorithm is given§7in
the detailed proof of algorithm correctness and convergenc

I§4 the computational algorithm for uni-
orthogonal NMF is given. Ir§5 strong motivations for 3-factor

minTr(G'XTXG) st.GTG=1. (8)
G>0

According to Theorem 2 below, this is identical to K-meanssel
tering. |

uni-orthogonal NMF is presented. §8 algorithm correctness and  We note that Theorem 1 holds everXifandF are not nonnega-

convergence for bi-orthogonal NMF are presenté8.is devoted

tive, i.e.,X andF have mixed-sign entries. This motives generaliz-

to experiments on 6 datasets. In particuf®r3 shows the results jng NMF to semi-NMF in§11.1.
on document clustering (columns Xf; §9.4 provides a new and Theorem 28, 34]. TheK-means clustering minimizes

systematic analysis on word clustering (rowsXjf This differs
substantially from the usual (document) clustering§10, an in-
teresting case study of clustering system log data is predern

K K n
J= [[%i —cxl[? = Gik[Ixi — el 9)
kzlie kzli;

§11, we provide an overview of various NMF extensions and eXgherec, is the cluster centroid of thieth cluster. More generally,

amine their relationships. The summary is give§i2.

2. UNIQUENESS OF ORTHOGONAL NMF

Generally speaking, for any given solutif, G) of NMF: X =
FGT, there exist large number of matricg’ B) such that
ABT =1|, FA>0, GB> 0. (6)

Thus (FA,GB) is also the solution with the same residjj)é —

FGTH. With orthogonality condition, we show that this degree of

freedom is eliminated.
Proposition 1. With the orthogonality conditioff TF = | in the

NMF, there exist no matriyA, B that satisfies both Eq.(6) and the

orthogonality condition(FA)T (FA) = |, except wherA, B are per-
mutation matrices, i.eA=P,B=PT PTP=1,R; =0o0r1.

Proof. (FA)T(FA) = | impliesAT A= |. ExceptA = | or permuta-
tion matrix, at least one off-diagonal elemen#ahust be negative.
Say, A, ¢, < 0. Because of orthogonality, each rowfhas ex-
actly one nonzero element. Supposeifoth row of F, thek;-th

the Kernel K-means with mapping — @(xj) minimizes
K _ K n _
Jo= llo0xi) — > = Gicllo(xi) —@al*  (10)
kzlie kgli;

Where(ﬁ( is the centroid in the feature space, & cluster indi-
cator matrix:Gjx = 1 if x; € Cx andGjk = 0 otherwise. Each row of
G has only one nonzero element. &B8G = diag(|Cy|, -, |Ck]).
where|Cy| is the number of data points in clus@g. Define the
normalizedG = G(G' G) /2 such thaGT G = I Both clusterings
can be solved via the optimization problem

max Tr(GTWG),

L (11)
GTG=1, G>0

whereW;j = @(xj)"@(x]) is the kernel. FoK-means,g(x) = X,
W = x7x;.

Now we generalize Theorem 2 to simultaneous row/colifan
means clustering.
Theorem 3 Let G be the cluster indicator matrix fd€-means
clustering of columns oK andF be the cluster indicator matrix for



K-means clustering of rows of. The simultaneous row/columnW = XTFFT X (inner product of the projection of into the sub-
clustering can be solved by optimizing space spanned By). Similarly, F gives the solution for clustering
.~ o I rows of X using kerneW = XGG' XT (inner product of the pro-
_min |X—FDG"|]?, st. FTF =1, G"G =1, D diagonal - >ng ( P P
E G.D>0 jection of X into the subspace spanned Gy
(12)
Proof. The clustering of columns of is the same as in Theorem4. COMPUTING UNI-ORTHOGONAL NMF
—XT. ;
2. Let the rows ofX be (y1,---,yk) = X". Applying Theorem 2 \ye are interested in solving the following one-side orthuao
to rows ofX, the simultaneous row and column clustering becom?g ~orthogonal) NMF
simultaneous optimizations:
min [|X-FGT||?, st. FTF=1. (18)
max TrFTXXTF, [max Tr GTXTXG. (13) F>0,G>0
FTF= G- We solve it using an iterative update algorithm. For isrthogonal
We now show thaE andG, or their un-normalized counterparts, optimization problem Eq.(18) the update rules are
andG, can be obtained via

G — G-kLTF)jk (19)
min X —FGT|?, st. F,G column orthogonal  (14) ! Y (GFTF)
F>0,G>0
From this, let the diagonal matri2r = (||f1]|,---,[|f/|) and the Fr — Fi XGik _ 20)
diagonal matrixDg = (||ga/|,---,||ok]|). We can writeFGT = (FFTXG)ik

(F D,Zl)(DF DG)(GDgl)T. Thus Eq.(14) is equivalent to Eq.(12). The correctness and convergence proofs involve optinoizatie-
To show the optimization in Eq.(14) is equivalent to that @@&3), ory, auxiliary function and several matrix inequalitieh€llengthy
we writeJ = | X —FGT||2=Tr(X—FG")T(X—FG"). FromaT /dG proofs are given if7.

=0, we obtainG = XT (FTF)~1. Substituting back, we have= Alternatively, we optimize th&-orthogonal NMF
Tr (XTX —FTXXTF), whereF = F(FTF)~1/2 satisfie ' F =1. Tv2 T

’ = . min |[X-FG st.G'G=I. 21
Thus min) becomes maxTE' XXTF. This is part of Eq.(13) for F>0, IG>0H I 1)

F. FromdT /0F =0, we can show midbecomes maxT6" X XG.  The update rules are
This is part of Eq.(13) fofs. Thus optimization in Eq.(14) is equiv-

XTF )
alen_t to that of Eg.(lB). . D Gk — ijﬁ7 (22)
Without the diagonal factob in Eqg.(12), Theorem 3 has been ik
noted in [9]. The more careful treatment here reveals thasth (XG);
multaneous row/columi-means clustering allows an extra scale Fik < Ekﬁ. (23)
ik

diagonal factoD in the NMF formulation. Generalizin® to full
matrix S, we arrive at the bi-orthogonal 3-factor NMF of Eq.(5).  UPdate rules Egs.(19,23) are standard NMF rules[19]. Updat
rules Egs.(22,20) are results of this paper &8e

Proposition 2. The bi-orthogonal 3-factor NMF is equivalentto '~ =2 =1 ‘ X ]
Initialization . Using the relation td&k-means clustering (Theo-

GTGn_qlavéwTr[GT(FTX)T(FTX)GL fixing F, (15)  rem 1), we initializeF, G for the G-orthogonal NMF of Eq.(21) as
7.’ - the following. We doK-means clustering of columns &f. From
and alternatively, this we obtain the cluster centroi@s= (c1,---,c) and seF =C.
max Tr[FT(XG)(XG)TFL fixing G. (16) From .the.cluster memberships, we obt@nWe s_et(?a —G+0.2.
FTF=Il, F>0 We initialize theF-orthogonal NMF of Eq.(18) similarly.

Proof. Expandingls = Tr(XTX — 2XTFSG' +S'S). Setting the
o1 =Xp G = Tr(X "X ) g 5. COMPUTING BI-ORTHOGONAL NMF
derivativedJ,;/0S = 0, we obtain
First, we emphasize the role of orthogonal in 3-factor NM&n€C
—_— Xij. (17)  sidering the unconstrained 3-factor NMF
R |1/2 G % %, ?
. . o IX ~FSGT|]?, (24)
where|Ry| is the size of the-th row cluster, andCy| is the size of F>0, G>O S0

thek-th column clusterSy represents properly normalized within-ye note that this 3-factor NMF can be reduced to the uncdnstia
cluster sum of weight</(= k) and between-cluster sum of weightsp-factor NMF by mapping < FS. Another way to say this is that
(¢ #K. The meaning of NMF is that if the clusters are wellthe degree of freedom &SG' is the same aBG'.

separated, we would see the off-diagonal elemen8ak much  Therefore, 3-factor NMF is interesting only when it can net b

S=F'XG, or Sk =fiXgx=

smaller than the diagonal elementsSof transformed into 2-factor NMF. This happens when certain- co
SubstitutingS= FTX G into J, we havels = Tr(XTX— straints are applied to the 3-factor NMF. However, not ali-co

G'XTFFTXG). This leads to optimization in Eqs.(15,16). M strained 3-factor NMF differ from their 2-factor NMF courperrt.
Now, applying Theorem 2 to Egs.(15,16), we have For example, the following 1-sided orthogonal 3-factor NMF

Theorem 4. In the bi-orthogonal 3-factor NMF gives the solu-

T2 ETE —
tion for kernel K-means clustering of columns Xfusing kernel F>0, G>0 S>OHX FSGI% F F =1 (25)



is no different from its 2-factor counterpart Eq.(18), hesa the Following the standard theory of constrained optimizatime

mappingF < FSreduces one to another. introduce the Lagrangian multiplieds(a symmetric matrix of size
Itis clear that K x K) and minimize the Lagrangian function
T2 T T2 T
= = L3(F)=||X-FG TrA(F'F—1)]. 34
colin (IX-FSE? st FTF=1,67T6=1.  (26) 3(F) =] [P+ TeAFTF —1)] (34)

T2 _ T T TAET ;
has no corresponding 2-factor counterpart. We call it tlcrﬂrtin'ogona'\'Ot‘_3 [[X=FGH[|¢=Tr(X'X-2F ' XG+G GF'F). The gradi-
tri-factorization and is the focus of this paper. It can benpated €Nt1S

using the following update rules o _ —2XG+2FG' G+ 2FA. (35)
oF
TES).
Gjk — iju7 (27) The KKT complementarity condition for the nonnegativity 6
(GG'XTFS)jk gives
T ) _

o (XGS )ik . 28) (—2XG+2FG' G+ 2F )Rk =0. (36)

(FFTXGY )i This is the fixed point relation that local minima f8must satisfy.
(FTXG) The standard approach is to solve the coupled equation8@q.(

_\C Ak and constrainE TF = | for F,\. using a nonlinear method such

Sk < Sk (FTFSG Gk (29)

as Newton's method. There an& variables forF andk(k+1)/2
These rules are obtained as the following: for A and the same number of equations. This system of nonlinear

Update G. Clearly, fixing (FS), updatingG is identical to Eq.(2) equations is generally difficult to solve.

(replacingDp by I). The updating rule is given by Eq.(22). Replac- As a contribution, here we provide a much simpler algorithm

ing F by FS, update rule Eq.(22) becomes Eq.(27) Eq.(20) to compute the solution. There are two issues: (iyemo

Update F. Similarly, fixing SG', the rule updating- is obtained gence of the algorithm; (2) correctness of the convergedtisol
from Eq.(20). Replacing by GS', we obtain the updating rule of Correctness

Eq.(28). We show that given an initial guess Bf successive update of

Update S Fixing F, G, we updateSusing Eq.(29). The correctness (XG)ic

and convergence of these update rules are provg8l.in Fik < EkM- (37
I

Initialization . Using the relation to simultaneol&means clus-
tering of rows and columns (Theorem 4), we initialZgG, S as
the following. (A) We doK-means clustering of columns .
From this we obtain the cluster memberships which gBedNe
setG «— G+0.2. (B) We doK-means clustering of rows of and
obtain the cluster membershipsksWe setF < F +0.2. (C) We
initialize Susing Eq.(17).

will converge to a local minima of the problem. The correste
is assured by the fact that at convergence, the solutiorsatiisfy
Eq.(36). We will show that the Lagrangian multiplieis given by
Eq.(44). Substituting, we recover the update rule of EQ.(20
Convergence

The convergence is guaranteed by the monotonicity theorem
Theorem 5 The Lagrangian functioh.3 is monotonically de-
6. SYMMETRIC 3-FACTOR NMF: W =HsH' creasing (non-increasing) under the update rule Eq.(38yraing
G'G+A > 0. Becausé 3 is obviously bounded from below, the
successive iteration will converge.

Let us first prove the following proposition which plays a key
role in the proof of Theorems 5 and 7.

An important special case is that the inputontains a matrix of
pairwise similaritiesX = XT =W. In this caseF = G=H. We
optimize the symmetric NMF:

min [|X —HSHT|]2, st.HTH =1. (30) Proposition 6. For any matrices e RT",Be RX*K Se R g ¢
H20520 R”ﬁ'ﬂ andA, B are symmetric, the following inequality holds
This can be computed using
n k (ASB)pS, T
jk — Hijk (HHTWTHS)jk7 (31) i=1p=1 p
T Proof. LetSp = Suip. Using the explicit index, the difference
Sk — SkM. (32) A =LHS-RHS can be written as
(HTHSHTH)j n
S,B (U3, — Uipu
7. UNI-ORTHOGONAL NMF: CORRECT- A=2 qZ_ A SiqBapSip (Uip — UipUia)-
NESS AND CONVERGENCE Because\, B are symmetnc, this is equal to
We wish to solve the following optimization problem n 2 U u2
) AiS,B 9 _ upu;
minJs(F) = X ~FGT|%. st.FTF =1, (33) .,zzl pqz 1SiaBapSip o)

whereX is nonnegative input an@ is fixed. We prove that the

K
A SigBapSp (U2, — U2) > 0.
update algorithm of Eq.(20) correctly solves this problem. z: a qup P Jq)

g3

i,j=1pg

I\)ll—‘



0

Clearly, the condition in Theorem &7 G+ > 0is satisfied. Sub-

WhenB = |, andSis a column vector, this result reduces to the onstituting this in Eq.(37) we obtain the update rule of Eqg)(20

shown in [19]. Now we are ready to prove Theorem 2.
Proof of Theorem &5
We use the auxiliary function approach [19]. A functiofH, |5|)
is called an auxiliary function df(H) if it satisfies
Z(H,H)>L(H), Z(H,H)=L(H), (39)
for anyH,H. Define

H®D — argminz(H,HW). (40)
H

By constructionL(H®) = Z(HU H®) > ZHED HD) >

Note that since the off-diagonal elements of the Lagrangiah
tipliers A = (Ay) are obtained approximately, the final solution for
F does not satisffF T F = | exactly. This is in fact an advantage.
If FTF =1 holds exactly, due to nonnegativity, each ronFotan
only has one nonzero elements. In the multiplicative updgail-
gorithm, a zero element will lock its self at zero permanerithe
slight deviation from exadt T F = | allows all elements in a row to
be nonzero (although most are very small) and the final patier
nonzeros could change as the updating process evolve.

So far we assumé& is fixed. GivenF, we can updaté& using

L(H®D). ThusL(H®) is monotonic decreasing (non-increasing)the standard rule of Eq.(19). We can alternatively up&a and

The key is to find appropriat&(H, H) and its global minima.
We writeL3 of Eq.(34) as

La(F) = Tr[—2F TXG+ (GTG+A\)FTF],

residuel(F, G) will monotonically decrease
JF9.69)>3FD c9) > 3FD cW)....

In summary, we have proved that the minimization of Eq.(¥8) c

where we ignore the constraiitd X and TA. Now we show that pe solved by the updating rules of Egs.(19,20).

the following function

ZZ FTXG,k+Z

GG M) F
+ |k (41)

is an auxiliary function ofL3(F).

holds Z(F,F’) > L3(F), because: the second termZiF,F’) is

always bigger than the second ternmLig(F ), due to Proposition 6.

Thus the conditions of Eq.(39) are satisfied.
Now according to Eq.(40), we need to find thiebal minimum
of f(F) = Z(F,F’) fixing F’. Alocal minima is given by

0Z(F.F') _ [F'(GTG+M)JikFik
0=——"=+- TR —2(XG)ik ZT
Solving forFy, the minima is
(XG)ik
Fk = Fi
K~ KR (GTG) + Nk

We can show the Hessian matd@#Z(F, F')/0FdF; is positive
definite. Thus this is a convex function and the minima is #i&o
global minima.
Now according to Eq.(40 (+1) = F andF’ = F®), we recover
Eq.(37). O
It remains to determine the Lagrangian multiplleand make
sureG'G+A > 0. In Eq.( 37), summing over indeix we have

(—=FTXG+ G"G+ )y = 0. Therefore we obtain the diagonal el-

ements of the Lagrangian multipliers
Mk = (FTXG—GTG)« (42)

The off-diagonal elements of the Lagrangian multipliers ap-
proximately obtained by settingL/0F, = O (ignoring the non-

negativity constraint o). From Eq.(35), and some algebra, we

obtain

e = (FTXG=G'G)y, k#/ (43)

Combining Egs.( 42, 43), we have a compact solution for the La

grangian multipliers

A=F'XG-G'G. (44)

First, it is obvious that when
F’ = F the equality holdZ (F,F’) = L3(F). Second, the inequality

Alternative Update Algorithm
We can show that the Langranigan functiog(F). has another
auxiliary function

G G+)\ F2
F,F Zz (XG)ikFik 1+IogF, Z i ek
ik
(45)
because the first term iBi(F,F’) is always smaller than the first
term in L3(F), due to the inequalitg > 1+ log(z), Vz> 0, and
we setz = Fy/F. From this auxiliary function, we can drive the
following update rule

(XG)ik

F(GTG+ N (46)

Fik — Fik
in contrast to Eq.(37).

8. 3-FACTOR NMF: CORRECTNESS AND
CONVERGENCE
In 3-factor NMF, the key is the factd® in the middle. Factors

F,G can be dealt with in the same way as in 2-factor NMF.
Theorem 7. LetF, G be any fixed matrices,

J5(S) |IX —FSG||2 (47)

Tr(X"™X —2G"XTFS+FTFSG GS)

is monotonically decreasing under the update rule of E}.(29
Proof. First we prove the correctness. Following the same ap-
proach in§7, The KKT complementarity condition for the nonneg-
ativity if Sk gives

(—-FTXG+FF'SG G)y Sk =0. (48)

At convergence, the solution from the update rule Eq.(285fss
Eq.(48). This proves the correctness of update rule Eq.(29)
Next, we consider the convergence of the update rule Eq.(29)
Theorem 8 The objective functiods(S) is non-increasing under
the update rule Eq.(29).



Proof. We use the auxiliary function approach in the proof of The-

Datasets # documents # class
orem 5 near Egs.(39, 40). Now we shothhat } 2 CSTR 776 7
288) = 2 -2mETxGs+ 5 SO g Reliersop 10— 290010
' k WebAce 2,340 20
is an auxiliary function ofl5(S). The third term inZ(S S) is al- Newsgroups 20,000 20
ways bigger than the third term ifs(S), due to Proposition 6 in
§7 Eq.(38). The second iA(S S) is identical to the second term Table 1: Document Datasets Descriptions.

in J5(S). Thus the conditiorZ(S,S) > J5(S) holds. The equality
conditionZ(S,S) = J5(S) holds obviously. Thereforg(S S) is an
auxiliary function ofJs(S).

According to Eq.(40)S'*Y is given by the minimum od(S,S)
while fixing S = SY. The minimum is obtained by setting

_0Z(SS) _ Ty
0= 55 = -2(F'XG)jk+2

which is equal to

is about 27MB. Among these 7 categories, student, facudtyse
and project are four most populous entity-representinggates.
The associated subset is typically calbKB4. In this paper,
we perform experiments on the 4-category dataset.
(FTFSG'G)iSk Reuters  The Reuters-21578 Text Categorization Test collec-
Sk tion contains documents collected from the Reuters newvesimir
1987. It is a standard text categorization benchmark anthttn
135 categories. In our experiments, we use a subset of thedht
Sk=95 (FTXG)i lection which includes the 10 most frequent categories aba
“(FTFSGTG)i 135 topics and we call Reuters-top 10
According to Eq.(40)S*tY) = SandS = SY. We recover Eq.( WebAce  This is from WebACE project and has been used for
29). Under this update rulds(S) decreases monotonicall. 0 document clustering [2, 13]. The dataset contains 2340rdeots
consisting news articles from Reuters new service via the We
October 1997. These documents are divided into 20 classes.
Newsgroups  The 20 newsgroups dataset contains approxi-
FTFSG'G) & mately 20,000 articles evenly divided among 20 Usenet newsgs.
X1~ 3 26X (1-rloogt )+ 3 e i LT e e 26
(50) To pre-process the datasets, we remove the stop words using a

is another auxiliary function als(S). From this auxiliary function, Standard stop list, all HTML tags are skipped and all heagtddi

Alternative Update Algorithm
We can also show th&(S S) =

we can derive an alternative update rule of JgS): except subject and organization of the posted articlesgaeréd.
In all our experiments, we first select the top 1000 words bjuau
(FTXG)i information with class labels. The feature selection isewith the
Sk — Sk T T (51)
(FTFSG'G)ik rainbow package [25].
In constract to Eq.( 29). 9.2 Evaluation Measures
9. EXPERIMENTS The above document datasets are standard labeled coriaty wi

used in the information retrieval literature. We view théds
of the datasets as the objective knowledge on the strucfuteeo
datasets. To measure the clustering performance, we usg[36i

In this section, we apply the bi-orthogonal 3-factor NMFQB-
NM3F) clustering algorithm to cluster documents and compiar

performance with other standard clustering algorithmsounex- and Adjusted Rand Index (ARI) [26] as our performance meagssur
periments, documents are represented using the binagnamace We expect these measures would provide us with good insights
model where each document is a binary vector in the term space - our algorithm works.

9.1 Datasets Purity measures the extent to which each cluster contaiata d
goints from primarily one class [36]. The purity of a cluster
solution is obtained as a weighted sum of individual cluptetty
values and is given by

We use a variety of datasets, most of which are frequentlg us
in the information retrieval research. Table 1 summaribeschar-
acteristics of the datasets.

CSTR. This is the dataset of the abstracts of technical re-
ports (TRs) published in the Department of Computer Sciexice
a research university. The dataset contained 476 abstrelgish
were divided into four research areas: Natural Languaged3m
ing(NLP), Robotics/Vision, Systems, and Theory.

WebKB4.  The WebKB dataset contains webpages gathergdis the number of clusters anis the total number of points.
from university computer science departments. There apeitab!" 9eneral, the larger the values of purity, the better theteking
esolution is.

K
. nj 1 j
P = z — =— § (N
urity 27 P(S),P(S) o max; (ny),
where§ is a particular cluster of size, nij is the number of doc-

uments of the-th input class that were assigned to jhth cluster,

8280 documents and they are divided into 7 categories: stud
faculty, staff, course, project, department and other. fEetext P(S) is also called the individual cluster purity.




Entropy measures how classes distributed on various ciS6]. Our BiOR-NM3F algorithm performs clustering of words simul
The entropy of the entire clustering solution is computed as taneously, where the factéris the cluster indicator for words.
1 oK m o In this section, we describe the experimental results ordwor
Z z nilog,—, (52) clustering. We consider two clustering strategies: i) fehudtering
MG = i where a word is assigned to a single cluster and ii) soft etirsj
wheremis the number of original labels is the number of clus- where a word can be assigned to several clusters. We analyge h
ters. Generally, the smaller the entropy value, the betierctus-  clustering using class conditional word distribution. Welgse
tering quality is. soft clustering using multi-peak distribution. To our kriedge,
The Rand Index is defined as the number of pairs of objed#oth of these two analysis methods are new.
which are both located in the same cluster and the same dass, . .
both in different clusters and different classes, dividgdhe total 9.4.1 Hard Clustering Evaluation
number of objects [29]. Adjusted Rand Index which adjustadRa Quantitatively, we can view thieth row of the cluster indicator
Index is set betweef®d, 1] [26]. The higher the Adjusted Rand In- F as the posterior probability that wordelongs to each of thié
dex, the more resemblance between the clustering resultthan word clusters. For hard clustering, we assign a word to thstet
labels. that has the largest probability value.
. . Word clustering has no clearprior labels to compare with. We
9.3 Document C|USter|ng Result AnalySIS resolve this difficulty by considering the class conditiomard dis-
We compare our bi-orthogonal 3-factor NMF (BiOR-NM3F) clugribution. For each document class (with known labels), we-c
tering with the K-means algorithm. The comparisons are shovpute the aggregate word distribution, the frequency of vemalir-
in Table 2. Each entry is the corresponding performance uneasring in different documents in the class. For hard clustgrine
value of the algorithm on the row dataset. From Table 2, wemes assign each word to the class with highest probability inabe
that our BIOR-NMS3F clustering achieves better purity resthian  gregate distribution. We expect this assignment would ipea
K-means on CSTR, WebKB4, Reuters and Newsgroup datasetsréasonable criterion for evaluating word clustering, e expect
particular, on Newsgroup, the improvement of the purityueails the word clustering results match this assignment. We alsqu-
significant (from 0330 to 0507). The purity results of K-means rity, entropy and ARI for evaluating the match. Table 3 shokes
are slightly better than BiOR-NM3F on WebAce: the differefis hard clustering results on words.
only 0.005.
The performance of purity and ARI is consistent in our compar
ison, i.e., higher purity values usually correspond to bigARI
values. However, there exist slight differences in thetredgoer-

Entropy= —

nlo

Datasets | Purity | Entropy | ARI
CSTR 0.718 | 0.490 | 0.478
WebKB4 | 0.666 | 0.668 | 0.379

formance of purity and entropy in our comparison, i.e., Bighu- Reuters | 0479 | 0983 | 0.272
rity values do not necessarily correspond to lower entragdyes WebAce 0599 | 0.857 | 0.479
(e.g., on Reuters dataset). This is because the entropyumeas Newsgroups| 0.602 | 0.886 | 0.275

takes into account the entire distribution of the documangspar-

ticular cluster and not just the largest class as in the coatipn of Table 3: Performance of hard clustering on words. Each entry

the purity. is the corresponding performance value of the word clusteng
In summary, the comparison shows that BIOR-NM3F is a viabf¥ the row dataset.

and competitive algorithm in document clustering domaspes

ma}ly considering that B|.OR-I.\IM3F is performln.g documehlse 9.4.2 Soft Clustering Evaluation

tering and words clustering simultaneously, while K-meianzer-

forming document clustering only. Note that in general, the cluster indicatorfor words is not ex-

actly orthogonal. This is because the off-diagonal Lagi@mgul-

Datasets BiOR-NM3E K-means tipliers of Eq.( 43) are obtained ignoring the non-negéatizion-
Purity Entropy ARI|Purity Entropy ARI straints of G. This slight deviation from rigorous orthogonality
CSTR [|0.754 0.402 0.4300.712 0.412 0.189  produces a benefit of soft clustering.
WebKB4 [[0.583 0.372 0.4280.534 0.442 0.418 Here we also provide a systematic analysis of the soft aluste

Reuters [|0.558 0.976 0.51/0.545 0.726 0.506 ing of words. Quantitatively, we vieutth row of F as the poste-
WebAce [|0.541 0.889 0.44%0.546 0.868 0.452 rior probability that word belongs to each of thi¢ word clusters.
Newsgroupg 0.507 1.233 0.1790.330 1.488 0.149 Let this row of F be (py,---, pk), Which has been normalized to

) ) ) Sk Pk = 1. Suppose a word has a posterior distribution of
Table 2: Performance Comparisons of clustering algorithms

Each entry is the corresponding performance value of the alg- (0.96,0,0.04,---,0);
rithm on the row dataset.

it is obvious that this word is cleanly clustered into onestéu.
We say this word has a 1-peak distribution. Suppose anotbet w

9.4 Word CIUSte”ng Result AnalyS|S has a posterior distribution @0.48,0.48,0.04,---,0); obviously



of the associated document clusters. For examplgltiproces-

Words [Robotics/Vision Systems Theory NLP sor and cacheare 1-peak words that are associated with$lye-
1-Peak words tems cluster;polynomialandcomplexityare 1-peak words related
Polynomial 0.011 0.004 0.966 0.019 . o .
Multiprocessof ~ 0.024 0.934 0.021 0021 to the Theory cluster;recognitionandlearning are 2-peak words
complexity 0.023 0.019 0.896 0.062 associated witliRobotics/VisionandNLP clusters;Interfaceis a
cache 0.017 0.953 0.015 0.015 2-peak words associated wiRobotics/Vision and Systemclus-
set 0.022 0.009 0.890 0.079 . . .
object 0.726 0.056 0.031 0.187 ters; systemprocess anduserare 3-peak words associated with
train 0.027 0.011 0.024 0.938 Robotics/Vision Systemand NLP clusters; present algorithm
reason 0.040 0.008 0.018 0.934 andpaper are 4-peak words. To summarize, the word clustering
camera 0.898 0.019 0.042 0.041 . L e
collapse 0.036 0.015 0.916 0.033 is capable of distinguishing the contents of words. Theltesi
parallel 0.036 0.901 0.031 0.031 peak words are consistent with what we would expect from a sys
compiler 0.060 0.834  0.053 0.053 tematic content analysis. This aspect of tri-factorizatibows a
latency 0.055 0.848 0.049 0.048 . - . . .
robot 0.892 0.040 0.022 0.045 unique capability that most other clustering algorithrreslacking.
lexical 0.055 0.022 0.049 0.874
study 0.087 0.164 0.673 0.076
vack 0.858 0026 0.058 0.058 10. ACASESTUDY ONSYSTEM LOG DATA
percept 0.856 0.018 0.042 0.084 In this section, we present a case study of applying oureding}
active 0.700 0.075 0.056 0.168 techni t t log data. | t t avolisat
sensor 0.858 0.026 0.058 0.058 echnique to system log aa.. n sys em mgnagemen apphsa
2-Peak words to perform automated analysis of the historical data aaragsple
recoglnition 0.557 0.004 0.025 0.414 components when problems occur, we need to cluster the leg me
visua 0.668 0.004 0.008 0.320 : - : :
learn 0577 0005 0.034 0384 sages W|tr_1 d|§par§te formats to.autom_atlcally |.nf(_er themor_mset
human 0.534 0.035 0.020 0.411 of semantic situations and obtain a brief description fahesitua-
representation 0.377 0.011 0.077 0.535 tion [22].
action 0.465 0.023 0.026 0.486 : . .
interface 0428 0422 0038 0113 Thg log files usgd in qur gxperlments are collecteq from sev-
computation 0.156 0.018 0.433 0.393 eral different machines with different operating systemsisg log-
information 0.301 0.107 0.180 0.415 dump2td (NT data collection tool) developed at IBM T.J. \Wats
3-Peak words ; : ;
sysiem 5378 0930 0031 0372 Research Center. The data in the log files .descrlbe the sthtus
process 0.335 0353 0.016 0.296 each component and record system operational changesasuch
describe 0.321 0.233 0.060 0.386 the starting and stopping of services, detection of netwpXica-
user 0.336 0.389 0.020 0.256 ; : ; it ;
perform 0377 0352 0.060 0.211 tions, software conflggratlon qulﬂcatlons, and softwam:ayqn
Z-Peak words errors. The raw log files contain a free-format ASCII degaip
present 0.319 0.315 0.188 0.178 of the event. In our experiment, we apply clustering aldonis
algorithm 0.191 0.480 0.177 0.152 to group the messages into different semantic situationspre-
implement 0.194 0.435 0.114 0.257 d d ski |
paper 0.183 0.279 0323 0215 process text messages, we remove stop words and skip HTML la-
bels. The raw log messages have been manually labeled with it
Table 4: Words Multi-Peak Distribution for CSTR dataset. semantic situation by domain experts [22]. The set of seimant

situations includestart, stop, dependency create, connection
report, request configuration, andother. The detailed expla-
this word is clustered into two clusters. We say this word&as nations of these situations can be found in [4].
peak distribution. In general, we wish to characterize eeatd as

belonging to 1-peak, 2-peak, 3-peak etc. Roword clusters, we Algorithms | Purity Entropy  ARI
setK prototype distributions: BIOR-NM3F | 0.806 ~ 0.303  0.856

K-means | 0.684 0.491 0.572
11 1 1

2 O Table 5: Clustering Results on System Log Data

For each word, we assign it to the closest prototype digtdbu

based on the Euclidean distance, allowing all possible perm  We obtain good message clustering results as shown in Table 5
tions of the clusters. For exampl€l, 0,0, ---,0) is equivalent to The performance of BIOR-NM3F is better than K-means on all
(0,1,0,---,0). In practice, we first sort the row such that the comthree measures. Table 6 shows the words in 1-peak, 2-pgmak3-
ponents decrease from the left to the right, and then assign i and 4-peak categories for the log data respectively. We eened
the closest prototype. Generally speaking, the less pealteeo meaningful common situations from the word cluster resufisr
posterior distribution of the word, the more unique contefthe example, situatiostart can be described by 1-peak words such as
word has. To further illustrate the soft clustering evaluigtwe started starting andservice and 2-peak words such aersion
take a closer look at the CSTR dataset. Table 4 lists severalsv The situatiorconfigure can be described by 1-peak words such as
in 1-peak, 2-peak, 3-peak and 4-peak categories resplgctiee  configuration two-peak words such gsoduct and 3-peak words
see that these words are meaningful and are often reprégesta such aprofessional

(1707... 70)7(



Words | Start Create Configure Dependency Report Connection Requether Stop
1-Peak words

configure 0.014 0.018 0.880 0.002 0.012 0.004 0.020 0.020 0.030
respond 0.019 0.023 0.028 0.002 0.016 0.821 0.028 0.021 0.042
network 0.032 0.038 0.047 0.004 0.026 0.703 0.046  0.032 0.072
create 0.009 0.926 0.013 0.001 0.007 0.003 0.013 0.015 0.023
service 0.704 0.025 0.015 0.022 0.161 0.003 0.015 0.013 0.052
start 0.918 0.012 0.015 0.003 0.009 0.003 0.015 0.012 0.023
contact 0.024 0.024 0.030 0.807 0.017 0.006 0.029 0.021 0.042
fault 0.044 0.053 0.064 0.005 0.613 0.014 0.063 0.054 0.100
stop 0.031 0.038 0.047 0.004 0.026 0.010 0.046  0.034 0.764
restart 0.034 0.041 0.050 0.004 0.028 0.011 0.049 0.042 0.751
blank 0.002 0.003 0.003 0.000 0.002 0.000 0.003 0.982 0.005
fault 0.029 0.035 0.043 0.004 0.743 0.009 0.042 0.032 0.063
start 0.706 0.041 0.050 0.004 0.028 0.011 0.049 0.041 0.070
inventory 0.019 0.023 0.028 0.002 0.016 0.821 0.028 0.022 0.041
2-Peak words

exist 0.013 0.016 0.020 0.535 0.055 0.297 0.019 0.013 0.035
product 0.035 0.011 0.513 0.001 0.043 0.003 0.252 0.011 0.131
version 0.454 0.020 0.024 0.004 0.416 0.005 0.024 0.023 0.040
complete 0.022 0.013 0.608 0.001 0.009 0.003 0.284 0.010 0.050
root 0.018 0.022 0.027 0.002 0.015 0.538 0.317 0.020 0.041
3-Peak words

fail 0.011 0.013 0.046 0.416 0.043 0.308 0.015 0.010 0.148
professional|| 0.059 0.071 0.347 0.007 0.049 0.019 0.260 0.063 0.135
4-Peak words

timeout 0.096 0.117 0.143 0.012 0.080 0.093 0.141 0.115 0.213
detection 0.077 0.093 0.114 0.010 0.318 0.025 0.112 0.081 0.170

Table 6: Word Multi-Peak Distributions for Log Data

The case study on clustering log message files for computingnnegative (sinc& can be interpreted as cluster indicators, as in
system management provides a successful story of appliieg §3). This is called semi-NMF [11]:
cluster model in real application'_s. The log messages aaéively semi-NMF: X ~ F+G,
short with a large vocabulary size [31]. Hence they are Uigual
represented as sparse high-dimensional vectors. In additie Theorem 1 provides the basis for this semi-NMF formulation.
log generation mechanisms implicitly create some assonmbe-  Both NMF and semi-NMF have clustering capabilities which ar
tween the terminologies and the situations. Our clusteriethod generally better than the K-means. In fact, PCA is effettideing
explicitly models the data and word assignments and is #@lleota  K-means clustering[8, 34]. L& be the cluster indicators for the
exploit the association between data and features. Thegyoe K clusters then (1BGT ~VVT; (i) the principal directionsyUT,
these factors leads to the good application on system mareage Project data points into the subspace spanned b tihester cen-

troids.

11. NMF RELATED FACTORIZATIONS 111 NMF and PLS|

Besides 3-factor extension in this paper, there are mangr oth
NMF extensions. Here we provide an overview.
First, we consider different types of nonnegative facetians.

So far, the cost function we used for computing NMF is the sum
of squared errorg]X — FGT||2. Another cost function KL diver-

ence:
The standard NMF can be written as g
Xij

NMF: X, ~F,G, Jwer = Z Z Xij {'09 FGT), —Xij + (FG")jj (53)

using an intuitive notation foX,F,G > 0. PLSI [14] maximizes the likelihood
The classic matrix factorization is Principal Componentmsis

(PCA) which uses the singular value decompositior: UZV T, Jos = Z z X(wi,dj)logP(w;i,d;) (54)
where we allowU,V to have mixed-signs; the input data could
have mixed-signs. absorbiriginto U, we can write where the joint occurrence probability is factorized (igarame-

terized or approximated )as
P(wi,d ZP Wi Zc) P(zic) P(dj | zc) (55)

PCA: Xi~UiVyi

However, even iX have mixed-signs, we could enforGeto be



In [12], itis shown that Objective function of PLSI is idecsi to
the objective function of NMF, i.eJo.s; = —Jwwex + CONstantby

setting(FG )ij = P(w;,d;). Therefore, the NMF update algorithm

and the EM algorithm in training PLSI are alternative methtal
optimize the same objective function.

12. SUMMARY

We study computational algorithms for orthogonal 2-fattdiF
and 3-factor NMF. The bi-orthogonal 3-factor NMF provides a
strong capability of simultaneously clustering rows antloms.
We derive new updating rules and prove the convergence pbthél8]
algorithms. Experiments show the usefulness of this agbroa/e
also provide a new approach of evaluating the quality of vatud-
tering. In addition, we also present an overview of varioldRN
extensions and examine their relationships.
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