
Composing XSL Transformations with XML Publishing Views

Chengkai Li
∗

University of Illinois at
Urbana-Champaign

cli@uiuc.edu

Philip Bohannon
Lucent Technologies

Bell Labs
bohannon@lucent.com

Henry F. Korth
†

Lehigh University
korth@cse.lehigh.edu

P.P.S. Narayan
Lucent Technologies

Bell Labs
ppsnarayan@lucent.com

ABSTRACT
While the XML Stylesheet Language for Transformations (XSLT)
was not designed as a query language, it is well-suited for many
query-like operations on XML documents including selecting and
restructuring data. Further, it actively fulfills the role of an XML

query language in modern applications and is widely supported by
application platform software. However, the use of database tech-
niques to optimize and execute XSLT has only recently received
attention in the research community. In this paper, we focus on
the case where XSL transformations are to be run on XML doc-
uments defined as views of relational databases. For a subset of
XSLT, we present an algorithm to compose a transformation with
an XML view, eliminating the need for the XSLT execution. We
then describe how to extend this algorithm to handle several addi-
tional features of XSLT, including a proposed approach for handling
recursion.

1. INTRODUCTION
As XML has continued to gain popularity as a standard for in-

formation representation and exchange, tools to render and present
XML are increasingly supported by common application platforms.
Many of these tools implement a W3C standard, the XML Stylesheet
Langauge [16]. This language is divided into transformation and
formatting subsystems. As implied by the name, the transforma-
tion subsystem reorganizes the tree structure of an XML document
and the formatting subsystem renders the result into a display for-
mat. In fact, the transformation sublanguage, appropriately called
XML Stylesheet Language Transformations, or XSLT, has proven
very popular with developers and is often implemented as a stand-
alone tool. Some of the well-known implementations of XSLT are
XT [18], SAXON [10] and XALAN [13]. Common uses of XSLT in-
clude translating XML to HTML, and modifying or selecting part of
an XML document. Unlike XQUERY [14], XSLT was not expressly
designed as a query language. Nevertheless, XSLT can easily be
used for “query-like” transformations. It also shares with XQUERY

the use of XPATH [15] for path evaluation.

∗Work performed while the author was visiting Bell Labs.
†Work performed while the author was with Bell Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-634-X/03/06 ...$5.00.

Despite widespread use of XML standards for business data ex-
change, the vast majority of business data is stored and maintained
by relational database systems. In fact, XML-publishing middle-
ware technology, proposed by the research community [2, 4, 6,
12], is rapidly being implemented by relational database vendors
to ensure that XML-centric applications are well supported. Such
middleware provides a declarative view query language with which
to specify the desired mapping between the relational tables and
the resulting XML document. Based on the mapping defined by the
view query, a portion of the database can be exported as XML.

Given the respective importance of XML views and XSLT, it is
important to propose efficient execution of XSLT stylesheets against
XML-publishing views. A straightforward approach for accom-
plishing this would be to fully materialize the XML view as an XML

document, upon which an XSLT stylesheet is evaluated.
This approach is problematic for large documents or complicated

stylesheets, simply due to performance problems that commonly
arise with XSLT evaluation on large documents. Recent work has
explored optimizing the execution of XSLT transformations by in-
corporating XSLT processing into database query engines [9]. How-
ever, even if XSLT evaluation can be made scalable and efficient, it
may not be a good solution for XML documents published from re-
lational database systems. For example, it is not actually necessary
to materialize many of the nodes in the view query to produce the
correct XSLT result document. First, node types not referenced by
any XPATH expressions in the XSLT stylesheet need not be materi-
alized. Similarly, nodes that do not match selection conditions in
the appropriate XSLT templates are not useful. Finally, intermedi-
ate nodes along the XPATH expression need not be materialized if
they are not part of the result.

These observations argue for a view composition approach to
supporting XSLT in relational XML middleware. In this paper, we
take the view composition approach and develop techniques that
support execution of XSLT against XML-publishing views by first
composing, as much as possible, the transformations in a stylesheet
with a publishing view, resulting in a composed stylesheet view.
Evaluating the stylesheet view on a database instance results in
the same XML document that would be produced by evaluating the
XSLT stylesheet on the original XML view. The stylesheet view
does not generate the unnecessary nodes described above, promis-
ing improved efficiency. In addition, this approach removes the
cost of parsing and XSLT processing. Rather, the XSLT processing
is pushed into SQL queries processed by relational query engines.
In fact, such view composition algorithms have been designed for
user XQUERY or XPATH queries to be efficiently executed by XML
publishing middlewares and relational engines [11, 5]. We argue
that similar techniques should be developed with XSLT.

To accomplish this, we define a restrictive subset of XSLT that

we term XSLTbasic, and give an algorithm that can compose an
XSLTbasic stylesheet with an XML view definition to produce a new
XML view definition, the stylesheet view. At a high level, the al-
gorithm consists of three steps. First, a graph representing the pro-
cessing done by the XML stylesheet is constructed. Second, this
graph is combined with a graph representation of the XML view
query by matching pairs of nodes from the two graphs in a manner
similar to the creation of a cross-product automaton. Finally, the re-
sulting graph is pruned to remove unnecessary nodes and modified
to handle formatting instructions, producing the stylesheet view.

An alternative to composing XSLT with view queries is to trans-
late XSLT to XQUERY [1], and then use techniques such as those
proposed in [11] to compose the resulting XQUERY expression with
the view query. While this approach is promising, we are not aware
of any published techniques for performing this conversion, and it
may introduce new complexities. Further, techniques developed in
this paper (such as merging select-expressions with match-patterns)
would apparently be required for such a conversion.

The only prior work of which we are aware on using SQL engines
to execute a class of XSLT transformations is [7]. While a detailed
comparison with [7] is deferred to Section 6, our approach differs
in three key ways: 1) our algorithm produces an XML view query
rather than an SQL query, 2) [7] divides the XSLT transform into
a set of paths and processes each separately, while our algorithm
composes the stylesheet as a whole with the publishing query, and
finally the extensions to our algorithm in Section 5 address features
of XSLT such as priority that are not addressed by [7].

The focus of this paper is on the view-composition algorithm,
rather than on optimization of either the composition algorithm or
the resulting queries. We defer experimental evaluation and full
consideration of optimized execution strategies for XSLT view com-
position queries to future research.

The outline of the remainder of the paper is as follows. In Sec-
tion 2, we introduce the concepts and notions of XML publishing
views and XSLT stylesheets. In Section 3, we overview the algo-
rithm by describing the data structures generated in the four steps
of the algorithm. In Section 4, we describe the details of the algo-
rithm, and in Section 5, we describe how to extend the algorithm to
handle more general XSLT stylesheets. Related work is discussed
in Section 6, followed by our conclusion and a discussion of future
work in Section 7.

2. BACKGROUND
In this section, we briefly introduce XML-publishing views and

XSLT stylesheets.

2.1 Schema-Tree Queries
In this section, we introduce the notion of a view query in XML-

publishing middleware. SILKROUTE [5, 6] defines XML views us-
ing RXL and queries them with XML-QL and XPERANTO [4, 11,
12] uses XQUERY. Throughout this paper, we use the view-query
specification format as defined in ROLEX [2, 3]. This query format,
referred to as a schema-tree query, is meant to capture a rich set of
XML view queries, and is adapted from the intermediate query rep-
resentation of SILKROUTE. While ROLEX focuses on a particular
system architecture with tight integration between the application
and the DBMS, our algorithm for composing XSLT with XML views
does not rely on any particular features of ROLEX, and thus we ex-
pect it to be readily adaptable to other XML view languages. Details
of schema-tree queries can be found in [2]. Below we briefly in-
troduce schema-tree queries using a definition and an illustrative
example.

FROM confroom, hotel
WHERE chotel_id=hotelid

AND metro_id=$m.metroid

Qcs=SELECT SUM(capacity)

mcs(2) <confstat> $h<hotel>

Qh=SELECT *
FROM hotel
WHERE metro_id=$m.metroid

AND starrating > 4

$m(3)

<metro> $m

Qm=SELECT metroid, metroname
FROM metroarea

(1)

$s<confstat>

Qs=SELECT SUM(capacity)
FROM confroom
WHERE chotel_id=$h.hotelid

$h(4)

FROM confroom
WHERE chotel_id=$h.hotelid

Qc=SELECT *

$h<confroom>(5) $c

Qa=SELECT COUNT(a_id), startdate
FROM availability, guestroom
WHERE rhotel_id=$h.hotelid

GROUP BY startdate
AND a_r_id=r_id

(6) $a $h<hotel_available>

AND a_r_id=r_id

Qv=SELECT COUNT(a_id)
FROM availability, guestroom, hotel
WHERE rhotel_id=hotelid

AND metro_id=$m.metroid
AND startdate=$a.startdate

<metro_available>(7) $v $a, $m

/

Figure 1: Example schema tree view query.

hotelchain(chainid, companyname, hqstate)
metroarea(metroid, metroname)
hotel(hotelid, hotelname, starrating, chain id

metro id, state id, city, pool, gym)
guestroom(r id, rhotel id, roomnumber, type, rackrate)
confroom(c id, chotel id, croomnumber, capacity, rackrate)
availability(a id, a r id, startdate, enddate, price)

Figure 2: Hotel reservation schema.
Definition 1: A schema-tree query v is a set of nodes {ni}, each
of which is a 6-tuple (id(ni), tag(ni), bv(ni), parameters(ni),
Qbv(ni), children(ni)), where id(ni) is a unique identifier, tag(ni)
is the tag, bv(ni) is the binding variable of ni, parameters(ni) is
the set of parameters of Qbv(ni), which is the tag query of ni, and
children(ni) is the set of child nodes of ni.

Figure 1 shows an example of schema-tree query that defines an
XML view on the tables of Figure 2, in order to support conference
planning by showing candidate hotels along with information about
availability of rooms in the same metro area.

The id of a node is used to identify a node uniquely in v. For
example, in Figure 1, there are two nodes that have the same tag
<confstat>, but different ids, 2 and 4. Each tuple returned by
the tag query Qbv(ni) becomes an element in the resulting XML

document with XML tag tag(ni); this element is said to have been
generated by ni. For example, the node with id 1 in Figure 1 has
associated with it the tag <metro> and the tag query “Qm = SE-
LECT metroid, metroname FROM metroarea.” This query defines a
list of metropolitan areas that become sibling nodes in the resulting
XML document, each tagged with the <metro> tag (a unique docu-
ment root is implied). Relational attributes from the SELECT clause
appear as XML attributes the generated element.

Tag queries may be parameterized by zero or more parameters,
associated with binding variables. We refer to the query that defines
binding variable bv(ni) as Qbv(ni), with parameters (ni) as the
binding variables used in the body of the query. The binding vari-
able bv(ni), a tuple variable ranging over the results of Qbv(ni),
is used as a parameter when specifying the tag queries of descen-

<xsl:template match="pattern" mode=integer>
<Result>

<xsl:apply-templates select="expression"/>
</Result>

</xsl:template>

Figure 3: Skeleton of XSLT template rule.
<xsl:template match="/"> (R1)

<HTML>
<HEAD></HEAD>
<BODY>
<xsl:apply-templates select="metro"/>

</BODY>
</HTML>

</xsl:template>

<xsl:template match="metro"> (R2)
<result_metro>

<A>
<xsl:apply-templates

select="hotel/confstat"/>
</result_metro>

</xsl:template>

<xsl:template match="confstat"> (R3)
<result_confstat>

<xsl:apply-templates
select="../hotel_available/../confroom"/>

</result_confstat>
</xsl:template>

<xsl:template match="metro/hotel/confroom"> (R4)
<xsl:value-of select="."/>

</xsl:template>

Figure 4: An example of XSLT stylesheet.

dant nodes of ni. For example, the variable m associated with
<metro> is used as a parameter in tag queries for <hotel> and
<metro available> to refer to the attribute m.metroid.

The remainder of the view in Figure 1 defines the following.
The tag query, Qh(m) for <hotel> is parameterized by the tu-
ple variable m ranging over metropolitan areas and gives a list of
hotels in that metropolitan area. The tag query, Qa(h), for <ho-
tel available> counts available rooms at the given hotel in a
certain fixed time period, whereas the tag query, Qv(m, a) for
<metro available> counts the total available rooms in the entire
metropolitan area for that same time period. In separate branches of
the schema-tree, summary and detail information about conference
rooms is given by the nodes with tags <confstat> and <conf-
room> respectively.

2.2 XSLT
In this section, we briefly introduce XSLT, show how stylesheets

are modeled, and introduce a working example.

Definition 2: An XSLT stylesheet x is a set of template rules {ri},
each of which is a 4-tuple (match(ri), mode(ri), priority(ri),
output(ri)), where match(ri) is the match pattern of ri, mode(ri)
is the mode of ri, priority(ri) is the priority of ri, and output(ri)
is the output-tree fragment of ri.

The skeleton of a template rule is shown in Figure 3, and an ex-
ample stylesheet in Figure 4, which contains four template rules R1
through R4. The match pattern of a template rule, match(ri), is a
pattern [16] and is essentially a subset of XPATH path expressions
containing only child, descendant (“//”), and attribute axes [15].
For example, as shown in Figure 4, match(R2) is “metro”. The
mode of a rule, mode(ri), is a symbol that allows rules to be par-
titioned; that is, rule invocations must match in mode as well as

match pattern. If there is no mode attribute, the XSLT proces-
sor will set it to be a default value. Similarly the priority of a
rule, priority(ri), is an integer, used in conflict resolution and is
briefly discussed in Section 2.2.1. The output tree fragment for
a rule, output(ri) controls the structure of a rule’s output. For
(R2) of Figure 4, the output tree fragment consists of the <re-
sult metro> tag and its contents. output(ri) may contain a set
of <xsl:apply-templates> nodes, apply(ri) = {aj}, as de-
fined below.

Definition 3: An apply-templates node, aj , is a 2-tuple of the
form (select(aj), mode(aj)), where select (aj) is the select ex-
pression of aj , and mode(aj) is the mode of aj .

select(aj) is a subset of XPATH expressions [15] intended to en-
sure that results of the expression are nodes rather than atomic val-
ues. In (R2) of Figure 4, there is only one apply-templates node
and its select expression is “hotel/confstat”. mode(aj) limits the
rules which may match as described above.

2.2.1 XSLT Processing Model
Basic XSLT processing consists of context transitions from a given

XML document context node to a new context node recursively,
starting from the root as the original context node, concatenating
results in traversal order. This is shown as a function PROCESS in
Figure 5. Context transition is realized by two functions, MATCH

and SELECT [17].
For an XML document context node dcon and a rule ri, the func-

tion MATCH (dcon , ri) returns true if match(ri) matches some
suffix of the incoming path from the document root to dcon . The se-
mantics of a select expression is a function SELECT . For an XML

document node dcon matched by a rule ri and an apply-templates
node aj ∈ ri, SELECT (dcon , aj) returns a set of nodes selected
by select (aj), with dcon as the document context node.

In step 3 of Figure 5, the algorithm checks that mode(ri) is the
desired mode and that MATCH (dcon , ri) returns true. If multiple
rules match (step 2), the XSLT processor employs a conflict detec-
tion and resolution scheme that applies only the rule with the high-
est priority [16]. Once a rule is activated, then, in steps 4-10 dcon

is used to instantiate output(ri) to construct the resulting docu-
ment fragment. select (aj) evaluated on dcon results in a node set
Dnew con. The apply-templates nodes aj ∈ apply(ri) are replaced
with the concatenation of resulting document fragments produced
by recursively processing each node dnew con ∈ Dnew con with
mode(ri) as the desired mode. Therefore the result of executing
stylesheet x on XML document d is PROCESS(x, root, 0), where
root is the root node of d.

In XSLT, there are special template rules called built-in template
rules [16] which cause the input document to be copied to the out-
put. In all examples (including Figure 4), we list all template rules
that will be processed and the reader should assume that built-in
rules have been overridden.

2.2.2 XSLTbasic

We first develop an algorithm to process a subset of XSLT, that
we call XSLTbasic , which has the following restrictions on XSLT: (1)
no type-coercion, (2) no document order, (3) no recursion, (4) no
predicates, (5) no flow-control elements, (6) no conflict resolution
for template rules, i.e., no conflicting rules, (7) no functions and
aggregations, and (8) no variables and parameters, (9) no use of
the descendent (//) axis, (10) select attribute of <value-of> or
<copy-of> element can only be “.” or an attribute “@attribute”.

Refer to [16] for details of (1)-(9). Restriction (10) is related to
the simple model of output formatting used in this paper in which

Function PROCESS (x, dcon , mode)
Input: XSLT stylesheet as x, Context document node as dcon ,

Desired mode of the matched rule as mode

Output: XML document fragment as result

1: result ← empty
2: for ri ∈ x in decreasing order of priority(ri) do
3: if mode(ri) = mode and MATCH (dcon , ri) then
4: result ← output(ri)
5: for aj ∈ apply(ri) do
6: Dnew con ← SELECT (dcon , aj)
7: sub result ← empty
8: for dnew con ∈ Dnew con do
9: sub result ← concatenate(sub result ,

PROCESS (x, dnew con , mode(aj)))
10: Replace aj in result with sub result

11: return result

Figure 5: Algorithm for XSLT processing.

values produced from the database always appear as attributes of a
node. We do not consider document order in this paper and con-
sider it part of future work. In Section 5, we extend our algorithms
to process supersets of XSLTbasic that include (4), (5) and (6). We
believe the resulting subset of XSLT will cover a reasonable variety
of XSLT stylesheets applied to XML-publishing views, but plan to
extend the fragment we cover in future work. Finally in Section 5,
we propose by example an approach for handling recursion.

3. ALGORITHM OVERVIEW
Given a schema-tree query v and an XSLTbasic stylesheet x, our

algorithm generates a new schema-tree query v′ (called a stylesheet
view), ensuring that for any relational database instance I , the re-
sult of query v′ on I is the same as the result of running x on the
result of query v on I , i.e. v′(I) = x(v(I)). The complete al-
gorithm is given in Figure 9. In this section, we introduce the key
data structures and functions used in view composition. A detailed
description of the algorithm appears in Section 4.

For schema-tree query v and XSLT stylesheet x, our algorithm
begins by generating a context transition graph (CTG). This graph
(a) combines the selecting and matching steps in XSLT processing,
and (b) captures the context transitions that occur when evaluat-
ing x on a document produced by v. From the CTG, a traverse
view query (TVQ) is generated, which by definition is a schema-
tree query. The TVQ captures the traversal actions of x on v. The
final step of our algorithm generates output tag trees that are com-
bined with the TVQ to generate the output stylesheet view, v′.

In this section, we introduce the above structures and describe
how these structures relate to XSLT processing. A detailed descrip-
tion of the steps to generate the CTG, TVQ, and stylesheet view are
given in Section 4.

3.1 Context Transition Graph (CTG)
The context transition graph for an XSLTbasic stylesheet x exe-

cuted on a schema-tree query v, CTG(v, x), is a multigraph with a
set of nodes M and a set of edges E. Each node m ∈M , is anno-
tated by a pair (n, r), where n is a node in the schema-tree query v
and r is an XSLTbasic template rule in x. The CTG for Figure 4 is
shown in Figure 6, where we use (id(n), tag(n)) to represent the
node n. (Although id(n) can identify a node n uniquely, the re-
dundant tag(n) eases presentation.) Intuitively, the existence of a
node (n, r) in CTG means that one or more of the XML document
nodes generated by node n may be matched by rule r. An edge,
say e = ((n′, r′), (n, r), aj), incoming to this node indicates that

combine ("metro", "metro")
root
(query context node)

metro
(new query context node)

hotel

metro

(query context node)
confstat

confroom

hotel_available

"metro/hotel/confroom")
combine ("../hotel_available/../confroom",

(new query context node)

((0, root), R1)

((1, metro), R2)

((4, confstat), R3)

((5, confroom), R4)

combine ("hotel/confstat", "confstat")

hotel

metro (query context node)

confstat
(new query context node)

e1

e2

e3

smt(e1)

smt(e2)

smt(e3)

Figure 6: Context Transition Graph for Figure 4.

the firing of rule r′ on a document node d generated by n′, might
lead to one or more document nodes generated by n appearing in
select (aj) for some aj ∈ apply(r′). (Since this may be true for
multiple apply-template nodes, CTG(v, x) is a multigraph.) Asso-
ciated with each edge is a tree-pattern query, smt(e), referred to
as the select-match subtree for e. Intuitively, smt(e) combines the
select-expression of aj with the match-pattern of r, and is produced
by the function COMBINE , described in Section 3.5.

The left-hand side of Figure 6 shows the CTG produced while
composing the stylesheet shown in Figure 4 with the schema-tree
query of Figure 1 (the right-hand side of this figure is discussed in
Section 3.5). Consider edge e2; this edge is present because ap-
plying the select expression “hotel/confstat” which appears in rule
R2 to a document node produced by the metro node (id=1) in Fig-
ure 1 can potentially lead to nodes produced by the confstat node
(id=4) being matched against rule R3. Note that, while Figure 6 is
a simple path, CTGs for XSLTbasic stylesheets are actually directed
acyclic multigraphs, and can be general multigraphs if recursion is
allowed.

3.2 Traverse View Query (TVQ)
The traverse-view query is a schema-tree query produced from

the CTG. Intuitively, the nodes in the TVQ will generate those doc-
ument nodes that may become context nodes during stylesheet eval-
uation. In this sense, it supports the traversal of the original XML

document by the XSLTbasic stylesheet. One or more nodes appear
in the traverse-view query for each node in the context transition
graph from which it is generated, with nodes being duplicated so
that each node has a single incoming edge. The tree-pattern query
of smt(e), where e = ((n1, r1), (n2, r2), a), in the context transi-
tion graph, is translated into a tag query in the query node associ-
ated with (n2, r2). The TVQ of Figure 4 is shown in Figure 7(a).

3.3 Output Tag Tree (OTT)
The generated TVQ traverses the document nodes, but does not

<confroom>

pseudo−root

/
<HEAD> <BODY>

<HTML>

<HEAD> <BODY>

<HTML>

Qm_new=SELECT metroid, metroname
FROM metroarea

<metro> $m_new

AND EXISTS (SELECT COUNT(a_id), startdate

FROM confroom

FROM availability, guestroom

AND a_r_id=r_id
GROUP BY startdate)

Qc_new=SELECT *

WHERE chotel_id=$s_new.hotelid

WHERE rhotel_id=$s_new.hotelid

<confroom> $c_new $s_new

AND EXISTS (SELECT COUNT(a_id), startdate

FROM confroom

FROM availability, guestroom

AND a_r_id=r_id
GROUP BY startdate)

Qc_new=SELECT *

WHERE chotel_id=$s_new.hotelid

WHERE rhotel_id=$s_new.hotelid

<confroom> $c_new $s_new

FROM confroom, (SELECT *
FROM hotel

AND starrating > 4
) AS TEMP

WHERE chotel_id=TEMP.hotelid
GROUP BY TEMP.hotelid, ... , TEMP.gym

Qs_new=SELECT SUM(capacity), TEMP.*

WHERE metro_id=$m_new.metroid

<confstat> $s_new $m_new

<A>

<result_metro>

(c) Stylesheet View (b) Output Tag Tree

((5,confroom), R4)

((4,confstat), R3)

((1,metro), R2)

((0,root), R1)

(a) Traverse View Query

pseudo−root

pseudo−root

<A>

FROM confroom, (SELECT *
FROM hotel

AND starrating > 4
) AS TEMP

WHERE chotel_id=TEMP.hotelid

WHERE metro_id=$m_new.metroid

$s_new $m_new

Qm_new=SELECT metroid, metroname
FROM metroarea

<result_confstat>

pseudo−root

<result_metro> $m_new

<result_confstat>

Qs_new=SELECT SUM(capacity), TEMP.*

GROUP BY TEMP.hotelid, ..., TEMP.gym

Figure 7: (a) Traverse View Query, (b) Output Tag Trees, and (c) Stylesheet View for Figure 4.

generate the expected output. To produce output, for each node
(n, r) in the traverse view query, we generate an output tag tree t
corresponding to r. The output tag trees for Figure 4 are shown in
Figure 7(b). We connect all the output tag trees to form a single
output tag tree. The details about how the trees are generated and
connected are discussed in Section 4.3.

3.4 Stylesheet View
Combining the traverse view query and output tag trees, we gen-

erate the stylesheet view v′ for the XSLT stylesheet, as is shown in
Figure 7(c). The combination entails copying the tag query for each
node (n, r) in the traverse view query into the root of the output tag
tree for (n, r). This is discussed in Section 4.4.

3.5 Functions Used in Composition
SELECTQ and MATCHQ are analogous to SELECT and

MATCH presented in Section 2.2.1, but they operate on schema-
tree nodes rather than data nodes. Recall that both SELECT and
MATCH involve applying patterns to context nodes, either to de-
rive a set of new context nodes or to determine whether the context
nodes are matched. Correspondingly, when we apply a pattern ab-
stractly on a schema-tree query, there is a query context node, and
a new query context node. For example, we might apply the pattern
“hotel/confstat” abstractly to the query context node (1, metro) in
Figure 1 and determine that node (4, confstat) is a new query con-
text node. We also introduce a third function, COMBINE , which
produces the select-match subtrees associated with each edge in the
CTG.

Given query node n and rule r, MATCHQ(n, r) checks if the
template path match(r) matches some suffix of the path from the

root to n in the schema-tree query. In XSLT, the match(r) contains
only child or descendant (“//”) axis location steps. Since XSLTbasic

does not have the descendant axis, any match will correspond to a
unique, simple path in the schema-tree query. If such a path ex-
ists, it is returned as a tree-pattern query, otherwise NULL is re-
turned. As a result, if dcon is an instance of n, MATCH (dcon , r)
returns true if MATCHQ(n, r) returns a non-NULL value. For
example, in Figure 6, there is a node ((5, confroom), R4), and
match(R4)=“metro/hotel/confroom”. Figure 8 shows the corre-
sponding tree-pattern query, which has three nodes.

Given query nodes n1 and n2, rule r, and <apply-templates>
element a ∈ apply(r), SELECTQ(n1, a, n2) returns a tree-pattern
query in which n1 is the query context node and n2 is the new query
context node, or NULL. The tree-pattern query (if one is returned)
is derived from select(a) by using n1 as the context node and asso-
ciating n2 with the final selection-step in select (a). With selection
step axes limited to <child> and <parent>, the resulting tree-
pattern will be unique. For example, if a is the apply-templates el-
ement in R3, then select (a)= “../hotel available/../confroom” and
the corresponding tree-pattern query is the one shown in the top left
Figure 8.

Given the tree-pattern query t returned from SELECTQ and
the tree-pattern query p returned from MATCHQ , COMBINE

creates a combined tree-pattern query as shown in Figure 8. To
accomplish this, the two patterns are combined into a new pattern
which is turned into a tree by a simple unification process, as fol-
lows. First, the node marked ’new query context node’ in t and
the node marked ’query context node’ in p are unified. (Unifica-
tion succeeds if the two nodes have the same ids.) If parents of the
nodes just-unified exist in both queries, they are unified, and this

hotel

confstat

confroom(query context node)

hotel

metro

hotel_available

(new query context node)

(query context node)
confstat hotel_available

confroom

combine ("../hotel_available/../confroom", "metro/hotel/confroom")
metro

hotel

(new query context node)

="metro/hotel/confroom"="../hotel_available/../confroom"select(a in R3) match(R4)

(query context node)
confroom

Figure 8: Combining tree-pattern queries for select(a) and
match(r)

process is repeated as many times as possible. Note that since both
t and p are obtained from the schema-tree query, the result of this
process will be a tree. Obviously, the function will fail if the initial
unification fails, but as COMBINE is used in this paper, they are
guaranteed to be the same schema-tree node.

4. DETAILED ALGORITHM
The detailed stylesheet-composition algorithm is shown in Fig-

ure 9 and described below in four steps corresponding to the four
data structures introduced in Section 3.

4.1 Step 1: Generating the CTG
Given a view query v and a stylesheet x, lines 3 to 14 in Figure 9

create ctg = CTG(v, x). An edge e = ((n1, r1), (n2, r2), a)
will appear in ctg if and only if the following conditions are satis-
fied: (1) MATCHQ(n1, r1) 6= NULL, (2) MATCHQ(n2, r2) 6=
NULL, (3) SELECTQ(n1, a, n2) 6= NULL, and (4) mode(a) =
mode(r2).

Edge e is labeled with the select-match subtree generated by
the COMBINE function, which combines the tree-patterns for
select (a) and match(r2). The new query context node in the tree-
pattern for select(a) is the same as the query context node in the
tree-pattern for match(r2).

4.2 Step 2: Generating the TVQ
The generation of the traverse view query in Figure 7 takes place

in lines 16–22 of Figure 9 and proceeds by copying the CTG (line
16), turning the resulting structure into a tree (line 17), and sub-
stituting new binding variables (lines 18). Next the tree-pattern
query for each edge is translated to a parameterized SQL query as
described below. The translated SQL query becomes the tag query
associated with the target node of the edge.

4.2.1 Generating the Select-Match Subtree Query
This section explains how to translate a select-match subtree

smt to an SQL query. This procedure is shown in the UNBIND
function of Figure 10. Suppose the query context node and new
query context node of smt are m and n respectively, and, n has
a tag query Qbv(n)(s1, s2, . . . , sk), parameterized by k binding
variables, s1, s2, ..., sk. We recursively replace the binding vari-
ables appearing in Qbv(n)(s1, s2, . . . , sk) with tag queries of an-

Procedure Compose(v,x)
Input: v: original schema-tree view query; x: XSLT stylesheet
Output: stylesheet view
1: ctg: a Context Transition Graph
2: tvq: a Traverse View Query
3: ottree: an Output Template Tree
4: for n ∈ v do
5: for r ∈ x do
6: if MATCHQ(n, r) 6= NULL then
7: add (n, r) to ctg
8: for (n1, r1) ∈ ctg do
9: for (n2, r2) ∈ ctg do

10: for a ∈ apply(r1) do
11: t← SELECTQ(n1, a, n2), p←MATCHQ(n2, r2)
12: if t 6= NULL and mode(a) = mode(r2) then
13: add an edge e = ((n1, r1), (n2, r2), a) to ctg

14: smt(e)← COMBINE(t, p)
15: (repeatedly) Delete all nodes without incoming edge, except (root, r)
16: tvq ← ctg {(copy)}, bvmap(root of tvq)← empty
17: (repeatedly) Duplicate nodes with multiple incoming edges, splitting

incoming edges and copying outgoing edges
18: replace binding variables in tvq with new, unique binding variables
19: for e = (w1 = (n1, r1), w2 = (n2, r2), a) in edges of ctg do
20: (Qbv(w2), bvmap(w2))←

UNBIND(smt(e), n1, n2, bv(w2), bvmap(w1))
21: for all binding variables bv referenced inQbv(w2) do
22: rename bv as bvmap(w2).get(bv)
23: for w = (n, r) ∈ tvq do
24: ott(w) = GENERATE OTT (n, r)
25: ottree ← ott(w)∀w ∈ tvq {initially a forest}
26: for e = (w1, w2, a) in edges of tvq do
27: a′ ← the “apply-template” node in ott(w 1) which is a copy of a

28: replace a′ with an edge from parent(a′) to root(ott(w2)))
29: for w = (n, r) ∈ tvq do
30: bv(root(ott(w))) ← bv(w)
31: Qbv(root(ott(w)))←Qbv(w)

32: Remove the topmost “pseudo-root” node in ottree
33: while there is any “pseudo-root” node pr left do
34: for each child node c of pr do
35: add edge e = (parent(pr), c)
36: ifQbv(c) is empty then
37: bv(c)← bv(pr), Qbv(c)←Qbv(pr)

38: else
39: Qbv(c)← UNBIND(parent(pr), c)

40: add the SELECT columns ofQbv(pr) toQbv(c)

41: change “bv(pr)” as “bv(c)” in the tag queries of c’s descen-
dents

42: remove edge e = (parent(pr), pr) and node pr

43: return ottree {new stylesheet view}

Figure 9: Query composition algorithm.

cestor nodes of n until we reach nj , the lowest common ancestor
of m and n. The new query is Q

s1,s2,...,sj−1

bv(n)
(sj , . . . , s

′
k), where

sj is the binding variable for nj and sj−1 is the binding variable
for childn(nj), the child node of nj along the path from nj to n.
Further query transformations like those described in [8] can be ap-
plied to this query. Since the procedure is essentially to remove the
binding variables in tag queries, it is named the UNBIND function.

As an example, the select-match subtree smt(e2) in Figure 6 is
translated into an SQL query as follows. It is generated by unbind-
ing the tag query Qs(h) of node <confstat> (with id 4), which
is the new query context node in smt . All occurrences of binding
variable $h in Qs(h) are replaced with references to a sub-query,
the tag query Qh(m). Since <metro> is the lowest common an-
cestor of query context node <metro> and new query context node
<confstat>, the unbinding stops. The resulting unbound query is
shown below:

Function UNBIND(m, n)
Input: Query context node as m, Target node to unbind as n
Output: Unbound query for n as q
1: nj ← the lowest common ancestor of m and n
2: sj ← bv(nj)
3: childn (nj)← child node of nj along the path from nj to n
4: sj−1 ← bv(childn(nj))
5: q ← Q

s1,s2,..,sj−1

bv(n) (sj , ..., s
′
k), which is the unbound tag query

of n, Qbv(n)(s1, s2, ..., sk)
6: return q

Figure 10: Naive UNBIND function for node in select-match
subtree.

Function NEST (p, p′)
Input: Node as p, Child node as p′

Output: Tag query for p after nesting as q
1: q ← Qbv(p)

2: for each child node c of p, except p′ do
3: qc ← NEST (c,NULL)
4: add EXISTS qc in WHERE clause of q
5: return q

Figure 11: Generating nested sub-query for subtree under node
in select-match subtree.

SELECT SUM(capacity), TEMP.*
FROM confroom, (SELECT * FROM hotel

WHERE metro_id=$m.metroid
AND starrating > 4) AS TEMP

WHERE chotel_id=TEMP.hotelid
GROUP BY TEMP.hotelid,...,TEMP.pool,TEMP.gym

This query becomes the tag query of ((4, confstat), R3) as shown
in Figure 7(a), after the following transformation: the binding vari-
able $m in the above query is renamed as $m new, which is the
binding variable of ((1, metro), R2). Note that a GROUP BY clause
on all columns of TEMP are added into the query by unbinding
to preserve the semantics of the aggregation SUM (capacity) in
Qs(h).

Another example of this process is the query for smt(e3) in Fig-
ure 6. The result of unbinding as described so far is shown here:

SELECT * FROM confroom
WHERE chotel_id=$h.hotelid

However, this query is incorrect due to three subtle issues. First, the
select-expression for smt(e3) is “../hotel available/../confroom”,
so there must exist at least one <hotel available> node, but
the unbound query above does not check for one. Second, such
a <hotel available> node is not arbitrary, but must be a sibling
node of the <confstat> node with the same parent. In case of a
missing <hotel available> sibling, the XSLT stylesheet would
not process the <confroom>. Third, in a more complex pattern
<hotel available> may itself be the root of a subtree, requiring
that the process be carried out recursively. To handle these three
issues (existence, sibling and recursion conditions), the procedure
of generating the query for select-match subtree smt is modified
as shown in Figure 13. We introduce a new function NEST (Fig-
ure 11) that is invoked from the procedure. Note that care must be
taken in NEST to rename tables during processing to avoid names-
pace collision, but these details are not shown. Line 5 of Figure 10
is also modified, as shown in Figure 12, to satisfy the three condi-
tions.

Suppose for smt , its query context node is m and its new query
context node is n with the tag query Qn(s1, . . . , sk). First the

1: {Replace line 5 of Figure 10}
2: P ← {nodes along the path from childn(nj) to n}
3: for node p ∈ P do
4: p′ ← child of p ∈ P , otherwise NULL
5: Θbv(p) ← NEST (p, p′)

6: q ← Θ
s1,s2,..,sj−1

bv(n) (sj , ..., s
′
k), which is the unbound and

nested tag query of n, Θbv(n)(s1, s2, ..., sk), and decorrelation
of bv(si) is done by Θsi

.

Figure 12: Changes to UNBIND functions in Figure 10
.

Function UNBIND(smt , m, n, bv ′, bvmap)
Input: Select-match subtree as smt , Query context node of smt

as m, New query context node of smt as n, New binding
bariable as bv ′, Binding variable map as bvmap .

Output: Unbound query for smt as q, New binding variable map
as bvmap ′.

1: q ← UNBIND(m, n)
2: nj ← the lowest common ancestor of m and n
3: childn(nj)← child node of nj along the path from nj to n
4: R← {nodes along the path from childn(nj) to n}
5: for node p ∈ R do
6: add the SELECT columns ofQbv(p) to q
7: P ← {nodes along the path from root of smt to m}
8: for node p ∈ P do
9: for each child node c of p, such that c /∈ P and c /∈ R do

10: qc ← NEST (c, NULL)
11: add EXISTS qc in WHERE clause of q
12: bvmap′ ← bvmap

13: for node p ∈ R do
14: bvmap′.insert(bv(p), bv′)
15: childm(nj)← child node of nj along the path from nj to m
16: S ← {nodes along the path from childm(nj) to m}
17: for node s ∈ S do
18: bvmap′.remove(bv(s))
19: return (q, bvmap ′)

Figure 13: UNBIND function for select-match subtree.

unbound queryQ
s1,...,sj−1

n (sj , . . . , s
′
k) is generated (line 1 in Fig-

ure 13), using the function shown in Figure 12. The unbound query
involves every node along the path from childn(nj) to n, which
we denote as nodeset (childn(nj) → n). The existence of every
node along the path from nj to m, denoted as nodeset (nj → m),
is ensured because of the existence of m itself. Therefore, we
need to ensure that for every node in the set (nodeset (smt) \
(nodeset (nj → m) ∪ nodeset (childn(nj) → n))), there should
exist at least one matching document instance node. For a node
p ∈ nodeset (childn(nj) → n), the existence of child nodes of
p is checked by the EXISTS clause inserted at line 4 of NEST .
Nesting is performed recursively for the nodes in the subtree under
p. Similarly, for the child nodes (and the subtrees rooted at them)
of nodes in nodeset (nj → m), EXISTS clauses are inserted at
lines 10–11 of Figure 13. For example, the resulting query for tag
query Qc(h) should be as shown below:

SELECT * FROM confroom
WHERE chotel_id=$h.hotelid
AND EXISTS (

SELECT COUNT(a_id), startdate
FROM availability, guestroom

WHERE rhotel_id=$h.hotelid
AND a_r_id=r_id

GROUP BY startdate)

apply−templates

pseudo−root

<confroom>

pseudo−root

<HTML>

output tag tree for ((0, root), R1)

<BODY><HEAD>

output tag tree for ((1, metro), R2)

output tag tree for ((4, confstat), R3) output tag tree for ((5, confroom), R4)

pseudo−root

<result_confstat>

<result_metro>

pseudo−root

<A>

apply−templates

apply−templates

Figure 14: Output Tag Trees for nodes in TVQ of Figure 7(a).

This query becomes the tag query of ((5, confroom), R4) as shown
in Figure 7(a), after renaming the binding variables.

A binding variable map, bvmap((n, r)), is associated with each
node in the TVQ. In Figure 13, the entries in bvmap((m, r′))
are copied to bvmap((n, r)), except those entries for schema-tree
query nodes along the path childm(nj)→ m. Morever, entries are
inserted for schema-tree query nodes along the path childn(nj)→
n, such that the binding variables of these nodes in the original
schema-tree query are mapped to bv((n, r)). In the tag query for
each node (n, r) in the TVQ, the referenced binding variables are
renamed according to bvmap((n, r)).

4.2.2 Multiple Incoming Edges
It is possible that there are multiple incoming edges to a node

labeled (n, r) in the CTG. Since query generation is defined for
the select-match subtree associated with a single incoming edge,
we need to duplicate (n, r) when we generate the TVQ (line 17).
Since the children of this node now need to be duplicated (and their
children, to the leaf nodes of the CTG), the size of the TVQ may
be up to exponentially larger than the CTG.

4.3 Step 3: Generating Output Tag Tree
For each node (n, r) in TVQ, an output tag tree ott((n, r)) is

generated by GENERATE OTT(n,r) (lines 23–24), and then these
trees are connected to form a single output tag tree OTT (v, x)
(lines 26–28). The output tag trees for nodes in the TVQ of Fig-
ure 7(a) are illustrated in Figure 14, and the final output tag tree is
shown in Figure 7(b). Brief descriptions of the two steps are given
below.

4.3.1 GENERATE OTT(n,r) Function
We show the intuition of GENERATE OTT(n,r) using the exam-

ple in Figure 14. For a node (n, r), ott((n, r)) is the tree represen-
tation of the hypertext fragment inside the template rule r. We add
a root pseudo-root to the fragment. The element <xsl:value-
of select="."> in r, is represented as a node with the tag n,
for example the <confroom> node in ott((5, confroom), R4)).
Each <xsl:apply-templates> element in r is represented as an
apply-templates node in ott((n, r)). Not shown are <xsl:value-
of select="@attribute"> elements which would cause data from
the database to be attached to a node like <result-confstat>.

4.3.2 Connecting the Output Tag Trees
The output tag trees of the nodes in the TVQ are connected to

form OTT (v, x). For two nodes (n1, r1) and (n2, r2), if (n1, r1)

(R1), (R3), and (R4) are the same as Figure 4.

<xsl:template match="metro"> (R2)
<xsl:apply-templates select="hotel/confstat"/>

</xsl:template>

Figure 15: An example of forced unbinding.

<HTML>

<HEAD> <BODY>

FROM confroom

AND EXISTS (SELECT COUNT(a_id), startdate
FROM availability, guestroom

AND a_r_id=r_id
GROUP BY startdate)

WHERE rhotel_id=$s_new.hotelid

Qc_new=SELECT *

$c_new $s_new

FROM hotel, (SELECT metroid, metroname
FROM confroom, (SELECT *

) AS TEMP1
FROM metroarea

WHERE metro_id=TEMP1.metroid
AND starrating > 4

) AS TEMP2
WHERE chotel_id=TEMP2.hotelid

<result_confstat> $s_new

<confroom>

WHERE chotel_id=$s_new.hotelid

Qs_new=SELECT SUM(capacity), TEMP2.*

GROUP BY TEMP2.hotelid,...,TEMP2.gym,...,TEMP2.metroarea

Figure 16: Stylesheet view for Figure 15.

is the parent of (n2, r2), we add an edge from the parent of the
apply-templates node in ott((n1, r1)) to the pseudo-root node in
ott((n2, r2)), and remove the apply-templates node in ott((n1, r1)).

4.4 Step 4: Generating Stylesheet View
The stylesheet view for Figure 4 is shown in Figure 7(c). The

stylesheet view is generated by first copying queries from the TVQ
to the OTT (lines 29–31), and then removing pseudo-root nodes,
pushing down queries (lines 32–42).

We now describe the pushing down of queries in more detail.
If the child of the pseudo-root is an element specified in the OTT,
the query will be empty and unbinding is not required. If the child
already has a query (due to an <apply-templates> tag appearing
at the top level of a rule body) then the child’s tag query needs to
be unbound with the tag query of the pseudo-root, a process we
call forced unbinding. Note that (1) this significantly limits output
formatting, but we believe better formatting can be added without
affecting the rest of the algorithm and (2) pushing the query down
separately into the apply-templates nodes will cause the results for
these apply-templates to be grouped rather than interleaved; leaning
more towards the assumption that document order is not supported
by view composition.

For example, in Figure 4, each template rule has some output that
will become part of the result tree fragment. However, in Figure 15,
((1, metro), R2) has no output, but one child ((4, confstat), R3).
Therefore ott((1, metro), R2) has only two nodes pseudo-root and
apply-templates, and only pseudo-root is kept after all output tag
trees are connected into OTT (v, x). The stylesheet view for Fig-
ure 15 is shown in Figure 16.

4.5 Complexity of the Algorithm
Below we first show that the time complexity of the algorithm is

polynomial when there is at most one incoming edge for each node

in context transition graph, and the worst-case time complexity is
O(vv) when this assumption does not hold.

As shown in Figure 9, the process of generating nodes of CTG
(lines 4–7) is bounded by |v|×|x|, where |v| is the number of nodes
in schema-tree query v and |x| is the number of rules in stylesheet
x. Since there are no conflicting rules in XSLTbasic, the number of
nodes in CTG is bounded by |v| instead of |v| × |x|. Therefore
the process of generating edges of CTG (lines 8–14) is bounded
by |v|2 ×maxa, where maxa is the maximum number of apply-
templates nodes in a rule in x. The number of edges is also bounded
by |v|2 ×maxa. Each edge is annotated with a select-match sub-
tree, with different tag queries. The process of generating TVQ
(lines 16–22) involves translating each of such select-match sub-
trees to a SQL query by unbinding. As shown in Figure 13, such
unbinding is bound by the number of nodes in a select-match sub-
tree, say maxb. The rest of the steps for generating output tag tree
and stylesheet view are bounded by the number of nodes and edges
of CTG (and also TVQ). Therefore the worst-case running time of
the algorithm is bounded by O(min(|v||x|, |v|3maxamaxb)). In
most cases, |v| would be larger than |x|, therefore the running time
is O(|v|3maxamaxb).

However, the nodes with multiple incoming edges should be du-
plicated in the TVQ (line 17). For a node (n, r) in CTG, its number
of incoming edges is at most |v| × maxa. Such a node needs to
be duplicated once for every incoming edge and becomes a child
of every parent in the TVQ. If some of its parents (n′, r′) also have
multiple incoming edges, (n, r) needs to be duplicated again to-
gether with (n′, r′). This process of duplication will go up until
reaching the root of TVQ. Therefore (n, r) could at most be du-
plicated (|v| ×maxa)|v|−1 times. After the duplications are com-
pleted, the TVQ is a tree. The total number of nodes is at most
|v|× (|v|×maxa)

|v|−1. Of course, this complexity would only be
realized in extreme cases and we expect in practice that rules will
be interrelated on a small scale if at all.

5. SUPERSETS OF XSLTbasic

In this section, we show how to handle several of the features
omitted from XSLTbasic in Section 2.2.2.

5.1 XSLTexpression

XPATH expressions can appear in elements of an XSLT stylesheet
including <xsl:template> and <xsl:apply-templates>. Un-
til now, we have assumed that predicates do not appear in path
expressions. But in reality, each step in a path expression can
have a predicate, which may be a relational expression (for ex-
ample testing the value of an attribute) or another path expression
(indicating that the relative path must exist). Figure 17 shows a
stylesheet with predicates. The select-match subtree for the edge
from ((4, confstat), R3) to ((5, confroom), R4) in this figure is
shown in Figure 18. Note that there are two <confstat> nodes in
the select-match subtree.

The mechanics of pushing expressions from tree-pattern queries
into WHERE clauses differs little from [6, 11], and we limit our dis-
cussion to the effect that predicates have on our algorithm, in partic-
ular the COMBINE function in Section 3.5, the UNBIND func-
tion in Figure 13, and the NEST function. The new COMBINE

function is almost identical to the previous function, except that
when two nodes n1 and n2 with predicates p1 and p2 are unified
to form node u, u is given predicate [p1andp2]. Because of the
existence of predicates, in addition to the procedure described in
Figure 13, the unbinding of queries must also check if predicates
are satisfied for all nodes in the select-match subtree. The changes
to the unbinding function and NEST are shown in Figure 19.

(R1) and (R2) are the same as Figure 4.

<xsl:template match="confstat"> (R3)
<result_confstat>

<xsl:apply-templates select=".[@sum<200]/
../hotel_available/../confroom
[../confstat[@sum>100]][@capacity>250]"/>

</result_confstat>
</xsl:template>

<xsl:template match="metro[@metroname=
"chicago"]/hotel/confroom"> (R4)

<xsl:value-of select="."/>
</xsl:template>

Figure 17: An example of stylesheet with predicates.

[@sum<200]

hotel

metro

confstat confstat
(query context node)

[@sum>100]
confroom

(query new context node)

hotel_available

[@capacity>250]

[@metroname="chicago"]

Figure 18: Tree-pattern query for smt on edge between
((4, confstat), R3) and ((5, confroom), R4) for Figure 17.

The unbound query for select-match subtree on edge between
((4, confstat), R3) and ((5, confroom), R4) of Figure 17, after
renaming of binding variables, is shown in Figure 20. In this ex-
ample, two predicates for <confstat> and <metro> appear, and
two additional EXISTS checks appear, with the predicates inside the
sub-queries.

5.2 XSLTtransformable

In this section, we show that some supersets of XSLTbasic can be
transformed to features in XSLTbasic, therefore can be processed by
our algorithm.

5.2.1 Flow-Control Elements
An <xsl:if> element appearing in a rule r can be handled by

introducing a new template rule with a previously unused mode
mnew . The contents of the <xsl:if> are used as the body of the
new template rule. An <apply-templates> statement replaces
the <xsl:if> in r, uses the test of the <xsl:if> as its select and
specifies mnew as the mode . This is illustrated in Figure 21. In
this figure, nodename is the name in the last location step in the
pattern. <xsl:choose> can be similarly handled by viewing it as
a group of template rules as shown in Figure 22. While ommitted
due to space limitation, the transformation for <xsl:for-each>
is very similar to that for <xsl:if>.

5.2.2 XSL:Value-of Elements
In XSLTbasic, the select attribute of <value-of> must be “.”.

But, in general, it can be an XPATH expression. Similarly to how we
handle flow-control elements, <xsl:value-of> can be handled
by viewing it as a new template rule matched by implicit <apply-
templates> in the rule in which it resides. The transformation is
shown in Figure 23.

5.2.3 Conflict Resolution for Template Rules
Each template rule in a XSLT stylesheet has its priority, which

varies by position in the stylesheet, and also by the order of in-

{Insert the following
(a) after line 8 of Figure 13
(b) after line 1 of Figure 11}
ep ← predicate using tag(p)
add ep in WHERE clause of q

Figure 19: Changes to UNBIND functions for predicates.

SELECT * FROM confroom
WHERE chotel_id=$s_new.hotelid

AND capacity > 250
AND $s_new.SUM_capacity<200
AND $s_new.metroname=’’chicago’’
AND EXISTS (SELECT SUM(capacity)

FROM confroom,
WHERE chotel_id=$s_new.hotelid
HAVING SUM(capacity)>100)

AND EXISTS (SELECT COUNT(a_id), startdate
FROM availability, guestroom
WHERE rhotel_id=$s_new.hotelid

AND a_r_id=r_id
GROUP BY startdate)

Figure 20: The unbound query for Figure 18.

cluded and imported stylesheets. When multiple rules match a
node, XSLT needs a conflict-resolution scheme to select the one rule
with the highest priority to apply. The conflict-resolution scheme
itself brings no difficulty because the priorities of template rules are
statically determined at view-composition time [16]. The conflict-
resolution facility in [9] could be used for this purpose. The prob-
lem arises from the fact that it is impossible to determine at view-
composition time whether a template rule will match a node. This
is because the match pattern in a template has not only name tests
but also predicates, the values of which are determinable only dur-
ing XSLT evaluation at runtime.

The following approach can be used to compose conflict reso-
lution into SQL queries in XML view. Suppose there is a set of
template rules that have the same node name in their last location
step (which means they potentially could be conflicting rules). First
arrange them as a list of rules in the order of priority. Then in
each rule add <xsl:when> elements to test whether the node can
be matched by some higher priority rule. The transformation is
shown in Figure 24. Note that the original n rules have the same
mode "m", otherwise they cannot conflict with each other. As
seen in the figure, each new <xsl:when> element checks for an
“expression i” which is the reverse of the “pattern i” in
the i-th template rule. For example, if the pattern i after exten-
sion is name1[p1]/name2[p2]/.../namen[pn], then expression i is
.[pn]/.../parent::name2[p2]/parent::name1[p1].

5.3 XSLTrecursion

Recursion between rules (or with a single rule) can easily arise
if the parent or ancestor axes are allowed. In this section, we il-
lustrate an approach to dealing with this recursion. In particular,
our goal is to speed up the overall processing time by pushing com-
putation from the stylesheet to the query processor, while leaving
the recursion to be handled by the XSLT processor with a modified
stylesheet.

For example, Figure 25 is a stylesheet x with recursive rules (R1
and R2). Composing it with the schema-tree query v in Figure 1
results in stylesheet view v′ in Figure 26 and new stylesheet x′ in
Figure 27. By inspection, we see that x′ on v′ obtains the same
result as running x on v. However, the <result metroavail>

nodes are generated without materializing many of the intermedi-

<xsl:template match="pattern" mode="m">
<xsl:if test="expression">

template body
</xsl:if>

</xsl:template>

(a)

<xsl:template match="pattern" mode="m">
<xsl:apply-templates se-

lect=".[expression]" mode="mnew"/>
</xsl:template>

<xsl:template match="nodename" mode="mnew">
template body

</xsl:template>

(b)

Figure 21: Transformation for <xsl:if>.

<xsl:template match="pattern" mode="m">
<xsl:choose>

<xsl:when test="e1">b1</xsl:when>
<xsl:when test="e2">b2</xsl:when>
<xsl:otherwise>b3</xsl:otherwise>

</xsl:choose>
</xsl:template>

(a)

<xsl:template match="pattern" mode="m">
<xsl:apply-templates

select=".[e1]" mode="mnew1"/>
<xsl:apply-templates

select=".[not(e1) and e2]"
mode="mnew2"/>

<xsl:apply-templates
select=".[not(e1) and not(e2)]"
mode="mnew3"/>

</xsl:template>

<xsl:template match="nodename"
mode="mnew1">b1</xsl:template>

<xsl:template match="nodename"
mode="mnew2">b2</xsl:template>

<xsl:template match="nodename"
mode="mnew3">b3</xsl:template>

(b)

Figure 22: Transformation for <xsl:choose>.

ate nodes such as <hotel>, <confstat> and <confroom>. Our
algorithm for this type of transformation is currently limited to only
a few cases and is not included here; however, we have included the
example as we feel the approach is worthy of note and is potentially
applicable to XQUERY with functions as well as XSLT.

6. RELATED WORK
XML publishing middleware SILKROUTE [6, 5] and XPERANTO

[4, 12, 11] allow users to query XML views using XML-QL and
XQUERY respectively. View-composition algorithms compose user
queries with XML views, the result of which can be evaluated using
relational database engines. However, the queries contemplated in
those works differ substantially from XSLT stylesheets, as observed
by [7].

In [9] Moerkotte studied the problem of incorporating XSLT pro-
cessing into database query engines. XSLT stylesheets are trans-
lated into algebraic expressions, for which physical algebraic oper-
ators in database engines are implemented using an iterator. Dis-
tinctions from our work were pointed out in the introduction. Most
importantly, our approach allows for materialization of fewer nodes,
and thus, greater efficiency.

<xsl:template match="pattern" mode="m">
<xsl:value-of select="expression"/>

</xsl:template>

(a)

<xsl:template match="pattern" mode="m">
<xsl:apply-templates

select="path expression" mode="mnew"/>
</xsl:template>

<xsl:template match="nodename[predicate]"
mode="mnew">

<xsl:value-of select="."/>
</xsl:template>

(b)

Figure 23: Transformation for <xsl:value-of>.

<xsl:template match="pattern 1" mode="m">
template body 1

</xsl:template>

<xsl:template match="pattern 2" mode="m">
template body 2

</xsl:template>

(a)

<xsl:template match="pattern 1" mode="m1">
template body 1

</xsl:template>

<xsl:template match="pattern 2" mode="m">
<xsl:choose>

<xsl:when test="expression 1">
<xsl:apply-templates select="."

mode="m1"/>
</xsl:when>
<xsl:otherwise>
template body 2

</xsl:otherwise>
</xsl:choose>

</xsl:template>

(b)

Figure 24: Transformation for conflict resolution.

The work of Jain, Mahajan and Suciu [7] is the closest to ours. Its
approach generates a single SQL query for an entire XSLT program
and tags the SQL result tuples to generate XML output. The tech-
nique of [7] begins by separating the XSLT stylesheet into distinct
paths. Each path is represented by a structure called QTree. One
SQL query is generated for each path by composing its QTree with
the XML view tree. The final SQL query for the XSLT stylesheet
is a union of all such queries. Our approach improves upon theirs
on a number of points. The first point is that we generate a tree-
structured view query directly rather than an SQL query. Since re-
cent work either (1) optimizes the translation from view-query to
SQL-query [5] or (2) exploits knowledge of the tree structure during
optimization [2], we expect this distinction will be more important
over time.

Second, our construction of select-and-match subtrees avoids sev-
eral issues that arise with the QTree: (1) it is not clear how data val-
ues for internal nodes are generated since outer joins are not done
along QTree paths, and if outer joins were performed, duplicates
would then need to be eliminated. [7] assumes that only the leaf
node of a path contribute to the result. However, in reality all other
nodes along the path could generate part of the result. Therefore
for each path, one SQL query cannot be sufficient. Instead max-
imally n (the number of nodes in the path) SQL queries may be
necessary. Therefore the final SQL query should be the union of

<xsl:template match="/metro"> (R1)
<xsl:param name="idx" select="10"/>
<result_metro>

<xsl:apply-templates
select="hotel/hotel_available[@count>10]

/metro_available[@count<$idx]">
<xsl:with-param name="idx"

select="$idx"/>
</xsl:apply-templates>

</result_metro>
</xsl:template>

<xsl:template match="metro_available"> (R2)
<xsl:param name="idx"/>
<xsl:choose>

<xsl:when test="$idx<=1">
<xsl:value-of select="."/>

</xsl:when>
<xsl:otherwise>
<result_metroavail>

<xsl:apply-templates
select="self::[@count>50]/../../..">

<xsl:with-param name="idx"
select="$idx-1"/>

</xsl:apply-templates>
<result_metroavail>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

Figure 25: An example of stylesheet with recursive rules.

/

WHERE metro_id=$m_new.metroid
FROM hotel

AND starrating > 4
) AS TEMP1

WHERE metro_id=$m_new.metroid
FROM hotel

AND starrating > 4
) AS TEMP1

Qm=SELECT metroid, metroname
FROM metroarea

<metro> $m_new

m_newmd m_newmu

Qmd=

AND startdate=TEMP2.startdate

Qmu=

FROM availability, guestroom, hotel,
(SELECT COUNT(a_id), startdate, TEMP1.*

(SELECT *

WHERE rhotel_id=TEMP1.hotelid

HAVING COUNT(a_id)>10
)AS TEMP2

SELECT COUNT(a_id), TEMP2.*,

FROM availability, guestroom,

WHERE rhotel_id=hotelid
AND a_r_id=r_id
AND metro_id=$m_new.metroid

AND a_r_id=r_id

FROM availability, guestroom, hotel,
(SELECT COUNT(a_id), startdate, TEMP1.*
FROM availability, guestroom,

(SELECT *

AND a_r_id=r_id
WHERE rhotel_id=TEMP1.hotelid

HAVING COUNT(a_id)>10

SELECT COUNT(a_id), TEMP2.*,

)AS TEMP2
WHERE rhotel_id=hotelid

AND a_r_id=r_id
AND metro_id=$m_new.metroid
AND startdate=TEMP2.startdate

HAVING COUNT(a_id)>50

GROUP BY startdate, TEMP1.hotelid, TEMP1.... GROUP BY startdate, TEMP1.hotelid, TEMP1....

<metroavail_down> <metroavail_up>

Figure 26: Stylesheet view v′ for composing Figure 25 with Fig-
ure 1.

all SQL queries for each QTree, each of which is an outer union of
SQL queries for each node on the path represented by the QTree.
(2) QTree combines the select expressions of different rules as long
as they are on the same path. Again because that not only the leaf
node but also all nodes on a path could generate result fragment,
the predicates in expressions of different rules should not be simply
combined together. (3) QTree does not appear to handle the parent
axis of XPath, for example, “../hotel available/../confroom” cannot
be handled by QTree because the existence of hotel available node
is not tested.

Finally, [7] does not cover many features of XSLT. The predi-
cates handled in [7] are accesses of attributes or text subelements.
It does not consider how to handle the case when they are also ex-

<xsl:template match="/metro"> (R1’)
<xsl:param name="idx" select="10"/>
<result_metro>

<xsl:apply-templates
select="metroavail_down[@count<$idx]">

<xsl:with-param name="idx"
select="$idx-1"/>

</xsl:apply-templates>
</result_metro>

</xsl:template>

<xsl:template match="metroavail_down"> (R2’)
<xsl:param name="idx"/>
<xsl:choose>

<xsl:when test="$idx<=1">
<xsl:value-of select="."/>

</xsl:when>
<xsl:otherwise>
<result_metroavail>

<xsl:apply-templates
select="../metroavail_up">

<xsl:with-param
name="idx" select="$idx-1"/>

</xsl:apply-templates>
<result_metroavail>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<xsl:template match="metroavail_up"> (R3’)
<xsl:param name="idx"/>
<xsl:choose>

<xsl:when test="$idx<=1">
<xsl:value-of select="."/>

</xsl:when>
<xsl:otherwise>
<result_metroavail>

<xsl:apply-templates
select="../metroavail_down[@count<$idx]">
<xsl:with-param

name="idx" select="$idx-1"/>
</xsl:apply-templates>

<result_metroavail>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

Figure 27: New stylesheet x′ for composing Figure 25 with Fig-
ure 1.

pressions. It does not discuss how to handle features such as flow-
control elements and conflicting rule resolution. It does not deal
with recursion in template rules.

7. CONCLUSION AND FUTURE WORK
In this paper, we focus on the problem of evaluating XSL trans-

formations on XML-publishing views. For a subset of XSLT, we
present a view-composition algorithm to compose a transformation
with an XML view. We then describe how to extend this algorithm
to handle most features of XSLT, including certain cases of recur-
sion. Evaluating the composed stylesheet view on a database in-
stance results in the same XML document as evaluating the XSLT

stylesheet on the original XML view. In this way, inefficient XSLT

processing is replaced by queries pushed into relational database
engines. In addition, the stylesheet view does not generate the un-
necessary nodes. These features of our approach offer the promise
of greatly improved efficiency.

Based on the view-composition algorithm proposed in this paper,

we plan to focus our future work on (1) handling more features of
XSLT that were excluded in this paper and (2) developing further the
approach of handling recursion and other complicated features by
partially pushing functionality from the stylesheet into the query.
Finally, we expect that this last approach may be used to ensure that
the composition will always run in polynomial time, at the cost of
leaving more functionality to be processed by XSLT, and we plan
to investigate this tradeoff.

8. REFERENCES
[1] Suggestion by anonymous reviewer.
[2] P. Bohannon, S. Ganguly, H. F. Korth, P. P. S. Narayan, and

P. Shenoy. Optimizing view queries in rolex to support
navigable result trees. In Proc. 28th Int. Conf. Very Large
Data Bases, VLDB, pages 119–130, 2002.

[3] P. Bohannon, H. F. Korth, and P. Narayan. The table and the
tree: On-line access to relational data through virtual XML
documents. In Proc. of WebDB, 2001.

[4] M. J. Carey, D. Florescu, Z. G. Ives, Y. Lu,
J. Shanmugasundaram, E. J. Shekita, and S. N. Subramanian.
XPERANTO: Publishing object-relational data as XML. In
WebDB (Informal Proceedings), pages 105–110, 2000.

[5] M. Fernandez, A. Morishima, and D. Suciu. Efficient
evaluation of XML middle-ware queries. In Proc. of the
ACM SIGMOD Int’l conference on Management of Data,
pages 103–114, 2001.

[6] M. F. Fernandez, W.-C. Tan, and D. Suciu. SilkRoute:
Trading between Relations and XML. In Int’l World Wide
Web Conf. (WWW), Amsterdam, Netherlands, May 2000.

[7] S. Jain, R. Mahajan, and D. Suciu. Translating XSLT
programs to efficient SQL queries. In Proc. of the Eleventh
Int’l Conference on the World Wide Web, pages 616–626,
2002.

[8] W. Kim. On optimizing an SQL-like nested query. ACM
Trans. on Database Systems, 7(3):443–469, Sept. 1982.

[9] G. Moerkotte. Incorporating XSL processing into database
engines. In Proc. 28th Int. Conf. Very Large Data Bases,
VLDB, pages 107–118, 2002.

[10] The Saxon XSLT processor.
http://www.blnz.com/xt/index.html.

[11] J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan, and
J. Funderburk. Querying XML views of relational data. In
Proceedings of the 27th International Conference on Very
Large Data Bases(VLDB ’01), pages 261–270, 2001.

[12] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey,
B. Lindsay, H. Pirahesh, and B. Reinwald. Efficiently
publishing relational data as XML documents. VLDB
Journal: Very Large Data Bases, 10(2–3):133–154, 2001.

[13] The-Apache-Software-Foundation. Xalan C++ XSLT
stylesheet processor.
http://xml.apache.org/xalan-c/index.html.

[14] W3C. W3C XML query. http://www.w3.org/XML/Query.
[15] W3C. XML path language (XPATH).

http://www.w3.org/TR/xpath20/.
[16] W3C. XSL transformations (XSLT) version 2.0.

http://www.w3.org/TR/xslt20/.
[17] P. Wadler. A formal semantics of patterns in XSLT. In Proc.

Markup Technologies, Philadelphia, PA, USA, 1999.
[18] XT web site. http://www.blnz.com/xt/index.html.

