
Orthogonal Nonnegative Matrix Tri-Factorizations for
Clustering

Chris Ding
Lawrence Berkeley National

Laboratory
Berkeley, CA 94720

chqding@lbl.gov

Tao Li, Wei Peng
School of Computer Science

Florida International University
Miami, FL 33199

taoli,wpeng002@cs.fiu.edu

Haesun Park
College of Computing

Georgia Institute of
Technology

Atlanta, GA 30332

hpark@cc.gatech.edu

ABSTRACT
Currently, most research on nonnegative matrix factorization (NMF)
focus on 2-factorX = FGT factorization. We provide a systematic
analysis of 3-factorX = FSGT NMF. Whileunconstrained3-factor
NMF is equivalent tounconstrained2-factor NMF,constrained3-
factor NMF brings new features toconstrained2-factor NMF. We
study the orthogonality constraint because it leads to rigorous clus-
tering interpretation. We provide new rules for updatingF,S,G
and prove the convergence of these algorithms. Experimentson
5 datasets and a real world case study are performed to show the
capability of bi-orthogonal 3-factor NMF on simultaneously clus-
tering rows and columns of the input data matrix. We provide a
new approach of evaluating the quality of clustering on words us-
ing class aggregate distribution and multi-peak distribution. We
also provide an overview of various NMF extensions and examine
their relationships.

Categories and Subject Descriptors
I.2 [Artificial Intelligence ]: Learning; I.5.3 [Pattern Recogni-
tion]: Clustering

General Terms
Algorithms, Experimentation, Theory

Keywords
nonnegative matrix factorization (NMF), orthogonal factorization,
clustering, tri-factorization, multi-peak distribution

1. INTRODUCTION
The nonnegative matrix factorization (NMF) has been shown

recently to be useful for many applications in environment,pat-
tern recognition, multimedia, text mining, and DNA gene expres-
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sions [3, 5, 15, 20, 27, 32]. This is also extended to classification
[30]. NMF can be traced back to 1970s (Notes from G. Golub) and
is studied extensively by Paatero [27]. The work of Lee and Seung
[18, 19] brought much attention to NMF in machine learning and
data mining fields. They suggest that NMF factors contain coher-
ent parts of the original data (images). They emphasize the differ-
ence between NMF and vector quantization (which is essentially
the K-means clustering). However, later experiments [16, 20] do
not support the coherent part interpretation of NMF. In fact, most
applications make use of the clustering aspect of NMF, whichis
de-emphasized by Lee and Seung [18]. A recent theoretical analy-
sis [9] shows the equivalence between NMF andK-means / spectral
clustering.

Below we briefly outline NMF which provides notations and fur-
ther motivations. In general, NMF factorizes input nonnegative
data matrixX into 2 nonnegative matrices,

X ≈ FGT , (1)

whereX ∈ R
p×n
+ , F ∈ R

p×k
+ and G ∈ R

n×k
+ ( R

n×k
+ is the set of

all n-by-k matrices whose elements are nonnegative). Generally,
the rank of matricesF,G is much lower than the rank ofX (i.e.,
k≪min(p,n)).

In this paper, we emphasize the orthogonality of matrix factors
in NMF. Specifically, we solve the one-sidedG-orthogonal NMF,

min
F≥0,G≥0

‖X−FGT‖2, s.t. GTG = I . (2)

The main advantages are (1) uniqueness of the solution. (2) Clus-
tering interpretations. We will show it is equivalent to K-means
clustering.

Furthermore, it is natural to consider imposing orthogonality on
bothF andG simultaneously in NMF.

min
F≥0,G≥0

‖X−FGT‖2, s.t. FTF = I , GTG = I . (3)

This corresponds to the simultaneousK-means clustering [9] of the
rows and columns ofX, whereF is the cluster indicator matrix for
clustering rows andG is the cluster indicator matrix for clustering
columns. However, this double orthogonality is very restrictive and
it gives a rather poor matrix low-rank approximation. One needs an
extra factorS to absorb the different scales ofX,F,G. S provides



additional degrees of freedom such that the low-rank matrixrepre-
sentation remains accurate whileF gives row clusters andG gives
column clusters. Thus we consider the following nonnegative 3-
factor decomposition

X ≃ FSGT . (4)

For the objective of the function approximation, we optimize

min
F≥0,G≥0,S≥0

‖X−FSGT‖2, s.t. FTF = I , GTG = I . (5)

We noteX ∈ R
p×n
+ , F ∈ R

p×k
+ andS∈ R

k×ℓ
+ andG∈ R

n×ℓ
+ . This

allows the number of row cluster (k) differ from the number of col-
umn cluster (ℓ). In most cases, we setk= ℓ. This form gives a good
framework for simultaneously clustering the rows and columns of
X. Simultaneously rows and columns clustering using Laplacian
matrix has been studied in [7, 35].

NMF is one type of matrix factorizations. There are other types
of factorizations [6, 17, 33, 24, 23, 21]. Others include Latent
Semantic Indexing [1], scaled PCA [10], generalized SVD [28],
etc.

Here are some more notations. We often writeF = (f1, · · · , fk)

andG= (g1, · · · ,gk). The matrix norm‖A‖=
√

∑i j a2
i j . In the fol-

lowing, we emphasize the benefit of orthogonality for the unique-
ness of the solution in§2. In §3 the benefits of orthogonality are
discussed in detail. In§4 the computational algorithm for uni-
orthogonal NMF is given. In§5 strong motivations for 3-factor
NMF are discussed and the computing algorithm is given. In§7
the detailed proof of algorithm correctness and convergence for
uni-orthogonal NMF is presented. In§8 algorithm correctness and
convergence for bi-orthogonal NMF are presented.§9 is devoted
to experiments on 6 datasets. In particular,§9.3 shows the results
on document clustering (columns ofX); §9.4 provides a new and
systematic analysis on word clustering (rows ofX). This differs
substantially from the usual (document) clustering. In§10, an in-
teresting case study of clustering system log data is presented. In
§11, we provide an overview of various NMF extensions and ex-
amine their relationships. The summary is given in§12.

2. UNIQUENESS OF ORTHOGONAL NMF
Generally speaking, for any given solution(F,G) of NMF: X =

FGT , there exist large number of matrices(A,B) such that

ABT = I , FA≥ 0, GB≥ 0. (6)

Thus (FA,GB) is also the solution with the same residue‖X −
FGT‖. With orthogonality condition, we show that this degree of
freedom is eliminated.
Proposition 1. With the orthogonality conditionFTF = I in the
NMF, there exist no matrixA,B that satisfies both Eq.(6) and the
orthogonality condition(FA)T(FA) = I , except whenA,B are per-
mutation matrices, i.e.,A = P,B = PT ,PTP = I ,Pi j = 0 or 1.
Proof. (FA)T(FA) = I impliesATA = I . ExceptA = I or permuta-
tion matrix, at least one off-diagonal element ofA must be negative.
Say,Ak1,ℓ1 < 0. Because of orthogonality, each row ofF has ex-
actly one nonzero element. Suppose fori1-th row of F , thek1-th

element is nonzero. Thus(FA)i1ℓ1 = ∑k Fi1,kAk,ℓ1 = Fi1,k1Ak1,ℓ1 < 0.

Thus there can be no negative elements inA. ⊓–
We note that for any matrix factorization, the freedom of col-

umn/row permutation always exists.

3. ORTHOGONAL NMF AND CLUSTER-
ING

Lee and Seung [18] emphasizes the difference between NMF and
vector quantization (which isK-means clustering). Later experi-
ments [16, 20] empirically show that NMF has clear clustering ef-
fects. Theoretically, NMF is inherently related to kernel K-means
clustering.
Theorem 1. Orthogonal NMF,

min
F≥0,G≥0

‖X−FGT‖2, s.t. GTG = I . (7)

is equivalent to K-means clustering.
This theorem has been previously proved[9] with additionalnor-
malization conditions. Here we give a simpler and more general
proof, which can easily generalize to bi-orthogonality.
Proof. We writeJ = ||X−FGT ||2 = Tr(XTX−2FTXG+FTF).

The zero gradient condition∂L/∂F = −2XG+ 2F = 0 givesF =

XG. ThusJ = Tr(XTX−GTXTXG). Since Tr(XTX) is a constant,
the optimization problem becomes

min
G≥0

Tr(GTXTXG) s.t. GTG = I . (8)

According to Theorem 2 below, this is identical to K-means clus-
tering. �

We note that Theorem 1 holds even ifX andF are not nonnega-
tive, i.e.,X andF have mixed-sign entries. This motives generaliz-
ing NMF to semi-NMF in§11.1.
Theorem 2[8, 34]. TheK-means clustering minimizes

J =
κ

∑
k=1

∑
i∈Ck

‖xi −ck‖
2 =

κ

∑
k=1

n

∑
i=1

Gik‖xi −ck‖
2 (9)

whereck is the cluster centroid of thek-th cluster. More generally,
the Kernel K-means with mappingxi → φ(xi) minimizes

Jφ =
κ

∑
k=1

∑
i∈Ck

‖φ(xi)− φ̄k||
2 =

κ

∑
k=1

n

∑
i=1

Gik‖φ(xi)− φ̄k||
2 (10)

whereφ̄k is the centroid in the feature space, andG is cluster indi-
cator matrix:Gik = 1 if xi ∈Ck andGik = 0 otherwise. Each row of
G has only one nonzero element. andGTG = diag(|C1|, · · · , |CK|),
where|Ck| is the number of data points in clusterCk. Define the
normalizedG̃= G(GTG)−1/2 such thatG̃TG̃= I . Both clusterings
can be solved via the optimization problem

max
G̃TG̃=I , G̃≥0

Tr(G̃TWG̃), (11)

whereWi j = φ(xi)
Tφ(x j ) is the kernel. ForK-means,φ(xi) = xi ,

Wi j = xT
i x j .

Now we generalize Theorem 2 to simultaneous row/columnK-
means clustering.
Theorem 3. Let G be the cluster indicator matrix forK-means
clustering of columns ofX andF be the cluster indicator matrix for



K-means clustering of rows ofX. The simultaneous row/column
clustering can be solved by optimizing

min
F̃,G̃,D≥0

‖X− F̃DG̃T‖2, s.t. F̃T F̃ = I , G̃TG̃ = I , D diagonal.

(12)
Proof. The clustering of columns ofX is the same as in Theorem
2. Let the rows ofX be (y1, · · · ,yk) = XT . Applying Theorem 2
to rows ofX, the simultaneous row and column clustering becomes
simultaneous optimizations:

max
F̃TF̃=I

Tr F̃TXXT F̃ , max
G̃TG̃=I

Tr G̃TXTXG̃. (13)

We now show that̃F andG̃, or their un-normalized counterparts,F
andG, can be obtained via

min
F≥0,G≥0

‖X−FGT‖2, s.t. F,G column orthogonal. (14)

From this, let the diagonal matrixDF = (||f1||, · · · , ||fk||) and the
diagonal matrixDG = (||g1||, · · · , ||gk||). We can writeFGT =

(FD−1
F )(DF DG)(GD−1

G )T . Thus Eq.(14) is equivalent to Eq.(12).
To show the optimization in Eq.(14) is equivalent to that in Eq.(13),

we writeJ = ‖X−FGT‖2 = Tr(X−FGT)T(X−FGT). From∂T/∂G
= 0, we obtainG = XT(FTF)−1. Substituting back, we haveJ =

Tr (XTX− F̃TXXT F̃), whereF̃ = F(FTF)−1/2 satisfiesF̃T F̃ = I .
Thus minJ becomes maxTr̃FTXXT F̃ . This is part of Eq.(13) for
F̃ . From∂T/∂F = 0, we can show minJ becomes maxTr̃GTXTXG̃.
This is part of Eq.(13) for̃G. Thus optimization in Eq.(14) is equiv-
alent to that of Eq.(13). ⊓–

Without the diagonal factorD in Eq.(12), Theorem 3 has been
noted in [9]. The more careful treatment here reveals that the si-
multaneous row/columnK-means clustering allows an extra scale
diagonal factorD in the NMF formulation. GeneralizingD to full
matrixS, we arrive at the bi-orthogonal 3-factor NMF of Eq.(5).
Proposition 2. The bi-orthogonal 3-factor NMF is equivalent to

max
GT G=I , G≥0

Tr[GT(FTX)T(FTX)G], fixing F, (15)

and alternatively,

max
FTF=I , F≥0

Tr[FT(XG)(XG)TF ], fixing G. (16)

Proof. ExpandingJ4 = Tr(XTX−2XTFSGT + STS). Setting the
derivative∂J4/∂S= 0, we obtain

S= FTXG, or Sℓk = fT
ℓXgk =

1

|Rℓ|1/2 |Ck|1/2 ∑
i∈Rℓ

∑
J∈Ck

Xi j . (17)

where|Rℓ| is the size of theℓ-th row cluster, and|Ck| is the size of
thek-th column cluster.Sℓk represents properly normalized within-
cluster sum of weights (ℓ = k) and between-cluster sum of weights
(ℓ 6= k). The meaning of NMF is that if the clusters are well-
separated, we would see the off-diagonal elements ofS are much
smaller than the diagonal elements ofS.

SubstitutingS= FTXG into J4, we haveJ4 = Tr(XTX−
GTXTFFTXG). This leads to optimization in Eqs.(15,16). �

Now, applying Theorem 2 to Eqs.(15,16), we have
Theorem 4. In the bi-orthogonal 3-factor NMF,G gives the solu-
tion for kernel K-means clustering of columns ofX using kernel

W = XTFFTX (inner product of the projection ofX into the sub-
space spanned byF). Similarly,F gives the solution for clustering
rows of X using kernelW = XGGTXT (inner product of the pro-
jection ofX into the subspace spanned byG).

4. COMPUTING UNI-ORTHOGONAL NMF
We are interested in solving the following one-side orthogonal

(F-orthogonal) NMF

min
F≥0,G≥0

‖X−FGT‖2, s.t. FTF = I . (18)

We solve it using an iterative update algorithm. For thisF-orthogonal
optimization problem Eq.(18) the update rules are

G jk←G jk
(XTF) jk

(GFTF) jk
, (19)

Fik← Fik
(XG)ik

(FFTXG)ik
. (20)

The correctness and convergence proofs involve optimization the-
ory, auxiliary function and several matrix inequalities. The lengthy
proofs are given in§7.

Alternatively, we optimize theG-orthogonal NMF

min
F≥0,G≥0

‖X−FGT‖2, s.t. GTG = I . (21)

The update rules are

G jk←G jk
(XTF) jk

(GGTXTF) jk
, (22)

Fik← Fik
(XG)ik

(FGTG)ik
. (23)

Update rules Eqs.(19,23) are standard NMF rules[19]. Update
rules Eqs.(22,20) are results of this paper (see§7).
Initialization . Using the relation toK-means clustering (Theo-
rem 1), we initializeF,G for theG-orthogonal NMF of Eq.(21) as
the following. We doK-means clustering of columns ofX. From
this we obtain the cluster centroidsC = (c1, · · · ,ck) and setF = C.
From the cluster memberships, we obtainG. We setG←G+0.2.
We initialize theF-orthogonal NMF of Eq.(18) similarly.

5. COMPUTING BI-ORTHOGONAL NMF
First, we emphasize the role of orthogonal in 3-factor NMF. Con-

sidering the unconstrained 3-factor NMF

min
F≥0,G≥0,S≥0

‖X−FSGT‖2, (24)

we note that this 3-factor NMF can be reduced to the unconstrained
2-factor NMF by mappingF← FS. Another way to say this is that
the degree of freedom ofFSGT is the same asFGT .

Therefore, 3-factor NMF is interesting only when it can not be
transformed into 2-factor NMF. This happens when certain con-
straints are applied to the 3-factor NMF. However, not all con-
strained 3-factor NMF differ from their 2-factor NMF counterpart.
For example, the following 1-sided orthogonal 3-factor NMF

min
F≥0,G≥0,S≥0

‖X−FSGT‖2, FTF = I (25)



is no different from its 2-factor counterpart Eq.(18), because the
mappingF ← FSreduces one to another.

It is clear that

min
F≥0,G≥0,S≥0

‖X−FSGT‖2, s.t. FTF = I , GTG = I . (26)

has no corresponding 2-factor counterpart. We call it the bi-orthogonal
tri-factorization and is the focus of this paper. It can be computed
using the following update rules

G jk←G jk
(XTFS) jk

(GGTXTFS) jk
, (27)

Fik← Fik
(XGST)ik

(FFTXGST)ik
. (28)

Sik← Sik
(FTXG)ik

(FTFSGTG)ik
. (29)

These rules are obtained as the following:
Update G. Clearly, fixing(FS), updatingG is identical to Eq.(2)
(replacingDn by I ). The updating rule is given by Eq.(22). Replac-
ing F by FS, update rule Eq.(22) becomes Eq.(27)
Update F. Similarly, fixing SGT , the rule updatingF is obtained
from Eq.(20). ReplacingG by GST , we obtain the updating rule of
Eq.(28).
Update S. Fixing F,G, we updateSusing Eq.(29). The correctness
and convergence of these update rules are proved in§8.
Initialization . Using the relation to simultaneousK-means clus-
tering of rows and columns (Theorem 4), we initializeF,G,S as
the following. (A) We doK-means clustering of columns ofX.
From this we obtain the cluster memberships which givesG. We
setG←G+0.2. (B) We doK-means clustering of rows ofX and
obtain the cluster memberships asF . We setF ← F +0.2. (C) We
initialize Susing Eq.(17).

6. SYMMETRIC 3-FACTOR NMF: W = HSHT

An important special case is that the inputX contains a matrix of
pairwise similarities:X = XT = W. In this case,F = G = H. We
optimize the symmetric NMF:

min
H≥0,S≥0

‖X−HSHT‖2, s.t. HTH = I . (30)

This can be computed using

H jk← H jk
(WTHS) jk

(HHTWTHS) jk
, (31)

Sik← Sik
(HTWH)ik

(HTHSHT H)ik
. (32)

7. UNI-ORTHOGONAL NMF: CORRECT-
NESS AND CONVERGENCE

We wish to solve the following optimization problem

min
F≥0

J3(F) = ||X−FGT ||2, s.t. FTF = I , (33)

whereX is nonnegative input andG is fixed. We prove that the
update algorithm of Eq.(20) correctly solves this problem.

Following the standard theory of constrained optimization, we
introduce the Lagrangian multipliersλ (a symmetric matrix of size
K×K) and minimize the Lagrangian function

L3(F) = ||X−FGT ||2 +Tr[λ(FTF− I)]. (34)

Note ||X−FGT ||2 = Tr(XTX−2FTXG+GTGFTF). The gradi-
ent is

∂L
∂F

=−2XG+2FGTG+2Fλ. (35)

The KKT complementarity condition for the nonnegativity ofFik

gives

(−2XG+2FGTG+2Fλ)ikFik = 0. (36)

This is the fixed point relation that local minima forSmust satisfy.
The standard approach is to solve the coupled equations Eq.(36)

and constraintFTF = I for F,λ. using a nonlinear method such
as Newton’s method. There arenk variables forF andk(k+ 1)/2
for λ and the same number of equations. This system of nonlinear
equations is generally difficult to solve.

As a contribution, here we provide a much simpler algorithm
Eq.(20) to compute the solution. There are two issues: (1) conver-
gence of the algorithm; (2) correctness of the converged solution.
Correctness.

We show that given an initial guess ofF , successive update of

Fik← Fik
(XG)ik

[F(GTG+λ)]ik
. (37)

will converge to a local minima of the problem. The correctness
is assured by the fact that at convergence, the solution willsatisfy
Eq.(36). We will show that the Lagrangian multiplierλ is given by
Eq.(44). Substituting, we recover the update rule of Eq.(20).
Convergence.

The convergence is guaranteed by the monotonicity theorem
Theorem 5. The Lagrangian functionL3 is monotonically de-
creasing (non-increasing) under the update rule Eq.(37), assuming
GTG+ λ ≥ 0. BecauseL3 is obviously bounded from below, the
successive iteration will converge.

Let us first prove the following proposition which plays a key
role in the proof of Theorems 5 and 7.
Proposition 6. For any matricesA∈R

n×n
+ ,B∈R

k×k
+ ,S∈R

n×k
+ ,S′ ∈

R
n×k
+ , andA,B are symmetric, the following inequality holds

n

∑
i=1

k

∑
p=1

(AS′B)ipS2
ip

S′ip
≥ Tr(STASB). (38)

Proof. Let Sip = S′ipuip. Using the explicit index, the difference
∆ = LHS-RHS can be written as

∆ =
n

∑
i, j=1

k

∑
p,q=1

Ai j S
′
jqBqpS

′
ip(u2

ip−uipu jq).

BecauseA,B are symmetric, this is equal to

=
n

∑
i, j=1

k

∑
p,q=1

Ai j S
′
jqBqpS

′
ip(

u2
ip +u2

jq

2
−uipu jq)

=
1
2

n

∑
i, j=1

k

∑
p,q=1

Ai j S
′
jqBqpS′ip(u2

ip−u2
jq)2≥ 0.



⊓–
WhenB= I , andS is a column vector, this result reduces to the one
shown in [19]. Now we are ready to prove Theorem 2.
Proof of Theorem 5.

We use the auxiliary function approach [19]. A functionZ(H, H̃)

is called an auxiliary function ofL(H) if it satisfies

Z(H, H̃)≥ L(H), Z(H,H) = L(H), (39)

for anyH, H̃. Define

H(t+1) = argmin
H

Z(H,H(t)). (40)

By construction,L(H(t)) = Z(H(t),H(t))≥ Z(H(t+1),H(t))≥

L(H(t+1)). ThusL(H(t)) is monotonic decreasing (non-increasing).
The key is to find appropriateZ(H, H̃) and its global minima.

We writeL3 of Eq.(34) as

L3(F) = Tr[−2FTXG+(GTG+λ)FTF ],

where we ignore the constraintsXTX and Trλ. Now we show that
the following function

Z(F,F′) =−∑
ik

2(FTXG)ik +∑
ik

(F ′(GTG+λ)]ikF2
ik

F ′ik
(41)

is an auxiliary function ofL3(F). First, it is obvious that when
F ′ = F the equality holdsZ(F,F′) = L3(F). Second, the inequality
holds Z(F,F′) ≥ L3(F), because: the second term inZ(F,F′) is
always bigger than the second term inL3(F), due to Proposition 6.
Thus the conditions of Eq.(39) are satisfied.

Now according to Eq.(40), we need to find theglobal minimum
of f (F) = Z(F,F′) fixing F ′. A local minima is given by

0 =
∂Z(F,F′)

∂Fik
=−2(XG)ik +2

[F ′(GTG+λ)]ikFik

F ′ik
.

Solving forFik, the minima is

Fik = F ′ik
(XG)ik

[F(GTG)+λ]ik

We can show the Hessian matrix∂2Z(F,F′)/∂Fik∂Fjℓ is positive
definite. Thus this is a convex function and the minima is alsothe
global minima.

Now according to Eq.(40),F(t+1) = F andF ′ = F(t), we recover
Eq.( 37). ⊓–

It remains to determine the Lagrangian multiplierλ and make
sureGTG+ λ ≥ 0. In Eq.( 37), summing over indexi, we have
(−FTXG+GTG+λ)kk = 0. Therefore we obtain the diagonal el-
ements of the Lagrangian multipliers

λkk = (FTXG−GTG)kk (42)

The off-diagonal elements of the Lagrangian multipliers are ap-
proximately obtained by setting∂L/∂Fik = 0 (ignoring the non-
negativity constraint onF). From Eq.(35), and some algebra, we
obtain

λkℓ = (FTXG−GTG)kℓ, k 6= ℓ (43)

Combining Eqs.( 42, 43), we have a compact solution for the La-
grangian multipliers

λ = FTXG−GTG. (44)

Clearly, the condition in Theorem 2,GTG+λ≥ 0 is satisfied. Sub-
stituting this in Eq.(37) we obtain the update rule of Eq.(20).

Note that since the off-diagonal elements of the Lagrangianmul-
tipliersΛ = (λkℓ) are obtained approximately, the final solution for
F does not satisfyFTF = I exactly. This is in fact an advantage.
If FTF = I holds exactly, due to nonnegativity, each row ofF can
only has one nonzero elements. In the multiplicative updating al-
gorithm, a zero element will lock its self at zero permanently. The
slight deviation from exactFTF = I allows all elements in a row to
be nonzero (although most are very small) and the final pattern of
nonzeros could change as the updating process evolve.

So far we assumeG is fixed. GivenF , we can updateG using
the standard rule of Eq.(19). We can alternatively updateF,G, and
residueJ(F,G) will monotonically decrease

J(F (0),G(0))≥ J(F(1),G(0))≥ J(F (1),G(1)) · · · .

In summary, we have proved that the minimization of Eq.(18) can
be solved by the updating rules of Eqs.(19,20).
Alternative Update Algorithm

We can show that the Langranigan functionL3(F). has another
auxiliary function

Z(F,F′) =−∑
ik

2(XG)ikF ′ik(1+ log
Fik

F ′ik
)+∑

ik

(F ′(GTG+λ)]ikF2
ik

F ′ik
,

(45)
because the first term inZ(F,F′) is always smaller than the first
term in L3(F), due to the inequalityz≥ 1+ log(z), ∀z > 0, and
we setz= Fik/F ′ik. From this auxiliary function, we can drive the
following update rule

Fik← Fik

√

(XG)ik

[F(GTG+λ)]ik
. (46)

in contrast to Eq.(37).

8. 3-FACTOR NMF: CORRECTNESS AND
CONVERGENCE

In 3-factor NMF, the key is the factorS in the middle. Factors
F,G can be dealt with in the same way as in 2-factor NMF.
Theorem 7. Let F,G be any fixed matrices,

J5(S) = ||X−FSGT ||2 (47)

= Tr(XTX−2GTXTFS+FTFSGTGST)

is monotonically decreasing under the update rule of Eq.(29).
Proof. First we prove the correctness. Following the same ap-
proach in§7, The KKT complementarity condition for the nonneg-
ativity if Sik gives

(−FTXG+FFTSGTG)ikSik = 0. (48)

At convergence, the solution from the update rule Eq.(29) satisfies
Eq.(48). This proves the correctness of update rule Eq.(29).

Next, we consider the convergence of the update rule Eq.(29).
Theorem 8. The objective functionJ5(S) is non-increasing under
the update rule Eq.(29).



Proof. We use the auxiliary function approach in the proof of The-
orem 5 near Eqs.(39, 40). Now we show that

Z(S,S′) = ||X||2−2Tr(FTXGS)+∑
ik

(FTFS′GTG)ikS2
ik

S′ik
(49)

is an auxiliary function ofJ5(S). The third term inZ(S,S′) is al-
ways bigger than the third term inJ5(S), due to Proposition 6 in
§7 Eq.(38). The second inZ(S,S′) is identical to the second term
in J5(S). Thus the conditionZ(S,S′) ≥ J5(S) holds. The equality
conditionZ(S,S) = J5(S) holds obviously. ThereforeZ(S,S′) is an
auxiliary function ofJ5(S).

According to Eq.(40),S(t+1) is given by the minimum ofJ(S,S′)
while fixing S′ = S(t). The minimum is obtained by setting

0 =
∂Z(S,S′)

∂Sik
=−2(FTXG)ik +2

(FTFS′GTG)ikSik

S′ik

which is equal to

Sik = S′ik
(FTXG)ik

(FTFS′GTG)ik

According to Eq.(40),S(t+1) = S andS′ = S(t). We recover Eq.(
29). Under this update rule,J5(S) decreases monotonically. ⊓–

Alternative Update Algorithm
We can also show thatZ(S,S′) =

||X||2−∑
ik

2(FTXG)ikS′ik(1+ log
Sik

S′ik
)+∑

ik

(FTFS′GTG)ikS2
ik

S′ik
(50)

is another auxiliary function ofJ5(S). From this auxiliary function,
we can derive an alternative update rule of forJ5(S):

Sik← Sik

√

(FTXG)ik

(FTFS′GTG)ik
(51)

in constract to Eq.( 29).

9. EXPERIMENTS
In this section, we apply the bi-orthogonal 3-factor NMF (BiOR-

NM3F) clustering algorithm to cluster documents and compare its
performance with other standard clustering algorithms. Inour ex-
periments, documents are represented using the binary vector-space
model where each document is a binary vector in the term space.

9.1 Datasets
We use a variety of datasets, most of which are frequently used

in the information retrieval research. Table 1 summarizes the char-
acteristics of the datasets.

CSTR. This is the dataset of the abstracts of technical re-
ports (TRs) published in the Department of Computer Scienceat
a research university. The dataset contained 476 abstracts, which
were divided into four research areas: Natural Language Process-
ing(NLP), Robotics/Vision, Systems, and Theory.

WebKB4. The WebKB dataset contains webpages gathered
from university computer science departments. There are about
8280 documents and they are divided into 7 categories: student,
faculty, staff, course, project, department and other. Theraw text

Datasets # documents # class
CSTR 476 4

WebKB4 4199 4
Reuters-top 10 2,900 10

WebAce 2,340 20
Newsgroups 20,000 20

Table 1: Document Datasets Descriptions.

is about 27MB. Among these 7 categories, student, faculty, course
and project are four most populous entity-representing categories.
The associated subset is typically calledWebKB4. In this paper,
we perform experiments on the 4-category dataset.

Reuters. The Reuters-21578 Text Categorization Test collec-
tion contains documents collected from the Reuters newswire in
1987. It is a standard text categorization benchmark and contains
135 categories. In our experiments, we use a subset of the data col-
lection which includes the 10 most frequent categories among the
135 topics and we call itReuters-top 10.

WebAce. This is from WebACE project and has been used for
document clustering [2, 13]. The dataset contains 2340 documents
consisting news articles from Reuters new service via the Web in
October 1997. These documents are divided into 20 classes.

Newsgroups. The 20 newsgroups dataset contains approxi-
mately 20,000 articles evenly divided among 20 Usenet newsgroups.
The raw text size is 26MB.

To pre-process the datasets, we remove the stop words using a
standard stop list, all HTML tags are skipped and all header fields
except subject and organization of the posted articles are ignored.
In all our experiments, we first select the top 1000 words by mutual
information with class labels. The feature selection is done with the
rainbow package [25].

9.2 Evaluation Measures
The above document datasets are standard labeled corpora widely

used in the information retrieval literature. We view the labels
of the datasets as the objective knowledge on the structure of the
datasets. To measure the clustering performance, we use purity [36]
and Adjusted Rand Index (ARI) [26] as our performance measures.
We expect these measures would provide us with good insightson
how our algorithm works.

Purity measures the extent to which each cluster contained data
points from primarily one class [36]. The purity of a clustering
solution is obtained as a weighted sum of individual clusterpurity
values and is given by

Purity =
K

∑
i=1

ni

n
P(Si),P(Si) =

1
ni

maxj (n
j
i ),

whereSi is a particular cluster of sizeni , n j
i is the number of doc-

uments of thei-th input class that were assigned to thej-th cluster,
K is the number of clusters andn is the total number of points1.
In general, the larger the values of purity, the better the clustering
solution is.

1P(Si) is also called the individual cluster purity.



Entropy measures how classes distributed on various clusters [36].
The entropy of the entire clustering solution is computed as:

Entropy=−
1

nlog2m

K

∑
i=1

m

∑
j=1

ni
i log2

n j
i

ni
, (52)

wherem is the number of original labels,K is the number of clus-
ters. Generally, the smaller the entropy value, the better the clus-
tering quality is.

The Rand Index is defined as the number of pairs of objects
which are both located in the same cluster and the same class,or
both in different clusters and different classes, divided by the total
number of objects [29]. Adjusted Rand Index which adjusts Rand
Index is set between[0,1] [26]. The higher the Adjusted Rand In-
dex, the more resemblance between the clustering results and the
labels.

9.3 Document Clustering Result Analysis
We compare our bi-orthogonal 3-factor NMF (BiOR-NM3F) clus-

tering with the K-means algorithm. The comparisons are shown
in Table 2. Each entry is the corresponding performance measure
value of the algorithm on the row dataset. From Table 2, we observe
that our BiOR-NM3F clustering achieves better purity results than
K-means on CSTR, WebKB4, Reuters and Newsgroup datasets. In
particular, on Newsgroup, the improvement of the purity value is
significant (from 0.330 to 0.507). The purity results of K-means
are slightly better than BiOR-NM3F on WebAce: the difference is
only 0.005.

The performance of purity and ARI is consistent in our compar-
ison, i.e., higher purity values usually correspond to higher ARI
values. However, there exist slight differences in the relative per-
formance of purity and entropy in our comparison, i.e., higher pu-
rity values do not necessarily correspond to lower entropy values
(e.g., on Reuters dataset). This is because the entropy measure
takes into account the entire distribution of the documentsin a par-
ticular cluster and not just the largest class as in the computation of
the purity.

In summary, the comparison shows that BiOR-NM3F is a viable
and competitive algorithm in document clustering domain, espe-
cially considering that BiOR-NM3F is performing document clus-
tering and words clustering simultaneously, while K-meansis per-
forming document clustering only.

Datasets BiOR-NM3F K-means
Purity Entropy ARI Purity Entropy ARI

CSTR 0.754 0.402 0.4360.712 0.412 0.189
WebKB4 0.583 0.372 0.4280.534 0.442 0.418
Reuters 0.558 0.976 0.5100.545 0.726 0.506
WebAce 0.541 0.889 0.4490.546 0.868 0.452

Newsgroups 0.507 1.233 0.1790.330 1.488 0.149

Table 2: Performance Comparisons of clustering algorithms.
Each entry is the corresponding performance value of the algo-
rithm on the row dataset.

9.4 Word Clustering Result Analysis

Our BiOR-NM3F algorithm performs clustering of words simul-
taneously, where the factorF is the cluster indicator for words.

In this section, we describe the experimental results on word
clustering. We consider two clustering strategies: i) hardclustering
where a word is assigned to a single cluster and ii) soft clustering
where a word can be assigned to several clusters. We analyse hard
clustering using class conditional word distribution. We analyse
soft clustering using multi-peak distribution. To our knowledge,
both of these two analysis methods are new.

9.4.1 Hard Clustering Evaluation

Quantitatively, we can view thei-th row of the cluster indicator
F as the posterior probability that wordi belongs to each of theK
word clusters. For hard clustering, we assign a word to the cluster
that has the largest probability value.

Word clustering has no cleara prior labels to compare with. We
resolve this difficulty by considering the class conditional word dis-
tribution. For each document class (with known labels), we com-
pute the aggregate word distribution, the frequency of wordoccur-
ring in different documents in the class. For hard clustering, we
assign each word to the class with highest probability in theag-
gregate distribution. We expect this assignment would provide a
reasonable criterion for evaluating word clustering, i.e., we expect
the word clustering results match this assignment. We also use pu-
rity, entropy and ARI for evaluating the match. Table 3 showsthe
hard clustering results on words.

Datasets Purity Entropy ARI
CSTR 0.718 0.490 0.478

WebKB4 0.666 0.668 0.379
Reuters 0.479 0.983 0.272
WebAce 0.599 0.857 0.479

Newsgroups 0.602 0.886 0.275

Table 3: Performance of hard clustering on words. Each entry
is the corresponding performance value of the word clustering
on the row dataset.

9.4.2 Soft Clustering Evaluation

Note that in general, the cluster indicatorF for words is not ex-
actly orthogonal. This is because the off-diagonal Lagrangian mul-
tipliers of Eq.( 43) are obtained ignoring the non-negativity con-
straints ofG. This slight deviation from rigorous orthogonality
produces a benefit of soft clustering.

Here we also provide a systematic analysis of the soft cluster-
ing of words. Quantitatively, we viewi-th row of F as the poste-
rior probability that wordi belongs to each of theK word clusters.
Let this row ofF be (p1, · · · , pk), which has been normalized to

∑k pk = 1. Suppose a word has a posterior distribution of

(0.96,0,0.04, · · · ,0);

it is obvious that this word is cleanly clustered into one cluster.
We say this word has a 1-peak distribution. Suppose another word
has a posterior distribution of(0.48,0.48,0.04, · · · ,0); obviously



Words Robotics/Vision Systems Theory NLP

1-Peak words
Polynomial 0.011 0.004 0.966 0.019
Multiprocessor 0.024 0.934 0.021 0.021
complexity 0.023 0.019 0.896 0.062
cache 0.017 0.953 0.015 0.015
set 0.022 0.009 0.890 0.079
object 0.726 0.056 0.031 0.187
train 0.027 0.011 0.024 0.938
reason 0.040 0.008 0.018 0.934
camera 0.898 0.019 0.042 0.041
collapse 0.036 0.015 0.916 0.033
parallel 0.036 0.901 0.031 0.031
compiler 0.060 0.834 0.053 0.053
latency 0.055 0.848 0.049 0.048
robot 0.892 0.040 0.022 0.045
lexical 0.055 0.022 0.049 0.874
study 0.087 0.164 0.673 0.076
track 0.858 0.026 0.058 0.058
percept 0.856 0.018 0.042 0.084
active 0.700 0.075 0.056 0.168
sensor 0.858 0.026 0.058 0.058
2-Peak words
recognition 0.557 0.004 0.025 0.414
visual 0.668 0.004 0.008 0.320
learn 0.577 0.005 0.034 0.384
human 0.534 0.035 0.020 0.411
representation 0.377 0.011 0.077 0.535
action 0.465 0.023 0.026 0.486
interface 0.428 0.422 0.038 0.113
computation 0.156 0.018 0.433 0.393
information 0.301 0.107 0.180 0.415
3-Peak words
system 0.378 0.220 0.031 0.372
process 0.335 0.353 0.016 0.296
describe 0.321 0.233 0.060 0.386
user 0.336 0.389 0.020 0.256
perform 0.377 0.352 0.060 0.211
4-Peak words
present 0.319 0.315 0.188 0.178
algorithm 0.191 0.480 0.177 0.152
implement 0.194 0.435 0.114 0.257
paper 0.183 0.279 0.323 0.215

Table 4: Words Multi-Peak Distribution for CSTR dataset.

this word is clustered into two clusters. We say this word hasa 2-
peak distribution. In general, we wish to characterize eachword as
belonging to 1-peak, 2-peak, 3-peak etc. ForK word clusters, we
setK prototype distributions:

(1,0, · · · ,0),(
1
2
,
1
2
, · · · ,0), · · · ,(

1
K

, · · · ,
1
K

).

For each word, we assign it to the closest prototype distribution
based on the Euclidean distance, allowing all possible permuta-
tions of the clusters. For example,(1,0,0, · · · ,0) is equivalent to
(0,1,0, · · · ,0). In practice, we first sort the row such that the com-
ponents decrease from the left to the right, and then assign it to
the closest prototype. Generally speaking, the less peaks of the
posterior distribution of the word, the more unique contentof the
word has. To further illustrate the soft clustering evaluation, we
take a closer look at the CSTR dataset. Table 4 lists several words
in 1-peak, 2-peak, 3-peak and 4-peak categories respectively. We
see that these words are meaningful and are often representatives

of the associated document clusters. For example,multiproces-
sor andcacheare 1-peak words that are associated with theSys-
temscluster;polynomialandcomplexityare 1-peak words related
to theTheory cluster;recognitionand learning are 2-peak words
associated withRobotics/Vision andNLP clusters;Interfaceis a
2-peak words associated withRobotics/Vision andSystemclus-
ters; system, process, anduserare 3-peak words associated with
Robotics/Vision, System and NLP clusters;present, algorithm
andpaperare 4-peak words. To summarize, the word clustering
is capable of distinguishing the contents of words. The results of
peak words are consistent with what we would expect from a sys-
tematic content analysis. This aspect of tri-factorization shows a
unique capability that most other clustering algorithms are lacking.

10. A CASE STUDY ON SYSTEM LOG DATA
In this section, we present a case study of applying our clustering

technique to system log data. In system management applications,
to perform automated analysis of the historical data acrossmultiple
components when problems occur, we need to cluster the log mes-
sages with disparate formats to automatically infer the common set
of semantic situations and obtain a brief description for each situa-
tion [22].

The log files used in our experiments are collected from sev-
eral different machines with different operating systems using log-
dump2td (NT data collection tool) developed at IBM T.J. Watson
Research Center. The data in the log files describe the statusof
each component and record system operational changes, suchas
the starting and stopping of services, detection of networkapplica-
tions, software configuration modifications, and software execution
errors. The raw log files contain a free-format ASCII description
of the event. In our experiment, we apply clustering algorithms
to group the messages into different semantic situations. To pre-
process text messages, we remove stop words and skip HTML la-
bels. The raw log messages have been manually labeled with its
semantic situation by domain experts [22]. The set of semantic
situations includestart, stop, dependency, create, connection,
report , request, configuration, and other. The detailed expla-
nations of these situations can be found in [4].

Algorithms Purity Entropy ARI
BiOR-NM3F 0.806 0.303 0.856

K-means 0.684 0.491 0.572

Table 5: Clustering Results on System Log Data

We obtain good message clustering results as shown in Table 5.
The performance of BiOR-NM3F is better than K-means on all
three measures. Table 6 shows the words in 1-peak, 2-peak, 3-peak
and 4-peak categories for the log data respectively. We can derive
meaningful common situations from the word cluster results. For
example, situationstart can be described by 1-peak words such as
started, starting, andservice, and 2-peak words such asversion.
The situationconfigure can be described by 1-peak words such as
configuration, two-peak words such asproduct, and 3-peak words
such asprofessional.



Words Start Create Configure Dependency Report Connection Request Other Stop
1-Peak words
configure 0.014 0.018 0.880 0.002 0.012 0.004 0.020 0.020 0.030
respond 0.019 0.023 0.028 0.002 0.016 0.821 0.028 0.021 0.042
network 0.032 0.038 0.047 0.004 0.026 0.703 0.046 0.032 0.072
create 0.009 0.926 0.013 0.001 0.007 0.003 0.013 0.015 0.023
service 0.704 0.025 0.015 0.022 0.161 0.003 0.015 0.013 0.052
start 0.918 0.012 0.015 0.003 0.009 0.003 0.015 0.012 0.023
contact 0.024 0.024 0.030 0.807 0.017 0.006 0.029 0.021 0.042
fault 0.044 0.053 0.064 0.005 0.613 0.014 0.063 0.054 0.100
stop 0.031 0.038 0.047 0.004 0.026 0.010 0.046 0.034 0.764
restart 0.034 0.041 0.050 0.004 0.028 0.011 0.049 0.042 0.751
blank 0.002 0.003 0.003 0.000 0.002 0.000 0.003 0.982 0.005
fault 0.029 0.035 0.043 0.004 0.743 0.009 0.042 0.032 0.063
start 0.706 0.041 0.050 0.004 0.028 0.011 0.049 0.041 0.070
inventory 0.019 0.023 0.028 0.002 0.016 0.821 0.028 0.022 0.041
2-Peak words
exist 0.013 0.016 0.020 0.535 0.055 0.297 0.019 0.013 0.035
product 0.035 0.011 0.513 0.001 0.043 0.003 0.252 0.011 0.131
version 0.454 0.020 0.024 0.004 0.416 0.005 0.024 0.023 0.040
complete 0.022 0.013 0.608 0.001 0.009 0.003 0.284 0.010 0.050
root 0.018 0.022 0.027 0.002 0.015 0.538 0.317 0.020 0.041
3-Peak words
fail 0.011 0.013 0.046 0.416 0.043 0.308 0.015 0.010 0.148
professional 0.059 0.071 0.347 0.007 0.049 0.019 0.260 0.063 0.135
4-Peak words
timeout 0.096 0.117 0.143 0.012 0.080 0.093 0.141 0.115 0.213
detection 0.077 0.093 0.114 0.010 0.318 0.025 0.112 0.081 0.170

Table 6: Word Multi-Peak Distributions for Log Data

The case study on clustering log message files for computing
system management provides a successful story of applying the
cluster model in real applications. The log messages are relatively
short with a large vocabulary size [31]. Hence they are usually
represented as sparse high-dimensional vectors. In addition, the
log generation mechanisms implicitly create some associations be-
tween the terminologies and the situations. Our clusteringmethod
explicitly models the data and word assignments and is also able to
exploit the association between data and features. The synergy of
these factors leads to the good application on system management.

11. NMF RELATED FACTORIZATIONS
Besides 3-factor extension in this paper, there are many other

NMF extensions. Here we provide an overview.
First, we consider different types of nonnegative factorizations.

The standard NMF can be written as

NMF: X+ ≈ F+G+

using an intuitive notation forX,F,G≥ 0.
The classic matrix factorization is Principal Component Analysis

(PCA) which uses the singular value decompositionX ≈ UΣVT ,

where we allowU,V to have mixed-signs; the input data could
have mixed-signs. absorbingΣ into U , we can write

PCA: X± ≈U±V±

However, even ifX have mixed-signs, we could enforceG to be

nonnegative (sinceG can be interpreted as cluster indicators, as in
§3). This is called semi-NMF [11]:

semi-NMF: X± ≈ F±G+

Theorem 1 provides the basis for this semi-NMF formulation.
Both NMF and semi-NMF have clustering capabilities which are

generally better than the K-means. In fact, PCA is effectively doing
K-means clustering[8, 34]. LetG be the cluster indicators for the
k clusters then (1)GGT ≃VVT ; (ii) the principal directions,UUT ,
project data points into the subspace spanned by thek cluster cen-
troids.

11.1 NMF and PLSI
So far, the cost function we used for computing NMF is the sum

of squared errors,||X−FGT ||2. Another cost function KL diver-
gence:

JNMF-KL =
m

∑
i=1

n

∑
j=1

Xi j

[

log
Xi j

(FGT)i j
−Xi j +(FGT)i j

]

(53)

PLSI [14] maximizes the likelihood

JPLSI =
m

∑
i=1

n

∑
j=1

X(wi ,d j)logP(wi ,d j ) (54)

where the joint occurrence probability is factorized (i.e., parame-
terized or approximated ) as

P(wi ,d j ) = ∑
k

P(wi |zk)P(zk)P(d j |zk) (55)



In [12], it is shown that Objective function of PLSI is identical to
the objective function of NMF, i.e.,JPLSI = −JNMF-KL +constantby
setting(FGT)i j = P(wi ,d j ). Therefore, the NMF update algorithm
and the EM algorithm in training PLSI are alternative methods to
optimize the same objective function.

12. SUMMARY
We study computational algorithms for orthogonal 2-factorNMF

and 3-factor NMF. The bi-orthogonal 3-factor NMF provides a
strong capability of simultaneously clustering rows and columns.
We derive new updating rules and prove the convergence of these
algorithms. Experiments show the usefulness of this approach. We
also provide a new approach of evaluating the quality of wordclus-
tering. In addition, we also present an overview of various NMF
extensions and examine their relationships.
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