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Abstract

The ubiquitous usage of databases for managing structured data, compounded with the expanded

reach of the Internet to end users, has brought forward new scenarios of data retrieval. Users often

want to express non-traditional fuzzy queries with soft criteria, in contrast to Boolean queries,

and to explore what choices are available in databases and how they match the query criteria.

Conventional database management systems (DBMSs) have become increasingly inadequate for

such new scenarios.

Towards enabling data retrieval, this thesis first studies how to fundamentally integrate rank-

ing into databases. We built RankSQL, a DBMS that provides systematic and principled support

of ranking queries. With a new ranking algebra and an extended query optimizer for the alge-

bra, RankSQL captures ranking as a first-class construct in databases, together with traditional

Boolean constructs. We invented efficient techniques for answering ad-hoc ranking aggregate

queries. RankSQL provides significant performance improvement over current DBMSs in pro-

cessing ranking queries and ranking aggregate queries.

This thesis further studies how to enable retrieval mechanisms beyond just ranking. Our explo-

rative study in this direction is exemplified by two novel proposals– One is to integrate clustering

and ranking of database query results; the other is to support inverse ranking queries that provide

ranks of objects in query context. Injecting such non-traditional facilities into databases presents

non-trivial challenges in both defining query semantics and designing query processing methods.

We extended SQL language to express such queries and invented partition- and summary-driven

approaches to process them.
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Chapter 1

Introduction

The ubiquitous usage of databases for managing structured data, compounded with the expanded

reach of the Internet to end users, has brought forward new scenarios of data retrieval. Users

often want to express non-traditional fuzzy queries with soft criteria (e.g., similarity, relevance,

and preference), in contrast to Boolean queries, and to explore what choices are available and how

they match the query criteria. We refer to this demand of fuzzy relevance over structured data

as data retrieval, to parallel the well-established information retrieval (IR) over unstructured text.

Data retrieval is critical in many emerging applications, including E-commerce, DB/IR integra-

tion, decision support, multimedia retrieval, and searching Web databases. While successful in

business settings, conventional database management systems (DBMSs) have become increasingly

inadequate for such new scenarios.

As a concrete example, imagine a user who is looking for a house in Chicago area. The typical

facility available to her through a database is Boolean SQL queries. In terms of query semantics,

database users are limited by “hard” query conditions or constraints, such as “the price in the

range from $200K to $400K”, “the number of bedrooms being 4”, and so on. Such Boolean

queries present a “black and white” world to the user. A house belongs to the query results only if

it satisfies the constraints. However, in many situations, the user actually may not have such hard

constraints clearly in her mind. Sometimes it is even impossible to come up with such constraints

without knowing what the database contains in the first place. In terms of result organization, what

the user gets is a flat table of query results. On the one hand, the result table may contain too many

houses if the query conditions are not restrictive enough. Such an overwhelming table is hard for

her to digest. On the other hand, it may contain too few or even no houses if the conditions are

1



specified in a too restrictive way. Therefore it cannot satisfy her retrieval needs either.

In contrast to pure Boolean queries, it is more desirable if the user is able to specify flexible

query conditions such as “A price below $500k is more favorable; But she is willing to pay more

for a big house; It is a plus if the house is close to the lake and she wants to avoid airport.” We want

to support this type of fuzzy retrieval in databases. In terms of query semantics, we should allow

the users to specify “soft” conditions to capture the notions of preference, similarity, and relevance.

In terms of result organization, there are many retrieval mechanisms that are more effective than

flat tables. For instance, a ranked list of houses can indicate how well they satisfy the above soft

conditions, thus the user can just focus on the top several houses, regardless of how many houses

there are in the database. As another example, a grouping of the houses by their geographical

locations can make it much easier for the user to locate her dream house.

Towards enabling data retrieval, as an important first step, this thesis studies how to funda-

mentally integrate ranking into databases. Ranking has been the central notion in information

retrieval, as it naturally provides fuzziness and flexibility in capturing users’ query criteria. It

is thus immediately an important retrieval facility to be incorporated into database queries. Ef-

fective retrieval mechanisms go beyond just ranking. This thesis exploratively studies two such

mechanisms, namely clustering together with ranking, and inverse ranking. Injecting such non-

traditional concepts into databases presents significant challenges in both defining query semantics

and inventing query processing methods. Below we summarize the technical problems, challenges,

and our approaches.

Enabling Data Retrieval by Ranking– RankSQL and Ranking Algebra [67, 68] (Chapter 2):

Ranking or top-k queries aim at finding the best-matching k answers in databases according to

user-specified ranking functions, which often are aggregates of multiple criteria. The increasing

importance of top-k queries warrants an efficient support of ranking in database management sys-

tems and has recently gained continuous attention of the research community [32, 13, 30, 19, 4,

57, 21, 55, 91, 29].

However, a fundamental support of ranking is still missing in DBMSs. Most of the available
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solutions to ranking queries are in the middleware scenario [31, 76, 43, 32, 12, 17], or in DBMSs in a

“piecemeal” fashion, i.e., focusing on specific types of operators [13, 57, 58] and queries [75, 56],

or sitting outside the core of query engines [19, 18, 91, 41, 42, 55, 100]. As the foundation of

DBMSs, relational algebra has no notion for ranking. Hence, top-k queries are not treated as

first-class query type, losing the advantages of integrating top-k operations with other relational

operations. The direct effect is inefficiency in processing such queries. Therefore, the demand of

ranking as a first-class citizen in databases poses a significant research challenge.

This thesis presents the RankSQL system, which aims at providing a seamless support and

integration of top-k queries with the existing SQL query facility in relational database systems.

The general approach of RankSQL is based on extending relational algebra to a ranking algebra.

We show that by taking ranking into account as a basic logical property, efficient query processing

and optimization techniques can be devised to answer top-k queries. The experimental study on our

implementation of RankSQL in POSTGRESQL verifies the effectiveness of the ranking algebra

in enabling efficient ranking query plans.

Enabling Data Retrieval by Ranking– Ranking Aggregates [66] (Chapter 3):

Based on the algebraic framework, we further developed techniques for processing ad-hoc ranking

(top-k) aggregate queries. Aggregation is a key operation in OLAP (On-Line Analytical Process-

ing), and dominates a variety of decision support applications such as manufacturing, sales, stock

analysis, and network monitoring. In aggregate queries, aggregates are computed over the groups

of the data. Among potentially large number of groups, often only the ones with certain signifi-

cance are of interest. Ranking aggregate queries thus look for the top k groups with the highest

aggregates. By the exploratory nature of decision support, such queries should be posed in an

ad-hoc manner with respect to how the data is aggregated and ranked, to enable flexible and ex-

pressive data analysis. Moreover, OLAP queries are commonly executed interactively so that the

users get the results quickly and pose further querying. It is thus crucial to process ad-hoc ranking

aggregate queries efficiently with large volume of data.

However, such efficient support of ad-hoc ranking is critically lacking in current systems. Most
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OLAP query processing techniques focus on pre-computation and full-answer. Decision support

systems maintain pre-computed simple aggregates, thus can only benefit queries over these aggre-

gates. Moreover, the notions of ranking and thus optimization for top-k answers are missing as

current systems always provide full answers and do not optimize for the small retrieval size k.

Our idea is to design a new non-blocking grouping and aggregation operator. It incrementally

draws tuples from the underlying query tree, generates top groups in the ranking order, and stops

processing (prunes early) as soon as the required top k groups are obtained. The key in realiz-

ing this goal is to find some good order of producing tuples (among many possible orders) that

can guide the query engine toward processing the most promising groups first, and exploring each

group only when necessary. We develop principles that guide the query processor toward a prov-

ably optimal tuple schedule. Guided by the principles, we propose a new execution framework,

which enables efficient query plans that are both group-aware and rank-aware.

Supporting Retrieval Mechanisms Beyond Ranking– Integrating Clustering with Ranking [69]

(Chapter 4):

Data retrieval essentially mandates result exploration, for users to explore what choices are avail-

able in the database, and how they match the query criteria. We ask: What exploration functions

shall we support? While we want to equip SQL-based querying with such exploration, the answers

seem to, interestingly, lie in the design of SQL itself. The order-by and group-by both stand out

as the pillars for result organization.

To begin with, recent works in top-k queries have attempted to generalize order-by, from

“crispy” result ordering by attribute values to “fuzzy” ranking of matching qualities. As a parallel

step, we propose to generalize group-by, from “crispy” grouping by attribute equality to “fuzzy”

grouping or clustering by object proximity. Furthermore, to form a more complete suite of so-

lutions for data retrieval, we propose to integrate the clustering and ranking of database query

results.

The challenges in pushing non-conventional facilities like clustering and ranking together into

Boolean queries go far beyond just language extensions. Without novel query processing methods,
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a straightforward approach is to do full ranking and clustering after materializing Boolean results,

leading to inefficiency. Our solutions are built upon summary-based clustering and ranking us-

ing dynamically constructed data summary, incorporating Boolean conditions at query time. We

have implemented this framework by utilizing bitmap index to construct such summary on-the-fly

and to integrate Boolean filtering, clustering, and ranking. Our results show that this approach

significantly outperforms the straightforward approach.

Supporting Retrieval Mechanisms Beyond Ranking– Inverse Ranking [65] (Chapter 5):

We identify a novel and interesting type of queries, inverse ranking queries, which return the ranks

of given tuples among query context. Such queries are useful in many places. For instance, a credit

card company may be interested in the standing of a new customer among her peers, in order to

determine her credit line. While ranking has gained significant attention from the community,

inverse ranking query has not been studied so far, in contrast to its usefulness.

A straightforward exhaustive approach of processing inverse ranking queries is to fully mate-

rialize the results of a Boolean query, i.e., the context of the ranking, and then count the number of

tuples whose ranking scores are higher than the score of the object in question. Such an approach

can be inefficient, as the query only asks for the rank of a certain tuple, while the full Boolean

results are indeed made.

We propose and define the query model and SQL language extension to express inverse ranking

queries. We further introduce a general partition-and-prune framework for processing them. The

framework embraces implementation methods that exploit common data structures in databases, as

well as a novel method that utilizes bitmap index built over ranking functions. The results of exper-

imental study show that our algorithms can be significantly more efficient than the straightforward

method.

While inverse ranking query is compelling by itself, we find that its dual form, quantile query,

is also important. A quantile query returns the results at certain ranking positions according to a

ranking function. It locates the quantiles as a fast sketch of the query results, thus helps users in the

continuous exploration of the data. Moreover, quantile points have significant statistical meanings.
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This thesis is the first that studies such quantile queries in the general context of Boolean queries.

In summary, this thesis makes the following contributions:

• Systems: We built RankSQL, a RDBMS that fundamentally supports ranking as a first-class

construct, through the foundation of ranking algebra.

• Concepts: We proposed the ideas of integrating clustering with ranking and enabling inverse

ranking in database queries and designed SQL extensions for defining these queries. To the best

of our knowledge, ours is the first in the literature to make such investigations.

• Frameworks and Algorithms: We developed novel and efficient query processing frameworks

and algorithms for ranking queries and ranking aggregate queries, clustering with ranking, and

inverse ranking queries. The frameworks and algorithms also integrate with the conventional

Boolean query constructs.

• Evaluations: We evaluated our techniques through extensive experiments. The results show

that our approaches achieve significant performance improvements over existing approaches,

and provide insights into the tradeoffs of our algorithms.

The rest of the thesis is organized as follows. Chapter 2 introduces the ranking algebra and

query optimization techniques in RankSQL. Chapter 3 discusses the principles and framework

for processing ad-hoc ranking aggregate queries. In Chapter 4, we describe the proposal of in-

tegrating clustering and ranking in databases queries. Chapter 5 presents our study of inverse

ranking queries. We introduce our initial release of the RankSQL system in Chapter 6 and de-

scribe the architecture, challenges, and implementation techniques. We review related work in

Chapter 7. Finally, Chapter 8 concludes the thesis and discusses some open issues that warrant

further research.
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Chapter 2

Data Retrieval by Ranking:

Rank-Relational Algebra and Optimization

In this chapter, we present the RankSQL system, which aims at providing a seamless support and

integration of ranking with the existing SQL facility in relational database systems. Ranking or

top-k queries provide only the top k query results, according to a user-specified ranking function,

which in many cases is an aggregate of multiple criteria. The following is an example of top-k

query.

Example 1: Consider user Amy, who wants to plan her trip to Chicago. She wants to stay in a ho-

tel, have lunch in an Italian restaurant (condition c1: r.cuisine=Italian), and walk to a museum after

lunch; the hotel and the restaurant together should cost less than $100 (c2: h.price+r.price<100);

the museum and the restaurant should be in the same area (c3: r.area=m.area). Furthermore,

to rank the qualified results, she specifies several ranking criteria, or “predicates”– for low ho-

tel price, with p1: cheap(h.price); for close distance between the hotel and the restaurant, with

p2: close(h.addr, r.addr); and for matching her interests with the museum’s collections, with

p3: related(m.collection, “dinosaur”). These ranking predicates return numeric scores and the

overall scoring function sums up their values. The query is shown below in POSTGRESQL syntax.

select ∗
from Hotel h, Restaurant r, Museum m
where c1 and c2 and c3

order by p1 + p2 + p3

limit k

With current relational query processing capabilities, the only way to execute the previous

query is to: (1) consume all the records of the three inputs; (2) join the three inputs and materialize
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the whole join results; (3) evaluate the three predicates p1, p2, and p3 for each valid join result;

(4) sort the join results on p1 + p2 + p3; and (5) report only the top k results to the user. Processing

the query in this way suffers from the following problems:

• The three inputs can be arbitrarily large, hence joining these inputs can be very expensive.

Moreover, it may be infeasible to assume that we can consume the whole inputs, e.g., if these

inputs are from external sources such as Web databases.

• The user is not interested in a total order of all possible combinations (hotel, restaurant,

museum). Hence, the aforementioned processing is an overkill with unnecessary overhead.

• The ranking predicates can be very expensive to compute, and hence should be evaluated

only when they affect the order (rank) of the results. Current query processing must evaluate

all the predicates against every valid join result to be able to sort these results.

Such inefficient processing is mainly due to the lack of fundamental support of ranking queries.

As the foundation of RDBMSs, relational algebra has no notion for ranking. Therefore, supporting

ranking queries as a first-class query type is a significant research challenge.

Our proposed general approach is based on extending relational algebra to be rank-aware. In

the rest of this chapter, we show that by taking ranking into account as a basic logical property,

efficient query processing and optimization techniques can be devised to answer top-k queries such

as the one in Example 1. We summarize the contributions of RankSQL as follows:

• Extended algebra: We propose a “rank-relational” algebra, by extending relational algebra

to capture ranking as a first-class construct.

• Ranking query execution model: We present a pipelined and incremental execution model,

enabled by the rank-relational algebra, to efficiently process ranking queries.

• Rank-aware query optimization: We present a rank-aware query optimizer, by addressing

the key challenges in plan enumeration and cost estimation, to construct efficient ranking

query plans.
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We conduct an experimental study on our initial implementation of RankSQL in POSTGRESQL,

for verifying the effectiveness of the extended algebra in enabling the generation of efficient rank-

ing plans, and for evaluating the validity of our cardinality estimation method in query optimiza-

tion.

The rest of the chapter is organized as follows. We start in Section 2.1 by defining and moti-

vating ranking queries as first-class construct. Section 2.2 introduces the rank-relational algebra.

Section 2.3 introduces the execution model and physical implementation of ranking query plans.

We present our proposed rank-aware query optimization in Section 2.4. We describe the experi-

mental evaluation in Section 2.5.

2.1 Ranking Query Model

This section defines rank-relational queries (Section 2.1.1), and motivates the need for supporting

ranking as a first-class construct (Section 2.1.2).

2.1.1 Rank-Relational Queries

A rank-relational query Q, as illustrated by Example 1, is a traditional SPJ (select-project-join)

query augmented with ranking predicates. Conceptually, such queries have the “canonical” form

of Eq. 2.1 in terms of relational algebra:

Q = π∗λkτF(p1,...,pn)σB(c1,...,cm)(R1 × · · · ×Rh) (2.1)

That is, upon the product of the base relations (R1 × . . . × Rh), the following two types of

operations are performed, before the top k tuples (which we denote by λk) with projected attributes

(as π∗ indicates) are returned as the results.

• Filtering: a Boolean function B(c1, . . . , cm) filters the results by the selection operator σB

(e.g., B = c1 ∧ c2 ∧ c3 for Example 1), and
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• Ranking: a monotonic scoring function F(p1, . . . , pn) ranks the results by the sorting1 op-

erator τF (e.g., F = p1 + p2 + p3 for Example 1).

Formally, Q returns k top tuples ranked by F , from the qualified tuples RB = σB(c1,...,cm)(R1×

· · · × Rh). Each tuple u has a predicate score pi [u] for every pi and an overall query score

F(p1 , . . . , pn)[u] = F(p1 [u], . . . , pn [u]). As a result, Q returns a sorted list K of k top tuples2,

ranked by F scores, such that F [u] ≥ F [v], ∀u ∈ K and ∀v /∈ K. As a standard assumption, F is

monotonic, i.e., F(x1, . . . , xn) ≥ F(y1, · · · , yn) when ∀i : xi ≥ yi. Note that we use summation

as the scoring function throughout Chapter 2, although F can be other monotonic functions such

as multiplication, weighted average, and so on.

Observe that, as Example 1 shows, a rank-relational query has four types of predicates: For fil-

tering, as traditionally supported, the query has Boolean-selection predicates (e.g., c1) and Boolean-

join predicates (e.g., c2, c3). For ranking, according to our proposal, it has rank-selection predicates

(e.g., p1, p3) and rank-join predicates (e.g., p2).

We note that, the new ranking predicates, much like their Boolean counterparts, can be of

various costs to evaluate: Some predicates may be relatively cheap, e.g., p1 may simply be attribute

or expression such as (200− h.price)× 0.2. However, in general, predicates can be expensive as

they can be user-defined or built-in functions. For instance, p1 may as well require accessing on-

line sources (e.g., a Web hotel database) for the current price; p2 may involve comparing h.addr

with r.addr according to geographical data; and p3 may perform an information retrieval style

operation to evaluate the relevance.

Our goal is to support such rank-relational queries efficiently. As our discussion above reveals,

such queries add a ranking dimension to query processing and optimization, which in many ways

parallels the traditional dimension of filtering: While filtering restricts tuple “membership” by

applying a functionB of Boolean selection or join predicates, ranking restricts “order” by applying

a function F of corresponding ranking predicates. While Boolean predicates can be of various

1Note that sorting is defined in the extended relational algebra to model the order-by of SQL.
2More rigorously, it returns min(k, |RB|) tuples.
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costs, ranking predicates share the same concern. We thus ask, while conceptually parallel, are

they both well supported in RDBMSs?

2.1.2 Ranking as First-Class Construct

Unlike Boolean “filtering” constructs, which are essentially supported in RDBMSs, the same sup-

port for “ranking” is clearly lacking. To motivate, observe that as Eq. 2.1 shows, relational algebra

provides the selection operator σB for filtering, and the sorting operator τF for ranking. However,

as we will see, there is a significant gap between their support in current systems.

Relational algebra models Boolean filtering, i.e., σB(c1,...,cm), as a first-class construct in query

processing. (Such filtering includes both selections on a single table as well as joins.) With

algebraic support for optimization, Boolean filtering is virtually never processed in the canon-

ical form (of Eq. 2.1)– Consider, for instance, B = c1 ∧ c2, for c1 as a selection over R and

c2 a join condition over R × S. The algebra framework supports splitting of selections (e.g.,

σc1∧c2(R × S) ≡ σc1σc2(R × S) ≡ σc1(R ⊲⊳c2 S)) and interleaving them with other operators

(e.g., σc1(R ⊲⊳c2 S) ≡ σc1(R) ⊲⊳c2 S). These algebraic equivalences thus enable query optimiza-

tion to transform the canonical form into efficient query plans by splitting and interleaving.

However, in a clear contrast, such algebraic support for optimization is completely lacking for

ranking, i.e., τF(p1,...,pn). The sorting operator τ is “monolithic”: The scoring function F(p1, . . .,

pn), unlike its Boolean counterpart B(c1, . . . , cm), is evaluated at its entirety, after the rest of the

query is materialized– essentially as “naı̈ve” as in the canonical form.

Such naı̈ve materialize-then-sort scheme should not be the only choice– in fact, in many cases,

it can be prohibitively expensive. If we want only the top k results, full materialization may not be

necessary. As we shall see in Section 2.3, ranking predicates can significantly cut the cardinality of

intermediate results. Moreover, all the ranking predicates have to be evaluated against every results

of the full materialization under this naı̈ve scheme. With the various costs, it may be beneficial in

many cases to evaluate ranking predicates one by one, and interleave them with Boolean filtering.

Thus, in a clear departure from the monolithic sorting τ , we believe rank-relational queries call for
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essentially supporting ranking as a first-class construct– in parallel with filtering. Such essential

support, as we have observed, consists of two requirements:

1. Splitting: Ranking should be evaluated in stages, predicate by predicate– instead of mono-

lithic.

2. Interleaving: Ranking should be interleaved with other operators– instead of always after

filtering.

There are two major challenges in supporting ranking as a first-class operation. First, as

foundation, we must extend relational algebra to handle ranking and define algebraic laws for

equivalence transformations (Section 2.2). Meanwhile, to realize the algebra, we must define the

corresponding query execution model and physical operators in which “rank-relations” are pro-

cessed incrementally (Section 2.3). Second, we need to generalize query optimization techniques

for integrating the parallel dimensions of Boolean filtering (e.g., join order selection) and ranking

(Section 2.4).

2.2 Rank-Relational Algebra

To enable rank-aware query processing and optimization, we extend relational algebra to be rank-

relational algebra, where the relations, operators, and algebraic laws “respect” and take advantage

of the essential concept of “rank”. In this section, we define rank-relational model (Section 2.2.1)

and extend relational algebra (Section 2.2.2). The new rank-relational algebra enables and de-

termines our query execution model and operator implementations. We also discuss several laws

(Section 2.2.3) of the new algebra to lay the foundation of query optimization.

2.2.1 Rank-Relations: Ranking Principle

To fundamentally support ranking, the notion of rank must be captured in the relational data model.

Thus, to start with, we must extend the semantics of relations to be rank-aware. In this extended
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Figure 2.1: Ranking of intermediate relations.

model, we define rank-relation as a relation with its tuples scored (by some ranking function) and

ordered accordingly.

In this model, how should we rank a relation?– Note that our algebra extension is to support

rank-relational queries: Given a scoring function F(p1, . . . , pn) for such a query (as in Eq. 2.1),

what are the rankings of tuples as they progress in processing? Consider a base relation R. Fig-

ure 2.1 conceptually illustrates the query tree. To begin with, when no ranking predicate pi is eval-

uated, R as tuples “on the disk” has an arbitrary order. As the splitting requirement (Section 2.1.2)

motivates, these ranking predicates will generally be processed in stages. We thus ask, when some

predicates, say P = {p1, . . . , pj} (for j < n) are evaluated (Figure 2.1, cloud “A”), what should

be the ranking? Note that although the final results are to be ranked by F(p1, . . . , pn), at this stage

we do not have the complete scores of all the predicates. Therefore, we want to define a partial

ranking of tuples by their current incomplete scores, so that the resulted order is consistent with

their “desired” order of further processing. As queries are evaluated incrementally by “iterators”

(Section 2.3), this ranking will order the output tuples to subsequent operations (Figure 2.1, cloud

“B”). Thus, refer to Figure 2.1, when should a tuple t1 be ranked before t2? It turns out that we

have the following ranking principle.

Property 1 (Ranking Principle): With respect to a scoring function F(p1, . . . , pn), and a set of

evaluated predicates P = {p1, . . ., pj}, we define the maximal-possible score (or upper-bound) of

a tuple t, denoted FP [t], as
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FP(p1 , . . . , pn)[t] = F







pi = pi[t] if pi ∈ P

pi = 1 otherwise3.
∀i







Given two tuples t1 and t2, if FP [t1] > FP [t2], then t1 must be further processed if we neces-

sarily further process t2 for query answering.

The proof is straightforward. Intuitively, the maximal-possible score of a tuple t defines what

t can achieve, with P already evaluated, by assuming unknown predicates are of perfect scores.

(Since F is monotonic, this substitution will result in its upper bound.) Therefore when FP [t1] >

FP [t2], whatever score t2 can achieve, t1 can possibly do even better. Refer to Figure 2.1, the

subsequent operation “B” cannot process only t2 but not t1. Therefore it is desirable that “B” draws

outputs from “A” in this order, i.e., t1 should precede t2. By this ranking principle, Definition 1

formalizes rank-relations.

Definition 1 (Rank-Relation): A rank-relation RP
4, with respect to relation R and monotonic

scoring function F(p1, . . . , pn), for P ⊆ {p1, . . . , pn}, is the relation R augmented with the fol-

lowing ranking induced by P .

• (Scores) The score for a tuple t is the maximal-possible score of t underF , when the predicates

in P have been evaluated, i.e., FP [t]. It is an implicit attribute of the rank-relation.

• (Order) An order relationship <RP
is defined over the tuples in RP by ranking their scores,

i.e., ∀t1, t2 ∈ RP : t1 <RP
t2 iff FP [t1] < FP [t2].

Note that, when there are ties in scores, an arbitrary deterministic “tie-breaker” function can

be used to determine an order, e.g., by unique tuple IDs.

3More rigorously, it is the application-specific maximal-possible value of pi. We assume 1 without losing general-

ity.
4To be more rigorous, it should be notated as RF

P . We omit F for simplicity.
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TID a b p1 p2

r1 1 2 0.9 0.65
r2 2 3 0.8 0.5
r3 3 4 0.7 0.7

TID a b p1 p2

r′1 1 2 0.9 0.65

r′2 3 4 0.7 0.7

r′3 5 1 0.75 0.6

TID a c p3 p4 p5

s1 4 3 0.7 0.8 0.9
s2 1 1 0.9 0.85 0.8
s3 1 2 0.5 0.45 0.75
s4 4 2 0.4 0.7 0.95
s5 5 1 0.3 0.9 0.6
s6 2 3 0.25 0.45 0.9

(a) R (b) R′ (c) S

TID a b F1{p1}

r1 1 2 1.9

r2 2 3 1.8

r3 3 4 1.7

TID a b F1{p2}

r′2 3 4 1.7

r′1 1 2 1.65

r′3 5 1 1.6

TID a c F2{p3}

s2 1 1 2.9

s1 4 3 2.7

s3 1 2 2.5

s4 4 2 2.4

s5 5 1 2.3

s6 2 3 2.25

(d) R{p1} (e) R′
{p2} (f) S{p3}

Figure 2.2: Examples of rank-relations.

The extended rank-relational algebra generally operates on rank-relations. Thus, base rela-

tions, intermediate relations, and the results are all rank-relations. That is, rank-relations are closed

under the algebra operators, which Section 2.2.2 will define, since all operators will account for

the new ranking property (in addition to “membership”). Note that a base or intermediate rela-

tion, when no predicates are evaluated (P = φ), is consistently denoted Rφ or simply R. On the

other hand, when P = {p1, . . . , pn}, the partial score is effectively complete, resulting in the final

ranking with respect to F .

Example 2: As our running example, Figure 2.2(a)-(c) show three base relations, R, R′, and S

(i.e., Rφ, R′
φ, Sφ), with their schemas, tuple IDs, and ranking predicate scores. Note that tuple

IDs and predicate values are shown for pedagogical purpose only. (These predicate values are

unknown until evaluated.) For our discussion, as we will illustrate various operators, we assume

R and R′ have the same schema (e.g., to be unioned later) and predicates. S is used later to

show join operator. Suppose the scoring function for R and R′ is F1 =
∑

(p1, p2), and for S is

F2 =
∑

(p3, p4, p5). Figure 2.2(d)-(f) show three rank-relations, R{p1}, R
′
{p2}, S{p3}, with tuples

ranked by maximal-possible scores.
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Rank : µ, with a ranking predicate p

• t ∈ µp(RP) iff t ∈ RP

• t1 <µp(RP) t2 iffFP∪{p}[t1] < FP∪{p}[t2]

Selection : σ, with a boolean condition c

• t ∈ σc(RP ) iff t ∈ RP and t satisfies c

• t1 <σc(RP) t2 iff t1 <RP t2, i .e.,FP [t1] < FP [t2]

Union : ∪

• t ∈ RP1
∪ SP2

iff t ∈ RP1
or t ∈ SP2

• t1 <RP1
∪SP2

t2 iff FP1∪P2
[t1] < FP1∪P2

[t2]

Intersection : ∩

• t ∈ RP1
∩ SP2

iff t ∈ RP1
and t ∈ SP2

• t1 <RP1
∩SP2

t2 iff FP1∪P2
[t1] < FP1∪P2

[t2]

Difference: −

• t ∈ RP1
− SP2

iff t ∈ RP1
and t 6∈ SP2

• t1 <RP1
−SP2

t2 iff t1 <RP1
t2, i .e.,FP1

[t1] < FP1
[t2]

Join : ⊲⊳, with a join condition c

• t ∈ RP1
⊲⊳c SP2

iff t ∈ RP1
× SP2

and satisfies c

• t1 <RP1
⊲⊳cSP2

t2 iff FP1∪P2
[t1] < FP1∪P2

[t2]

Figure 2.3: Operators defined in the algebra.

2.2.2 Operators

We next extend the relational-algebra operators for manipulating rank-relations. Recall that, by

Definition 1, a rank-relation RP essentially possesses two logical properties– 1) membership as

defined by the relation R, and 2) order induced by predicates P (with respect to some scoring

function F). For manipulating these two properties, we extend relational algebra by adding a new

rank operator µ and generalizing the existing operators to be “rank-aware”. Figure 2.3 summarizes

the definitions of these operators, and Figure 2.4 illustrates them with examples (as continued from

Example 2), which we explain below in more details.

New Operator µ: For supporting ranking as a first-class construct, we propose to add a new

operator, rank or µ. As Section 2.1.2 motivated, our goal is to satisfy the two requirements:

splitting and interleaving. Essentially, we must be able to evaluate ranking predicates (pi’s in F )

one at a time– thus ranking is effectively split and can be interleaved with other operations.
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The new rank operator (µ) is thus a critical basis of our algebra. As Figure 2.3 defines, µp(RP)

evaluates an additional predicate p upon rank-relation RP , ordered by evaluated predicate set P as

Definition 1 states, and produces a new order byP∪{p}– That is, by definition, µp(RP) = RP∪{p}.

For instance, when µp2 operates on R{p1} in Figure 2.2(d), the result rank-relation is shown in

Figure 2.4(a), which equals R{p1,p2}. Note that R{p1,p2} is already the final result for ranking R

with F1 because F1 =
∑

(p1, p2).

Extended Operators π, σ,∪,∩,−, ⊲⊳: We extend the original semantics of existing operators with

rank-awareness, and thus enable the interaction between the new µ and traditional Boolean opera-

tions. As we will see, in the extended algebra, the operations will now be aware of and compute on

dual logical properties– both membership (by Boolean predicate) and order (by ranking predicate).

(Note that we omit projection π in Figure 2.3, since it is obvious. We also omit the discussion on

Cartesian-product since it is similar to join.)

To begin with, unary operators such as selection (and π not shown in Figure 2.3) process the

tuples in the input rank-relation as in their original semantics, and simply maintains the same

order as the input. Thus, in our notation, σc(RP) ≡ (σcR)P . That is, the selection with c on RP

manipulates only the membership of R, by applying c, and maintains the same order as induced

by P . An example is shown in Figure 2.4(b).

Further, most binary operators, such as union (∪), intersection (∩), and join (⊲⊳), perform their

normal Boolean operations, and at the same time output tuples in the “aggregate” order of the

operands– Such aggregate order is induced by all the evaluated predicates from both operands.

Thus, for instance, RP1 ∩ SP2 ≡ (R ∩ S){P1∪P2}, which similarly holds for ∪ and ⊲⊳. Examples

are shown in Figure 2.4(c), (d), and (f).

Finally, difference (−) outputs tuples in the order of the outer input operand– since the other is

effectively discarded. Thus, RP1 − SP2 ≡ (R− S)P1 . An example is shown in Figure 2.4(e).
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TID a b F1{p1,p2}

r1 1 2 1.55

r3 3 4 1.4

r2 2 3 1.3

TID a b F1{p1}

r2 2 3 1.8

r3 3 4 1.7

(a) µp2(R{p1}) (b) σa>1(R{p1})

TID a b F1{p1,p2}

r1/r′1 1 2 1.55

r3/r′2 3 4 1.4

TID a b F1{p1,p2}

r1/r′1 1 2 1.55

r3/r′2 3 4 1.4

r′3 5 1 1.35

r2 2 3 1.3

(c) R{p1} ∩R′
{p2} (d) R{p1} ∪ R′

{p2}

TID a b F1{p1}

r2 2 3 1.8

TIDR TIDS a b c F3{p1,p3}

r1 s2 1 2 1 4.8

r1 s3 1 2 2 4.4

(e) R{p1} − R′
{p2} (f) R{p1} ⊲⊳θ S{p3},

where θ is R{p1}.a = S{p3}.a,

F3 =
∑

(p1, p2, p3, p4, p5).

Figure 2.4: Results of operators.

2.2.3 Algebraic Laws

Query optimizers essentially rely on algebraic equivalences to enumerate or transform query plans

in search of efficient ones. In the extended rank-relational model and algebra, as the dual logical

properties dictate, algebraic equivalences should result in not only the same membership but also

the same order. By definition of our algebra, as just discussed, we can assert many algebraic

equivalence laws. As we extended the algebra specifically to support ranking, Figure 2.5 gives

several such equivalences relevant to ranking. Essentially, these laws concretely state the new

freedom of splitting and interleaving, thus achieving our motivating requirements (Section 2.1.2)–

That is, the rank-relational algebra indeed supports ranking as first-class, in parallel with Boolean

filtering. These laws are directly from the definition of the algebra, therefore we omit the proof

and only briefly discuss their usage in query optimization. In particular, we explain the laws

specifically centering around our two requirements:

First, rank splitting: Proposition 1 allows us to split a scoring function with several predicates

(p1, ..., pn) into a series of rank operations (µ1, ..., µn). This splitting is useful for processing the

18



Proposition 1 : Splitting law for µ

• R{p1,p2,...,pn} ≡ µp1
(µp2

(...(µpn
(R))...))

Proposition 2 : Commutative law for binary operator

• RP1
ΘSP2

≡ SP2
ΘRP1

, ∀Θ ∈ {∩,∪, ⊲⊳c}

Proposition 3 : Associative law

• (RP1
ΘSP2

)ΘTP3
≡ RP1

Θ(SP2
ΘTP3

), ∀Θ ∈ {∩,∪, ⊲⊳c
a}

Proposition 4 : Commutative laws for µ

• µp1
(µp2

(RP )) ≡ µp2
(µp1

(RP))

• σc(µp(RP )) ≡ µp(σc(RP))

Proposition 5 : Pushing µ over binary operators

• µp(RP1
⊲⊳c SP2

)

≡ µp(RP1
) ⊲⊳c SP2

, if only R has attributes in p

≡ µp(RP1
) ⊲⊳c µp(SP2

), if the attributes in p is a

subset of join attributes in c

• µp(RP1
∪ SP2

) ≡ µp(RP1
) ∪ SP2

≡ µp(RP1
) ∪ µp(SP2

)

• µp(RP1
∩ SP2

) ≡ µp(RP1
) ∩ SP2

≡ µp(RP1
) ∩ µp(SP2

)

• µp(RP1
− SP2

) ≡ µp(RP1
)− SP2

≡ µp(RP1
)− µp(SP2

)

Proposition 6 : Multiple-scan of µ

• µp1
(µp2

(Rφ)) ≡ µp1
(Rφ) ∩r µp2

(Rφ)

aWhen join columns are available.

Figure 2.5: Some algebraic equivalence laws.

predicates individually– Our splitting requirement is thus satisfied.

Second, interleaving: Propositions 4 and 5 together assert that rank operations can swap with

other operators, thus achieving the interleaving requirement. In particular, Proposition 4 deals with

swapping µ with other unary operators (µ or σ)– thus, we can schedule µ freely with σ. Further,

Proposition 5 handles swapping with binary operators– we can thus push down µ across ⊲⊳, ∩, and

others.

The new algebraic laws lay the foundation for query optimization of ranking queries as alge-

braic equivalences define equivalent plans in the search space of query optimizers. As we will

see in Section 2.4, these algebraic laws guide the designing of transformation rules in rule-based

optimizers, as well as the plan enumeration and heuristics in bottom-up optimizers.
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2.3 Ranking Query Plans: Execution Model and Physical

Operators

In common database query engines, a query execution plan is a tree of physical operators as iter-

ators, which have three interface methods that allow the consumer operator of a physical operator

to fetch one result tuple at a time. The three basic interface methods are: (1) Open method that

initializes the operator and prepares its internal state; (2) GetNext method that reports the next re-

sult upon each request; (3) Close method that terminates the operator and performs the necessary

cleanup. During the execution, query results are drawn from the root operator, which draws tuples

from underlying operators recursively, till the scan operators. This provides an efficient pipelining

evaluation strategy, unless the flow of tuples is stopped by a blocking operator such as sort or a

blocking join implementation, in which case, intermediate results have to be materialized.

The nature of ranking query lends itself to pipelined and incremental plan execution. We desire

that the small number k not only reduces the size of results presented to users, but also allows less

work to be done, i.e., we want the execution cost to be proportional to k. In interactive applications,

k may be only an estimate of the desired result size or not even specified beforehand. Hence, it

is essentially desirable to support incremental processing– for returning top results progressively

upon user requests.

Unfortunately traditional implementation of ranking by sticking a sorting operation on top of

the execution plan is an overkill solution to the problem and can be prohibitively expensive. Such

materialize-then-sort scheme is undesirably blocking, as the first result is reported after all results

(much more than k in general) are produced and sorted. The cost is independent from k and the

startup cost is almost equal to the total cost.

Fortunately rank-relational algebra both advocates and enables non-blocking plans. In this

section, we show how ranking query plans, consisting of the new and extended operators, exe-

cute according to the ranking principle (Property 1) in Section 2.3.1 and present their physical

implementations in Section 2.3.2.
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2.3.1 Incremental Execution Model

To realize the rank-relational algebra, we extend the common execution model to handle ranking

query plans, with two differences from traditional plans. First, operators incrementally output

rank-relations RP (Definition 1), i.e., tuple streams pass through operators in the order of maximal-

possible scores (upper-bounds) FP [t] with respect to the associated ranking predicate set P . As

the ranking principle indicates, it is desirable that t1 precedes t2 in further processing if FP [t1] >

FP [t2]. Second, the query has an explicitly requested result size, k. The execution stops when k

results are reported or no more results are available.

For an operator to output its intermediate result as a rank-relation, as Definition 1 requires, the

output must be in the order by the associated predicate set. That is, a tuple can be output to the

upper operator if its upper-bound score is guaranteed to be higher than the upper-bound of any

future output tuple. Therefore the key capability of a rank-aware operator is to decide if enough

information has been obtained from its input tuples in order to incrementally produce the next

ranked output tuple.

To illustrate, consider a µp operator upon the inputRP as the result of its preceding operator x.

In order to produce outputs in the correct order by P∪{p}, µp cannot immediately output a tuple

t once t is obtained from x, because there may exist some t′ such that FP∪{p}[t] < FP∪{p}[t
′],

although FP [t] ≥ FP [t′] (therefore t′ has not been “drawn” from x yet). Instead, µp has to

evaluate p[t] to get FP∪{p}[t] and to buffer t in a ranking queue (implemented as priority queue)

that maintains tuples in the order by P∪{p}. At any time, the top tuple t in the queue can be output

when a t′ is drawn from x such that FP∪{p}[t] ≥ FP [t′], thus FP∪{p}[t] ≥ FP [t′] ≥ FP [t′′] for

any future tuple t′′ from x. Note that FP [t′′] ≥ FP∪{p}[t
′′] according to Definition 1. Therefore

µp can conclude that FP∪{p}[t] ≥ FP∪{p}[t
′′], thus it can output t.

Example 3: We continue the running example in Example 2, to show how ranking query plans

execute differently from traditional plans. Consider a very simple top-k query over base table S

(Figure 2.2(c)) and the ranking function F2 in Example 2,
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select ∗ from S order by p3 + p4 + p5 limit 1.

Figure 2.6 illustrates three equivalent plans. Plan (a) is a traditional plan consisting of a sorting

and a sequential scan operator. It scans tuples from S, evaluates all predicates (p3,p4,p5) for each

tuple, buffers and sorts them based on their scores till all tuples are scanned. Plan (b) is a new plan

enabled by the rank-relational algebra, with an index scan followed by two µ operators. The index

scan accesses tuples in the order of p3 values, where p3 can be as simple as attribute or as complex

as external or built-in function. (Such index is supported in DBMSs such as POSTGRESQL.)

In these plans, the rank-relation R above each operator op contains the tuples that have ever

been processed by op. The portion of R in gray color is the incremental output rank-relation from

op to its upper operator op′, thus is the incremental input rank-relation to op′. Therefore the rank-

relation R′ above op′ contains the same tuples as the gray portion of R, although may in different

order, since op′ can apply one more predicate and thus result in a new order. For example, consider

µp4 in plan (b). It processed 3 tuples (s2,s1,s3) during execution. Among them, s2 and s1 were

drawn to µp5 , which processed 2 tuples (s2 and s1) and output s2 as the top-1 answer since µp5 is

the top operator in the plan tree.

Note that the order of tuples in the rank-relations are decided by semantics, according to the

definition of rank-relation (Definition 1) and operators (Section 2.2.2). For example, µp4 must

output tuples in the order byF2{p3,p4}
since p3 is accessed by the underlying operator idxScanp3(S)

and p4 is evaluated by µp4 . Therefore s2 must precede s1 when output from µp4 sinceF2{p3 ,p4 }
[s2] =

2.75 > F2{p3 ,p4 }
[s1] = 2.5.

We further illustrate how tuples flow, still using plan (b) as an example. The operator µp5

first draws s2 from µp4 , then evaluates p5 [s2] and gets F2{p3 ,p4 ,p5 }
[s2] = 2.55. At this point µp5

cannot output s2 yet (refer to our explanation in the paragraph right above Example 3). Therefore

µp5 buffers s2 in its ranking queue and draws the next tuple, s1, from µp4 . It is sure at this point

that µp5 can output s2 as the top answer (again, refer to the paragraph above Example 3). After

evaluating p5 [s1] and getting F2{p3 ,p4 ,p5 }
[s1] = 2.4, s1 is buffered. The execution goes on in this

way to get more query results. Other operators in plan (b) work in the same way and the whole plan
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TID a c F2{p3,p4,p5}

s2 1 1 2.55

s1 4 3 2.4

s4 4 2 2.05

s5 5 1 1.8

s3 1 2 1.7

s6 2 3 1.6

TID a c F2φ
s1 4 3 3.0

s2 1 1 3.0

s3 1 2 3.0

s4 4 2 3.0

s5 5 1 3.0

s6 2 3 3.0

sortp3+p4+p5

seqScan(S)

(a)

TID a c F2{p3,p4,p5}

s2 1 1 2.55

s1 4 3 2.4

TID a c F2{p3,p4}

s2 1 1 2.75

s1 4 3 2.5

s3 1 2 1.95

TID a c F2{p3}

s2 1 1 2.9

s1 4 3 2.7

s3 1 2 2.5

µp5

µp4

idxScanp3(S)

(b)

TID a c F2{p3,p4,p5}

s2 1 1 2.55

s1 4 3 2.4

s4 4 2 2.05

TID a c F2{p3,p5}

s2 1 1 2.7

s1 4 3 2.6

s4 4 2 2.35

s3 1 2 2.25

s5 5 1 1.9

TID a c F2{p3}

s2 1 1 2.9

s1 4 3 2.7

s3 1 2 2.5

s4 4 2 2.4

s5 5 1 2.3

µp4

µp5

idxScanp3(S)

(c)

Figure 2.6: Ranking query plans vs. traditional plan.

tree is executed in pipeline by recursively drawing tuples, resulting in the diagram in Figure 2.6(b).

Binary operators such as join work in the same principle as µ, except that they obtain inputs

from two streams, combine the scores from the two inputs to get updated upper-bound scores for

seen and unseen output tuples.

Illustrated by the previous example, the execution model indicates that rank-aware operators

are selective, i.e., they reduce the cardinality of intermediate results as they do not output all of their

processed tuples. For instance, the selectivity of µp4 in Figure 2.6(b) is 2/3 as the rank-relation

above it clearly shows.

In contrast to traditional operators, the selectivity of rank-aware operators is context-sensitive.

The reason is, selectivities of rank-aware operators are dependent on k, and furthermore, cannot

be assumed to be independent from their locations in a whole plan, as assumed for selection and

join selectivities traditionally. For instance, plan (c) in Figure 2.6 is similar to plan (b) except that

the order of µp4 and µp5 is reversed. The selectivities of µp4 , µp5 , and idxScanp3(S) in this plan

are 1/3, 3/5, and 5/6 respectively, while they are 2/3, 1/2, and 3/6 in plan (b) (remember there

are 6 tuples in S).
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Being selective enables operators to both reduce the evaluation of predicates that have various

costs and reduce the cost of join, therefore ranking query plans do not need to materialize a query,

in contrast to the traditional materialize-then-sort scheme of processing ranking queries. This

makes ranking query plans much more efficient than traditional ones, which can be prohibitively

expensive. Moreover, different scheduling and interleaving of rank-aware operators will result

in different number of tuples being processed, therefore query optimizers have to non-trivially

explore the new type of ranking plans (Section 2.4). Furthermore, the context-sensitiveness of

selectivities indicate that cardinality estimation of these ranking plans will be challenging (Sec-

tion 2.4.2).

Example 4: Continuing Example 3, this example shows that ranking query plans (Figure 2.6(b)(c))

outperform traditional plans (Figure 2.6(a)) and different ranking plans have different costs, thus

it calls for query optimization.

Assume the costs of predicates p3, p4, and p5 are C3, C4, and C5, then the predicate evaluation

cost of plan (a) is 6(C3 + C4 + C5) since it has to evaluate all predicates for every tuples. It also

needs to scan 6 tuples. (If there are more tuples in S, it has to scan all of them.) In plan (b), µp5

evaluates p5 over two tuples (s2, s1) and µp4 evaluates p4 over three tuples (s2, s1, s3). Therefore

the predicate evaluation cost of plan (b) is 3C4 +2C5. It only needs to scan 3 tuples. The predicate

evaluation cost of plan (c) is 3C4 +5C5 and it needs to scan 5 tuples, according to similar analysis.

2.3.2 Implementing Physical Operators

We must implement new physical operators in order to realize the execution model. Fortunately

previous works on top-k queries in middleware and relational settings provide a good basis to

leverage. Below we briefly discuss the implementation of operators.

The implementation of µ is straightforward from Example 3 and it is a special case (because it

schedules one predicate) of the algorithms (MPro [17], Upper [12]) for scheduling random object
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accesses in middleware top-k query evaluation. The implementation of ⊲⊳C adopts the HRJN

(hash rank-join) and NRJN(nested-loop rank-join) algorithms in [57] [58], which are built upon

symmetrical hash join [54, 95] or hash ripple join [47].

New algorithms for other operators are similarly implemented. Use ∩ under set semantics as

an example. Traditionally it has to exhaust both input streams to ensure that no duplicate tuple is

output. However, with the input streams being ranked, it can judge if duplicates of a tuple may have

appeared or may be seen in the future according to the predicate values of that tuple. Therefore it

can output ranked results incrementally.

As another example, scan must be provided as a physical operator although it is not in relational

algebra. Index-scan can be used to access tuples of a table in the order of some predicate p when

there exists an index such as B+tree on p. (Thus we name it rank-scan.) Such index can be

available when p is some attribute, expression, or function, as all are supported in practical DBMSs

such as POSTGRESQL. Moreover, scan-based selection can be used to combine a scan operator on

p with a selection operator on selection condition c when a multi-key index on p and c is available.

2.4 A Generalized Rank-Aware Optimizer

The task of cost-based query optimization is to transform a parsed input query into an efficient

execution plan, which is passed to the query execution engine for evaluation. The transformation

task is usually accomplished by examining a large search space of plans. The optimizer utilizes a

plan enumeration algorithm that can efficiently search the plan space and prune plans according to

their estimated execution costs. To estimate the cost of a plan, the optimizer adopts a cost model.

Extending relational algebra to support ranking as introduced in Section 2.2 and Section 2.3

has direct impact on query optimization. In this section, we motivate the need for extending

the query optimizer to support ranking and study the significant challenges associated with the

extension. Then we show how to incorporate ranking into practical query optimizers used by

real-world database systems.
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σc1

idxScanarea(R)

seqScan(H)

⊲⊳c2
<Nested-Loop Join>

Sortp1+p2+p3

⊲⊳c3
<Sort-Merge Join>

idxScanarea(M)

�� @@

�� @@

µp1

<idxScanp1
(H)>

σc1

seqScan(R)

⊲⊳c2

<NRJN>

µp2
µp3

seqScan(M)

⊲⊳c3

<HRJN>

�� @@

�� @@

(a) A traditional plan. (b) A ranking plan.

Figure 2.7: Two alternative plans for Example 1.

The rank-relational algebra enables an extended plan space with plans that cannot be ex-

pressed traditionally. For instance, for the query in Example 1, traditional optimizers only allow

materialize-then-sort plans such as the one in Figure 2.7(a). In contrast, the rank-relational alge-

bra enables equivalent plans such as the one in Figure 2.7(b). The equivalence is guaranteed by

the algebraic laws in Figure 2.5. First, the ranking function in the sort operator is split into µp1 ,

µp2 , µp3 by Definition 1 and Proposition 1 of Figure 2.5. The µ operators are pushed down across

join operators by Proposition 4 and 5. Note that µp1 is combined with scan operation to form an

idxScan. Such splitting and interleaving may achieve significant improvements in performance

as discussed in Section 2.3.1.

In order to fully incorporate the rank-relational algebra into a cost-based query optimizer, we

must address the impact of the extended search space on plan enumeration and costing. In plan

enumeration, the desirability of splitting and interleaving ranking predicates requires the optimizer

to fully explore the extended plan space for generating efficient query plans. In plan costing,

cardinality estimation must be performed for the rank-aware operators for costing and pruning

plans.

There are two categories of cost-based query optimizers used by real-world database systems,
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namely the top-down rule-based optimizers exemplified by Volcano [39] and Cascade [38], and

the System R-style bottom-up dynamic programming optimization framework [86].

In Volcano and Cascade, transformation and implementation rules are the two key constructs

used for searching the plan space. The transformation rules transform between equivalent algebraic

expressions, and the implementation rules map logical operators into physical implementations

to realize a plan tree. For extending rule-based optimizers with the rank-relational algebra, the

algebraic laws presented in Section 2.2.3 naturally enable the introduction of new transformation

rules to enumerate ranking plans. Implementation rules can be devised to trigger the mapping of

physical algorithms presented in Section 2.3.2. Cost estimation in top-down optimizers can apply

similar techniques for extending bottom-up optimizers since it only costs complete plans instead

of subplans.

Extending bottom-up optimizers to incorporate ranking, however, is more challenging as plans

are constructed and pruned in bottom-up fashion without global information of a complete plan.

Therefore focusing on bottom-up optimizers, we show how to extend the System-R style bottom-

up dynamic programming (DP) approach for plan enumeration (Section 2.4.1) and how to cost and

prune plans during enumeration (Section 2.4.2).

2.4.1 Two-Dimensional Plan Enumeration

We take a principled way to extend DP plan enumeration by treating ranking predicates as another

dimension of enumeration in addition to Boolean predicates, based on the insight that the ranking

(order) relationship is another logical property of data, parallel to membership (Section 2.1.1). Re-

call that, by Definition 1, a rank-relation RP essentially possesses two logical properties: Boolean

membership (R) and ranking order (P). In a ranking query plan, new ranking predicates are only

introduced in µ operators. Therefore the predicate set P of a subplan, i.e., the µ operators in a

subplan, determines the order, just like how join conditions (together with other operations) de-

termine the membership. Moreover, for the same logical algebra expression, the optimizer must

be able to produce various plans that schedule and interleave µ operators, and to select the most

27



efficient plan, just like it must be able to select the best join order. This dimensional enumeration

approach not only reflects the fact that order and membership are dual logical properties in the

rank-relational model, but also takes advantages of the dynamic programming paradigm in reduc-

ing searching costs. Furthermore, the dimensional enumeration subsumes the conventional plan

enumeration for join order selection and does not affect the optimization of non-ranking plans.

The concept of dimensional enumeration is general and extensible for naturally including more

dimensions, e.g., ordering other operators such as selection, union, intersection, etc. For example,

scheduling selection predicates is traditionally considered less important than join order selection

and is rather handled by heuristics such as selection pushdown. Under the situation that it is nec-

essary to handle such task, as motivated in [24, 53, 23], dimensional enumeration can incorporate

the scheduling of both selection and ranking predicates by treating Boolean predicates as another

dimension. We focus on how to integrate the scheduling of ranking predicates and join order

selection and omit the consideration of other operators.

The DP 2-dimensional enumeration algorithm is shown in Figure 2.8. (The format is similar

to [23].) For each subplan, we define its signature (SR, SP) as the pair of two logical properties,

the set of relations SR and the set of ranking predicates SP in the subplan. Subplans with the same

signature result in the same rank-relation. The algorithm first enumerates the number of joined

relations, ||SR||, then the number of ranking predicates, ||SP ||. Plans with the signature (SR, SP)

are generated by joining two plans with the signature (SR1, SP1) and (SR2, SP2) (joinPlan), adding

a µp upon a plan with the signature (SR, SP−{p}) (rankPlan), or using a scan operator (scanPlan).

Based on the principle of optimality, no sub-optimal subplan can be part of the optimal execution

strategy, hence for all the plans with the same signature, only the best plan is kept.

Example 5: We illustrate how the algorithm optimizes a simple query over the tables in Fig-

ure 2.2,

select ∗ from R, S where R.a = S.a order by p1 + p3 + p4 limit k.

In Figure 2.9, each row contains the best plans for signatures of the same size, with one best plan
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Procedure 2 Dimensional Enumeration

1: //The 1st dimension: join size

2: for i← 1 to h do

3: for each SR ⊆ {R1, ..., Rh} s.t. ||SR|| = i do

4: for each pair SR1, SR2 s.t. SR = SR1∪SR2, SR1 6= φ, SR1∩SR2 = φ do

5: //The 2nd dimension: ranking predicates

6: P ← all predicates that are evaluable on SR

7: for j ← 0 to ||P || do

8: for each SP ⊆ P s.t. ||SP || = j do

9: bestP lan← a pseudo plan with cost +∞
10: for each pair SP 1, SP 2 s.t. SP = SP 1∪SP 2, SP 1∩SP 2 = φ do

11: plan← a pseudo plan with cost +∞
12: if SR2 6= φ then

13: plan← joinPlan (bestPlan(SR1,SP 1), bestPlan(SR2,SP 2))

14: if SR2 = φ and SP 2 = {p} then

15: plan← rankPlan(bestPlan(SR1 ,SP 1), µp)

16: if i = 1 and ||SP 1|| ≤ 1 and ||SP 2|| = φ then

17: plan← scanPlan(SR1,SP 1)

18: if cost(plan)≤cost(bestP lan) then

19: bestP lan← plan
20: bestPlan(SR, SP )← bestP lan
21: return bestPlan({R1, ..., Rh}, {p1, ..., pn})

Figure 2.8: The 2-dimensional enumeration algorithm.

per signature. For instance, row (2, 1) show the best plans for ({R, S}, {p1}), ({R, S}, {p3}), and

({R, S}, {p4}) respectively. We also show the pruned plans (as crossed out) on single table, but

omit that for joined relations.

The enumeration starts with signature size (1, 0) to find scan plans for signatures ({R}, φ) and

({S}, φ). Assume that seqScan is kept for both signatures; and idxScana(R) and idxScanc(S)

are pruned. The enumeration continues with size (1, 1) to look for plans for ({R}, {p1}), ({S}, {p3}),

and ({S}, {p4}). For example, plans for ({S}, {p3}) can be built by adding µp3 on top of seqScan(S)

or by using idxScanp3(S). By comparing their estimated costs, the former is pruned. The enu-

meration proceeds in this way until the final plan is generated.

One important detail of System-R algorithm is that multiple plans with the same logical prop-

erties may be kept if they have different physical properties. Example physical properties are inter-
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(1,0) seqScan(R) idxScana(R) seqScan(S) idxScanc(S)

(1,1)

µp1

seqScan(R)
����µp3

seqScan(S) idxScanp3(S)

µp4

seqScan(S)

(1,2)

µp4

idxScanp3(S)

����

µp3

µp4

seqScan(S)

(2,0) seqScan(R) seqScan(S)

nestLoop

�� @@

(2,1)

µp1

seqScan(R)

seqScan(S)

NRJN

�� @@

seqScan(R) idxScanp3(S)

NRJN

�� @@
seqScan(R) seqScan(S)

nestLoop

µp4

�� @@

(2,2)

µp1

seqScan(R)

idxScanp3(S)

HRJN

�� @@
µp1

seqScan(R)

µp4

seqScan(S)

HRJN

�� @@

seqScan(R) idxScanp3(S)

NRJN

�� @@

µp4

(2,3)

µp1

seqScan(R)

µp4

idxScanp3(S)

HRJN

�� @@

Figure 2.9: Plan enumeration.

esting orders [86] that are potentially beneficial to subsequent operations. For instance, idxScana

can be kept since its sorted access on R.a can be useful for sort-merge join when R is joined with

S. In the dimensional enumeration algorithm, the support of physical properties is not affected. It

can keep multiple plans that have different physical properties for the same signature. Note that

interesting order will only be possessed by plans with empty predicate set (i.e., SP = φ), since by

definition rank-relations must be output in the order with respect to P , which is not the kind of

order that is useful to operators such as sort-merge join.

The 2-dimensional enumeration algorithm is exponential in the number of the ranking pred-
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icates as well as the number of relations, as the System-R style algorithm is exponential in the

number of relations. As a common practice, query optimizers apply heuristics to reduce the search

space. For example, a query optimizer can choose to consider only left-deep join trees and to

avoid Cartesian products. Such heuristics are often found effective in improving efficiency and

being able to find comparably good query plan.

Therefore, we propose a heuristic to reduce the space on the dimension of ranking predicates,

as shown in Figure 2.10. The algorithm in Figure 2.10 modifies that in Figure 2.8 by incor-

porating the left-deep join heuristic (Line 2) and our new heuristic on the ranking predicate di-

mension (Line 4). The ranking predicate scheduling heuristic greedily appends µ operators in a

sequence instead of considering all valid permutations of µ operators. Given a subplan plan, sup-

pose plan′ is to be built by adding one µ upon plan. The optimizer does not use µpu
to build plan′

if there exists another applicable µpv
such that appending µpv

is (likely) better than appending

µpu
. The goodness of appending µpu

upon plan, is based on its selectivity and cost, defined as

rank(µpu
) = 1−card(plan′)/card(plan)

cost(µpu )
, where cost(µpu

) is the evaluation cost of pu, and card(plan′)

and card(plan) are the output cardinalities of plan′ and plan. (This rank should not be confused

with the concept of rank in our algebra.) Therefore µpu
is appended upon plan only if there exists

no other applicable µpv
that has a higher rank. Intuitively the rank of a µ is higher if its cost is

lower and its selectivity is smaller, i.e., its power of reducing cardinality is higher. In the formula,

cost(µpu
) is one component of the cost model of µpu

that should be defined together with its im-

plementation. Techniques for estimating the cardinality of a subplan is presented in Section 2.4.2.

The above greedy scheduling heuristic for ranking predicates is inspired by the rank metric

in [53] for scheduling independent selection predicates and the adaptive approach in [7] for order-

ing correlated filters in streaming data processing. The rank metric in [53] guarantees an optimal

fixed order of independent selection predicates, that is, a selection predicate should always be ap-

plied before another one if it has higher rank. However, the same property cannot be guaranteed

for scheduling µ operators simply because of their context-sensitive selectivities (Section 2.3.1).

We adopt rank metric as a heuristic, just like applying left-deep join heuristic, which sacrifices
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Procedure 2 Dimensional Enumeration with Heuristics

1: replace line 4 of Figure 2.8 with the following

2: for each pair SR1, SR2 s.t. SR = SR1∪SR2, ||SR2|| ≤ 1, SR1∩SR2 = φ do

3:

4: insert the following into Figure 2.8, between line 10 and 11

5: if ||SR2|| = 0, SP 2 = {pu} and ∃pv s.t. pv ∈ P − SP and rank(µpv
) > rank(µpu

) then

6: continue to line 10

Figure 2.10: Heuristics for improving efficiency.

optimality for efficiency as a common practice of query optimizers.

2.4.2 Costing Ranking Query Plans

The optimizer prunes plans according to their estimated execution costs based on a cost model.

The cost model for various operators in real-world query optimizers is quite complex and depends

on many parameters, including cardinality of inputs, available buffers, type of access paths and

many other system parameters. Although cost model can be very complex, a key ingredient of its

accuracy is cardinality estimation of intermediate results.

Cardinality estimation for ranking query plans is much more difficult than that for traditional

ones because cardinality information cannot be propagated in a bottom-up way. In conventional

query plans, the input cardinality of an operator is independent from the operator itself and depends

only on the input subplans. The output cardinality depends only on the size of inputs and the

selectivity of the logical operation. In ranking query plans, however, an operator consumes only

partial input, therefore the actual input size depends on the operator itself and how the operator

decides that it has obtained “enough” information from the inputs to generate “enough” outputs.

Hence, the input cardinality depends on the number of results requested from that operator, which

is unknown for a subplan during plan enumeration. Note that the number of final results, k, is

known only for a complete plan. This imposes a big challenge to System-R style optimizers that

build subplans in bottom-up fashion, because the propagation of k value to a specific subplan

depends on the location of that subplan in the complete plan.
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To address this challenge, we propose a sampling-based cardinality estimation method for

rank-aware operators. Let x be the score of the k-th query result tuple. Our technique is based on

the intuition that tuples whose upper-bound scores are lower than x do not need to be output from

an operator. Although x is unknown during plan enumeration, the sampling method can be used

to estimate x, and to further estimate the output cardinality of a subplan.

The optimizer randomly samples a small number of tuples from each table and evaluates all

the predicates over each tuple. Note that this step is not necessarily performed every time since

it is possible to re-use the predicate values for succeeding queries. To estimate x, before plan

enumeration, the optimizer evaluates the original query on the sample using any conventional

execution plan, to retrieve k′ top results proportional to the sample size. Suppose the sampling ratio

is s%, i.e., each tables ti with original size Ni has a sample size ni = Ni×s%, then k′ = ⌈k×s%⌉.

That is, it transforms a top-k query on the database into a top-k′ query on the samples. The score

of the k′th topmost answer, x′, is used as an estimation of x, based on the intuition that k′ is

proportional to the sample size with respect to k over the database size.

With x′, during plan enumeration, the optimizer estimates the output cardinality of a subplan

P , card(P ), by executing P on the small samples. The results are kept together with P so that

there is no need to execute P again when estimating the output cardinality of a future plan that

is built based on P . Suppose P outputs u answers that have upper-bound scores above x′. Then

card(P ) is estimated in the following way:

• card(P ) = u/(s%): if P has only one operator, i.e., a scan operator on a base table.

• card(P ) = u×card(P ′)/cards(P
′): if the top operator of P is a unary operator, on top of a

subplan P ′, which has output cardinality cards(P
′) during the execution of P on the sample

and an estimated output cardinality card(P ′) during previous steps of plan enumeration.

• card(P ) = u×
card(P1)

cards(P1)
+

card(P2)
cards(P2)

2
: if the top operator of P is a binary operator, taking inputs

from two subplans P1 and P2. P1 and P2 have output cardinality cards(P1) and cards(P2),

respectively, during the execution of P on the sample; and estimated output cardinalities
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card(P1) and card(P2), respectively, during previous steps of plan enumeration.

Our experimental study (Section 2.5) shows that the simple sampling method with a small sample

ratio (e.g., 0.1%) gives accurate cardinality estimates. With small sample size, sampling method

does not introduce much overhead to query optimization.

Accurate random sampling over joins is known to be difficult [20]. We plan to investigate the

possibilities of using techniques such as [20] in future work to improve our sampling method.

2.5 Experiments

We build a prototype of the RankSQL system in POSTGRESQL 7.4.3. We extend the internal

representation of tuples to include the implicit ranking score attribute in rank-relational model and

implement the rank operator, the rank-aware join, and the rank-scan operators. In this section, we

present two sets of experiments that we conducted on the system. The first set compares different

execution plans to demonstrate the performance diversity of the plan space, thus motivates the need

of query optimization. It also illustrates that under general circumstances, the performance of plans

that are only possible in the extended plan space of the new algebra is superior to traditional plan

for evaluating top-k queries. The second set of experiments verifies the accuracy of the sampling-

based method for estimating the cardinalities of rank-aware operators.

The experiments are conducted on a PC having a 1.7GHz Pentium-4 CPU with 256KB cache,

768MB RAM, and 30GB disk, running Linux 2.4.20 operating system. The shared buffers

(shared memory buffer size) and sort mem (internal memory for sorting and hashing) settings in

POSTGRESQL are configured as 24MB and 20MB, respectively. We use a synthetic data set of

three database tables (A, B, C) having the same size and schema. Table A and B each have one

Boolean attribute with 0.4 as their selectivities. The three tables have 2, 2, and 1 ranking predicates,

respectively. The ranking predicates have the same cost. They are implemented as user-defined

functions, taking attributes of the tables as parameters. Scores of different ranking predicates

are within the range between 0 and 1 and are independently generated by different distributions,
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including uniform, normal (with mean 0.5 and variance 0.16), and cosine distributions. Each table

has two attributes jc1 and jc2 as join columns.

We use a simple top-k query Q as shown below in POSTGRESQL syntax. Summation is used

as the scoring function F .

Q:

select ∗
from A, B, C
where A.jc1 = B.jc1 and B.jc2 = C.jc2 and A.b and B.b
order by f1(A.p1) + f2(A.p2) + f3(B.p1) + f4(B.p2) + f5(C.p1)

limit k

Figure 2.11 illustrates four execution plans for the above query. P lan1 is a conventional

materialize-then-sort plan, in which filter is the physical selection operator and sort-merge join is

used as the physical join operator. P lan2− 4 are new ranking query plans. The implementations

of µ operator (rank), rank-aware join operator (HRJN), and rank-scan operator (idxScan) were

described in Section 2.3.2. In plan2, rank-scans are used for accessing base tables and µ is sched-

uled before join. P lan3 uses sequential scan instead of rank-scan. P lan4 applies µ operators

above normal sort-merge join to replace one of the HRJN operators.

2.5.1 Cost of Ranking Execution Plans

In this suite of experiments, we show that the costs of execution plans for top-k queries vary with

respect to (among other factors) the number of final results (k, from 1 to 1, 000), the number of

tuples in each table (s, from 10, 000 to 1, 000, 000), the join selectivity (j, from 0.001 to 0.00001,

i.e., the number of distinct values of each join attribute ranges from 1, 000 to 100, 000), and the

cost of each ranking predicate (c, from 0 to 1, 000 unit costs).

We performed 4 groups of experiments. The default values of the parameters are k = 10,

s = 100, 000, j = 0.0001, and c = 1. In each group, we vary the value of one parameter and fix

the values of the other three parameters. We then execute each plan under these parameter settings
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(a) Plan 1 (b) Plan 2

(c) Plan 3 (d) Plan 4
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idxScanf1(p1)(A)

filterA.b
rankf3(p1)

Figure 2.11: Execution plans for queryQ.

and measure their execution time. The results are shown in Figure 2.12. (Note that both horizontal

and vertical axes are in logarithmic scale.)

The figures illustrate that none of the plans is always the best under all situations. Moreover,

different plans can have orders of magnitude differences in their costs. The diversity of plan costs

verifies the need of query optimization in choosing efficient plans. Apparently, the traditional

plan (plan1 in Figure 2.11) is far outperformed by rank-aware plans (plan2 − 4 in Figure 2.11).

Its performance is only comparable to other plans when the size of tables and requested results

are small, when joins are very selective, and when predicates are cheap. In many situations, the

traditional plan becomes prohibitively expensive.

36



1

10

100

1 10 100 1000

k, Number of Results

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
.)

plan1 plan2 plan3 plan4

1

10

100

1000

10000

0 1 10 100 1000

c, Cost of Ranking Predicate

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
.)

plan1 plan2 plan3 plan4

(a) s = 100, 000, j = 0.0001, c = 1 (b) k = 10, s = 100, 000, j = 0.0001

1

10

100

1000

10000

0.00001 0.0001 0.001

j, Join Selectivity

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
.)

plan1 plan2 plan3 plan4

0.1

1

10

100

1000

10000 100000 1000000

s, Table Size

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
.)

plan2 plan3 plan4

(c) k = 10, s = 100, 000, c = 1 (d) k = 10, j = 0.0001, c = 1

Figure 2.12: Performances of different execution plans.

Specifically, Figure 2.12(a) shows that the traditional plan for ranking queries is blocking,

while the new rank-aware plans are incremental. Figure 2.12(b) illustrates that the cost difference

between plans increases (shown as parallel lines in logarithmic scale) together with the cost of

predicates. This is because the predicate cost will dominate the plan execution cost while getting

larger and the number of predicate evaluations does not change for a given plan when only pred-

icate cost is changing. Figure 2.12(c) shows that the traditional plan is efficient when joins are

very selective (thus performing join first will result in very small intermediate results, upon which

ranking predicates are evaluated). Finally, Figure 2.12(d) shows that some ranking query plans

(e.g., plan2) are very efficient even with very large tables, while some others are not. For instance,

plan4 was relatively acceptable in other situations, but became much less efficient than plan2 and

plan3 when each table has 1 million tuples. Note that we remove plan1 from Figure 2.11(d) since

it takes days to finish and is well off the scale.
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Figure 2.13: Estimated and real output cardinalities of operators.

2.5.2 Cardinality Estimation

To evaluate the accuracy of the sampling-based cardinality estimation method, we compare the

original and estimated output cardinalities of each operator in a given execution plan except the

top operator and selection operators, which do not need estimation. The output cardinality of the

top operator, k, is given by the query. The output cardinality of selection operator can be estimated

by the estimated output cardinality of its input operator and its selectivity, that is often obtained

from database statistics. For example, plan3 has 10 operators in total, among them the output

cardinalities of 7 operators are estimated, since we do not estimate for the 2 selection operators

and the root operator. Similarly plan2 and plan4 have the estimated cardinalities for 6 and 8

operators, respectively.

The experiment is based on a sample database with 0.1% sample ratio. Each of the original

tables contains 100, 000 tuples and the join selectivity for the original tables is 0.0001. The number

k is set to 10 (thus k′ is 1). Figure 2.13 illustrates the estimation results of plan3 and plan4. The

result of plan2 is very similar to that of plan3 therefore we do not include it. As we can see from

the figure, although we used a very small sample, the real and estimated output cardinalities of the

majority of the operators are in the same magnitude, validating the estimation method.
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Chapter 3

Data Retrieval by Ranking: Ad-Hoc

Ranking Aggregate Queries

In this chapter, we propose a principled framework for efficient processing of ad-hoc top-k aggre-

gate queries. We define a cost metric on the number of “consumed” tuples, capturing our goal of

producing only necessary tuples for generating top k groups. We identify the best-possible goal in

terms of this metric that can be achieved by any algorithm, as well as the must-have information

for achieving the goal. The key in realizing this goal is to find some good order of producing tuples

(among many possible orders) that can guide the query engine toward processing the most promis-

ing groups first, and exploring a group only when necessary. We further discover that a provably

optimal total schedule of tuples can be fully determined by two orders– the order of retrieving

groups (group ordering) and the order of retrieving tuples (tuple ordering) within each group.

Based on this view, we develop three fundamental principles and a new execution framework for

processing top-k aggregate queries. We summarize our contributions as follows:

• Principle for optimal aggregate processing: We develop three properties, the Upper-Bound,

Group-Ranking and Tuple-Ranking Principles that lead to the exact-bounding, group-ordering

and tuple-ordering requirements, respectively. We formally show that the optimal aggregate

query processing, with respect to our cost metric, can be derived by following these require-

ments.

• Execution framework and implementations: Guided by the principles, we propose a new

execution framework, which enables query plans that are both group-aware and rank-aware.

We further address the challenges of applying the principles and implementing the new query

operators in this framework.
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• Experimental Study: We implement the proposed techniques in POSTGRESQL. The experi-

ments verify that our techniques can achieve orders of magnitude improvement in performance.

The rest of the chapter is organized as follows. We start in Section 3.1 by defining and mo-

tivating ranking aggregate queries. Section 3.2 analyzes the limitations of current techniques in

processing such queries. We presents the fundamental principles in Section 3.3. In Section 3.4 we

further address the challenges of applying the principles and implementing the new query operators

in the execution framework. We experimentally evaluate the proposed framework in Section 3.5.

3.1 Query Model and Motivating Examples

Below is a SQL-like template for expressing top-k aggregate queries and an example query Q.

While we use limit, various DBMSs use different SQL syntax to specify k.

select ga1, ..., gam, F
from R1, ..., Rh

where c1 and ... and cl

group by ga1, ..., gam

order by F
limit k

Q:

select A.g, B.g, C.g, sum(A.v + B.v + C.v) as score
from A, B, C
where A.jc = B.jc and B.jc = C.jc
group by A.g, B.g, C.g
order by score
limit k

That is, the groups are ordered by a ranking aggregate F=G(T ), where G is an aggregate func-

tion (e.g., sum) over an expression T on the table columns (e.g., A.v+B.v+C.v). The top k groups

with the highest F values are returned as the query result. Formally, each group g={t1, . . . , tn}

has a ranking score F [g], defined as
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F [g] = G(T )[g] = G(T [g]) = G(T [{t1, . . . , tn}])

= G({T [t1], . . . , T [tn]}). (3.1)

As the result, Q returns a sorted list K of k groups, ranked by their scores according to F , such

that F [g] ≥ F [g′], ∀g ∈ K and ∀g′ /∈ K. When there are ties in scores, an arbitrary deterministic

“tie-breaker” function can be used to determine an order, e.g., by the grouping attribute values of

each group.

A distinguishing goal of our work is to support ad-hoc ranking aggregate criteria. With respect

to G, we aim to support not only standard (e.g., sum, avg), but also user-defined aggregate func-

tions. With respect to the aggregated expression T , we allow T to be any expression, from simply

a table column to very complex formulas. Below we show some motivating examples.

Example 6 (Motivating Queries):

Q1:

select zipcode, avg(income * w1 + age * w2 + credit * w3) as score
from Customer

where occupation = ‘student’

group by zipcode
order by score
limit 5

Q2:

select P.category, S.zipcode, mid sum(S.price - P.manufacturer price) as score
from Parts as P , Sales as S
where P.part key = S.part key
group by P.category, S.zipcode
order by score
limit 5

The above query, Q1, returns the best 5 areas to advertise a student insurance product, accord-

ing to the average customer score of each area. The score indicates how likely a customer will buy

the insurance. A manager can explore various ways in computing the score, according to her anal-

ysis. For example, a weighted average of customer’s income, age, and credit is used in Q1. Query

Q2 finds the 5 best matches of part category and sales area that generate the highest profits. A pair
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of category and area is evaluated by aggregating the profits of all sales records in that category and

area. A user-defined aggregate function mid sum is used to accommodate flexible metrics in such

evaluation. For example, it can remove the top and bottom 5% (with respect to profit) sales records

within each group and sum up the rest, to reduce the impact of outliers.

We emphasize that such ad-hoc aggregate queries often run in sessions, where users execute

related queries with similar Boolean conditions but different ranking criteria, for exploratory and

interactive data analysis. For example, in the above Q1, the manager can try various aggregate

function and/or many combinations of the values of w1, w2, and w3 until an appropriate ranking

criterion is determined. Moreover, such related queries also exist across different sessions of

decision support tasks over the same data.

We concentrate on a special but large class of aggregate queries F= G(T ), where the aggregate

function G satisfies what we refer to as the max-bounded property: An upper-bound of the aggre-

gate F over a group g, denoted by F g, can be obtained by applying G to the maximum values

of the member tuples in g. The class of max-bounded functions include many typical aggregate

functions such as sum, weighted average, etc., as well as user-defined aggregate functions such

as the mid sum in query Q2 above. In fact, we believe that most ranking aggregate queries will

use functions that satisfy this property.

3.2 Limitations of Current Techniques

A popular conceptual data model for OLAP is data cube [40]. A data cube is derived from a

fact table consisting of a measure attribute and a set of dimensional attributes that connect to

the dimension tables. A cube consists of a lattice of cuboids, where each cuboid corresponds to

the aggregate of the measure attribute according to a Group-By over a subset of the dimensional

attributes. With respect to various measures and dimensions, multiple cubes may be necessary. As

a conceptual model, data cube is seldom fully materialized given its huge size. Instead, in ROLAP

servers, many materialized views (or summary tables) are selected to be built to cover certain tables
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and attributes for answering aggregate queries [50]. Pervasive summary and index structures are

further built upon the base tables and materialized views.

Many works studied the problem of answering aggregate queries using views [44, 90, 26, 1,

93]. They provide significant performance improvement when appropriate materialized views for

the given query are available. However, they cannot answer ad-hoc ranking aggregate queries.

Materialized views only maintain information of the pre-determined attribute or expression using

the prescribed aggregate function. In contrast, ad-hoc ranking conditions are determined or defined

on-the-fly during decision making. Therefore in order to answer a ranking aggregate F=G(T ), G

must be the aggregate function used when the cubes (views) are materialized or can be derived

from the materialized aggregate function (e.g., avg derived from sum and count), and T must

happen to be simply some measure attribute or expression that can be derived from the summary

tables, instead of arbitrarily complex expression. Given the virtually infinite choices of G and T

in ad-hoc data analysis, the pre-computed information easily become irrelevant when the query is

different from what the summary tables are built for.

When pre-computed cubes cannot answer the query, the processing has to fall back to base

tables, where the query is evaluated by the relational query engine of the ROLAP server as follows:

(1) fully consume all the input tables; (2) fully materialize the selection and join results; (3) group

the results by grouping attributes and compute the aggregates for every group; (4) fully sort the

groups by their ranking aggregates; and (5) report only the top k groups. The user is only interested

in the k top groups instead of a total order on all groups. The traditional processing strategy is

thus an overkill, with unnecessary overhead from full scanning, joining, grouping, and sorting.

Given the large amount of data in a warehousing environment, such a naı̈ve materialize-group-sort

scheme can be unacceptably inefficient. Moreover, the users may have to go through it many times

in their exploratory and interactive analysis tasks. Such inefficiency thus significantly impacts the

usefulness of decision support applications, resulting in low productivity.
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Figure 3.1: Top-k aggregates query processing.

3.3 Principles: Optimal Aggregate Processing

Efficient support of ranking aggregate queries is critically lacking in current systems. To motivate,

Figure 3.1(a) illustrates the traditional materialize-group-sort query plan, consisting of three com-

ponents: 1) tuple generation: the from-where subtree for producing the member tuples of every

group; 2) group ranking: the group and sort operators for generating the groups and ranking them;

and 3) output: the limit operator returning the top-k groups. As Section 3.2 discussed, this ap-

proach fully materializes and aggregates all tuples, and then fully materializes and sorts all groups.

Since only top-k groups are requested, much of the effort is simply wasted.

Our goal is thus to design a new execution model, as Figure 3.1(b) contrasts. We need a new

non-blocking rankagg operator, which incrementally draws tuples, as its input from the underlying

subtree, and generates top groups in the ranking order, as its output. For efficiency, rankagg must

minimize its consumption of input tuples: Although in practice the cost formula can be quite

complex with many parameters, this input cardinality (i.e., number of tuples consumed) is always

an essential factor. As our metric, for a group g with n tuples {t1, . . ., tn}, how “deep” into

the group shall we process, for determining the top-k groups? We refer to this number of tuples
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→ → → 8.18.123 428 rrr

→ → → 95.12.13 824 rrr

.252r8

.61r7

.73r6

.91r5

.42r4

.93r3

.32r2

.71r1

R.vR.gTID

(a) Relation R. (b) Example tuple orders for Group g2.

.25r8

.3r2

.4r4

R.vTID

Group g2

.0r8

.8r2

1.0r4

R.vTID

Group g’2

→ → → 95.55.125.23 428 rrr

→ → → 95.05.125.23 248 rrr

→ → → 95.7.13.23 842 rrr

desc.

asc.

hybrid

random

→ → → 8.16.233 824 rrr

→ → → 8.1233 284 rrr

→ → → 8.18.18.23 482 rrr

Figure 3.2: Relation R and some tuple orders.

consumed for g as its tuple depth, denoted Hg. Our goal is thus to minimize the total cost of all

groups, i.e., ΣgHg.

As the foundation of our work, while the new rankagg can be implemented in different ways,

what are the requirements and guidelines for any such algorithm? To minimize tuple consumption

(i.e., to stop processing and to prune the groups early), what information must we have and what

is the criterion in such pruning? As tuples flow from the underlying subtree, in what order shall

rankagg request and process tuples? Is there an optimal tuple schedule that minimizes the total

tuple depths? We develop three fundamental principles for determining provably optimal tuple

schedule (Theorem 1) that achieves the theoretical minimal tuple consumption: the Upper-Bound

Principle for early pruning, the Group-Ranking Principle for asserting “inter-group” ordering, and

the Tuple-Ranking Principle for further deciding “intra-group” ordering. These principles guide

our implementation of rankagg and determine its impact to the underlying query tree. (The sub-

trees for tuple generation in Figure 3.1(a) and (b) use different shapes to emphasize that rankagg

requires modifying the underlying operators such as scan and join.)

The following query is our running example. The input relation R, with two attributes R.g and

R.v, is shown in Figure 3.2(a). The query groups by R.g, and our following discussion refers to

those R.g=1, 2, and 3 as group g1, g2, and g3, respectively. The query specifies a ranking aggregate

function F= G(T )=sum(R.v) and k=1. Throughout this work, we assume T is in the range of

[0, 1].
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select R.g, sum(R.v) from R

group by R.g order by sum(R.v) limit 1

3.3.1 Upper-Bound Principle

Our first principle deals with the requirements of early pruning: what information must we have

in order to prune? During processing, before a group g is fully evaluated, the obtained tuples of

g can effectively bound its ultimate aggregate score. For a ranking aggregate F= G(T ), we define

F Ig
[g], the maximal possible score of g, with respect to a set Ig of obtained tuples (Ig ⊆ g), as the

upper-bound score that g may eventually achieve, i.e., F [g] ≤ F Ig
[g].

The upper-bound score of a group thus indicates the best the group can achieve. For our

discussion, call the lowest top-k score of the query as the threshold, denoted θ. (For instance,

θ=F [g1]=2.2 in our running example.) Note that θ would not be known before the processing ends.

Given a group g, if its upper-bound score is higher than or equal to θ, it has a chance to make into

the top k groups. To conclude that g does not belong to the top k and thus prune it from further

processing, the upper-bound score of g must be below θ, otherwise we may incorrectly prune g

that indeed belongs to the top k. Therefore the upper-bound score decides the minimal number

of tuples that any algorithm (that processes by obtaining tuples) must obtain from g before it can

prune g. As stated in the following Property 2, this minimal tuple depth is the best-possible goal

of any algorithm, due to that pruning a group with less obtained tuples can result in wrong query

answers.

For the properties and theorems in this chapter, the proofs are provided in the appendix of the

thesis.

Property 2 (Best-Possible Goal): With respect to a ranking aggregate F= G(T ), let the lowest

top-k group score be θ. For any group g, let Hmin
g be its minimal tuple depth, i.e., the number of

tuples to retrieve from g before it can be pruned from further processing, or otherwise determined
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to be in the top-k groups. The Hmin
g is the smallest number of tuples from g that makes the

maximal possible score of g to be below θ, i.e.,

Hmin
g = min{|Ig||F Ig

[g] < θ, Ig ⊆ g}, (3.2)

or otherwise Hmin
g =|g| if such a depth does not exist.

We emphasize that, as Property 2 implies, an algorithm must have certain information about

upper-bound score for pruning. Various algorithms may exploit various ways in computing F Ig
[g],

resulting in different pruning power, i.e., different Hmin
g . For an algorithm that has no knowledge

to derive a non-trivial upper-bound, F Ig
[g] would be in its most trivial form, that is, infinity. Such

a trivial upper-bound cannot realize any pruning at all, since the upper-bound score would never

go below θ.

Property 3 (Must-Have Information): For any group g, with a trivial upper-bound F Ig
[g]= +∞

under every Ig, Hmin
g =|g|.

Therefore we must look for a non-trivial definition of F Ig
[g] in order to prune. Since we focus

on aggregate functions G that are max-bounded (which describes a wide class of functions, as

Section 3.1 defined), the maximal-possible score can be obtained by Eq. 3.3 below, which simply

substitutes unknown tuple scores with their maximal value of T , denoted by T Ig
.

F Ig [g] = G






{Ti|

Ti = T [ti] if ti ∈ Ig (seen tuples);

Ti = T Ig otherwise (unseen tuples).

∀ti ∈ g}






. (3.3)

Example 7 (Maximal-Possible Scores): Consider our running example F=G(T )=sum(R.v). Sup-

pose the rankagg operator has processed tuples r1 and r2; i.e., Ig1={r1}, Ig2={r2}, and Ig3=φ. Sup-

pose the exact size of every group is known a priori. As g1 has seen only r1 with T [r1]=.7 and the

two unseen tuples (its count is 3) can score as high as 1.0, F [g1] can aggregate to F [g1]≤sum(.7+
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1.0×2)=2.7, or F Ig1
[g1]=2.7. Similarly, F Ig2

[g2]=sum(.3+1.0×2)=2.3; F Ig3
[g3]=sum(1.0×2)=2.0.

Note that Eq. 3.3 requires to know T Ig
and the count (size) of a group, or at least an upper-

bound of this count, to constraint the number of unknown tuples. (For example, if 4 is used as the

upper-bound of g1’s size in Example 7, F [g1]≤sum(.7+1.0×3)=3.7.) We refer to these values as

the “grouping bounds”, consisting of tuple count (|g|, the upper-bound of g’s size) and tuple max

(T Ig
).

Eq. 3.3 captures a class of definitions of maximal-possible score, as different ways can be

explored in getting the grouping bounds, resulting in different F Ig
[g] and thus different Hmin

g . For

instance, using infinity to bound the tuple count or the tuple max results in F Ig
[g] as infinity, with

no pruning power. Given Eq. 3.3, for any group g, the smaller |g| and T Ig
, the smaller F Ig

[g].

Therefore the most pruning power, i.e., the smallest Hmin
g , is realized by the exact group size and

the exact highest T , as stated below.

Requirement 1 (Exact Bounding): With respect to a ranking aggregate F= G(T ), let the lowest

top-k group score be θ. Given the definition of F Ig
[g] in Eq. 3.3, to obtain the smallest Hmin

g , we

must use |g|=|g| and T Ig
=max{T [ti] | ti ∈ g − Ig}.

Based on Requirement 1, our implementation choice of grouping bounds is the exact count of

a group as |g| and a value very close to max{T [ti] | ti ∈ g − Ig} as T Ig
. We justify this choice

and show how to obtain such grouping bounds in Section 3.4.1. Note that our discussion of the

following principles is orthogonal to the choices of grouping bounds, which only result in different

best-possible tuple depth Hmin
g that our algorithm sets to achieve.

3.3.2 Group-Ranking Principle

Property 2 gives the minimal tuple depth Hmin
g for each g, thus the minimal total cost ΣgH

min
g .

The essence of Eq. 3.2 lies in that we should stop processing a group as soon as it can be excluded
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from top-k answers. That is, we should only further process a group if it is proven to be absolutely

necessary, i.e., its upper-bound score is above the threshold θ. While Eq. 3.2 hints on such “ne-

cessity”, it does not suggest how to determine the necessity, because θ can only be known at the

conclusion of a query. Therefore we wonder, as an algorithm retrieves tuples one by one, is there

an optimal tuple schedule that achieves the minimum depth?

A schedule is determined by inter-group and intra-group ordering. Our Group-Ranking princi-

ple asserts inter-group ordering: When selecting the next tuple t to process, how to order between

groups? Which group should t be selected from? (While this work defines such insight of “branch-

and-bounding” for aggregate queries for the first time, similar intuition has also been applied to

ordering individual tuples [17, 12, 67] in top-k queries.) Thus the Group-Ranking Principle builds

upon the basis that groups with higher bounds must be processed further before others.

Such bounds guide our selection of the next tuple. Let’s illustrate with Example 7: The next

tuple should be selected from g1. Consider g1 vs. g2 (and similarly g3). If g1 will be the top-1, we

must complete its score. Otherwise, since F Ig1
[g1] > F Ig2

[g2], whatever score g2 can achieve, g1

can possibly do better. Thus, first, although g2 is incomplete, it may not be necessary for further

processing, since g1 may turn out to be the answer (i.e., g1 should be processed before g2). Second,

even if g2 were complete, it is not sufficient to declare g2 as the top-1, since g1 may be a better

answer. In all cases, we must process the next tuple from g1.

The above explanation intuitively motivates the priority between g1 and g2, for the special case

when k=1. The Group-Ranking Principle formally states this property, for general top-k (k ≥ 1)

situations, which mandates the priority of current top k groups (i.e., g1) over others (i.e., g2).

Property 4 (Group-Ranking Principle): Let g1 be any group in the current top-k ranked by

maximal-possible scores F and g2 be any group not in the current top-k. We have 1) g1 must

be further processed if g1 is not fully evaluated, 2) it may not be necessary to further process

g2 even if g2 is not fully evaluated, and 3) the current top-k are the answers if they are all fully

evaluated.
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The Group-Ranking Principle guides our inter-group ordering for query processing, by pri-

oritizing on F . Essentially, the principle states that, to avoid unnecessary tuple evaluations, our

algorithms must prioritize any incomplete g1 within the current top-k over those g2 outside. Thus,

first, as the progressive condition, to reach the final top-k, any such g1 must be further processed

(or else there are no enough k complete groups to conclude as better than g1). Second, as the stop

condition, when and only when no such g1 exists, i.e., all top-k groups are completed, we can

conclude these groups as the final answers. Below we summarize this requirement.

Requirement 2 (Group Ordering): To avoid the unnecessary tuple consumption, query process-

ing should prioritize groups by their maximal-possible score F :

• (Progressive Condition) If there are some incomplete groups g1 in the top-k, then the next tuple

should be selected from such g1;

• (Stop Condition) Otherwise, we can stop and conclude the current top-k groups as the final

answers.

Example 8 (Sample Execution 1): For our example F= G(T ) = sum(R.v), to find the top-1

group, Figure 3.3(b) conceptually executes Requirement 2. (We discuss the corresponding Fig-

ure 3.3(a) in Section 3.4.) We prioritize groups by F scores, initially (3.0, 3.0, 2.0), when no

tuples in any group g are seen (Ig=φ) and thus T Ig
=1.0 in Equation 3.3. As the Progressive Con-

dition dictates, we always choose the top-1 group (marked *) for the next tuple, thus accessing r1

from g1, r2 from g2, . . ., and finally r4 from g2. Now, since the top-1 group g1 is completed (with

final score F [g1]=F [g1]=2.2), the Stop Condition asserts no more processing necessary, and thus

we return g1 as the top-1.

3.3.3 Tuple-Ranking Principle

Our last principle addresses the intra-group order: When we must necessarily process group g (as

the Group-Ranking Principle dictates), which tuple in g should we select? This tuple ordering,
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scan

5.

4.

3.

2.

1.

0.

step

2.01.72.2*(r4, 2, .4)

2.02.3*2.2(r7, 1, .6)

2.02.32.6*(r5, 1, .9)

2.02.32.7*(r2, 2, .3)

2.03.0*2.7(r1, 1, .7)

2.03.03.0*initial

action [ ]1gF [ ]2gF [ ]3gF

R

(a) Query plan. (b) Tuple flow to rankagg.

S*: Top-1 score    S: Final score

Figure 3.3: Query execution 1: GroupOnly.

together with the group ordering just discussed, will determine a total schedule of tuple access for

the rankagg operator (Figure 3.1(b)).

To start with, we note that different tuple orders result in different cost efficiency, in terms of

tuple depth of each group. Given a tuple order α for group g, what would be the resulting tuple

depth Hα
g that must be accessed? Recall in Example 8 we order tuples arbitrarily by tuple IDs

(see relation R in Figure 3.2(a)), i.e., group g1 as x1:r1→r5→r7, g2 as x2:r2→r4→r8, and g3 as

x3:r3→r6. These orders result in depths Hx1
g1

=3 (i.e., all of r1, r5, r7 accessed), Hx2
g2

=2, Hx3
g3

=0,

as Figure 3.3(b) shows. To contrast, Example 9 below shows how different tuple orders result in

different depths.

Example 9 (Sample Execution 2): Rerun Example 8 but with tuple orders as sorted by tuple

scores T=R.v in each group, thus ordering g1 as d1:r5→r1→r7, g2 as d2:r4→r2→r8, and g3 as

d3:r3→r6. These descending orders, together with Requirement 2, result in the execution of Fig-

ure 3.4(b). (Again, Figure 3.4(a) is discussed in Section 3.4.) Note that, for each group, the

descending order sorted by T effectively bounds the T -score of unseen tuples by the last-seen

T -score. Thus, for group g1, after r5 at step 1 with T [r5]=r5.v=.9, F [g1]=0.9+0.9×2 (for 2 unseen

tuples)=2.7. Then, after r1 in step 3, F [g1]=0.9+0.7+0.7×1 (for 1 unseen tuple) = 2.3. In this

execution, each group is accessed to depth Hd1
g1

=3, Hd2
g2

=1, and Hd3
g3

=0. In particular, group g2 has

a depth Hx2
g2

= 2 and Hd2
g2

= 1 (out of 3), and thus d2 is a better order than x2.
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(a) Query plan. (b) Tuple flow to rankagg.

S*: Top-1 score    S: Final score

Figure 3.4: Query execution 2: GroupRank.

To minimize the total costs (as the sum of tuple depths), how do we find the optimal order α for

each group g such that Hα
g =Hmin

g ? Apparently, this “space” of orders seems prohibitively large:

If there are n tuples in each of the m groups, as each group has n! permutations, there will be

(n!)m different orders. Thus, our Property 5, or the Tuple-Ranking Principle, addresses this tuple

ordering issue. It has two main results:

First, order independence: To find the optimal orders, shall we consider the combinations

among the orders of different groups? It turns out that, if we follow Requirement 2 for group

ordering, the optimal tuple order of each group is independent of all others. That is, the tuple

depth of a group g depends on only its own order α.

To see why, let’s consider g2 in Figure 3.3 and 3.4. As Requirement 2 dictates, by the Progres-

sive Condition, we only necessarily access a next tuple from the group, when and only when F [g2]

remains in the top-k (k=1 in this case). The execution halts, as the Stop Condition asserts, when the

top-k groups are completed and “surfaced” to the top, at which point F [g2]<θ and thus no longer

needs further processing. Thus, in Figure 3.3, with tuple order x2:r2→r4→r8, F [g2] progressively

lowers its upper bounds as 3.0
r2→2.3

r4→1.7, at which point it stops, because 1.7<2.2, or 1.7<θ. To

contrast, in Figure 3.4, the tuple order d2 results in 3.0
r4→1.2, where it stops as 1.2<θ. While the

different orders result in different depths Hx2
g2

=2 and Hd2
g2

=1, both are the “smallest” depths (under

the respective orders) that make F [g2] go below θ– which are dependent on only the tuple order of

g2 and independent of others.
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Second, T -based Ranking: While groups are independent, for each group, what orders α as

t1→· · ·→tn, out of the n! permutations (for a group of n tuples), should we consider? As just

explained above, a better order (e.g., d2 vs. x2) of g will decrease the upper bounds F [g] more

rapidly to go below θ with less tuple accesses. What orders can achieve such rapid decreasing?

As the upper bounds F are defined by Eq. 3.3, the answer naturally lies there. There are

two components in the equation: 1) the scores T [ti] of the seen tuples ti in Ig, and 2) the upper

bound T Ig
of the unseen tuples. Intuitively, first, a good order can lower the seen scores, by

accessing tuples with the smallest T . Second, it can also lower the upper bounds of those unseen,

by retrieving tuples from high T to low, where the unseen are bounded by the last-seen tuple (as

in Example 9). Following this intuition, we only need to consider T -desc/asc, a class of orders

that always choose either the highest or the lowest from the unseen tuples as the next. That is, any

other order must be inferior to some order in this class.

Property 5 formalizes the two results.

Property 5 (Tuple-Ranking Principle): With respect to a ranking aggregate F=G(T ), let the

lowest top-k group score be θ. For any group g, let Hα
g be the tuple depth with respect to tu-

ple order α:t1→· · ·→tn, when the inter-group ordering follows Requirement 2.

• (Order Independence) The depth Hα
g depends on only α (the order of this group) and θ (the

global threshold), and not on the order of other groups. Specifically, Hα
g is the smallest depth l of

sequence α that makes the maximal possible score of g to be below θ, i.e.,

Hα
g = minl∈[1:n]

{l|F {t1 ,...,tl}[g] < θ}, (3.4)

or otherwise Hα
g =n if such a depth does not exist.

• (T -based Ranking) To find the optimal order α that results in the minimum Hα
g , i.e., Hα

g =Hmin
g ,

53



we only need to consider the class of orders T -desc/asc =

{α : t1 → · · · → tn|
either T [ti] ≥ T [tj ]∀j > i (from top);

or T [ti] ≤ T [tj ]∀j > i (from bottom).
∀ti}. (3.5)

To conclude, we summarize the implementation implications of the Tuple-Ranking Principle

as Requirement 3, which guides our design of a processing model for the optimal tuple ordering.

Requirement 3 (Tuple Ordering): If Requirement 2 is followed, to minimize the total tuple depths

across all groups: 1) the order of each group can be optimized independently; and 2) the optimal

order is one from T -desc/asc, that results in the minimum Hα
g as governed by Eq. 3.4.

3.3.4 Putting Together: Overall Optimality

Together, the Upper-Bound Principle dictates the best-possible goal and the must-have information

(the maximal-possible score) in early pruning for any algorithm; based on the maximal-possible

score, the Group-Ranking and Tuple-Ranking Principles guide the tuple scheduling for our rank-

agg operator to selectively draw from the underlying query tree (Figure 3.1(b)). We stress that,

as the following Theorem 1 states, the Group-Ranking and Tuple-Ranking Principles enable the

finding of an optimal tuple schedule which processes every group minimally, thus achieving an

overall minimum tuple depth ΣgH
min
g (i.e., the best-possible goal) with respect to some upper-

bound mechanism F Ig
[g]. We note that Requirement 2 determines an inter-group order that only

accesses a group when necessary, and Requirement 3 further leads to a “cost-based” optimal intra-

group order for each group, with a significantly reduced space of only T -desc/asc orders.

Theorem 1 (Optimal Aggregate Processing): If query processing follows Requirements 2 and

3, the number of tuples processed across all groups, i.e., ΣgHg, is the minimum possible for query

answering, i.e., ΣgH
min
g .
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3.4 Execution Framework and Implementations

The principles developed in Section 3.3 provide a guideline in realizing the new model of execu-

tion plans in Figure 3.1(b). In this section, we propose an execution framework for applying the

principles (Section 3.4.1). We address the challenges in implementing the new rankagg operator

(Section 3.4.2) and discuss its impacts to the existing operators (Section 3.4.3).

3.4.1 The Execution Framework

We design a framework to apply the principles. The framework consists of two orthogonal compo-

nents. The first component provides the grouping bounds, which define the maximal possible score

F Ig
[g], the must-have information according to the Upper-Bound Principle. The second compo-

nent schedules tuple processing based on the grouping bounds by exploiting the Group-Ranking

and Tuple-Ranking Principles. The two components are orthogonal because the Grouping-Ranking

and Tuple-Ranking principles are applicable to any grouping bounds, from which the only impact

is that different bounds result in different best-possible tuple depth Hmin
g that can be achieved by

tuple scheduling. In this section we first give a detailed discussion on how to obtain the grouping

bounds. We then present how to implement the Tuple-Ranking Principle, how to implement the

Group-Ranking Principle, and how to enable new group-aware and rank-aware query plans that

apply the principles. Finally, we discuss variations of the querying plans that are applicable under

various situations.

Obtaining Grouping Bounds: Exploiting Upper-Bound Principle

Based on Requirement 1, the smallest Hmin
g with respect to Eq. 3.3 is obtained by the tightest

grouping bounds, i.e., the exact tuple count and the highest unseen tuple value. In our framework

we aim at using this tightest bounds for maximal pruning.

With respect to the tuple max, the tightest bound T Ig
=max{T [ti] | ti ∈ g − Ig} is impossible

to obtain though. The reason is simply that, without actually seeing the unseen tuples, we cannot
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know the exact highest value among them. However, we can obtain a value that is very close to it.

For instance, if the tuples in g are retrieved in T -desc/asc order, the T value of the last seen tuple

from the top end bounds the value of the unseen tuples. Before any member tuple of g is retrieved,

T Ig
has an initial value T g, which is the maximum-possible value of T among all the tuples in

g. A tight T g can be obtained either by application semantic (e.g., according to the definition of

T ), or by the indices that are pervasively built upon base tables and materialized views in OLAP

environment. It can be either global (e.g., using the overall highest T value according to the index),

or group-specific (e.g., using multi-key index over the grouping attribute and the attributes involved

in T .)

With respect to the tuple count, the tightest bound (i.e., the exact size of a group), |g|=|g|,

provides the most pruning power. Looser bounds can be also obtained. For example, we may

use the size of a base table to bound the size of any base table group, and the product of base

table group sizes to bound the joined group size (by assuming full join, i.e., Cartesian product).

However, such upper-bounds are very loose and are unlikely to realize early pruning. We note

that any efficient method to compute a tight upper-bound of the count can be plugged into our

framework as another choice of the tuple count. Below we discuss how to obtain the exact tuple

count |g|=|g|. There are three situations:

• Counts ready: In decision support, although the ranking aggregate function G(T ) can be very ad-

hoc, the join and grouping conditions are largely shared across many related queries, as motivated

in Section 3.1. In such an environment, materialized views are built based on the query workload

to cover frequently asked query conditions. As a very basic aggregate function in OLAP, the count

of each group is thus often ready through the materialized views, e.g., in data cube.

• Counts computed from materialized information: In certain cases, the counts are not directly

ready, but can be efficiently obtained by querying the materialized views [44, 90, 26, 1, 93].

For example, for a top-k aggregate query with selection conditions involving some dimensional

attributes (e.g., May≤month≤June), a group (e.g., city=‘Chicago’) corresponds to the aggre-

gate of multiple underlying groups (e.g., (city=‘Chicago’, month=May) and (city=‘Chicago’,

56



month=June)). Its size can thus be obtained by aggregating upon the materialized views (e.g.,

the view containing the count of each (city, month) group).

• Counts computed from scratch: When counts cannot be directly or indirectly obtained, we have

to compute it from scratch. That is, we replace the ranking function F= G(T ) by count(∗) and

remove the order by and limit clauses. The resulting query (let’s call it count query) is executed

by any traditional approach to obtain the counts. For instance, the count query corresponding to

our running example is

select R.g, count(∗) from R group by R.g

In Section 3.5, our experimental results show that our approach is orders of magnitude more

efficient than the materialize-group-sort approach when counts are available. When we have to

compute the counts from scratch (or similarly from materialized views), the cost of the first single

query is comparable to that of materialize-group-sort. More importantly, the resulting counts can

be materialized and maintained to benefit many subsequent related ad-hoc queries, thus the cost of

computing the counts is amortized.

T -descending Heuristic: Implementing Tuple-Ranking Principle

As Requirement 3 states, we only need to consider the class of T -desc/asc orders for finding an

optimal tuple order of a group. Such orders retrieve the tuples from only the top and bottom

ends with respect to the value of T , thus exploit T -based ranking to either reduce the seen scores

or the upper bound of those unseen. Based on the intuition of retrieving tuples from two ends,

we thus consider two simple heuristics of choosing intra-group order, each of which produces a

representative case of T -desc/asc, for α: t1→· · ·→tn.

1. T -descending: Always choose the tuple with the highest T -score as the next, i.e., T [t1]≥· · ·≥T [tn].

2. T -ascending: Always choose the tuple with the lowest T -score as the next, i.e., T [t1]≤· · ·≤T [tn].
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(a)Uniform distribution in [0 : 1]. (b)Normal distribution µ=0.5, σ=0.3.

(c)Exponential distribution λ=1. (d)Gamma distribution α=0.5, β=0.5.

Figure 3.5: Number of tuples retrieved by random(r), ascending (a), descending (d), and optimal

(o) order to get the same or lower upper-bound as descending order.

Example 10 (Tuple Orders): Consider group g2 in our example. Figure 3.2(b) shows four exam-

ple orders: descending, ascending, hybrid, and random. The descending and ascending are special

cases of T -desc/asc, hybrid is another instance in T -desc/asc, and random is an order that does

not belong to T -desc/asc. For each order, the figure shows how F [g2] changes in sequence, e.g.,

descending decreases F as 3, 1.2, 1, .95 (the final score). By comparison, descending is the best

order, which lowers F most rapidly.

We choose T -descending as our implementation heuristic. We show that T -descending in

practice is often the best choice for typical score distributions (e.g., uniform and normal) and

aggregate functions (e.g., sum and avg). In Figure 3.5 we empirically compare T -ascending (a),
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T -descending (d), the random order (r), and the optimal order (o) which results in Hmin
g . The

tuple scores T [ti] within a group g of n=10, 000 tuples are generated by various distributions, in

the range of [0, 1]. The aggregate function is sum. (The results for avg are similar.) Suppose the

maximal-possible score is f after |Id
g | tuples are retrieved by d. Ranging |Id

g | from 1 to n (x-

axis), we compare |Ia
g |, |I

d
g |, |I

r
g |, and |Io

g |(y-axis), the number of retrieved tuples by a, d, r, and

o, respectively, to get their maximal-possible scores lower than or equal to f . The curve for T -

descending is the diagonal since it is the reference order. The figure shows that (1) T -descending

in most cases overlaps with the optimal order, justifying our implementation heuristic; and (2)

the random order is always worse than others, verifying that simply choosing any order is not

appropriate.

There are data distributions where T -descending is worse than other orders. For instance, we

change g2 to g′
2 in Figure 3.2(b), which shows four example orders for both g2 and g′

2. Now, T -

ascending is the best order, by getting low scores from the bottom(i.e., r8.v=0). In general, in a

dataset, if many tuples are in the high score end, T -descending at the beginning cannot effectively

lower the upper-bound of unseen tuples, resulting in low efficiency.

Note that more sophisticated heuristic may be applied in determining intra-group tuple order.

For instance, a heuristic can indeed retrieve both the high and low score ends, by determining to

retrieve from top or bottom based on the distribution of seen data. Such heuristic would require

complex implementation and bring more overheads, for ranking on both ends and the analysis of

data distribution. More seriously, such greedy algorithm based on the seen data may led to local

optimum. For instance, if there are several tuples with the same score clustered at the high score

end, such heuristic may determine that retrieving tuples from the top end cannot reduce the upper-

bound of the unseen tuples, thus will only retrieve from the bottom end. However, it may turn out

that tuple scores decrease rapidly after those with the same score, thus retrieving from the top end

can be much better in the long run. Compared with such heuristic, T -descending is much simpler

and empirically almost as good as the optimal order, as discussed above.
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Group-Aware and Rank-Aware Plans: Exploiting Group- and Tuple-Ranking Principles

To exploit the Group-Ranking Principle, our proposed new rankagg operator (Figure 3.1(b)) ex-

plicitly controls the inter-group ordering. Instead of passively waiting for the underlying subtree

to fully materialize all the groups, the rankagg operator actively determines the most promising

group g according to the maximal-possible scores of all valid groups, and draws the next tuple in g

from the underlying subtree. (By Requirement 2, any current top-k incomplete group can be such

g to request.) When the most promising group is complete, its aggregate is returned as a query

result. Therefore, the groups are always output from the rankagg operator in the ranking order of

their aggregates, eliminating the need for the blocking sorting operator in Figure 3.1(a).

This “active grouping” is a clear departure from the materialize-group-sort scheme and it re-

quires changing the interface of operators. Specifically, we change the GetNext method of the

iterator to take g as a parameter. Our operators are thus group-aware so that grouping is seam-

lessly integrated with other operations. Recursively starting from the rankagg operator, an upper

operator invokes the GetNext(g) methods of its lower operators, providing the most promising

group g as the parameter. For a unary operator, the same g is passed as the parameter to its lower

operator. For a binary operator such as join, g is decomposed into two components g′ and g′′ and

are passed as the parameters to the left and the right child operators, respectively. In response,

each operator sends the next output tuple from the designated group g to its upper operator.

To enforce the aforementioned T -descending heuristic, the query tree underlying rankagg must

be rank-aware as well. For this purpose, we leverage our framework of ranking query processing

in Chapter 2. However, we must address the challenges in satisfying group-awareness and rank-

awareness together.

Example 11: Consider again Example 8. Figure 3.3 illustrates (a) a group-aware plan which we

call GroupOnly and (b) its execution. The group-aware scan operator can produce tuples from the

group designated by the rankagg operator above it. The tuples within each group are produced in

their on-disk order. To contrast, Figure 3.4 illustrates (a) a plan that is both group-aware and rank-
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aware which we call GroupRank and (b) its execution. The group- and rank-aware scan operator

in this plan produces tuples in the descending order of R.v within each group. The executions of

these two plans are already explained in Examples 8 and 9. Note that GroupOnly does not exhaust

the tuples in g2 and does not touch the tuples in g3 at all. GroupRank takes even fewer steps than

the GroupOnly plan, by exploiting order within groups.

Variations of Query Plans: Trading off Group- and Rank-Awareness

The group- and rank-aware query plans can be much more efficient than traditional plans. We call

them GroupRank plans (e.g., Figure 3.4(a)). However, there can be situations under which these

plans are inapplicable or inefficient, therefore we propose variations of plans. These variations

cover many different applicable situations, thus serve as a robust solution that provides better

strategies than the traditional approach. Moreover, both group-awareness and rank-awareness can

bring overhead, respectively. For example, to enable rank-aware join, we adapt techniques in

recent work [57], where the join operator buffers the joined tuples in ranking queues. Maintaining

the ranking queues can bring significant overheads or even offset the advantages of processing

joins incrementally. Therefore the variations provide ways to trade off their overheads. We study

the performances of these plans in Section 3.5. However, we leave the problem of optimizing

among multiple applicable plans as our future topic.

First, GroupOnly plans (e.g., Figure 3.3(a)), where the operators are group-aware but not rank-

aware. The rankagg operator still gets the next tuple from the most promising group, but in arbi-

trary order within each group. Such plans are applicable when ranking on T cannot be efficiently

supported. For example, ranking processing techniques require monotonic T or splitting and in-

terleaving T , which may not be applicable in certain situations.

Second, RankOnly plans where the operators are rank-aware only. Instead of telling the under-

lying operator the designated group, the rankagg operator gets interleaved tuples from all groups

and orders the groups by their aggregate scores.

Finally, GroupRank-ǫ (0 ≤ ǫ ≤ 1) plans which are the same as GroupRank except that the join
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operators output tuples out-of-order, while at the same time not in arbitrary order. Since full

ranking can be expensive, we experiment with approximations, which trade ranking overhead with

precision of tuple ranking. In a GroupRank-ǫ plan, upon the request of sending the next tuple

from a given group, a join operator outputs the top tuple t in its ranking queue for that group if

ubt ≥ ub×ǫ, where ubt is the upper-bound of t and ub is the upper-bound of the unseen tuples. The

greater value between ubt and ub is reported to the upper operator as the upper-bound of any future

tuples to be reported. Note that the scan operators in GroupRank-ǫ are still rank-aware and group-

aware. It is clear GroupRank is actually an extreme case, GroupRank-1. As another extreme case,

in GroupRank-0, a join operator outputs the top tuple in the ranking queue of a group whenever

the queue is not empty. Note that GroupRank-0 is not a GroupOnly plan as all seen tuples in the

ranking queue are still ordered.

3.4.2 Implementing the New rankagg Operator

The iterator interface for rankagg is shown in Figure 3.6. The rankagg operator maintains a prior-

ity queue storing the upper-bounds of groups that are not output yet. Note that the priority queue

in rankagg and the ranking queues in the group- and rank-aware join operators serve different pur-

poses. While the ranking queues in joins are used to buffer tuples for providing ranking access to

the tuples, the priority queue is used for efficiently maintaining the current top group dynamically.

The rankagg always gets the next tuple from the top group in the priority queue and updates its

upper-bound. When the top group is complete, it is guaranteed to be the best among those in the

queue, thus can be reported. (In RankOnly plans, a hash table instead of priority queue is used to

give fast access to the upper-bounds. An iteration through the hash table is performed periodically

and the top group is output when it is complete.) Below we discuss how to maintain the routines

for upper-bound computation and how to manage the priority queue.

Upper-Bound Computation: For a ranking aggregate F=G(T ), the maximal-possible score of

a group g with obtained tuples Ig, F Ig
[g], can be computed by Eq. 3.3. Starting from the initial
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1: //input: the underlying operator.

2: //k: the requested number of groups.

3: //q: the priority queue of groups.

4: //g.obtained: the number of obtained tuples in g, i.e., |Ig|.
5: //g.count: the size of g.

Procedure Open()

1: input.Open(); q.clear()

2: for each group g do

3: init ub(g); q.insert(g)

4: return

Procedure GetNext()

1: while true do

2: if k==0 ∨ q.isEmpty() then

3: Close()

4: return

5: g← q.top()

6: if g.count==g.obtained then

7: finalize ub(g); k← k − 1
8: return g
9: t← input.GetNext(g); update ub(g,t); q.insert(g)

Procedure Close()

1: input.Close(); q.clear()

2: return

Figure 3.6: The interface methods of rankagg.

upper-bound, we must keep updating F Ig
[g] when tuples are incrementally obtained. When the

last tuple from g is obtained, F Ig
[g] becomes the aggregate value F [g]. This description clearly

indicates that the upper-bound itself can be maintained by an external aggregate function. (Let’s

call it upper-bound routine.) For example, in POSTGRESQL, a user-defined aggregate function is

defined by an initial state, a state transition function, and a final calculation function. Therefore

for the G in a ranking aggregate query F=G(T ), the corresponding upper-bound routines consist

of init ub, update ub, and finalize ub. They are invoked in the interface methods of rankagg

(Figure 3.6). Such routines can be pre-defined if G is a built-in function. For example, Figure 3.7

illustrates the upper-bound routines for G=sum. As an alternative, in GroupOnly plans, the upper-

bound in the update db procedure should become g.ub←g.sum+(g.size-g.count)×T g. When G
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1: //g.ub: the maximal-possible score of a group g, i.e., F Ig
[g].

2: //g.sum: the sum of T for obtained tuples in g.

3: //T Ig
: the maximal-possible value of T among g’s unseen tuples, retrieved in T -descending

order.

4: //T g: the initial T Ig
when no tuple is obtaind.

Procedure init ub(g)

1: g.sum← 0; g.obtained← 0
2: T Ig

=T g

3: g.ub = g.count× T Ig

4: return

Procedure update ub(g,t)

1: g.sum← g.sum + T [t]
2: g.obtained← g.obtained + 1
3: T Ig

=T [t]

4: g.ub← g.sum + (g.count− g.obtained)× T Ig

5: return

Procedure finalize ub(g)

1: //nothing needs to be done

2: return

Figure 3.7: The upper-bound routines for G=sum.

is a user-defined aggregate function itself, the upper-bound routine is defined by straightforward

adaptation of the utilities (initialization, state transition, final calculation) of G, mainly to substitute

the value of unknown tuples with T Ig
. We omit further discussion of these details.

Efficient Ranking Priority Queue Implementation: For a ranking aggregate query, the total

number of groups can be huge although only the top k groups are requested. For example, joining

three tables with 1, 000 groups on each table can potentially lead to 1 billion joined groups. Man-

aging the upper-bounds of the huge number of groups by a simple priority queue implementation

can thus bring significant overhead.

We address this challenge from two aspects, illustrated by our new priority queue in Figure 3.8.

First, we populate the priority queue incrementally. It is necessary to insert a group into the pri-

ority queue only when its maximal-possible score is among the current top-k, by Requirement 2.

By using a global tuple max (the overall highest T value across all groups), the tuple count effec-
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disk blocks of sorted lists

...

...

...
in−memory queue q’

of groups
initial upper−bounds

grouping bounds

...

buffer blocks

...

Figure 3.8: Priority queue.

tively determines the initial maximal-possible score of every group, based on Eq. 3.3. Therefore

the groups can be incrementally inserted from higher to lower counts, utilizing the index on the

tuple count. Such index over summary tables is extensively built and utilized in decision support.

Moreover, there are techniques (e.g., [70]) for getting the groups with the largest sizes (incremen-

tally). Second, when the (incrementally expanding) priority queue does become too big to fit in the

memory, we use a 2-level virtual priority queue q consisting of (1) an in-memory priority queue q′

(implemented by the heap algorithm), and (2) a set of in-memory buffer blocks of sorted lists and

a set of on-disk sorted lists.

Initially, only the first batch of groups (1, 000 in our experiments) with the largest counts are

inserted into q′. Whenever q′ is full, it is emptied and its elements are converted into a sorted list

(ordered by upper-bounds), of which the first top block is kept in buffer and the rest is sent to the

disk. When a request is issued to get the top element (group) from q, the top elements from q′ and

from every buffer block are compared and the overall top group is returned. When a buffer block

is exhausted, the next block from the corresponding sorted list is read from the disk into the buffer.

If the top group is complete, it is returned as a query result, otherwise the next tuple from the

group is obtained to update its upper-bound and the group is inserted back to q. It is possible the

upper-bound of the top group becomes smaller than that of the group with the largest size among

those that are not inserted. Under such situation, the next batch of groups are inserted into q′.
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With the new priority queue, only the top groups (which are more likely to remain at the top)

are kept in memory, in analogy to various cache replacement policies. Moreover, many groups may

have initial upper-bounds smaller than the top-k threshold θ, thus may even never be necessarily

touched when the top k answers are obtained. Therefore our concern with the potentially huge

number of groups is addressed, as verified by the experiments in Section 3.5.

3.4.3 Impacts to Existing Operators

In this section we discuss the impacts of rankagg to other query operators, scan and join in partic-

ular.

Scan: To be group-aware, the new scan operator must access the next tuple in the group g re-

quested by its upper operator. In [51], a round-robin index striding method was introduced to

compute on-line aggregates with probabilistic guarantees. Our scan operator adopts the index

striding technique. Multiple cursors, one per group, are maintained on the index to enable such

striding. A cursor is advanced whenever a tuple is obtained from the cursor. However, there are

two important differences: (1) in our case, index retrieval is governed by the dynamically desig-

nated group instead of fixed weights; and (2) to access tuples within each group in the descending

order of T , i.e., to be rank-aware, we build multi-key index, by using the grouping attribute as the

first key and the attribute in T as the second key. For example, for the following query:

select R.g, S.g, sum(R.v+S.v) from R, S

group by R.g, S.g order by sum(R.v+S.v) limit 1,

a multi-key index on (R.g, R.v) can be used for accessing R and another index on (S.g, S.v) for

S. (Similarly when there are multiple grouping attributes on a table.) Note that we do not discuss

how to select which indices to build, as such index selection problem has been studied before (e.g.,

[45]) and is complementary to our techniques. When index on a table is unavailable, we have to

scan the whole table and build a temporary index or search structure.

Join: For group-awareness, when a join operator is required to produce a tuple of group g, it
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outputs such a tuple from its buffer when available, otherwise it recursively invokes the GetNext(g′)

and GetNext(g′′) methods of its left and right input operators, respectively. For instance, for the

above query, suppose a join operator that joins R and S is requested by rankagg to output the next

tuple from a group (R.g=1, S.g=2). The join operator directly returns a joined tuple from its buffer

when available. Otherwise, it requests the next tuple with R.g=1 from R or the next tuple with

S.g=2 from S.

To be rank-aware, the join operator must output joined tuples in the order with respect to T , e.g.,

R.v+S.v. We adopt the HRJN algorithm [57]. The algorithm maintains a ranking priority queue

(not to be confused with the priority queue in Section 3.4.2) for buffering joined tuples, ordered on

their upper-bound scores. The top tuple from the queue is output if its upper-bound score is greater

than a threshold, which gives an upper-bound score of all unseen join combinations. Otherwise,

the algorithm continues by reading tuples from the inputs and performs a symmetric hash join to

generate new join results. The threshold is continuously updated as new tuples arrive. In the new

implementation, we manage multiple ranking queues, one for each joined group and use a hash

table to maintain the pointers to each ranking queue. In GroupOnly plans, the join operator uses

a FIFO queue instead of priority queue to buffer join results (thus HRJN becomes the hash ripple

join [47]).

3.5 Experiments

3.5.1 Settings

The proposed techniques are implemented in POSTGRESQL. The experiments are conducted on a

PC with 2.8GHz Intel Xeon SMP (dual hyperthreaded CPUs each with 512KB cache), 2GB RAM,

and 260GB RAID5 array of 3 SCSI disks, running Linux 2.6.9.

We use a synthetic data set of three tables (A, B, C) with the same schema and similar size.

Each table has one join attribute jc, one grouping attribute g and one attribute v that is aggregated.
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Figure 3.9: Performance of different execution plans.

For each tuple, the three attribute values are independently generated random numbers. In each

base table, the values of v follow the uniform distribution in the range of [0, 1]. The number of

distinct values of j is 1
j
, where j is a configurable parameter capturing join selectivity. The values of

j follow the uniform distribution in the range of [1, 1
j
]. The number of distinct values of g is g, i.e.,

g captures the number of groups on each table. For example, when g=10, the maximal number of

joined groups over ABC is g3=1, 000. The number of tuples corresponding to each distinct value

of g follows normal distribution, with average s, i.e., s is the average size of base table groups.

We use the star-join query Q in Section 3.1. We compare five execution plans, Traditional,

RankOnly, GroupOnly, GroupRank (i.e., GroupRank-1), and GroupRank-0. They have the same

plan structure that joins A with B and then with C. Traditional is an instance of the materialize-

group-sort plan in Figure 3.1(a). It uses sort-merge join as the join algorithm and scans the base ta-
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Figure 3.12: Performance of GroupRank-ǫ.

bles by the indices on the join attributes. The RankOnly, GroupOnly, GroupRank, and GroupRank-

0 use the new rankagg operator. Moreover the join and scan operators in these plans are group-

aware and/or rank-aware, as described in Section 3.4.1. We executed these plans under various

configurations of four parameters, which are the number of requested groups (k), the number of

groups on each table (g), the average size of base table group (s), and the join selectivity (j). We

use gWsXkY jZ to annotate the configuration g=10W , s=10X , k=10Y , and j=10−Z .

3.5.2 Results

We first performed 4 sets of experiments. In each set, we varied the value of one parameter

and fixed the values of other three parameters, among k, g, s, and j. The plan execution time
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Figure 3.13: Touched groups.

under these settings is shown in Figure 3.9. (Both x and y axes are in logarithmic scale.) The

figure clearly shows that our new plans outperformed the traditional plan by orders of magnitude.

Traditional is only comparable to the new plans when there are not many groups, the group size

is small, many results are requested, and joins are very selective. RankOnly is as inefficient as

Traditional. It did not finish after running for fairly long under some configuration (g=10, 000 in

Figure 3.9(a)) and is excluded from Figure 3.9(c) for the same reason. As an intuitive explanation,

if the top-1 group has a member tuple that is ranked at the last place, all the groups must be

materialized in order to obtain the top-1 group. This indicates that being rank-aware itself [57, 67]

does not help to deal with top-k aggregate queries.

The differences among the new plans are not obvious in Figure 3.9(a)(b)(d) because Traditional

and RankOnly are too far off the scale. However, Figure 3.9(c) clearly illustrates their differences.

In Figure 3.11, we further compare GroupOnly, GroupRank and GroupRank-0 under the 8 config-

urations in Figure 3.9(c)(d). For each plan, we show the ratio of its execution time to the execution

time of GroupRank. The results show that GroupOnly in many cases is better than GroupRank,

verifying that the ranking overhead can offset the advantages of group-awareness in certain cases.

On the other hand, the performance is much improved when we reduce the ranking overhead, as

GroupRank-0 almost always outperformed GroupOnly and GroupRank.

We further analyze these plans by comparing the output cardinalities of their operators. Fig-
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ure 3.10 reports the comparisons under two configurations. The results for other configurations

are similar. As it shows, Traditional enforces full materialization. RankOnly was not able to reduce

the cardinalities and further incurred ranking overhead, which explains why it is even worse than

Traditional in many cases. GroupOnly reduced the cardinalities significantly by partial consump-

tion of base tables and partial materialization of join results. GroupRank produced less join results

than GroupOnly because of rank-awareness. However, it also consumed more base table inputs

because join operators must buffer more inputs to produce ranked outputs (the ranking overhead).

Finally, GroupRank-0 balanced the benefits and overhead of rank-awareness, as explained in Sec-

tion 3.4.1. Therefore it consumed less number of base table inputs, although produced some more

join results.

To further study the tradeoff in being rank-aware, we show the performance of GroupRank-ǫ

in Figure 3.12 by ranging ǫ from 0 to 1. Note that GroupRank and GroupRank-0 are extreme cases

for ǫ=1 and 0, respectively. Interestingly none of them is the best, which indicates the choice of ǫ

should be captured by query optimizer.

We verify that managing the priority queue of rankagg (Section 3.4.2) does not require sig-

nificant overhead, although the total number of groups can be potentially huge. In Figure 3.13,

we compare the number of joined groups touched by GroupRank-0 and Traditional under the 11

distinct configurations from Figure 3.9. (We count a group as “touched” if at least 1 tuple from the

group is produced during the plan execution. Therefore the touched groups are maintained by the

priority queue and the top k groups come from the touched groups.) The results show that most of

the groups never need to be touched by the new plans, therefore it is not expensive to maintain the

priority queue. Figure 3.13 also clearly illustrates why the new plans outperform Traditional, to-

gether with Figure 3.10. While Traditional processes every group and every tuple in each group due

to its nature of full materialization, our new plans save significantly by the early pruning resulting

from the group-ranking and tuple-ranking principles.

Our framework requires tuple count, which can be obtained as discussed in Section 3.4.1.
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Figure 3.14: The cost of computing counts from scratch.

Specifically, when the tuple count must be computed from scratch by a count query, the cost of

answering one ranking aggregate query consists of the cost of the corresponding count query and

executing the new query plan based on the obtained counts. In Figure 3.14, we compare the costs of

Traditional and the count query under 8 configurations from Figure 3.9. Note that k is irrelevant in

this experiment since Traditional generates the total order of all groups and the count query gener-

ates the count of every group. (There are overlapping configurations in Figure 3.9(a)-(d) when k is

ignored, resulting in totally 8 distinct configurations.) The results verify that computing the count

query is slightly cheaper than the original ranking aggregate query. Since our new query plans are

orders of magnitude more efficient than the traditional plan, the total cost of a count query and a

new plan is comparable to, or even cheaper than, that of the traditional plan. More importantly, the

materialized tuple counts are then used by the future related ranking aggregate queries that share

the same Boolean conditions with the original query (scenario 1 in Section 3.4.1), or of which the

tuple count can be computed from the materialized counts (scenario 2). Nevertheless, it brings us

the advantages of “paying one, getting the following (almost) free”.

Discussions: We should emphasize that although the new query plans are not always equally ef-

ficient, they provide better strategies than the traditional approach in processing top-k aggregate

queries, under various applicable conditions, as discussed in Section 3.4.1. Moreover, the exper-

imental results indicate that none of the plans is always the best and their costs can be orders of
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magnitude different. Their diverse applicability and performance thus call for new query opti-

mization techniques. Especially, the performance of our methods depends on multiple parameters,

including the number of groups, the sizes of groups, the distribution of tuple scores, the memory

buffer size, and so on. Thus a cost model incorporating these parameters to estimate the costs of

plans is the key to the new optimizer. The estimates can enable us to choose among the new plans

and even the traditional plans. Developing such a cost model and optimizer thus is an important

topic of future research.
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Chapter 4

Beyond Ranking: Supporting Ranking and

Clustering as Generalized Order-By and

Group-By

Toward a systematic support, while ranking conceptually generalizes Order-By into fuzzy order-

ing, this chapter aims at generalizing Group-By into “fuzzy” grouping– or clustering– to form a

more complete suite of solutions for data retrieval. We propose to integrate the two generalizations,

allowing clustering and ranking of database query results together. This integration is non-trivial

in terms of both semantics and query processing. We investigate a variety of semantics in defining

such queries. To process the queries, our solution is to do clustering and ranking using dynamically

constructed data summary. We realize this approach by utilizing bitmap index to build summary

on-the-fly and to integrate Boolean filtering, clustering, and ranking. Experimental study shows

that our approach significantly outperforms the straightforward one and maintains high clustering

quality.

Note that our proposal is essentially different from the clustering that has been extensively

studied for years in many areas including machine learning, pattern recognition, and data min-

ing [60, 48]. In typical data mining applications, clustering is more or less an infrequent or one-

shot operation, over static data, and performed by a small number of analysts. In contrast, the fuzzy

clustering engaging us in this study is a day-to-day operation, upon dynamic results of Boolean

conditions, over different clustering attributes, and requested by a large number of users. There-

fore our focus is to efficiently support such on-the-fly clustering and yet maintain high quality of

clustering. Moreover, we integrate clustering with Boolean filtering and ranking. The proposal is

not to replace the existing clustering algorithms. Instead, we simply adopt existing algorithms and

focus on how to cluster over data summary dynamically constructed.
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In summary, this chapter makes the following contributions:

• Concept: Generalizing Group-By for Fuzzy Grouping. We propose to support clustering

with SQL as a generalization for group-by, parallel ranking for order-by. Moreover, to the best

of our knowledge, ours is the first in the literature to propose the integration of fuzzy grouping

and ranking in relational databases.

• Framework: Summary-based Processing. We develop on-the-fly summary construction and

summary-based clustering and ranking, for efficient query support.

The rest of the chapter is organized as follows. We first motivate the problem in Section 4.1. We

then define a new type of queries, explore its semantics in supporting fuzzy ranking and grouping,

and discuss the challenges in processing such queries. An overview of our solutions is given

in Section 4.3. We further present the detailed data structure and algorithms in Section 4.4 and

optimization heuristics in Section 4.5. The experimental results are discussed in Section 4.6.

4.1 Motivation

Example 12 (Motivating Scenario: House Search): Consider user Amy looking for a house in

Chicago, from a database House(id, price, size, zipcode, longitude, latitude, rating). She will

consider houses priced below $300k, and is willing to pay a little more if the size is large. She

would like to consider different areas– She will accept even more expensive choices if they are

near the lakeshore; but if there is no such choices, she would like to look for better prices in the

suburb. Notice the many “if”s in her preference, which depend on what the database can offer. Will

a SQL-based database, such as realtor.com, support her “exploration” by querying effectively?

As Example 12 illustrated, data retrieval essentially mandates result exploration, for users to

explore what choices are available in the database, and how they match the query criteria. We ask:

What functions shall we support for such exploration?
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While we want to equip SQL-based querying with such exploration, the answers seem to, inter-

estingly, lie in the design of SQL itself: With the test of time, SQL has proven to be a well-designed,

compact suite of constructs, balancing both functionality and simplicity. Can we draw inspiration

from SQL constructs to support data retrieval, in particular, to explore query results? For this pur-

pose, order-by and group-by both stand out as the pillars for organizing results– e.g., for our

example House relation, we may

group-by zipcode order-by min(price). (S1)

By ordering and grouping on attribute values, RDBMS can organize results for tabular presentation

and report generation.

To begin with, many recent works have attempted to generalize order-by beyond “crispy”

result ordering– For the same syntactic construct, these efforts seek to generalize the semantics

from ordering of attribute values to ranking of matching qualities. Therefore, from ordering to

ranking, the generalization boils down to 1) supporting fuzzy scoring functions (instead of only

attributes) and 2) targeting at only top-k (partial) results (instead of total ordering). For our House

example, we may order by some preferred balance of price, size, and realtor rating, and look for

only the top 10 results:

order-by
size

price
· rating limit 10 (S2)

Drawing these insights from SQL constructs, as order-by has been generalized into ranking,

as a parallel step toward result exploration, we propose to generalize group-by. Just like from or-

dering to ranking, we believe current grouping has two major limitations: First, the prerequisite of

data understanding: As a dilemma, while grouping should help users to learn the data distribution

of available choices in the database, in its current semantics, users must know this “distribution” in

order to specify a good grouping scheme– For instance, is group-by zipcode meaningful? (How

if there are 1000 different zipcodes, thus 1000 groups?) Second, the limitation of equality parti-

tioning: Inherited from SQL’s “crispiness,” current grouping semantics partitions the space only by
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“identical” values. For instance, is group-by longitude, latitude meaningful? (As no houses will

share the same coordinates, we should instead group by their proximity.)

Our solution, much like from ordering to ranking, is to generalize “crispy” grouping to “fuzzy”

grouping– or clustering [60, 48]. As a well-established technique for data exploration, in abstrac-

tion, with input of attributes c1, . . ., cm and a result size of t, clustering will output t groups, or

clusters, that best partition the space according to how objects are similar in c1, . . ., cm (instead

of strict equality of values). It thus ameliorates the two limitations simultaneously: For the input

specification, users simply specify the desired number of t clusters, much like the desired result

size k in top-k ranking, and the system will automatically weigh in the data distribution to gen-

erate t clusters. (So even if there are 1000 zipcodes, they will be grouped into a small number of

t clusters.) Further, as the grouping criteria, clustering will form partitions by data distribution.

Similar objects that do not share strictly identical values in c1, . . ., cm will still be grouped. (Thus

grouping on longitude and latitude will put together houses in similar locations.)

This clustering, or fuzzy grouping, maybe expressed1 as follows, with an additional “into t”

to indicate the target number of groups that the fuzziness should achieve. For our example, a user

may want to cluster houses into 5 groups by their location proximity:

group-by longitude, latitude into 5 (S3)

We examine this generalization from grouping to clustering, for supporting data retrieval with

SQL. What should be the “fuzziness” of grouping– or, what clustering algorithms should we

assume? Ideally, in a comprehensive setting, the system shall support a set of clustering schemes

as operators to choose, and even allow extensions by, say, external functions. However, as a first

step to start with, and to focus on the essence of the problem, we study K-means as the clustering

scheme, because it is the most well-known and widely applicable partitioning-based clustering

method [48] and is by far the most popularly used method in scientific and industrial applications

1We focus on the generalization of “functionality” and not syntax. The same can be expressed with OLAP functions.

See footnote 2.
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[8]. Our framework can apply other distance-based clustering methods, as long as the distance or

similarity functions are based on the proximity of attribute values. Section 4.3.2 will discuss such

extensions. Thus, in a more general setting, to specify our choice of clustering, we may express it

as:

group-by K-means(longitude, latitude) into 5 (S ′
3)

Putting together, in a SQL-like syntax, we may express the complete suite of clustering and

ranking in the following form.

select . . .

from T1, . . . , Ts

where B(b1, . . . , bh)
group by c1, . . . , cm into t
order by F(r1, . . . , rn) limit k

In this complete form, our generalization boils down to two challenges: First, for the context

of SQL, as SQL has been well developed for managing structured data, our clustering must inte-

grate with the core Boolean constructs. What does such integration mean? As group-by is meant

to execute after the where clause with Boolean selection or join, our clustering should similarly

partition with respect to the “dynamic” result σB(T1× . . .×Ts). That is, the dynamic Boolean re-

sult, instead of the static tables, is the “population” whose data distribution will define the clusters.

How can we execute clustering efficiently after such dynamic filtering?

Second, for our objective of data retrieval, as both pillars of result exploration, clustering and

ranking must be seamlessly integrated. What does such integration mean? In standard SQL the

combination of group-by and order-by will lead to ordering among groups (thus S1 will return

groups ordered by their minimal prices). While such order-among-groups is a useful semantics,

we believe it is equally (if not more) important to support order-within-groups. In data retrieval

scenarios, as evident from similar functions for text retrieval (e.g., Web search), when clustering

and ranking are combined (e.g., vivisimo.com), clustering will partition the results into alternative

groups, and ranking then orders answers within each group. In fact, for crispy group-by, this
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order-within-groups semantics can be realized in OLAP functions2 [102], which was introduced in

SQL-99 and supported by major RDBMSs. Thus, for combining ranking and clustering, we consider

different groups as equal alternatives, and only those answers within the same group are compared

in ranking. For example, we may cluster houses by areas (as in snippet S3) and only rank among

those in the same area by prices and sizes (as in S2). Can we support such integration of ranking

“within” clustering efficiently?

4.2 The Proposal: Clustering + Ranking in Database Queries

4.2.1 The ClusterRank Query

We introduce a new type of ClusterRank query. The semantics of such a query is to conceptually

perform the following three steps. Note that we ignore less important operations in our context

such as attribute projection.

• Filtering: Upon a base relation or the Cartesian product of base relations, we apply Boolean

function B, resulting in a relation of qualifying tuples, σB;

• Clustering: The tuples in σB are partitioned into t clusters, based on the clustering attributes

c1, . . . , cm;

• Ranking: A scoring function F defined over a set of ranking attributes R assigns a ranking

score F(R)[t] to each tuple t. Within each cluster, the top k tuples with the highest scores (or

all if there are less than k tuples in the cluster) are returned. 3

In relational database, currently no SQL syntax can support such queries, nor can OLAP func-

tions express our query. Still, since OLAP functions support ranking within a group or a partition,

the closest way to express our semantics maybe the following:

2In DB2, rank() over (partition by attr1, . . ., attrm order by v) groups tuples by attri and orders tuples in each

group by v.
3When there are ties in scores, an arbitrary deterministic “tie-breaker” can determine an order, e.g., by unique tuple

IDs.
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select . . . , rank() over ( partition by K-means(t, c1, . . . , cm)

order by F(r1, . . . , rn)
) as score rank

from T1, . . . , Ts

where B(b1, . . . , bh)
when score rank <= k

Besides the fact that OLAP does not support functions such as K-means(t, c1, . . . , cm) in the

partition by clause, there is a fundamental difference between the task achieved by the above

query and the goal we want to achieve. The query treats K-means(t, c1, . . . , cm) as a black box,

which prevents the system from optimizing the query. Instead, we focus on integrating the ranking

and the clustering process in a tight manner, so that we can minimize the cost of the ClusterRank

query.

In essence, our semantics is based on the concept of fuzzy clustering. We require that partitions

have fuzzy boundaries, and we specify the total number of clusters, as in K-means. Borrowing the

syntax of SQL, we denote fuzzy clustering by “group by . . . into . . .”, and our goal is to integrate

it with the “order by . . . limit . . .” clause. The sketch of such a query is shown below 4.

select . . .

from T1, . . . , Ts

where B(b1, . . . , bh)
group by c1, . . . , cm into t
order by F(r1, . . . , rn) limit k

More formally, a ClusterRank query Q is a SPJ query augmented with clustering and ranking

conditions. The query consists of the following tables, attributes, functions, and constants.

• T : a set of tables {T1, . . . , Ts};

• B: a Boolean function B over a set of attributes b1, . . . , bh. The Boolean function B can be a

complex Boolean condition such as conjunctions and disjunctions of sub-conditions;

• c1, . . . , cm: a set of clustering attributes

• t: the number of clusters;

4For simplicity, we assume order by asc|desc uses descending order as default, although ascending is the default

in some systems.
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• F : a ranking function (a.k.a. scoring function) over the ranking attributes r1, . . . , rn;

• k: the number of top tuples to retrieve within each cluster.

We want to point out that clustering, by nature, is a fuzzy and unstable operation, as differ-

ent algorithms and configurations on the same data will generate different clusters. Therefore

on the one hand, in contrast to the deterministic semantics of conventional database queries, a

ClusterRank query may generate different answers in each run. On the other hand, such non-

determinism is consistent with our goal of enabling fuzzy data retrieval and exploration, and we

believe sacrificing the crispness of queries is worthwhile.

Note that the above syntax is for illustrating our concept only, as the use of SQL’s group-by

has many restrictions. The main reason is that when group-by is present, the columns in order-by

must either appear in the columns of group-by or be some aggregate functions. The meaning of

such a query is to order the groups based on some grouping attributes or aggregate values over the

groups. Moreover, we will not be able to specify the number of clusters desired, and group-by

does not allow function either.

Up till this moment, we have assumed only one semantics for ClusterRank queries, that is,

returning top k tuples within each cluster. (Call it global clustering/local ranking.) However, we

may extend our query model to embrace a richer set of semantics, tailored for various application

needs. One example is local clustering/global ranking, where the clustering is only performed

over the global top k tuples instead of σB. Another example is global clustering/global ranking,

where within each cluster, only those tuples that belong to the global top k (instead of local top

k) are returned. Moreover, we may further allow ranking of the clusters by aggregate functions.

While it is very interesting to study these alternative semantics and corresponding techniques for

processing queries, we focus on global clustering/local ranking in this work.

4.2.2 Challenges: The Problems with a Straightforward Approach

Literally following the semantics in Section 4.2.1, we obtain a straightforward approach for evalu-

ating ClusterRank queries. That is to, (1) materialize intermediate Boolean results σB; (2) cluster
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σB; (3) sort all the tuples within each cluster; and (4) return the top k tuples in each cluster.

However, such materialize-cluster-rank approach is clearly an overkill due to the fact that it

clusters and ranks all Boolean results although we only need the top k in each cluster. It can thus

be very inefficient. Materializing σB itself can be expensive, especially with joins. The cardinality

of σB can be large when Boolean conditions are not selective. As a costly procedure, clustering

such a large σB is expensive and may take multiple iterations. Sorting the tuples in each cluster

further adds to the overhead. Moreover the tuples may be dumped out and read in many times,

between materializing σB and clustering, during the iterations in clustering, and for sorting them.

All these result in significant disk I/O cost.

The high overhead of materialize-cluster-rank can seriously impact the usefulness of Clus-

terRank queries. It may be acceptable if the query was only one-shot, where the clustering and

ranking results, or at least σB, can be even materialized beforehand. This is clearly not the case in

our target applications (e.g., house search in Example 12), where users on-the-fly specify all kinds

of Boolean conditions, form clusters upon different attributes, and apply different ranking criteria

over different ranking attributes.

4.3 Framework: Overview

In this section, we first give a high-level overview of our approach (Section 4.3.1), then specify the

data and query model and assumptions (Section 4.3.2), and finally briefly introduce the background

on bitmap index (Section 4.3.3).

4.3.1 Our Approach: Summary-Based ClusterRank

The materialize-cluster-rank approach in Section 4.2.2 is very costly since it involves a large

amount of tuple-based operations. For clustering, the approach goes through every tuple and as-

signs it to its closest cluster, for iterations until the algorithm converges. For ranking, it computes

the score of each tuple and sorts all the tuples in each cluster. Obviously, it obtains the clustering
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and ranking results for each tuple. However, the query requests only a small portion of the tuples

processed, i.e., the top k within each cluster. A natural question to ask is: To reduce the cost in

processing each tuple individually, can we process at a “coarser” level?

Using appropriate data summary instead of all tuples in both clustering and ranking is our

answer to this question. Below we outline the summary-based ClusterRank approach. For clus-

tering, with any distance-based method, if two tuples are close enough to each other, it is natural

to assign them to the same cluster. In our approach, we use a grid-based data summary to put

similar tuples into the same “bucket” and then cluster at the bucket-level. To be more specific, we

perform partitioning (or binning) on each clustering attribute. The intersection of the bins over

the clustering attributes gives us a summary grid with buckets. If two tuples fall into the same

bucket (i.e., the same bin along each clustering attribute), we can consider them the “same” tu-

ple, i.e., inseparable. Thus a bucket is the smallest unit in our clustering. As long as the bucket

size is appropriate, the quality of clustering on the buckets is comparable to that on the original

tuples. However, the bucket-level clustering is much more efficient than the tuple-level one, since

the number of buckets is much smaller than the number of tuples.

For ranking, we can use a summary grid for efficient processing as well. For each cluster, the

grid for the tuples in the cluster is constructed over the ranking attributes. For the tuples in each

bucket, the upper-bound and lower-bound of their scores can be computed based on the boundaries

of the corresponding bins on individual attributes. The bounds enable us to prune those buckets

that do not contain any of the top k tuples. The top k in the unpruned candidate buckets are

guaranteed to be the top k among all the tuples.

The clustering and ranking operate on two orthogonal summary grids built over clustering and

ranking attributes, respectively. Note that the grids are query dependent since different queries

may have different clustering and ranking attributes. Thus how to efficiently construct the grids

on-the-fly at query time is one big challenge. Also, the clustering and ranking are on the results

of Boolean conditions, thus we must integrate the Boolean filtering, clustering, and ranking in an

efficient way.
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We use bitmap indexes to meet the challenge and the integration goal. A bitmap index uses

one vector of bits to indicate the membership of tuples for each value or each value range on

an attribute. By intersecting the bit vectors for the bins over the individual clustering attributes,

we construct the summary grid for clustering. The grid for ranking is constructed similarly. In

summary, the bit vectors serve as the basic unit in unifying Boolean filtering, clustering, and

ranking through the following steps: (1) Bit vectors are used to process the Boolean conditions,

(2) The resulting bit vectors are used in building the summary grid for clustering, (3) Clustering

is performed on the grid, (4) The resulting bit vectors corresponding to each cluster are used in

constructing the summary grid for ranking, and (5) Ranking is performed within each cluster.

4.3.2 Data and Query Model

We assume the tables have a snowflake-schema, consisting of one fact table and multiple dimen-

sion tables. There are multiple dimensions, each of which is described by a hierarchy, with one

dimension table for each node on the hierarchy. The fact table is connected to the dimensions

by foreign keys. The tables on each dimension are also connected by keys and foreign keys. As

a special case of snowflake-schema, star-schema has only one table on every dimension, thus no

hierarchy.

With respect to the ClusterRank queries in Section 4.2.1, we make the following assumptions

on the Boolean, clustering, and ranking conditions.

• B(b1, . . . , bh): The Boolean condition consists of conjunctive key and foreign-key joins and

range selections, including two-side range selection (e.g., 10≤a and a<20, or 10≤a<20), one-

side range selection (e.g., a≤20), and equality selection (e.g., a=10). Both sides of the two-

side selection condition can be either open-end or closed-end. Note that one-side and equality

selections are extreme cases of two-side selection.

• c1, . . . , cm: The clustering attributes are all numerical attributes. We assume a K-means cluster-

ing algorithm. Note that the summary-based approach can be applied to other distance-based
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clustering algorithms, as long as the distance function is based on the proximity of attribute val-

ues (thus the insight of considering the tuples in the same bucket inseparable is applicable). The

only difference observed by the clustering algorithms is that the buckets instead of real tuples

are clustered. Therefore the number of tuples in the buckets, or their weights, must be taken

into consideration. The algorithms can be simply adjusted to consider such weights [103]. In

general, applicable algorithms can be supported as clustering operators to choose, or even regis-

tered as external functions. The algorithms may require parameters such as stopping criteria and

distance functions (e.g., Euclidean or Manhattan distances). These parameters can be specified

through configuration settings in database systems.

• F(r1, . . . , rn): The ranking function is monotonic over numerical ranking attributes, as com-

monly assumed in ranking query processing [32]. Without losing generality, in this chapter we

focus on the weighted-sum, a typical monotonic function. Note that our approach in fact is valid

for any monotonic ranking function.

Under these assumptions, the sketch of the resulting simplified query is shown below.

select *

from T1, . . . , Ts

where v1
1 ≤ b1 ≤ v2

1 and . . . and v1
p ≤ bp ≤ v2

p

and bp+1 = bp+2 and . . . and bh−1 = bh

cluster by c1, . . . , cm into t
order by w1×r1 + . . . + wn×rn limit k

4.3.3 A Review of Bitmap Index

As an efficient index for dealing with complex decision support queries, bitmap index [79, 80, 81]

has gained broad interests and has been adopted in commercial systems. For a bitmap index on an

attribute, there exists a bitmap (a vector of bits) for each unique attribute value. The length of the

vector equals the number of tuples in the indexed relation. With respect to the vector for value x of

attribute a, its ith bit is set to 1, when and only when the value of a on the ith tuple is x, otherwise

0. With bitmap indices, complex selection queries can be efficiently answered by bit-wise logical
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operations (and, or, xor, and not) over the bit vectors. Moreover, as studied in [81], bitmap indices

also enable the efficient computation of some common aggregates, such as sum and count.

The original form of bitmap index has a problem with high-cardinality attributes. One bit

vector must be created for each attribute value in the domain, resulting in big overhead of storage

and maintenance if an attribute has many values. In tackling this challenge, researchers have

studied a variety of ways in encoding bitmap index [16, 97]. For example, binning can be used to

merge the bit vectors for a range of attribute values. Moreover, bit-sliced index (BSI) [84] directly

captures the binary representations of attribute values.

4.4 Realization: Data Structure and Algorithms

Building on the insights provided in the overview (Section 4.3.1), we present the detailed algo-

rithms in this section. In Section 4.4.1, we first give a formal description of summary grid, and

show how to construct the grid using bitmap index. We then introduce the summary-based algo-

rithms for clustering (Section 4.4.2) and ranking (Section 4.4.2). To simplify the discussion, our

discussion first focuses on single table queries without Boolean conditions. In Section 4.4.2 we

investigate how to extend our framework to incorporate selection and join conditions.

4.4.1 Data Structure: Building Summary Grids

Consider a relation T . A partitioning attribute a over T has a set of disjoint ranges that partition the

value domain of a. More formally, a has y partitioning points {a1, . . . , ay} and two special end-

points a0=mina and ay+1=maxa. The endpoints give the domain of a. That is, [mina, maxa) sub-

sumes the a values of all the instances in T . The partitioning points and endpoints together define

y+1 ranges over a, that are ranges={range0, . . ., rangey}, where rangei=[ai, ai+1). Given a set of

x partitioning attributes A={a1, . . . , ax}, their partitioning ranges determine a grid G(T ,A,{ranges1,

. . ., rangesx}).
5 The grid partitions the multi-dimensional space over A into z=

∏

i(yi+1) buck-

5We will often use the simplified notation G(T, A) when there is no need to emphasize the ranges in the context.
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Figure 4.1: Summary grid.

ets B={B1, . . ., Bz}
6, where each bucket is given by the ranges over A, one range per attribute.

More formally, the subscription of a bucket is determined by the subscriptions of the correspond-

ing ranges. That is, Bid=<rangeid1
1 , . . ., rangeidx

x > = <[aid1
1 , aid1+1

1 ), . . ., [aidx
x , aidx+1

x )>, where

id =
∑x−1

i=1 (idi ×
∏x

j=i+1(yj + 1)) + idx. A bucket in the grid thus represents the intersections of

the corresponding ranges. By partitioning the multi-dimensional space, the grid also partitions the

tuples of T into the z buckets. That is, Bid = {t|t ∈ T
∧

t.ai ∈ [aidi

i , aidi+1
i ), ∀i}. A summary grid

SG has |Bid|, the cardinality (i.e., the number of tuples) of each Bid in G.

Example 13 (Summary Grid): Figure 4.1 shows a grid over 10 tuples t1, . . . , t10 by partitioning

attributes {a, b}. The ranges on a and b are rangesa = {[0, 3), [3, 6), [6, 9)} and rangesb = {[0, 3),

[3, 6), [6, 9)}. There are 9 buckets, B0, . . . , B8. The ID of each tuple is shown inside its bucket.

For instance, B5=<range1
a,range2

b> = <[3, 6), [6, 9)>. It has 3 tuples (t1, t5, t10).

To construct a summary grid over a relation T by a set of partitioning attributes A, we may

simply go through all the tuples in T . In other words, we fully scan T if T is a base table or

fully materialize T if T is the (join) query result over base table(s). As motivated in Section 4.2.2,

6For the ease of presentation, we abuse the notation B to denote buckets, although B denotes Boolean conditions

in Section 4.2 and 4.3.
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our goal is to avoid such materialize-cluster-rank approach. We thus propose a novel method to

construct summary grids by intersecting bitmap index. This method not only is efficient in building

the summary grids, but also benefits the clustering and ranking operations based on the grids.

Given a set of partitioning attributes A=a1, . . . , ax, we require the existence of a bitmap index

Ii over each ai, which contains yi+1 bit vectors {vec0
i , . . . , vecyi

i }, corresponding to the yi+1 ranges

over ai, rangesi. Each vector vecj
i is a sequence of |T | bits, where the k-th bit is 1 if the value of

attribute ai in the k-th tuple of relation T is within rangej
i , the (j+1)-th range of ai, otherwise 0.

As a bucket in the summary grid represents the intersections of the corresponding ranges, we

can obtain the members in a bucket by intersection (bit-and operation, i.e., &) of the bit vectors

for the ranges. To be more specific, consider a bucket Bid = <rangeid1
1 , . . ., rangeidx

x >, we aim

to construct a bit vector vecBid
that contains |T | bits, where the k-th bit is 1 if the k-th tuple of T

belongs to the bucket Bid, otherwise 0. It is thus obvious vecBid
= vecid1

1 & . . . &vecidx
x . The set

bits (i.e., 1 bits) in vecBid
give the IDs of the tuples that fall in the bucket. Moreover, it is easy

to obtain the cardinality of the bucket Bid by counting the number of set bits (bit-count operation,

i.e., #) in the resulting vector vecBid
. That is, #vecBid

=|Bid|.

Example 14 (Constructing Summary Grid): Continuing with Example 13 and the grid in Fig-

ure 4.1, we obtain the members in each bucket by intersecting the corresponding bit vectors over

attributes a and b. For instance, vecB5 = vec1
a & vec2

b = 1100110011 & 1000100101 = 1000100001.

The 1st, 5th and 10th bits in vecB5 are set, indicating that B5={t1, t5, t10}.

4.4.2 Algorithms

Summary-Based Clustering

With the summary grid, we are able to cluster much more efficiently. The key idea is to cluster the

buckets in data summary and assign the tuples in the same bucket to the same cluster.

Given a set of tuples T to be clustered and the clustering attributes C={c1, . . . , cm}, we obtain

the summary grid SG(T,C) using C as the partitioning attributes. Associated with each bucket is a
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Procedure

1: choose k virtual tuples as the initial cluster centroids;

2: repeat

3: assign each virtual tuple to its closest cluster, with weight n, as if n identical copies are

assigned into the same cluster;

4: update the centroid of the clusters;

5: until the clusters converge;

Figure 4.2: Weighted K-means algorithm.

virtual point, located at the center of that bucket. We approximate the tuples in the bucket as a set

of identical tuples at the virtual point, with the number of identical tuples equaling the cardinality

of the bucket. Such approximation is based on the intuition that the tuples inside the same bucket

are close enough to each other if the grid is fine-grained enough, so that their differences can be

ignored without introducing significant impacts to the clustering results.

We apply clustering on the virtual points. The algorithms are similar to the conventional clus-

tering algorithms, except that the algorithms must take into consideration the weights of the virtual

points, where the weight of a virtual point is the cardinality of the corresponding bucket. For in-

stance, in the weighted K-means algorithm (Figure 4.2), when the virtual point of a bucket with

n tuples is inserted into a cluster, the centroid of the cluster is updated as if n identical points are

inserted. Note that such simple weighted K-means extension has been used in various data mining

and machine learning applications [61, 74], although the “weight” in their situation has different

meaning.

With such adaptation, the algorithm continues for multiple rounds, as centroids are updated

and virtual points are reassigned, until the clusters converge. At the end, the virtual points (i.e., the

buckets and thus the corresponding original tuples) are grouped into t clusters. The union (bit-or

operation, i.e., |) of the vectors for the buckets in the same cluster gives us the members in that

cluster.

Example 15 (Weighted K-means): Continue our running example in Figure 4.1. Consider the

case when we partition the 10 tuples into 2 clusters, using a and b as the clustering attributes.
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Suppose at the beginning we choose <4.5, 7.5> (the virtual point of B5) and <1.5, 1.5> (the

virtual point of B0) as the initial centroids of cluster1 and cluster2, respectively. Then the virtual

points of all the buckets are inserted into their closest clusters. Suppose virtual point <4.5, 7.5>

with weight 3 (since there are 3 tuples in B5) is inserted into cluster1 first. Later <7.5, 7.5> with

weight 1 (the virtual point of B8) is inserted into cluster1. The centroid of cluster1 is changed to

(5.25, 7.5), because 5.25 = (4.5 ∗ 3 + 7.5)/(3 + 1), 7.5 = (7.5 ∗ 3 + 7.5)/(3 + 1).

Suppose, when the clustering algorithm in Figure 4.2 ends, i.e., the clusters converge, the two

clusters are cluster1={B5, B8} and cluster2={B0, B1, B3}. The union of vecB5 and vecB8 thus

gives us the members of cluster1. That is , veccluster1 = vecB5 | vecB8 = 1000100001 | 0000000100

= 1000100101. Therefore cluster1 contains 4 tuples, t1, t5, t8, and t10. The members for cluster2

can be similarly obtained, as veccluster2=0111011010.

Compared with clustering the original tuples, the summary-based clustering has clear advan-

tages, as only one virtual point is needed for a large number of tuples in the same bucket. The

number of virtual points can be much smaller than the number of original tuples. This reduction of

data size saves not only the CPU cost in assigning tuples to clusters, but also more importantly the

I/O cost in scanning the tuples from base tables or intermediate relations. More importantly, such

a summary-based method allows us to integrate clustering and ranking seamlessly, as we shall see

in Section 4.4.2.

Summary-Based Ranking

The structure of summary grid can be used in ranking as well. The essence of the idea is that

we can prune most of the tuples that are bound to be outside of the top k tuples and zoom into

the candidate tuples, based on the upper-bound and lower-bound scores of the tuples within each

bucket. For a bucket, such bounds are derived from the corresponding ranges of the partitioning

attributes on the bucket. The details are given below.

Given a set of tuples T to be ranked and the ranking function F over the ranking attributes

R={r1, . . . , rn}, we obtain the summary grid SG(T,R) using R as the partitioning attributes. The bit
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Figure 4.3: Summary-based top-k ranking.

vector for each bucket in the grid is given by intersecting the bit vectors corresponding to the ranges

on the ranking attributes. The resulting vectors give us the tuple IDs in each bucket. Moreover, by

counting the set bits in a vector, we obtain the cardinality of the corresponding bucket.

In addition to the cardinality, we can obtain the upper-bound and lower-upper scores for tuples

in each bucket. As mentioned in Section 4.3.2, we focus on ranking functions that are monotonic

with respect to the ranking attributes. Therefore, given a bucket, the highest (lowest) possible

score of the tuples in that bucket is reached when the values of ranking attributes are equal to

the right (left) endpoints of the corresponding ranges on these attributes. More formally, given

Bid=<rangeid1
1 ,. . .,rangeidn

n > =<[rid1
1 , rid1+1

1 ), . . ., [ridn
n , ridn+1

n )>, the upper-bound score for

tuples in Bid is upperBid
=F(rid1+1

1 , . . ., ridn+1
n ) and the lower-bound score is lowerBid

=F(rid1
1 ,

. . ., ridn
n ). That is, F [t]=F(t.r1, . . ., t.rn) ∈ [lowerBid

, upperBid
), ∀t ∈ Bid.

Example 16 (Upper- and Lower-Bounds for Buckets): Continuing with our running example,

suppose we rank the 6 tuples of cluster2 in Figure 4.1 and obtain the top 2 tuples, with the ranking

function c+d. Figure 4.3 illustrates a summary grid for the tuples in cluster2, using the ranking

attributes c and d as the partitioning attributes. For the grid, rangesc={[0, 10), [10, 20), [20, 30),

[30, 40)}, and rangesd={[0, 10), [10, 20), [20, 30), [30, 40)}. Thus there are 16 buckets. For in-
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stance, B13=<range3
c , range1

d> = < [30, 40), [10, 20)>. The scores of the tuples in B13 are

bounded by [30 + 10, 40 + 20). That is, lowerB13=40 and upperB13=60. Similarly we can obtain

the bounds for other buckets.

Based on the upper-bounds and lower-bounds of the buckets, we can derive a set of candidate

buckets that are guaranteed to contain all the top k tuples in the grid. Correspondingly the rest of

the buckets can be safely pruned as the tuples in these buckets are guaranteed to be ranked lower

than top k. By performing union (|) of the vectors for the candidate buckets, we can thus retrieve

tuples in the candidate buckets to obtain their exact scores. The top k tuples in these candidate

buckets form the top k tuples in the grid as well. The intuition is demonstrated in the following

example.

Example 17 (Pruning Based on Bounds): The upper-bounds for the buckets in the non-shaded

region of Figure 4.3 are at most 50. Note that the lower-bounds for buckets B11 and B15 are at

least 50 and there are already 2 tuples in these buckets. Therefore we conclude that the tuples

in the non-shaded region have no chance to be top 2. On the other hand, we are not able to

obtain the same conclusion for any of the buckets in the shaded region, which thus constitute the

candidate buckets. Therefore we union the vectors of those non-empty candidate buckets, resulting

in veccandidate=vecB11 | vecB13 | vecB15 = 0011000010. Thus the candidate tuples are t3, t4, and

t9. We retrieve these tuples by random I/O access and identify t3 and t9 as the top 2 answers in

cluster2.

The detailed algorithm for ranking is shown in Figure 4.4. Formally, we prove both the cor-

rectness and the optimality of the algorithm, i.e., we prune all and only those buckets that can be

pruned.

Property 6: With respect to a relation T , a ranking functionF(R), and k, suppose the top k tuples

are Tk. The set of candidate buckets B′ obtained by the algorithm in Figure 4.4 is both correct:

B′ contains all the top k tuples, i.e., Tk ⊆ TB′; and optimal: B′ is the smallest set of buckets that

contain Tk, i.e., ∀B′′ s.t. ∃Bi ∈ B
′ and Bi /∈ B′′, there exists an instance of T s.t. Tk * TB′′ .
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Procedure

/* table: T ; ranking attributes: R; ranking function: F(R); summary grid: SG(T,R); candidate

buckets: B′ */

begin

1: B′ ← φ
2: for each bucket Bi ∈ SG(T,R) do

3: total← 0
4: for each bucket Bj ∈ SG(T,R) do

5: if lowerBj
≥ upperBi

then

6: total ← total + #vecBj

7: if total < k then

8: B′ ← B′ ∪ {Bi} /* candidate buckets */

9: vecB′ ← |Bi∈B′vecBi
/* union of the vectors */

10: TB′ ← retrieve tuples whose bits are set in vecB′ /* candidate tuples */

11: sort TB′ based on F(R)
12: return the top k tuples in TB′

end

Figure 4.4: Summary-based top-k algorithm.

So far we have assumed that we are given the set of tuples to be ranked. Intersecting the bit

vectors for the ranking attributes results in a grid over all the tuples, by using the ranking attributes

as the partitioning attributes. However, in our queries, we are required to obtain the top k results

in each cluster. In other words, a grid must be constructed for the tuples in each cluster. We realize

this easily by intersecting the vectors for the buckets in the aforementioned grid with the bit vector

for each cluster, as obtained in Section 4.4.2. An example is shown below.

Example 18 (Integrating Ranking with Clustering): Continue Example 16 and Figure 4.3. The

summary grid in Figure 4.3 was obtained by assuming that the bitmap indices on ranking attributes

c and d are built for the tuples in cluster2 only. While in reality, we can only build bitmap indices

for the whole table T , without knowing what will be the clusters for users’ dynamic queries. Below

is how we can obtain the summary grid in Figure 4.3 in reality.

According to Example 15, veccluster2=0111011010, which gives the 6 tuples in cluster2. For T ,

the bitmap index on c has vectors real vec0
c , real vec1

c , real vec2
c , real vec3

c . Suppose real vec1
c

=1000010000. We intersect real vec1
c with veccluster2 to obtain the tuples in cluster2 that fall in
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range1
c . Thus we have real vec1

c & veccluster2=1000010000 & 0111011010 = 0000010000, which

is the vec1
c in Figure 4.3. We can similarly obtain all the vectors, thus obtain the summary grid in

Figure 4.3.

Dealing with Boolean Conditions

We have assumed that we cluster the original relation T without considering Boolean conditions.

However, the tuples to be clustered are actually the result of Boolean conditions, i.e., σB(T ) 7.

Therefore before constructing the summary grid in Figure 4.1, the vectors over the clustering at-

tributes must take into consideration the filtering effect of the Boolean conditions. If a tuple does

not belong to σB(T ), the corresponding bits in the vectors must be set to 0. Bit vector opera-

tions smoothly allow such processing of clustering together with Boolean conditions, as explained

below.

Selections: Suppose our query has a set of conjunctive range selection conditions v1
1≤b1≤v2

1 , . . . ,

v1
p≤bp≤ v2

p. We first obtain a vector vecB, which contains the tuples that satisfy all the selection

conditions 8. Then given the grid on T over the clustering attributes C, G(T, C), we intersect vecB

with each vector for the individual range on every attribute (the vec0
a, vec1

a, vec2
a, vec0

b , vec1
b , vec2

b

in Figure 4.1), to obtain the grid on σB(T ), before generating virtual data points and applying the

weighted clustering algorithm.

There is a vast literature on using bitmap index to answer Boolean queries, which contains

the details about how to obtain vecB. Briefly, for each condition v1
i≤bi≤v2

i , given a bitmap index

over bi, we can use bitmap operations to obtain a vector vecv1
i ≤bi≤v2

i
(in simplified form vecbi

)

that contains the tuples satisfying the condition. By intersecting the vectors for all the individual

conditions, we obtain vecB. The bitmap index may need to be encoded in some way so that

a very small number of bitmap operations can allow us to obtain such vecbi
. There are many

encoding schemes in the literature(e.g., [16, 97, 96]). For instance, some scheme requires only

7Here B denotes Boolean conditions, not the buckets in Section 4.4.1- 4.4.2.
8More strictly speaking, the corresponding bits for the satisfying tuples in T are all set in the vector.

94



one bitmap operation for any one-side range selection condition and some requires two for any

two-side condition.

Note that even without using bitmap index to handle the selection conditions, we can con-

struct the bit vector vecB upon σB(T ) that is obtained using any conventional query processing

techniques.

Join Queries: Under the assumption of snowflake-schema made in Section 4.3.2, our technique

can be easily extended to handle join queries. Such join queries are so-called “star-joins” under

star-schema, a special case of snowflake-schema. Consider a simple case with only two tables,

where S is the fact table and R is the dimension table, j1 is a key of R and j2 is the corresponding

foreign key in S. Due to the foreign key constraint, there exists one and only one tuple in R joining

with each and every tuple s ∈ S. Therefore for a join condition R.j1=S.j2, virtually all the join

results are in S, with some attributes in S and some other in R. Therefore, for each attribute a

in the schema of R except j1 (since R.j1=S.j2 and we already have j2 in S), we can construct

a bitmap index on a for the tuples in S, even though a is not an attribute of S. In general, we

can follow this way to construct bitmap index for the tuples in the single fact table, on all relevant

attributes in the dimension tables. Thus the Boolean selection conditions involving these attributes

can be viewed as being applied on the fact table only. A join query can then be processed like a

single table query. More details about such bitmap join index are in [80].

Example 19 (Handling Boolean Conditions): Continue Example 14 and Figure 4.1. Suppose

our query has a condition 10≤e≤20. By operations on the bitmap index over e, suppose we obtain

vece=1100101000, indicating tuples t1, t2, t5, and t7 satisfy the condition. After intersecting with

the vectors on the ranges, we get (vec1
a)

′=vec1
a & vece=1100110011 & 1100101000=1100100000,

(vec2
b)

′=vec2
b & vece=1000100101 & 1100101000=1000100000. Thus (vecB5)

′ = (vec1
a)

′ & (vec2
b)

′

= 1100100000 & 1000100000 = 1000100000, indicating the new bucket B′
5={t1, t5}.
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4.5 Optimization Heuristics

In this section, we present the optimization heuristics in summary-based clustering (Heuristic 1

and 2) and ranking (Heuristic 3).

Heuristic 1– Pruning Underpopulated Buckets in Grid Construction for Clustering:

For clustering on high dimensions, there are potentially huge number of buckets in the summary

grid even if the number of ranges per attribute is small. However, likely many of the buckets

are empty (if there exist clusters at all). During construction of the grid, we get rid of the empty

intermediate buckets before the vectors from all the attributes are intersected. More generally, we

prune the buckets whose cardinality is under certain threshold, i.e., the underpopulated buckets

that likely will result in many empty buckets if they further intersect with the remaining attributes.

The pruned buckets do not participate in clustering. After clustering the non-pruned buckets in the

grid, we need to use random access to retrieve the tuples belonging to the pruned buckets. (The

IDs of these pruned tuples are obtained by bit-negation (i.e., ∼) of the union of vectors for all the

clusters.) The pruned tuples are then assigned to their closest clusters, whose vectors are modified

by setting the bits corresponding to the pruned tuples.

Heuristic 2– Dynamically Selecting Partitioning Ranges:

To construct the summary grid in Section 4.4, the bitmap index on each partitioning attribute must

have a set of bit vectors, one per range of the attribute values. However, we may not know in prior

what is the appropriate number of ranges, i.e., the number of vectors to build. On the one hand,

too many ranges result in too many buckets in the grid, thus large number of bitmap intersections.

On the other hand, insufficient number of buckets due to too few ranges result in poor clustering

quality or pruning power, for summary-based clustering or ranking, respectively.

We address this problem by starting with large buckets (i.e., small number of buckets) and

splitting buckets dynamically. At the beginning, we start with 2 ranges on each attribute, resulting

in 2n buckets after intersecting the vectors from all the n attributes, among them x2 buckets are

nonempty, thus x2 bucket vectors. If more ranges are necessary, we split each range into 2 ranges.
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For each of the x2 bucket vectors, on each attribute, we intersect the bucket vector with the 2

vectors for the smaller ranges within the original range corresponding to the bucket. We stop

splitting an individual bucket if its cardinality is under certain threshold. After this step, totally we

obtain x4 vectors for the smaller nonempty buckets. We stop the whole splitting procedure when

the number of nonempty buckets is over another threshold.

Such binary splitting of ranges (vectors) can be easily supported by bitmap encoding scheme

such as bit-sliced index (BSI) [81]. A BSI on an attribute a consists of m+1 vectors vec0, . . . ,

vecm, where the ith bit of vecj is set if the jth bit is set in the binary representation of ti.a.

Thus these vectors together form the binary representation of the attribute values in all the tu-

ples. Therefore vecm and ∼vecm provide the 2 vectors for the initial 2 ranges on a. Similarly

vecm&vecm−1, vecm&(∼vecm−1), (∼vecm)&vecm−1, and (∼vecm)&(∼vecm−1) give the 4 vec-

tors when the ranges are split, and so on. We can easily adopt BSI for ranges. The idea is to

partition the value domain of an attribute into a sufficiently large number (2m+1) of “minimal”

ranges, and number the ranges with 0, . . ., 2m+1-1, ordered from the range with the lowest value

to the highest. We then use BSI to capture the binary representation of the numbers corresponding

to the minimal ranges, thus allow various sizes of the dynamic ranges during splitting.

According to our experiments (discussed in Section 4.6), empirically a small number of ranges

such as 10 is sufficient for 2 or 3 clustering attributes, 5 is sufficient for 4 to 6 attributes, and even

only 3 ranges is sufficient for 8 or more attributes. Intuitively, with large number of clustering

attributes, two tuples are unlikely to be in the same range on many attributes, therefore large range

is sufficient to differentiate the tuples for the clustering. The grid has 38 buckets when there are 3

ranges on each of the 8 attributes, which can be sufficient.

Heuristic 3– Incrementally Constructing Grid for Ranking:

Directly following Section 4.4.2, we would have to fully construct the summary grid for ranking.

However, there is no need for such full grid, since most of the buckets can be pruned even before

they are actually constructed. Following this intuition, we construct the summary grid for ranking

in lock-step fashion, similar to the NRA top-k algorithm [32]. Detailed algorithm is omitted.
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Instead, We explain the algorithm using an example. For simplicity, suppose there are 2 ranking

attributes a and b, each of which has 4 ranges, rangesa = {range0
a, range1

a, range2
a, range3

a} =

{[a0, a1), [a1, a2), [a2, a3), [a3, a4)} and rangesb = {range0
b , range1

b , range2
b , range3

b} = {[b0, b1),

[b1, b2), [b2, b3), [b3, b4)}.

At step–1, we start by intersecting the first range from each ranking attribute, i.e., range3
a and

range3
b , resulting in the single bucket with the highest upper-bound score in the whole grid, i.e.,

B15 = < range3
a, range3

b >. Then at each following step–i, we use the next range on every attribute

(in our example range4−i
a and range4−i

b ) and intersect them with previous ranges. The seen ranges

classify the buckets in the full grid into three types: (1) completely seen buckets or csb, whose

corresponding ranges are seen on every attribute in previous steps; (2) partially seen buckets or

psb, whose ranges are seen on some attributes; and (3) unseen buckets or usb, whose ranges are

unseen on every attribute. The upper-bound and lower-bound scores for csb are computed from the

corresponding ranges. For one psb B, on attribute a, if the corresponding range is rangej
a, where

j < 4 − i (i.e., rangej
a is unseen yet), we use [a4−i−1, a4−i) as the range of B on a, otherwise

we use the corresponding seen range if j ≥ 4 − i. We thus obtain the bounds for psb. Similarly

we obtain the bounds for usb, as it is a special case of psb. At some step, if there is a subset of

csb containing at least k tuples in total such that their lower-bounds are higher than or equal to the

upper-bounds of all the psb and usb, then the top k tuples in the csb are the top k answers and our

algorithm terminates.

4.6 Experiments

The framework and algorithms are implemented in C++. Moreover, the bitmap index implemen-

tation is based on [89], which builds multiple bitmap indices at different domain resolutions and

compresses them using the WAH compression method [96]. The weighted K-means is built upon

a publicly available implementation of K-means algorithm from [34]. For the straightforward ap-

proach of materialize-cluster-rank, we apply this K-means implementation on real tuples instead
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parameter meaning values

s # tuples 80K, 400K, 800K, 4M, 8M

t # clusters 2,4,6,8,10,20,50,100

c # clustering attributes [2, 8]

p # ranges per clustering attribute 5, 10, 20, 30, 40

k retrieval size per cluster 1, 5, 10, 50, 100

r # ranking attributes [2, 5]

p′ # ranges per ranking attribute 10, 20

Table 4.1: Configuration parameters for experiments on integrating clustering and ranking.

of the virtual tuples from summary, and use an implementation of external merge-sort for ranking.

To verify its effectiveness, we conducted experiments to compare the proposed framework

(denoted as ClusterRank) with the straightforward approach (denoted as StraightFwd), on both

efficiency and quality. Moreover, we investigated how they are affected by important factors un-

der various configurations. The detailed experimental results are presented below. Section 4.6.1

describes the settings of experiments. Regarding efficiency, the experimental results show that

ClusterRank is orders of magnitude more efficient than StraightFwd (Section 4.6.2). Regarding

quality, the results indicate that clustering based on the summary gird achieves close to the same

quality of results as clustering on the full data does (Section 4.6.3).

4.6.1 Experimental Settings

Our experiments were conducted over a synthetic table with a set of 4-byte integer clustering at-

tributes, a set of 4-byte floating number ranking attributes, and other attributes to pad the clustering

and ranking attributes to form 100-byte per tuple. The tuple values of these two sets of attributes

are independently created. The values of the ranking attributes are independently generated by

various distributions, including uniform, Gaussian, and cosine distributions. The values of the

clustering attributes are produced by a data generator for clustering algorithms from [34]. The

generator creates values based on underlying data models, one model per cluster. A model speci-

fies, for the corresponding cluster, the mean and standard deviation of each attribute individually.

99



The values on an attribute are generated by following the Gaussian distribution with the specified

mean and standard deviation.

Each query used in our experiments clusters the tuples by all the clustering attributes and uses

the summation of the ranking attributes as the ranking function. Note that we do not experiment

with Boolean selection and join conditions. The synthetic table can be viewed as the results after

such conditions are applied. To obtain the results, the approach of using bitmap index has been

well-studied and is shown to be very efficient for range selections and star-joins [79, 80, 81, 16,

97]. In Section 4.4.2 we have discussed how to integrate with such techniques. To focus on the

performance study of the new clustering and ranking methods proposed, we do not mix with the

performance measurements on Boolean conditions, whose results are well-known in the literature.

The experiments were run on a PC with 2.8GHz Intel Xeon SMP (dual hyperthreaded CPUs

each with 1MB cache), 2GB RAM, and a RAID5 array of 3 146GB SCSI disks, running Linux

2.6.15.

4.6.2 Efficiency

We evaluated the performances of ClusterRank and StraightFwd and studied how they are affected

by several important configuration parameters, which are summarized in Table 4.1.

The Efficiency of Clustering:

To evaluate the performance of clustering, we conducted experiments under groups of configura-

tions by the value combinations of the four relevant parameters, s, t, c, and p. In each group of

experiments, we varied the value of one parameter and fixed the values of the remaining three.

We then run ClusterRank and StraightFwd, and studied how their performances are affected as the

value of the varying parameter changed. The results on wall-clock execution time under four sam-

ple groups of experiments are shown in Figure 4.5. In the figure, for ClusterRank, we use CR-build

to represent the time for building summary grid and CR-cluster for clustering using the summary.

For StraightFwd, we use SF-scan to denote the time for scanning the table and SF-cluster for
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directly clustering the original tuples instead of using the summary.

Overall, the values of these four time measurements are in general in the order of CR-cluster<CR-

build<SF-scan<SF-cluster. Due to the small number of virtual tuples in the summary grid, CR-

cluster is several orders of magnitude smaller than others, therefore is almost negligible. While on

the other hand, SF-cluster is orders of magnitude larger than others. SF-scan is normally larger

than CR-build, with the differences often being an order of magnitude. In summary, Figure 4.5

shows that with respect to the efficiency in clustering, our approach (CR-build + CR-cluster) is

much more efficient than the straightforward one (SF-scan + SF-cluster).

To understand how the parameters affect the performance, below we further analyze the indi-

vidual graphs in Figure 4.5.

(a) s=4M, t=10, c=3: Varying the number of ranges per attribute in constructing the grid, 4 mil-

lion tuples are partitioned into 10 clusters by 3 clustering attributes. As the number of ranges (p)

increases, the less efficient grid construction (CR-build) is due to more bitmap operations for in-

tersecting the ranges. Moreover, as p increases, there are also more nonempty buckets (thus more

virtual tuples) in the summary grid when it is constructed, therefore CR-cluster takes longer. This

is further verified by Figure 4.6, which shows the number of bitmap operations and the number of

nonempty buckets in the grid. Figure 4.6(a)-(d) illustrate the results under four groups of config-

urations, individually corresponding to the configurations in Figure 4.5(a)-(d). Although the cost

of ClusterRank increases as p increases, usually a small value of p such as 10 or 5 is sufficient for

good quality of clustering results.

(b) s=4M, t=10, p=5: In this configuration c is changing and other parameters are fixed. We can

see that the effect of c is similar to that of p, as its increasing results in more bitmap intersections

and more nonempty buckets (cf. Figure 4.6(b)), thus more expensive CR-build and CR-cluster.

ClusterRank enjoys clear advantages over StraightFwd until the number of clustering attributes

goes beyond 8, which we believe is sufficiently large in our target applications.

(c) s=4M, c=8, p=5: As expected, the more clusters to produce, the less efficient the clustering is,

thus longer execution time for both CR-cluster and SF-cluster.
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(d) t=10, c=3, p=10: As expected, increasing the number of tuples increases the cost of everything.

The Efficiency of Ranking:

We conducted experiments under configurations of the four relevant parameters, s, t, r, and k.

Similar to the experiments in clustering efficiency, in each group of experiments, we changed the

value of one parameter and fixed the remaining ones. Note that the number of ranges per ranking

attribute (p′) with value 20 works quite well in general in all the configurations. Therefore we do

not present the results with respect to various p′ values. The wall-clock execution time under four

sample groups of experiments is shown in Figure 4.8, where we use CR-rank to denote the time

for grid-based ranking in ClusterRank and SF-sort for the sorting in StraightFwd.

Overall, SF-sort is one order of magnitude more expensive than CR-rank. We further analyze

the individual graphs. Figure 4.8(a) shows that CR-rank only increases slowly as k increases, thus

ClusterRank is effective for sufficiently large retrieval size within each cluster; Figure 4.8(b) shows

that CR-rank increases as the number of ranking attributes (r) increases, and becomes close to SF-

sort when r=5. However, as commonly acknowledged in the literature of ranking queries (e.g.,

[32, 13, 30, 19, 4, 57, 21, 67, 55]), in many cases a very small number of ranking attributes suffice.

We believe this is especially true in our motivating applications, where users are not expected to

articulate too complicated ranking criteria involving more than 5 attributes; Figure 4.8(c) indicates

that CR-rank increases as the number of clusters (t) increases. This is because ClusterRank con-

structs a grid for each cluster and performs ranking within each grid. Although SF-sort is not

affected by t, it may be smaller than CR-rank only when there are a very large number of clusters.

We argue the number of clusters t is small in our target applications, because clustering is used to

organize large query results for users and such large t is not helpful and thus unnecessary. Finally,

Figure 4.8(d) shows that both CR-rank and SF-sort increase as the number of tuples increases, as

expected.

The Overall Efficiency:

We compared StraightFwd and ClusterRank with the execution time for clustering and ranking
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combined. Consider both Figure 4.5 and 4.8, we see that SF-sort in general is close to SF-cluster.

Thus these two costs together dominate the execution time of StraightFwd, which is orders of

magnitude more than the time of ClusterRank. In Figure 4.9 we show such comparisons under

two sample configurations. In Figure 4.9(a) we vary the number of clusters and fixed the values of

others, while in Figure 4.9(b) we vary the number of tuples.

4.6.3 Quality

We compared resCR, the clustering results from the weighted K-means on the summary grid (Clus-

terRank), with resSF , the results from the conventional K-means on the original tuples (Straight-

Fwd). We measured how close resCR is to the ground truth resSF , i.e., close(resSF , resCR). This

metric is defined below.

Suppose there are two methods that generate two different sets of clusters res= {c1, . . . , ct}

and res′={c′1, . . . , c
′
t}, respectively, where each ci and c′j is a set of tuples. The closeness of res′ to

the ground-truth res is

close(res, res′) =

∑

i(|ci| ×maxj(sim(ci, c
′
j)))

∑

i |ci|
,

where

sim(ci, c
′
j) = 2

|ci ∩ c′j|

|ci|+ |c
′
j|

.

This metric is asymmetric. Since close(res, res′) measures how well the clusters in res are cap-

tured by the clusters in res′, it should be used when res instead of res′ is the ground-truth. Its

value range is [0, 1], as 1 indicates identical results and 0 indicates totally different results. The

metric sim has been used in comparing clustering results, e.g., in [63] and [36]. It is equivalent to

the F-measure for precision/recall in IR literature.

K-means algorithm is known to be unstable and its behavior depends on the initial centroids

chosen [60]. Even running K-means twice on the same data may not give us very high closeness
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between the two results. Therefore instead of interpreting the value of close(resSF , resCR) di-

rectly, we compare it with close(resSF , resSF ), which is the average closeness among the results

from multiple runs of StraightFwd. If close(resSF , resCR) is close to close(resSF , resSF ), we are

confident that the quality of the results from ClusterRank is comparable to that from StraightFwd.

Figure 4.7(a)-(d) show close(resSF , resCR) and close(resSF , resSF ) under four groups of

configurations, corresponding to the configurations in Figure 4.5(a)-(d) and Figure 4.6(a)-(d). The

figures show that the quality of clustering results from ClusterRank is often close to the quality

from StraightFwd. The quality increases as the number of ranges per clustering attribute (p) in-

creases (Figure 4.7(a)), because the summary grid becomes more and more fine-grained. However,

we observe that a relatively small p such as 5 and 10 usually is sufficient. As Figure 4.7(b) shows,

for the same p, the more attributes, the higher quality. This is simply because it is easier to parti-

tion data when they have more dimensions to compare with each other. Therefore with 8 clustering

attributes, p=5 is sufficient under various number of clusters requested (Figure 4.7(c)), and with 3

clustering attributes, p=10 is fairly sufficient (Figure 4.7(d)). Moreover, Figure 4.7(c) verifies that

it is more difficult to perform clustering when more clusters are quested.
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Chapter 5

Beyond Ranking: Inverse Ranking Queries

We identify a novel and interesting type of inverse ranking queries, symmetrical to ranking. Such a

query obtains the rank of a data record within a certain context given in the query. Inverse ranking

queries are useful in many places. For instance, a credit card company may be interested in the

standing of a new customer among her peers, in order to determine her credit line. As another

example, we may want to compare a newborn baby to others with respect to their heights, weights,

etc. While ranking has recently gained significant attention from the research community, inverse

ranking query has not been studied so far, in contrast to its usefulness. This thesis thus proposes

and defines the query model and SQL language extension to enable expressing such queries.

With the current query processing techniques, a straightforward exhaustive approach of pro-

cessing inverse ranking queries is to fully materialize the results of a Boolean query, i.e., the con-

text of the ranking, and then count the number of tuples whose ranking scores are higher than the

score of the object in question. The rank of the given object is thus obtained as a post-processing

step. Such an exhaustive approach can be inefficient, as the query only asks for the rank of a

certain tuple, while the full Boolean results are indeed made. Observing the symmetry between

inverse ranking queries and top-k queries, it may appear that the recently developed top-k query

algorithms can be adopted. However, top-k algorithms are explicitly optimized for retrieving very

small number (k) of top answers. As k increases, the performance of these algorithms degrades

and eventually becomes even worse than the straightforward materialize-then-sort approach (Chap-

ter 2). Unfortunately, the tuple in question in an inverse ranking query can be ranked anywhere

such as in the middle or at the bottom, corresponding to fairly large k. Therefore we must look for

novel and efficient processing techniques.

107



We design a partition-and-prune framework for processing inverse ranking queries. The frame-

work starts by partitioning the space of tuples into buckets. The upper and lower bounds of ranking

scores for tuples within each bucket are derived. These bounds determine which are the candidate

buckets whose tuples rank near the given tuple in the query. After computing their cardinalities

(number of tuples), the non-candidate buckets can be safely pruned because, for any such bucket,

its tuples are all ranked higher (lower) than the query tuple. Therefore we only need to retrieve

the tuples in the candidate buckets in order to obtain the ranking position of the query tuple. To

realize this general framework, we introduce several partition schemes and implementation meth-

ods. Some of these methods exploit common data structures in database systems, while some

others utilize bitmap index built over ranking functions. Our experimental study shows that our

algorithms can be significantly more efficient than the exhaustive method.

While inverse ranking query is compelling by itself, we find that its dual form, quantile query,

is also important. A quantile query returns the results at certain ranking positions according to

a ranking function. More specifically, the q quantile of a given set of data is the value vq such

that the fraction q of the data are higher than vq. Quantile queries can be useful in non-traditional

data retrieval and exploration since they provide a mechanism of fast-forwarding over the data,

as an analogy to such functionalities in video and audio equipments. They locate the quantiles

as a sketch of the query results, which give users a quick feeling about both the data and the

ranking function, and thus help in continuously exploring the data. Moreover, quantile points

have significant statistical meanings. For example, the 50% quantile is the mean of a dataset; the

quantile-quantile (q-q) plot is a graphical method used in statistics to compare the distributions of

two sets of data and determine if they come from populations with a common distribution.

This is also the first that studies such quantile queries in the general context of querying

databases. Previous works on computing quantiles [3, 5, 37, 71, 6, 28, 27, 101] focus on the

quantiles for a set of data values, whereas we study the quantiles among database records that

are ranked by functions combining multiple criteria (attributes). More importantly, the context of

ranking in this study is general database queries with Boolean conditions (selections and joins),
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which are not considered by previous works.

The duality between inverse ranking queries and quantile queries allows us to apply the same

framework and similar algorithms in processing them. However, we focus on inverse ranking

queries, and do not discuss such adaptation.

In summary, this work makes the following contributions:

• Concept: inverse ranking queries and quantile queries. We identify the query models and

propose the SQL extensions for defining these queries. To the best of our knowledge, ours is the

first in the literature to study inverse ranking queries, and the first to investigate quantile queries

in general database query context.

• Framework: partition-and-prune approach. We design this general framework to avoid

costly exhaustive approach. We also develop a preliminary cost model to assist the analytical

comparisons of various implementation methods for the framework.

• Implementations. We develop several methods to instantiate the framework, utilizing existing

and new data structures. We analyze the pros and cons of these methods, based on the cost

model. Our empirical study verifies that some of our methods can be significantly more efficient

than the exhaustive approach.

The rest of the chapter is organized as follows. In Section 5.1, we introduce the SQL exten-

sion to define inverse ranking and quantile queries and illustrate the example queries. Section 5.2

presents the partition-and-prune framework, focusing on inverse ranking queries. Several imple-

mentation methods for the framework are introduced in Section 5.3. We experimentally evaluate

the proposed framework and algorithms in Section 5.4.

5.1 Defining Inverse Ranking Queries and Quantile Queries

In this section, we propose extensions to SQL language for expressing inverse ranking and quantile

queries, and use examples to motivate their applications.
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To specify an inverse ranking query, we overload the OLAP function rank() in SQL1, as shown

below:

select . . . , rank() in ( select . . .

from R1, ..., Rn

where B(c1, . . . , cj) )

from R′
1, ..., R′

h

where B′(c′1, . . . , c
′
l)

order by F(p1, . . . , pm)

In an inverse ranking query Q, the product of the base relations R′
1×. . .×R′

h, filtered by a

Boolean functionB′(c′1, . . . , c
′
l) (e.g., B′=c′1∧c

′
2∧c

′
3), constitutes the query tuples. Following rank()

in, another Boolean function B(c1, . . . , cj), applied over R1× . . .×Rn, supplies the context tuples.

A ranking function F over the ranking attributes p1, . . ., pm (e.g., F=p1+p2+p3) computes the

ranking scores of context and query tuples. The query returns the ranks of the query tuples among

the context tuples, by the descending order of their scores2. Note that in order to make the rank-

ing function applicable, the schema of both context and query tuples should contain the ranking

attributes.

Formally, Q returns query tuples RB′=σB′(c′1,...,c′
l
) (R′

1×· · ·× R′
h) with their ranks, determined

as follows. Each tuple t has a ranking scoreF [t]. For a tuple tq∈RB′ , its rank is the number of con-

text tuples tc that have higher scores than tq (plus 1), i.e., rank(tq)=1+|{tc|F [tc]>F [tq], tc∈RB}|,

where RB=σB(c1,...,cj)(R1×· · ·×Rn) is the context relation. When there are ties in scores, an arbi-

trary deterministic “tie-breaker” function can be used to determine an order, e.g., by tuple IDs.

The aforementioned query obtains query tuples by Boolean selection and join conditions, thus

it requires the existence of query tuples in the Boolean results. However, we may be interested

in the ranks of virtual tuples that do not necessarily exist. Therefore we propose the following

alternative syntax that requests the rank of a virtual tuple p1 = v1, . . . , pm = vm.

1OLAP functions, introduced in SQL99 and supported by major DBMSs, are for different purpose than inverse

ranking.
2We assume order by asc|desc uses descending order (desc) as default, although asc is the default in some systems.
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select . . . , rank() in ( select . . .

from R1, ..., Rn

where B(c1, . . . , cj) )

values (p1 = v1, . . . , pm = vm)
order by F(p1, . . . , pm)

Example 20: Consider a credit card company. To decide whether to approve the increase of credit

line upon the request from a customer (with customer id 1001), the following query gives the rank

of the customer among the customers in the same area. Various ways can be explored in computing

the ranking scores. For example, a weighted average of the customer’s income, age, and credit

history is used in the query.

select cid, rank() in ( select *

from Customer
where zipcode=12345)

from Customer
where cid=1001
order by w1×income+w2×age+w3×credit

Alternatively, we might want to use the following query to determine the rank of a user who is

not an existing customer.

select cid, rank() in ( select *

from Customer
where zipcode=12345)

values (income=50000, age=30, credit=600)

order by w1×income+w2×age+w3×credit

To specify a quantile query, we extend the syntax of SQL language by adding a quantiles at

clause, as shown below:

select ...

from R1, ..., Rn

where B(c1, . . . , cj)
order by F(p1, . . . , pm)
quantiles at q1, ..., qk

The semantics of such a query Q is that, among the filtered Boolean results RB, ranked by

F(p1, . . . , pm), those tuples ranked at the given quantile positions q1, . . . , qk are returned. Formally,
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Q returns k tuples3 {t1, . . . , tk} from RB at the quantiles q1, . . . , qk, such that rank(ti)=⌈qi×|RB|⌉

(for 0≤qi≤1, representing percentile) or rank(ti)=⌈qi⌉ (for qi>1, representing absolute ranking

position).

Example 21: Consider a real estate company that is interested in identifying their representative

houses at several ranking positions, according to the perspective of a certain type of customers.

The houses are ranked by size, price, and so on. The quantile query is shown below.

select ∗, size/price as score
from Houses
where zipcode=12345

order by score
quantiles at 0.1, 0.5, 0.7, 0.95

5.2 Partition-and-Prune Framework

In this section, we present a general framework for processing inverse ranking queries. To answer

such queries, with the ranking scores of the given query tuples, we must locate where the query

tuples stand among the context tuples. As discussed at the beginning of Chapter 5, the problems

with the straightforward exhaustive approach is that it fully materializes the context tuples. There-

fore the key of a more efficient solution lies in avoiding such full materialization. To be more

specific, we want to prune irrelevant context tuples and quickly zoom into the regions containing

tuples with scores close to the query tuples.

The framework is simple and intuitive. We partition the space of tuples into buckets and com-

pute the upper-bound and lower-bound of ranking scores of the tuples within each bucket. These

bounds classify the buckets into three categories, with respect a given query tuple. The buckets

with lower-bounds higher than the score of the query tuple contain context tuples ranked higher

than the query tuple; the buckets with upper-bounds lower than the query tuple score contain lower-

ranked context tuples; and the context tuples in the rest of the buckets, the candidate tuples, may

3More rigorously, it returns min(k, |RB|) tuples.
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Figure 5.1: Buckets in a 2-dimensional tuple space.

be ranked higher or lower than the query tuple. Therefore by counting the cardinalities (number

of tuples) of the buckets, we know how many context tuples are guaranteed to be ranked higher

(lower) than the query tuple, and we only need to look up the scores of the candidate tuples to

obtain the rank of the query tuple. We illustrate the idea in Example 22, as our running example.

Example 22: Consider the following inverse ranking query, which asks for the ranks of those

tuples in R with a=35 and b=20, ranked by a+b.

select *, rank() in (select * from R)

from R
where a=35 and b=20
order by a+b

Figure 5.1 shows the two-dimensional tuple space (on attributes a and b) partitioned into 16

buckets. The ranges of a and b for each bucket are shown. For instance, the bucket in the left

lowermost corner (B0) has ranges 0≤a<10 and 0≤b<10. The ranges on a and b determine the

upper-bound and lower-bound of tuple scores for buckets. We show the bounds and the cardinality

inside each bucket. For instance, B0 contains 5 tuples, which have the lower-bound and upper-

bound score 0 and 20, respectively.
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Among these buckets, the shaded ones are candidate buckets and others are pruned buckets.

Bucket B15 is pruned because the scores of tuples inside it are at least 60, thus higher than the

score of the query tuples, 35+20=55. The 10 left lower buckets are also pruned because their tuple

scores are lower than 55. The tuples in the candidate buckets may score higher or lower than 55.

There are 10 tuples in B15 and totally 30 tuples in the candidate buckets. Therefore the ranks of the

query tuples are between 11 and 40. To get their ranks, we must obtain the tuples in the candidate

buckets and resolve their orders to the query tuples.

Based on the intuition from the above example, below we formally present the framework. Sec-

tion 5.2.1 defines the partitioning and pruning of tuple space, which are the basis of the procedural

general algorithm in Section 5.2.2. Section 5.2.3 discusses the cost model for the algorithm. The

cost model helps us in designing and analyzing various schemes of partitioning in Section 5.2.4,

and is the guideline in realizing the partitioning schemes and the algorithm, in Section 5.3.

Throughout the discussion, we assume there is only one single table, without Boolean condi-

tions over context tuples. In other words, we assume the context relation RB is simply one base

table. In Section 5.3, we discuss how to extend the techniques to handle join and selection condi-

tions. Moreover, we will not discuss how to obtain the query tuples RB′ . Note that such tuples are

given when the query is about virtual tuples, using values (proposed in Section 5.1). In other cases,

we need to obtain the query tuples and cannot avoid the overhead. Certainly there are situations

when the cost of obtaining the query tuples themselves dominates that of getting their ranks.

5.2.1 Tuple Space Partitioning and Pruning

Definition 2 (Partition, Bucket, Constraint): A relation, R(a1, a2, . . .)={t1, t2, . . .}, is a set of

tuples {t1, t2, . . .} with the schema A={a1, a2, . . .}. A partitionPR={b1, b2, . . .} is a set of subsets

of R such that∪bi=R, bi 6= φ, and bi∩bj=φ, ∀bi, bj ∈ PR. Each subset bi is a bucket. Given a bucket

bi, its cardinality |bi| is the number of tuples belonging to bi. That is, bi={ti1 , . . . , ti|bi|
}, where

tij ∈ R, ∀1 ≤ j ≤ |bi|. Each bucket bi is associated with a set of constraints Ci={ci1, ci2 , . . .}.
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Each constraint is of the form l ≤ g(A) < u, where g(A) is a function over A. Given any tuple

tij ∈ bi, all the constraints associated with bi are satisfied.

Example 23: Continue Example 22. Figure 5.1 is a partition of R, containing 16 buckets. The

cardinalities of the buckets are shown in Figure 5.1. Every bucket is associated with two con-

straints. For instance, bucket B0 has constraints {0≤a<10, 0≤b<10}. All the tuples in B0 thus

have both attribute a and b in the range [0, 10). Note that the constraints associated with these

buckets are in the form of very simple function– a single attribute.

Definition 3 (Upper-Bound, Lower-Bound): Given a bucket b, an upper-bound score ⌈b⌉ is a

value that is larger than the highest score among tuples in b. That is, ⌈b⌉>F [t], ∀t ∈ b. Similarly,

a lower-bound score ⌊b⌋ is a value that is smaller than or equal to the lowest score among tuples in

b. That is, ⌊b⌋≤F [t], ∀t ∈ b. 4 5

Definition 4 (Pruned and Candidate buckets): With respect to a query tuple tq, a bucket b is

a pruned bucket if F [tq], the score of tq , is an upper-bound of b, or if F [tq] is a lower-bound

of b and there is no tuple in b with score equal to F [tq]. Formally, given a partition PR, the

set of pruned buckets with respect to tq is pruned(PR, tq) = pruned+(PR, tq)∪pruned−(PR, tq),

where pruned+(PR, tq)={b|b∈PR and F [t]>F [tq], ∀t∈b} are the dominating buckets of tq and

pruned−(PR, tq)={b|b∈PR and F [t]< F [tq], ∀t ∈ b} are the dominated buckets of tq. The set of

candidate buckets is candidate(PR, tq)=PR − pruned(PR, tq).

Example 24: Continue Example 23. The bucket B0 has constraints {0≤a<10, 0≤b<10}. Thus

the tuples in B0 can score at most 10+10=20 (without equality), and as low as 0, i.e., ⌈B0⌉=20

and ⌊B0⌋=0.6 Similarly, we can obtain the bounds of other buckets. The query tuple has score 55,

therefore the white buckets in Figure 5.1 are pruned buckets and the shaded buckets are candidate

buckets, based on Definition 4.

4Without loss of generality, we require ⌈b⌉ to be open-ended while ⌊b⌋ to be close-ended. Correspondingly the

constraints in Definition 2 are left-end closed and right-end open.
5Note that there is an infinite number of upper-bounds and lower-bounds for any bucket.
6More strictly, ⌈B0⌉=20 means 20 is one known upper-bound for b. Similar statement applies for ⌊B0⌋.
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Procedure Partition-and-Prune Inverse Ranking

/* relation: R, with schem A; partition: PR; ranking function: F(A); query

tuple: tq */

begin

1: /* 1. Partitioning Space */

2: determine the number of buckets, n
3: for each bucket bi do

4: determine constraints Ci={ci1 , ci2 , . . .}, where cij is: lij ≤ gi(A) ≤ uij

5: /* 2. Deriving Bounds */

6: for each bucket bi do

7: /* solve the following optimization problem */

8: ⌈bi⌉ ← the value maximizes F(A) in bi

9: ⌊bi⌋ ← the value minimizes F(A) in bi

10: /* 3. Computing Cardinalities */

11: for each bucket bi do

12: |bi| ← compute the number of tuples in bi

13: /* 4. Classifying Buckets */

14: pruned−(PR, tq)← φ /* dominated buckets */

15: pruned+(PR, tq)← φ /* dominating buckets */

16: candidate(PR, tq)← φ /* candidate buckets */

17: for each bucket bi do

18: if ⌈bi⌉ ≤ F [tq] then

19: pruned−(PR, tq)← pruned−(PR, tq) ∪ bi

20: else if ⌊bi⌋ > F [tq] then

21: pruned+(PR, tq)← pruned+(PR, tq) ∪ bi

22: else

23: candidate(PR, tq)← candidate(PR, tq) ∪ bi

24: /* 5. Retrieving Candidates */

25: R′ ← ∪bi∈candidate(PR ,tq)bi /* candidate tuples */

26: retrieve tuples in R′

27: rankR′ (tq)← the rank of tq in R′

28: rank(tq)← rankR′ (tq) +
∑

b∈pruned+(PR,tq) |b|
29: return t
end

Figure 5.2: The outline of the algorithm.

In determining the rank of the query tuple, we can safely prune the pruned buckets and we only

need to look up the tuples in the candidate buckets. The idea is already illustrated in Example 22.

More formally, we have the following Property 7. The straightforward proof is omitted.

Property 7 (Bucket Pruning Property): Given a relation R and its partition PR, the rank of a

query tuple tq is

rank(tq)=1 +
∑

b∈pruned+(PR,tq) |b| + |{tc|F [tc] >F [tq] ∧ tc∈ b s .t . b ∈ candidate (PR, tq)}|.
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5.2.2 General Algorithm

Based on Property 7, we design the general algorithm for answering inverse ranking queries, as

outlined in Figure 5.2. The algorithm takes the following steps in sequence:

1. Partitioning Space: The algorithm partitions the tuple space into buckets. It needs to decide

the number of buckets and the constraints associated with each bucket. The constraints directly

determine the geometrical shape and area of a bucket.

2. Deriving Bounds: The algorithm derives the upper-bound and lower-bound of every bucket,

based on the associated constraints. For a set of general constraints, deriving the bounds of a

ranking function is a nonlinear programming (NLP) problem. While general NLP problem is very

hard, there are methods for special cases [9].

We concentrate on monotonic ranking functions, as commonly studied in top-k queries (e.g.,

[32]). Examples of such functions include sum, weighted average, Lp-norm distance such as

Manhattan and Euclidean distance, and so on. With single-attribute constraints in the form of

l≤a<u, the bounds of such monotonic ranking function can be straightforwardly determined by

the ranges on the attributes in the bucket. Therefore given a partitioning scheme using only single-

attribute constraints, the algorithm can handle any monotonic ranking functions.

More specifically, deriving the bounds becomes a linearly constrained optimization problem

when all the constraints are linear functions over the attributes, and further a linear programming

(LP) problem [10] when the ranking function is a linear function as well. There are well-studied

algorithms for solving LP problems, such as the Simplex method [10]. Therefore given a partition-

ing scheme using linear constraints, the algorithm can process linear ranking functions, a subset of

monotonic functions. 7 8

3. Computing Cardinalities: The algorithm computes the cardinality of every bucket according to

the associated constraints.

7Note that the above single-attribute constraint is an extreme case of linear constraint.
8Linear function such as 2p1−3p2 is monotonic on p1 and −p2.
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4. Classifying Buckets: The bounds from step 2 and cardinalities from step 3 are used to identify

the pruned and candidate buckets, following Definition 4.

5. Retrieving Candidates: The algorithm retrieves the tuples in the candidate buckets, evaluates

their scores, and obtains the ranks of the query tuples.

Among the five steps, step 2 and 4 are described above and shown in Figure 5.2. They are not

further discussed. Step 1 is the basis of the algorithm, since the partitioning scheme determines

what type of ranking functions can be handled and which implementation methods for other steps

are applicable. An appropriate partitioning scheme is thus key to the efficiency of the algorithm.

In Section 5.2.3 we describe an analytical cost model of the algorithm. Guided by the analysis, we

discuss several partitioning schemes in Section 5.2.4. There are different methods in implementing

the partitioning scheme and thus the step 3 and 5. Such choices directly affect the efficiency of the

algorithm. We present implementation details in Section 5.3.

5.2.3 Cost Model

Given the variety of implementations for the above algorithm steps, there exists an optimization

space in choosing an efficient evaluation method for inverse ranking queries. The primitive cost

model in this section is for the purpose of analyzing and comparing the choices in realizing our

framework. In query optimization, a cost model is critical for estimating the costs of query plans.

However, a complete cost model for inverse ranking queries, incorporated into query optimizer, is

out of our focus.

The cost model has the following components:

Cost factors: The cost of our algorithm is determined by several factors, which are the partition,

the data distribution, the data size, and the query.

Cost parameters: The cost is a function of several important parameters, including the number

of buckets (|PR|), the score bounds of the buckets (⌊b⌋ and ⌈b⌉), the cardinalities of the buckets

(|b|), and the candidate buckets (candidate(PR, tq)). These cost parameters are determined by the
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Figure 5.3: The relationship among cost parameters.

cost factors above. Specifically, the partition determines the number of buckets and the bounds

(constraints) of the buckets, the data distribution and data size determine the cardinalities, and the

query determines the candidate buckets, together with the partition, data distribution and size.

Cost formula: The cost formula in terms of time, as shown below, is the sum of the CPU cost, the

I/O cost for obtaining cardinalities (step 3 in Section 5.2.2) and the I/O cost for retrieving candidate

tuples (step 5).

C = CCPU + C3I/O + C5I/O (5.1)

Conventional query algorithms are I/O-bound rather than CPU-bound, therefore the common prac-

tice in investigating the costs of query plans is to focus on disk I/O cost. However, we shall see

that some of the methods in Section 5.3 involve CPU costs that cannot be ignored. Among the

five steps in Figure 5.2, step 1, 2, and 4 do not involve disk I/O. To obtain the cardinalities of

buckets in step 3, some of our methods require I/O access to auxiliary data structures. For step 5,

the retrieving of candidate tuples involves disk access.

Nevertheless, in most cases, the most significant component in the above formula is the disk

I/O cost of step 5, for which a good metric is the number of candidate tuples. That is,

C5I/O = fretrieve ×
∑

b∈candidate(PR ,tq)

|b| (5.2)

where fretrieve is a factor. In principle the more candidate tuples, the higher cost, although the

exact fretrieve depends on the specific method of retrieving tuples.
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Figure 5.4: The relationship between constraints and bounds.

Figure 5.3 summarizes the relationships among the cost parameters, in determining the number

of candidate tuples. We use the up-arrow and down-arrow to represent “increase in amount” and

“decrease in amount”, respectively. First, the number of candidate tuples is directly determined

by two cost parameters, the bounds and the cardinalities. To be more specific, the more tuples in

each candidate bucket, the more candidate tuples; and the bigger interval between the upper-bound

and the lower-bound (⌈b⌉ − ⌊b⌋) of each bucket, the more candidate buckets (since the chance of

subsuming the query tuple score is bigger), thus the more candidate tuples.

Second, the cardinalities and bounds are determined by the partition, i.e., the number of buck-

ets and the constraints of each bucket. The relationship between the number of buckets and the

cardinalities/bounds is clear. The more buckets, the less tuples in each bucket, and the smaller

intervals between the upper and lower bounds. This seems to indicate that we should have as many

buckets as possible, since that can result in less candidate tuples. However, with more buckets, the

cost of constructing the buckets and computing their cardinalities (C3I/O and part of CCPU ) can be

significant.

In addition to the number of buckets, the constraints also determine the bounds. This relation-

ship is illustrated by the following example.

Example 25: Figure 5.4 shows a two-dimensional space over attributes x and y of relation R.
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Consider ranking function x+y. We are looking for the rank of a tuple with score 43. The tuples

with the same ranking score locate on a unique contour line, one for each score value. For instance,

the contour line for x+y=43 is shown as a dashed line in Figure 5.4(a) and (b).

Different constraints can result in very different bounds. Figure 5.4(a) and (b) show two par-

titions of the same space, where the solid lines are the boundaries of the buckets. The partition in

(a) uses constraints of the form {x1≤x<x2, y1≤y<y2}, while the partition in (b) has constraints of

the form {l≤x+y<u}, i.e., the constraints are parallel to the contour lines of the ranking function.

Both (a) and (b) partition the space into 16 buckets with the same area size, thus roughly the same

cardinality under the assumption of uniform data distribution. The figures show that, although

containing about the same number of tuples, the buckets in (b) have much smaller intervals be-

tween bounds than the buckets in (a) have. Therefore there are 7 candidate buckets (in shade) in

(a), while (b) only has 1 candidate bucket.

The above example illustrates that which constraint results in the smallest intervals between

bounds depends on the ranking function itself. For instance, the contour lines for 2x+y have

different slope than that in Figure 5.4, thus the constraints parallel to the contour lines are also

different.

5.2.4 Partitioning Schemes

The analysis in Section 5.2.3 indicates that the most significant cost component, the number of

candidate tuples, is determined by the partitioning scheme, which consists of the number of buckets

and the constraints, by definition. The constraints of the buckets specify the way to partition, while

the number of buckets indicates the granularity of the partition in that way. Below we present

several partitioning schemes, i.e., various types of constraints. These schemes are implemented by

the methods in Section 5.3.

Single-Attribute Constraints:

A straightforward approach of partitioning is to associate with the buckets the simplest constraints,
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which are intervals (ranges) over individual attributes. That is, a constraint has the form l≤a<u,

where a is one attribute, and l and u are some constant values. In this partition, the boundaries

between buckets are parallel to the dimensions, i.e., attributes. One advantage of using single-

attribute constraints is that they can support any monotonic functions on these attributes. Moreover,

it is easy to conduct satisfaction test for these constraints. For instance, a B-tree on a may be used

in obtaining those tuples satisfying constraint l≤a<u.

Function Constraints:

Partitioning based on single-attribute constraints can be sub-optimal, depending on the ranking

functions. As discussed in Section 5.2.3, the constraints should be aligned with the contour lines

of the ranking function, in order to achieve small number of candidate tuples. Following this

intuition, we propose a partitioning scheme based on constraints as functions.

In this scheme, each constraint is of the form l≤g<u, where g is a linear function. Given a

linear ranking function f , if g is “close” to f (in other words, g is aligned with f ), the number of

candidate buckets and tuples can be small. Such closeness can be measured by the angle between

f and g, i.e., the cosine similarity of their coefficients. Note that this scheme is applicable when

we consider only linear ranking functions and linear constraints. The problem of computing the

bounds of such ranking functions, given the constraints, is a linear programming problem, as we

discussed in Section 5.2.2.

Satisfaction test for such function constraints requires us to build auxiliary data structures. That

is, we need to build an index over g (instead of single attribute a).

Workload-Based Function Constraints:

For the above scheme using function constraints, in order to achieve small number of candidate

tuples, the function g used in the constraint should be close to f . In other words, we must have

indices built for various different g, so that among them we can find one that is close to the dynamic

ranking function f in the query. However, as the number of attributes involved in ranking functions

increases, the necessary number of indices for the g may become prohibitively large.
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Our idea in tackling this challenge is use query workload to guide the selection of functions g

to build index for. The indexed functions are chosen such that they are “close” to many previous

queries according to the query workload. With the reasonable expectation that future queries share

the same characteristics with the workload, the indexed functions can capture many queries in the

future. 9

5.3 Implementation Methods

In this section, we present several implementation methods of the partition-and-prune framework

in Section 5.2. These methods utilize a variety of data structures in DBMSs including histogram, B-

tree, multi-dimensional index, and bitmap index. When introducing each method, we first describe

the details of partitioning space (step 1), computing cardinalities (step 3), and retrieving candidates

(step 5), respectively. Then we analyze the pros and cons of the method. We first introduce those

methods realizing partitioning schemes based on single-attribute constraints (Section 5.3.1), then

propose methods for schemes using function constraints and workload-based function constraints

(Section 5.3.2). Finally, we discuss how to deal with Boolean selection and join conditions in the

queries (Section 5.3.3).

5.3.1 Implementations of Partitioning by Single-Attribute Constraints

Using Multi-Dimensional Histogram

Histogram is commonly used in query optimization (for selectivity estimation) and approximate

query answering in database systems [59]. A multi-dimensional histogram naturally partitions the

tuple space into buckets, with the cardinality of every bucket stored.

Partitioning Space: In a histogram, each bucket is defined by intervals (ranges) over individual

attributes. For instance, the partition in Figure 5.1 can indeed be a two-dimensional histogram.
9By the same intuition, in other works, query workload is also used in choosing conventional indices to construct

and views to materialize.
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Computing Cardinalities: The advantage of using multi-dimensional histogram is that the cardi-

nalities of buckets are pre-computed.

Retrieving Candidates: The histogram maintains cardinality information, but cannot provide ac-

cess to individual tuples. Therefore, we must use SQL range queries, one for each bucket, to

retrieve the tuples in the candidate buckets.

Example 26: Suppose Figure 5.1 is a histogram. The range queries corresponding to the candidate

buckets are shown below. Note that the multiple range queries are concatenated by union in a

single SQL query. An alternative is to use disjunctive conditions in the where clause, i.e., (10≤a

and a<20 and 30≤b and b<40) or · · · or (30≤a and a<40 and 20≤b and b<30).

( select * from R
where 10 ≤ a and a < 20 and 30 ≤ b and b < 40 )

union

. . .

union

( select * from R
where 30 ≤ a and a < 40 and 20 ≤ b and b < 30 )

Although using multi-dimensional histogram provides cardinality automatically, this method

has serious disadvantages. First, the transformed SQL query is inefficient to evaluate, as the multi-

ple range queries may require the access to the full domain of every attribute. To illustrate, consider

Figure 5.5. Suppose the ranking function is x+y+z, and the query asks for the rank of a tuple with

score 16. The candidate buckets must at least contain the gray plane x+y+z=16, which spans

through the whole domain of x, y, and z, respectively. Note that multi-dimensional histogram was

also used in answering top-k queries [19]. However, only one range query is needed for one top-k

query, because the candidates of top k answers are located in a small area around the query point.

Second, the dimensions in the histogram may not match the attributes in the ranking function,

resulting in loose upper-bound and lower-bound. The loose bounds further produce significant

overlapping among the buckets’ bounds, thus large number of candidate buckets. For instance,

suppose the histogram in Figure 5.1 is used to answer another inverse ranking query with ranking
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Figure 5.5: Inverse ranking query for a tuple with score x+y+z=16, using histogram.

function a+b+c, instead of a+b. The attribute c has domain [0, 40). Since the histogram only uses a

and b to partition the space, a constraint, 0≤c<40, is implicitly given for every bucket. With such

an identical loose constraint, all the buckets may become candidates.

Traversing Multi-Dimensional Index

Similar to multi-dimensional histogram, multi-dimensional index is also a partition scheme where

buckets are specified by intervals over individual attributes. Differently, multi-dimensional index

provides access to tuples, but does not contain cardinality information.

Partitioning Space: The index nodes can be viewed as the buckets. There exists a hierarchy in the

index tree, thus a hierarchy for the buckets as well. Common multi-dimensional index can be tuple-

partitioning (e.g., R-tree [46]) where the buckets may overlap although one tuple only belongs to

one leaf node, or space-partitioning (e.g., grid file [78]) where the buckets do not overlap. For

instance, the partition in Figure 5.1 can be a grid file.

Computing Cardinalities: To compute the cardinalities of all the buckets, we have to count the

tuples in the corresponding index nodes, resulting in a full traversal of the index tree. This cost

can be avoided by augmenting each index node with the number of tuples in the node (and the
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descendant nodes). Such a variant was briefly discussed in [59]. Recording the cardinality takes

several extra bytes per node, resulting in smaller number of pointers that can be stored in each

node. Specifically, the consequence in R-tree is smaller fan-out of tree nodes, thus deeper index

tree [59].

Retrieving Candidates: The leaf index nodes in a multi-dimensional index provide pointers to

individual tuples in the corresponding buckets.

In answering inverse ranking queries, multi-dimensional index has some problems similarly

existing for multi-dimensional histogram. For instance, the attributes in the index may not match

the attributes of the ranking function. Therefore the score bounds can be loose, resulting in a

large number of candidate buckets, as we analyzed in Section 5.3.1. The problem of mismatching

between indexed attributes and ranking attributes seriously limits the applicability of this method,

since it is not affordable to exhaustively build indices for all possible combinations of dimensions.

Moreover, for multi-dimensional index with tuple-partitioning (e.g., R-tree), the boundary of

an index node (e.g., minimal bounding rectangle or MBR, in R-tree) is determined towards the

efficiency of the insertion/deletion operations over index, which may conflict with the efficiency in

answering inverse ranking queries. For instance, the MBR in R-tree may stretch over a big range

along one dimension, resulting in a large interval between the upper-bound and lower-bound of

the corresponding bucket. The consequence is a large number of candidate buckets.

Intersecting B-tree Indices

While the method in Section 5.3.1 relies on the existence of multi-dimensional index, we can also

partition the space by intersecting the indices (such as B-trees) over individual attributes. Such

index intersection was used in evaluating selection queries [72].

Partitioning Space: A B-tree index naturally provides a partition of an attribute domain into mul-

tiple intervals. Therefore by intersecting multiple B-trees, we obtain a tuple-space partition.

Computing Cardinalities: Index intersection supplies the list of tuple pointers in each bucket, and

thus the cardinality.
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Retrieving Candidates: Again, the results of index intersection provide the (pointers to) tuples in

each bucket.

The advantage of using index intersection is that we can handle any combination of ranking

attributes as long as the individual indices are available. However, unlike multi-dimensional index

where the space is readily partitioned, index intersection requires explicit operations to partition

the space. The main overhead of this method thus lies in the partitioning, where the B-tree over

each attribute must be fully traversed, and the tuple lists are intersected. The result of partitioning

is the tuple lists for all the buckets. The traversal on each index may repeat multiple times if the

memory buffer cannot hold all the index nodes from all the indices.

Intersecting Bitmap Indices

The method proposed in this section intersects bitmap indices instead of B-trees. While the essen-

tial methodology is the same for intersecting both types of index, the key is that bitmap index is

more efficient to intersect. A brief review of bitmap index was given in Section 4.3.3. Below we

discuss how to use such index to answer inverse ranking queries.

Partitioning Space: Similar to the aforementioned several methods, the buckets are specified by

intervals on individual attributes.

Computing Cardinalities: The IDs of tuples within one specific interval on an attribute are given

by the corresponding bit vector. Tuples inside a bucket can thus be obtained by intersecting (and

operation) all the relevant bit vectors. A 1 bit in the resulting vector indicates that the corresponding

tuple belongs to the bucket. Computing the cardinality of the bucket is thus a count operation on

the resulting vector.

Retrieving Candidates: The union (or operation) of the vectors for all the candidate buckets gives

us a single vector, where the 1 bit corresponds to a candidate tuple. Thus we get the IDs of all

candidate tuples.

We illustrate the idea using the following example.
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TID B1
a B2

a B3
a B4

a

r1 1 0 0 0
r2 0 0 1 0
r3 1 0 0 0
r4 0 1 0 0
r5 0 0 0 1
r6 1 0 0 0
r7 0 0 1 0
r8 0 0 0 1
r9 0 0 1 0
r10 0 1 0 0

TID B1
b B2

b B3
b B4

b

r1 0 0 0 1
r2 0 1 0 0
r3 0 0 1 0
r4 0 0 1 0
r5 1 0 0 0
r6 0 1 0 0
r7 0 0 1 0
r8 0 0 0 1
r9 0 1 0 0
r10 0 0 1 0

(a) bitmap index on R.a (b) bitmap index on R.b

Figure 5.6: Example of bitmap indices.

Example 27: Figure 5.6(a) and (b) show the bitmap index on attribute a and b over relation R. The

values of a and b are grouped into 4 intervals, respectively, following the partition in Figure 5.1.

Therefore there are 4 bit vectors on a and 4 on b as well. For instance, the 4th bit of vector B2
a is

1, which indicates that the value of attribute a for tuple r4 (i.e., the tuple with ID 4) is in the 2nd

interval, i.e., [10, 20). Performing and operation on each pair of vectors (one for a and another

for b), we obtain the resulting vectors for the 16 buckets. For instance, the result of B2
a and B3

b is

0001000001, which contains two 1-bits, thus the cardinality of bucket {10≤a<20, 20≤b<30} is

2. (Note that we use the same partition as Figure 5.1, but different cardinalities, for simplicity in

illustrating the idea.)

The advantage of using bitmap index is that the bit operations in getting the vectors for buckets

are much more efficient than traversing the B-tree nodes and intersecting the verbatim list of tuple

IDs. However, in multi-dimensional space with many intervals on each dimension, the number of

buckets and thus the number of bitmap operations can be fairly high, resulting in prohibitive cost

of computing cardinalities.
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5.3.2 Implementations of Partitioning by Function Constraints

Intersecting Bitmap Indices on Functions

Following the intuition of using function constraints (Section 5.2.4), we propose a method of inter-

secting bitmap indices on functions. Different than the method in Section 5.3.1, the bitmap indices

intersected in this approach are built upon ranking functions instead of individual attributes. The

motivation in building bitmap index instead of B-tree index on the functions is that, intersecting

bitmap index is more efficient than intersecting B-trees.

During index construction, a bitmap index is created for each selected ranking function. It

consists of several bit vectors, each of which corresponds to an interval of ranking scores over

the ranking function. For a database tuple, its corresponding bit in the vector for the interval

subsuming its ranking score is set to 1, and the same bits in other vectors are 0. During query

answering, we select one or more indices (functions) that are close to the ranking function in the

query. The constraints of the buckets are specified by intervals of scores over the chosen functions.

After that, the procedures of computing cardinalities and retrieving candidates are essentially the

same as in Section 5.3.1. Note that the ranking functions and the indexed functions must be linear

functions in order to make this method applicable.

Example 28: Consider ranking functions w1× a1+...+wn ×an, where each ai is an attribute and

wi is the corresponding weight. Given a specific combination of (w1, ..., wn), the tuples in the space

are ranked in the order of the contour lines w1 × a1 + ... + wn × an = s, where s is the ranking

score. Therefore we can construct a bitmap index for the given function, i.e., the (w1, ..., wn), with

several bitmaps. Each bitmap of the index corresponds to a score interval.

Figure 5.7(a) shows a relation R with its tuples and the attribute values. Suppose the rank-

ing function in the query is x+2y. Among the functions with corresponding bitmap indices con-

structed, the two functions x+y and x+3y are chosen for answering the query, since they are close

to x+2y. Their indices are shown in Figure 5.7(c) and (d), respectively. Specifically, the index

for x+y consists of 4 bitmaps, corresponding to the score intervals [0, 2), [2, 4), [4, 6), and [6, 8).
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TID x y
r1 1 0
r2 3 3
r3 2 4
r4 0 3
r5 2 1
r6 4 3
r7 0 0
r8 1 3
r9 3 1
r10 1 4

20

30

y

40

the interval [20,40) for x+y

the interval [40,80) for x+3y

0 10 20 30
0

x40

10

(a) The relation R. (b) The intersection of bitmap indices.

TID B[0,2) B[2,4) B[4,6) B[6,8)

r1 1 0 0 0
r2 0 0 1 0
r3 0 0 1 0
r4 0 1 0 0
r5 0 1 0 0
r6 0 0 0 1
r7 1 0 0 0
r8 0 1 0 0
r9 0 1 0 0
r10 0 0 1 0

TID B[0,4) B[4,8) B[8,12) B[12,16)

r1 1 0 0 0
r2 0 0 1 0
r3 0 0 0 1
r4 0 0 1 0
r5 0 1 0 0
r6 0 0 0 1
r7 1 0 0 0
r8 0 0 1 0
r9 0 1 0 0
r10 0 0 0 1

(c) Bitmap index for x + y. (d) Bitmap index for x + 3y.

Figure 5.7: The intersection of bitmap indices on functions.

The bitmap index for x+3y consists of 4 bitmaps as well, corresponding to the intervals [0, 4),

[4, 8), [8, 12), and [12, 16). The boundaries between these intervals, i.e., the contour lines, are

shown in Figure 5.7(b). The intersections of these intervals give the partition of the tuple space.

For instance, the bucket corresponding to the intersection of the two shaded areas has constraints

{2≤x+y<4, 8≤x+3y<12}. The upper-bound and lower-bound scores for this bucket are 6 and

3, respectively, based on linear programming. The bitmap for 2≤x+y<4 is 0001100110, and the

bitmap for 8≤x+3y<12 is 0101000100. Therefore the bitmap for the shaded bucket is 0001100110

and 0101000100 = 0001000100 . That is, tuples r4 and r8 are in this bucket.
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Heuristics for Choosing Index to Build

We discuss two index selection heuristics. The first heuristic, random selection, is simply to

choose arbitrary functions to build index for. Clearly this strategy has the problem of exponen-

tial explosion- As the number of attributes involved increases, the hope of an arbitrary indexed

function getting close to a future dynamic query is slim. This “curse of dimensionality” is well

known in many other areas, such as multi-dimensional indexing.

To address the dimensionality problem, our second heuristic, workload-based selection, is to

build bitmap indices for those functions that capture the query workload. By doing that, we achieve

efficiency for the more frequent queries and sacrifice the less frequent ones. To be more specific,

each linear ranking function can be viewed as a point in a multi-dimensional space. Given a set of

previous queries, i.e., a set of points in the space, we partition the space into buckets. 10 Associated

with each bucket is a virtual query, located at the center of that bucket. We thus capture the queries

in the bucket as a set of queries identical to the virtual query. This is based on the intuition that

if the partition of the query space is fine-grained enough, the queries inside the same bucket are

close enough to each other. After measuring the number of queries in each bucket, we choose to

build bitmap indices on the virtual query functions of those buckets that contain a large number of

queries.

The workload-based selection is effective only when there do exist frequent queries in the

workload, i.e., the workload is clustered. In other words, if the queries in the space have equal

probability to be issued by users, then the strategy degrades to the above random selection heuristic.

For (inverse) ranking queries, it is natural that the workload is clustered. First, in ranking a certain

type of objects, there usually exists “common sense”. Second, even though different people have

different ranking criteria, similar users share common interests.

10The space and buckets of queries should not be confused with the space and buckets of tuples in Section 5.2.1.
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Heuristics for Choosing Index to Intersect

With the bitmap indices built for the workload, given a new query, we select two indices that are

closest to the query and intersect them. To be more specific, suppose the linear ranking function

in the query is f : w1× a1+...+wn ×an, where wi is the weight and ai is the attribute. Given

an indexed function g: w′
1× a′

1+...+w′
n ×a′

n, the closeness of f and g is defined as their cosine

similarity,

closeness(f, g) =
−→vf ·
−→vg

‖−→vf ‖ ‖−→vg‖
, (5.3)

where −→vf =<w1, . . . , wn> and −→vg =<w′
1, . . . , w

′
n>.

Note that although this method is also based on multi-dimensional space, it does not suffer

from the attribute mismatching problem for the approach utilizing multi-dimensional index (Sec-

tion 5.3.1). The reason is that a function such as w1×a1 is a special case of functions involving

more attributes such as w1×a1+w2×a2. Therefore as long as w1×a1 appears frequently, the work-

load on dimensions (a1,a2) is able to capture it.

5.3.3 Dealing with Boolean Conditions

Up to this point, we always assume the nonexistence of Boolean conditions, i.e., we assume the

context relation RB is simply one base table. This assumption was made only for the purpose of

easy presentation. In fact, logical bit vector operations easily allow us to integrate the techniques

in Section 5.3.2 with Boolean conditions. Before performing the intersections of bit vectors as

shown in Figure 5.7, the vectors over the indexed function intervals must reflect the filtering effects

of the Boolean conditions. If a tuple does not belong to the context relation RB, we must set

its corresponding bits in the vectors to 0. The details are further explained below. Note that

the techniques applied here are similar to those in Section 4.4.2, where bitmap index is used to

incorporate clustering with ranking, together with Boolean conditions.
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Selections: Suppose our query has a set of conjunctive range selection conditions l1≤c1≤u1, . . . ,

lj≤cj≤ uj. We first obtain a vector vecB, where the corresponding bits for the satisfying tuples in

RB are all set. Then given the bit vectors of the indexed functions to be intersected (such as the

ones in Figure 5.7(c) and (d)), we intersect vecB with each vector, to derive the filtered vectors.

The are many works in the literature on answering Boolean queries using bitmap index, i.e., getting

vecB. We briefly discussed this issue in Section 4.4.2.

Joins: When join conditions exist in queries, we assume the tables have a snowflake-schema,

consisting of one fact table and multiple dimension tables. There are multiple dimensions, each of

which is described by a hierarchy, with one dimension table for each node on the hierarchy. The

fact table is connected to the dimensions by foreign keys. The tables on each dimension are also

connected by keys and foreign keys. As a special case of snowflake-schema, star-schema has only

one table on every dimension, thus no hierarchy. Under such assumption, the same techniques for

handling join queries in integrating clustering and ranking (Section 4.4.2) can be applied.

5.4 Experiments

The algorithms are implemented in C++. The bitmap index is based on [89], which builds multiple

bitmap indices at different domain resolutions and compresses them using the WAH compression

method [96]. The B-tree index intersection algorithm is built upon a publicly available B-tree

implementation in libgist, an library that implements GiST [52].

We conducted experiments to compare the various implementation methods in Section 5.3,

together with the straightforward exhaustive approach. Moreover, we investigated how the algo-

rithms are affected by important factors under various configurations. The compared algorithms

are: exhaustive method using sequential scan on single table (Scan), exhaustive method using

sort-merge join (SMJ), B-tree intersection (Btree), intersecting bitmap index on attributes (BAttr),

intersecting bitmap index on randomly selected functions (BFuncRND), and intersecting bitmap

index on workload-based functions (BFuncWKLD).
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5.4.1 Experimental Settings

Our experiments were conducted over synthetic tables. The schema of a table consists of a set of

attributes, altogether with the total length of 100-byte. Some of the attributes are 4-byte floating

number ranking attributes. The values of the ranking attributes are independently generated by

various distributions, including uniform, Gaussian, and cosine distributions. Each query used in

our experiments uses the weighted sum of the ranking attributes as the ranking function.

We also experiment with join queries in star-schema. The join condition is A.j=B.j1 and

B.j2=C.j, where A.j and C.j are keys of A and C, respectively. B.j1 and B.j2 are the foreign

keys in B referring them. A, B, and C have the same size. Among the tuples in A, about half

of them do not join with any tuple in B. Each tuple in the remaining half in average joins with 2

tuples in B. The same statements apply to the join between C and B.

The ranking functions in the queries are weighted-sum functions. We experiment with various

number of attributes involved in the functions. The workload is created by a data generator for

clustering algorithms from [34]. Viewing each query ranking function as a point, i.e., a vector of

weights, in the query space, the workload is a set of clusters. The same data generator was used

for the experiments in Section 4.6, where more details about the data generator can be found.

The experiments were conducted on a PC with 2.8GHz Intel Xeon SMP (dual hyperthreaded

CPUs each with 1MB cache), 2GB RAM, and a RAID5 array of 3 146GB SCSI disks, running

Linux 2.6.15.

5.4.2 Experimental Results

We evaluated the performances of various methods and studied how they are affected by several

important configuration parameters, which are summarized in Table 5.1. For BFuncRND and

BFuncWKLD, by default there are bitmap indices built for 200 functions. For BFuncWKLD, the

functions are chosen based on a query workload containing 500 queries. For each index on one

function, we use the BSI [84] mentioned in Section 4.3.3. To be more specific, the tuples’ values on
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parameter meaning values

t # tuples 400K, 800K, 4M, 8M

a # ranking attributes 2,3,4,5,6,7

q rank of the query tuple (in percentage) 1%, 10%, 25%, 50%

i # index built 100, 200, 300, 400

v # vector per index 7, 8, 9, 10

Table 5.1: Configuration parameters for experiments on inverse ranking.

a function are partitioned into multiple ranges. The binary representation of these range numbers

on this function is kept in v (Table 5.1) vectors, which can 2v ranges.

Single-Table Queries:

To evaluate the performance of single-table queries, we conducted experiments under groups of

configurations by the value combinations of the three relevant parameters, t, a, and q. In each

group of experiments, we varied the value of one parameter and fixed the values of the rest two.

We then run all the algorithms and studied how their performances are affected as the value of the

varying parameter changed. The results on wall-clock execution time under six sample groups of

experiments are shown in Figure 5.8, 5.9, and 5.10. From the figures, we can make the following

observations:

First, BFuncWKLD is usually the best algorithm and it is several times more efficient than

others. This validates the approach of using bitmap index built upon query workload.

Second, for single-table queries, Scan performed pretty well in comparison with various other

methods, except BFuncWKLD. This observation verifies our analysis of the various methods in

Section 5.3.1. They all have significant disadvantages. For instance, Figure 5.9 shows that, as the

number of ranking attributes increases, the performance of intersecting B-trees degrades exponen-

tially due to the fact that it has to fully traverse all the B-trees and intersect the tuple pointers. As

another example, Figure 5.9(b) clearly illustrates the “curse of dimensionality” on using bitmap

indices built upon randomly selected functions, as mentioned in Section 5.3.

Third, from Figure 5.10 we can see that the rank position is also important in determining
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the efficiency. number of rank position. Especially, the smaller rank position, the more efficient

BFuncRND and BFuncWKLD are. To obtain the rank of an object that is ranked at 1% (e.g., the

object ranked at 8192 when t=800K), BFuncRND outperforms Scan. However, as the rank position

increases, it becomes worse than Scan. This figure clearly shows that inverse ranking queries are

more challenging than top-k queries, in the sense that efficient approach for obtaining objects at

small k may become even worse than the straightforward approach.

Join Queries:

The results of join queries are shown in Figure 5.11− 5.13, in the same fashion as the results for

single-table queries. Note that SMJ replaces Scan for joining, and Btree becomes inapplicable for

join queries. From the figures, we can make the following observations:

First, BFuncWKLD is still clearly the best algorithm, and its performance advantages over

other algorithms are enlarged under join.

Second, different from the single-table scenario, the exhaustive approach SMJ now is often the

worst method. This is due to the fact that a full join will scan large number of tuples and join large

number of intermediate results. While other methods are able to zoom into candidate tuples, thus

reduce the number of I/Os.

Third, BFuncRND is often the second best method under small number of ranking attributes.

However, the “curse of dimensionality” is illustrated again by Figure 5.12.

To further understand BFuncRND and BFuncWKLD, we analyze how the parameters affect

their performances, as shown in Figure 5.14. As expected, as the number of built indices increases

(Figure 5.14(a)), the algorithms are more efficient. However, 400 indices do not give us signifi-

cant performance improvements over 100 indices. This indicates that the small number of indices

are sufficient for the given workload. Under other workload, more indices may be required. In

Figure 5.14(b), we see that increasing the number of vectors in fact makes the performance of

BFuncRND worse. The reason is that randomly selected functions cannot match the query func-

tions well, resulting in a large number of candidate buckets. As there are more vectors per index,
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the partition has more buckets, therefore BFuncRND needs to intersect more bit vectors, com-

pute the cardinalities for more candidate buckets, resulting in degraded performance. On the other

hand, BFuncWKLD is not seriously affected by v, indicating that the workload-based functions can

successfully capture the queries, resulting in small number of intersections and candidate buckets.
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Figure 5.9: Single table queries: Execution time varying by a.
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Figure 5.10: Single table queries: Execution time varying by q.
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Figure 5.13: Join queries: Execution time varying by q.
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Figure 5.14: Single table queries: Execution time varying by i and v.
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Chapter 6

Initial Release of RankSQL

RankSQL is implemented inside the kernel of POSTGRESQL, an open-source DBMS. We have

received requests for obtaining the source codes of our systems and we are releasing the initial

version to the public. Our intention is to facilitate the research in the general area of supporting

flexible retrieval functionalities in databases, to get support and help from the large community

of open-source developers, and to look for opportunities of deploying the system in production

environments.

The initial release of RankSQL has the implementation of the rank-relational algebra (Chap-

ter 2), including several ranking query operators, a ranking query optimizer with a 2-dimensional

enumerator and simple heuristic rules for costing the operators, a simple parser of ranking queries,

a plan builder for manually constructing ranking query plans, and a visualizer for investigating

the process of query optimization. The system also includes the implementation of the rankagg

framework (Chapter 3) including the rankagg operator, the group- and rank-aware scan operator,

the corresponding new join operator, and a query optimizer that utilizes the new operators for

ranking aggregate queries.

We will continue the development and maintenance of RankSQL, including incorporating the

system with the support of ClusterRank and InverseRank (which are currently implemented outside

the kernel) and extending the system with new data retrieval functionalities through our research.

Further releases of RankSQL will be made available to the public.
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6.1 Introduction to POSTGRESQL

The history of POSTGRESQL starts with the INGRES project (from early 1970s to early 1980s)

at the University of California, Berkeley, which was under the lead of Michael Stonebraker. Af-

ter commercializing INGRES, he started the POSTGRES project (meant Post Ingres) around 1985.

After the release of the first version in 1989 and several more releases, the POSTGRES project

officially ended at the fourth version in 1993. The software was released under the BSD license,

thus giving developers the access to the source codes and allowing them to further develop the sys-

tem. In 1994, two Berkeley graduate students, Andrew Yu and Jolly Chen, added a SQL interpreter

into POSTGRES and released the enhancement to public as POSTGRES95. The first open source

version was released at August 1st, 1996, by a group of open source developers, including Marc

Fournier, Bruce Momjian and Vadim Mikheev. The system was later renamed POSTGRESQL in

1997. Since then, there have been continuous releases of new versions and commercializing ef-

forts. POSTGRESQL is one of the most popular open-course DBMSs, competing with other popular

open-source ones such as MYSQL and the systems from commercial vendors.

One distinguishing advantage of POSTGRESQL is that the system embraces advanced features

that are not available in some other systems. Many of the features were originated by the research

community. Examples of advanced features include GiST (Generalized Search Trees [52]), bitmap

index scans, user-defined objects including index on user-defined functions, support of expensive

predicates [53] (now removed from the main release), and genetic query optimizer. Therefore

POSTGRESQL has remained one of the most popular systems used in research projects.

The architecture of POSTGRESQL essentially follows a typical textbook description of a DBMS,

as shown in Figure 6.1. The implementation of the components in the system is also fairly standard.

When receiving a user query from the frontend, the parser in the backend query processor parses

the query and comes up with an initial logical query plan. The optimizer generates a physical

query plan, which is expected to be efficient, with the help of a System-R [15] style dynamic-

programming based enumerator and cost models for operators, by utilizing system catalogs and
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Figure 6.1: The architecture of POSTGRESQL [73].

statistics. The query plan is executed by the executor, producing the query results.

6.2 The Architecture of RankSQL

The RankSQL system is implemented inside POSTGRESQL 7.4.3. The code base of POST-

GRESQL contains about 500, 000 lines of C programs, of which about 15% belongs to the query

engine. RankSQL introduced about 20, 000 lines of new codes into the system. Figure 6.2 il-

lustrates the architecture of RankSQL. The fundamental support of ranking imposes significant

impacts on the whole system, including the underlying data model and algebra, the query parser

for ranking queries and ranking aggregate queries, the newly invented query operators, and the

optimization techniques.
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Figure 6.2: The architecture of RankSQL.

Figure 6.3: The Plan Builder.

In addition to the core query engine, we built a suite of useful tools for system builders to

explore the process of query optimization and execution in our system. We also developed a Java

GUI with JDBC connection to demonstrate the system and tools. We first introduce the tools in

Section 6.2.1, and then describe a sample runtime scenario of RankSQL in Section 6.2.2.

6.2.1 The RankSQL Tools

The RankSQL tools include a Plan Builder, an Enumerator Visualizer, and an Execution Monitor.

The tools are convenient for system builders to understand, to debug, and to improve various com-

ponents of a query engine. Therefore, their usefulness goes beyond demonstrating and visualizing

the new features introduced by RankSQL. We briefly introduce theses tools below.

The Plan Builder (Figure 6.3) directly constructs a physical execution plan (bypassing the
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<SEQSCAN nParamExec="0" scanrelid="1">

<targetlist>

<TARGETENTRY>

<RESDOM resno="1" restype="1043" restypmod="84"

resname="name" ressortgroupref="0"

resorigtbl="34596" resorigcol="1"

resjunk="false"/>

<VAR varno="1" varattno="1" vartype="1043"

vartypmod="84" varlevelsup="0"

varnoold="1" varoattno="1"/>

</TARGETENTRY>

</targetlist>

</SEQSCAN>

Figure 6.4: A sample plan file.

Figure 6.5: The Enumerator Visualizer.

query optimizer) from a plan file in XML format. For instance, Figure 6.4 shows a simple plan

file that scans a table with ID 34596 in the catalog and returns tuples with the projected attribute

name. The system builder provides a drag-and-drop GUI for editing the plan file visually. With

this tool, system developers can experiment with plans that are not chosen by the query optimizer.

In addition, it is useful in evaluating new query algorithms that are not yet incorporated in the

optimizer’s enumerator or cost model.

The Enumerator Visualizer (Figure 6.5) displays the information (e.g., the estimated cost

and the better plans with the same logical property) of every enumerated sub-plans including the

pruned ones. The visualizer thus allows the system developers to compare these plans, identify the

reason of pruning a plan, and figure out why and how the final execution plan is chosen.
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Figure 6.6: The RankSQL GUI with Execution Monitor.

The Execution Monitor (Figure 6.6) visualizes the execution of a physical plan, by showing

the size of the intermediate results, the internal data structures for each operator, and the execution

time. It also displays the cardinality information of every operators in a sub-plan.

6.2.2 An Example of Runtime Scenario

We describe one example scenario of using RankSQL, consisting of the following steps:

(1) The user connects to the database server from the menu option ”Server” and types or loads

a query (Figure 6.6).

(2) The user starts the enumerator visualizer, which displays the enumerated plans including

the final execution plan (Figure 6.5).

(3) The user selects some query plan, for which a plan tree is shown in the GUI to illustrate its

structure (Figure 6.6).

(4) The user executes the plan tree, and the execution monitor illustrates the execution process

(Figure 6.6). For each operator, it shows how many tuples are produced and how many are output

to its upper operator. Summary information such as the execution time is shown.

(5) The user can also use the plan builder (Figure 6.3) to create or load a plan file, upon which

the execution plan is directly constructed without the optimizer. The resulting plan is shown and

executed as described above.

(6) A table of the query results is shown in the GUI (Figure 6.6).

146



6.3 Challenges and Implementation Techniques

In this section we discuss some of the challenges in our system implementation and our solutions

in addressing these challenges.

The Query Executor:

Realizing the new algorithms designed for ranking queries and ranking aggregate queries requires

us to introduce new query operators into the execution engine. Many of the new operators rely on

the efficient maintenance of a common data structure of ranking queue. A ranking queue of an

operator may become big when a lot of seen tuples must be buffered before they can be passed

to the upper operator. Therefore we often need to swap in and out the tuples in ranking queues

between the memory and the disk. The tuples close to the bottom of a ranking queue should stay

in the disk as long as possible. Meanwhile we should avoid swapping out the tuples at the top of

the queue since they are more likely to stay at the top than those that have already ranked low.

Another data structure that is frequently used by these operators is hash table, for example in

hash-rank join operator, which hashes join input tuples by join attributes. The hash table for the

rank- and group-aware join operator in rankagg is even more complex, since the operator needs to

maintain two types of hash tables, one for hashing join input tuples by join attributes, and another

one for hashing join result tuples by grouping attributes.

Similarly, the rankagg operator needs to hash input tuples based on grouping attributes. In

computing aggregate values, one aggregator (containing the initial value, the function for comput-

ing intermediate values, and the function for computing the final aggregate) must be maintained

for each group. For conventional aggregate queries, there is no need to maintain multiple aggrega-

tors simultaneously, as the intermediate tuples being aggregated are preprocessed by either sorting

or hashing, thus the groups are processed one by one. However, the aggregated tuples in rankagg

are incrementally obtained and most of the groups are never fully materialized, which excludes

the option of preprocessing these input tuples. We thus must maintain multiple aggregators at the

same time, by using hash tables on the grouping attributes.
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The Query Optimizer:

In optimizing ranking queries, we implement the 2-dimensional enumeration approach to enumer-

ate the plan space along the dimensions on two logical properties, the joined tables as well as the

processed raking predicates. However, this new optimizer must not interfere with the optimization

of non-ranking queries, should still allow the option of using materialize-then-sort approach, and

should not slow down the enumeration process for non-ranking queries. These requirements are

rather smoothly satisfied with the help of the clearly modularized structure and great extensibility

of POSTGRESQL query optimizer. Intermediate query plans with the same logical properties are

grouped under the same entry during enumeration. The entries were relatively easily extended to

accommodate the new dimension on ranking predicates.

On the other hand, we also need the ability to bypass the optimizer under certain circumstances.

Instead of resorting to the optimizer in producing a physical query plan, it is often necessary to

allow the usage of any query operator or plan. Such scenarios occur when we need to explore

a new algorithm (e.g., the operators in the rankagg framework) even before the corresponding

optimization techniques (e.g., cost models) are developed. We achieve this goal through several

ways. One is to use a dummy cost model which assigns arbitrarily low cost to a new operator that

we need to enforce, thus the new operator is always selected by the optimizer. Another way is

to implement configuration parameters that enable and disable both existing and new operators.

Finally, we can entirely bypass the optimizer by manually constructing a physical query plan

and translating the plan into its internal representation that is directly executable by the query

executor. For instance, the aforementioned plan builder (Section 6.2.1) provides convenience for

such purpose.

The Query Parser:

The power of our new query executor and optimizer can be utilized only if the query parser can

appropriately parse ranking queries and identify the ranking predicates. We extend the POST-

GRESQL parser to be able to analyze queries with simple ranking functions. For instance, a

ranking function with additions and multiplications is split into a set of ranking predicates that are
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the basic operands of these additions and multiplications. Such a parser is still quite primitive. It

can be beneficial to view a sub-expression as a single predicate instead of multiple ones, in order

to support more general form of ranking functions as well as achieve better efficiency.

The Internal Representation of Tuple:

The introduction of our new ranking algebra into the system changes the underlying data model

of the query engine. The internal representation of a tuple is changed as an inherent upper-bound

score is associated with every tuple in the system. This requires us to modify not only the existing

definitions of data structures, but also the communication protocols among various components

in the system. For instance, the database server (postmaster in POSTGRESQL) sends the query

results to the database client (such as the interactive psql command in POSTGRESQL and the ap-

plication client using JDBC), by following the known communication sequence and format shared

by the two parties. The communication protocols must be changed to allow the delivery of ranking

scores.
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Chapter 7

Related Work

This chapter reviews the work related to the thesis. We organize the related work into four cate-

gories (ranking in databases, aggregate query processing, query results organization, and inverse

ranking and quantile queries) and discuss their connections to our work.

7.1 Ranking (top-k) Queries in Databases

Ranking (top-k) query has gained great interests in the database field recently. In middleware

settings, various algorithms are proposed for rank aggregation on a set of objects, by merging

multiple ranked lists [31, 76, 43, 32], or scheduling random accesses efficiently [12, 17], with the

goal of minimizing number of accesses to objects. The works [17, 12] explore the concept of

upper-bound scores that inspires us to formalize our ranking principle for relational top-k queries.

A similar sampling approach was applied in [17] to schedule predicates only, whereas we extend

the approach to estimate the cost of general ranking query plans.

In DBMSs, there have been several proposals to support answering top-k queries at application

level or outside the core of query engines [19, 18, 91, 41, 42, 55, 100], or for supporting special

types of ranking queries [75, 56]. Recently, supporting top-k queries inside the relational query

engine, in terms of physical query operators, has been proved to be an efficient approach that treats

ranking as a basic database functionality [13, 56, 57, 58]. A stop operator is proposed in [13] to

limit the cardinality of intermediate and query result, either conservatively by integrity constraints

or aggressively with the risk of restarting the query plan. The order supported by the stop operator

is from columns of relations in SQL queries. Aggregation of multiple ranking criteria was not
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considered.

In [57] a new operator is devised for supporting rank join query, where rank join predicates co-

exist with Boolean join predicates. Instead of conducting normal join algorithms on Boolean join

predicates, the rank-join operator progressively produces the join results. In [58] the relational

query optimizer is further extended to utilize the rank-join operator in generating efficient query

plans. We complement their work and together provide a systematic support of relational ranking

queries, as we use rank-join as one of the rank-aware operators and at the same time supply an

algebraic foundation of such support. Our dimensional enumeration framework enumerates plans

by two dual logical properties to handle both scheduling of rank operators and join order selection,

while [58] extends the “interesting order” (physical property) concept to deal with join enumera-

tion only. The “interesting order” was also extended to support optimizing queries with expensive

Boolean predicates [23]. The concept of our dimensional enumeration is general and extensible for

more dimensions, including scheduling such Boolean predicates, union, and intersection operators.

With respect to the approach of extending query algebra, [62] proposes an algebra for capturing

the semantics of preference queries. In [83] an algebra is proposed for expressing complex queries

over Web relations that are used to model Web repositories. The algebra extension focuses on

capturing the semantics of application-specific ranking and order relationships over Web pages

and hyperlinks, instead of enabling efficient query processing. In [21], the authors prospectively

proposed several alternative extensions of relational algebra that aim at supporting flexible ranking

and scoring, for integrating DB and IR for text- and data-rich applications. In [82], the authors

proposed to add a native score management system to object-relational databases, for querying

Web metadata. They extend SQL with score-management clauses and propose the sideway-value

algebra (SVA) for the extended queries.
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7.2 Aggregate Query Processing

None of the top-k query algorithms [31, 32, 12, 17, 13, 30, 19, 57, 58, 21, 67] support ranking

aggregate queries. The work closest to ours is [70], where ranking aggregates are computed over a

specified range on some dimensions other than the grouping dimensions, by storing pre-computed

partial aggregate information in the data cube. Therefore it can only support pre-determined aggre-

gate function and aggregated expression, lacking the ability to support ad-hoc ranking aggregate

queries. However, it is complementary to our work as it can be used to obtain the group sizes when

there are selection conditions over the dimensional attributes, as mentioned in Section 3.4.2.

Order optimization [88] was proposed in relational query optimizer to avoid sorting, to mini-

mize the number of sorting columns, to push down sort across joins, or to combine multiple sorts

into a single one. Eager aggregation [98, 22] and lazy aggregation [99] were proposed to optimize

group-by processing by functional dependencies. [25, 77] proposed algorithms and framework

for combining order and grouping optimization. [92] extended eager aggregation in OLAP envi-

ronment by utilizing special access methods.

Our approach of processing ad-hoc ranking aggregate queries differs from these works as fol-

lows: (1) We optimize for the retrieval of top k groups while the notion of ranking is not considered

in previous works as they focus on full sorting; (2) We handle ad-hoc ranking aggregate conditions

while previous works sort by table columns; and (3) We improve performance by pruning based

on upper-bounds while previous works save sorting and grouping costs mainly by using functional

dependencies.

Efficient computation of data cubes [2, 104, 85] focuses on sharing the computation across

different cuboids instead of how to process a single cuboid, which corresponds to a group-by.

Answering aggregate queries using materialized views was addressed in [44, 90].

Semantically similar to top-k aggregate queries, iceberg queries [33] retrieve only the groups

that qualify under a Boolean condition (expressed in the having clause). The techniques in [33]

are confined to single-table queries (joins have to be materialized beforehand) and sum or count
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instead of general aggregate functions. The notion of iceberg queries was extended to iceberg

cubes in [11, 49]. Iceberg cuboids with the same dimensional attributes involve the computation

of an iceberg query, or essentially a ranking aggregate query. These works focused on pruning

cuboids in an iceberg cube, while how to efficiently compute a cuboid was not considered. Hence,

we consider our work to be complementary in evaluating iceberg cubes.

Online aggregation [51, 47] supports approximate query answering by providing running ag-

gregates with statistical confidence intervals. We extend its index striding technique to support the

group-aware and rank-aware scan operator.

7.3 Clustering and Query Results Organization

Various clustering algorithms exploited summary of data during clustering, e.g., [103, 35]. In

particular, there are grid-based clustering and data mining algorithms such as STING [94] and

WaveCluster [87]. They pre-compute and store the grids beforehand. Our summary-based cluster-

ing shares the same insight of clustering by the unit of bucket instead of individual tuple. However,

we emphasize on the need in our target applications to construct the grid on-the-fly for coping with

dynamic Boolean conditions, clustering attributes, and ranking attributes that are specified at query

time, and to integrate filtering, clustering, and ranking altogether.

Note that the top-k processing techniques in the literature may not be applicable for processing

ClusterRank . It is well known that top-k algorithms are optimized for small k. As k increases,

their performances degrade quickly and become worse than straightforward materialize-then-sort

approach. In our case, we must get the top k tuples within each cluster, and some of them may be

globally ranked low. For example, the houses of one region in general may be more expensive and

smaller than the ones in other regions, therefore even the top houses in this region are ranked quite

low globally. That does not mean the houses in the region are bad choices. In fact, the reality may

be the opposite since, say, that region is safe and has beautiful scenery. Using top-k algorithms

under this situation will not be beneficial.

153



An idea of using candidate buckets for pruning was applied in answering top-k queries [19].

However, they rely on static pre-collected multi-dimensional histogram, while we utilize data sum-

mary that is dynamically constructed using bitmap index.

An automatic method for categorizing query results (instead of clustering) is proposed in [14].

They perform categorization as post-processing after Boolean query results are obtained, with the

focus on minimizing users’ navigation overhead. They do not consider integration with ranking

either. The idea of categorizing database query results is also exemplified by the products from

Endeca.

The idea of combining clustering and ranking has been proposed for organizing the results of

Web search engines (e.g., vivisimo.com), as well as for information retrieval systems [64]. Our

work investigates the problem in the setting of DBMSs, which has intrinsically different data and

query processing model and thus presents significant new challenges.

7.4 Inverse Ranking and Quantile Queries

[55] studies using materialized ranked results to answer ranking queries. [29] presents a more

general approach of using views in answering top-k queries. It also uses linear programming

during query processing. However, it focuses on small number of top k answers, and thus it is less

important to build efficient access method (such as the index) for retrieving previous query results.

[101] studies quantile retrieval on multi-dimensional data. However, quantiles in that work are

based on a single measure associated with multi-dimensional index structure, instead of ranking

function. Therefore it does not incur the problem of mismatching between indexed attributes and

ranking attributes. Moreover, it does not consider the integration with Boolean query conditions.

There were quite some works on computing quantiles in databases and stream data systems [3,

5, 37, 71, 6, 28, 27]. However, they are fundamentally different from the quantile queries in this

work. First, they focus on the quantile of a set of data items, where the values of the items them-

selves give their ranks. To the contrary, we study general quantile queries, where database records
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are ranked by ranking functions that involve multiple attributes or even multiple tables. Second,

our quantile queries are in the context of general database queries, whereas they do not consider the

integration with Boolean query conditions. Finally, from the perspective of application domains,

the quantile queries in this thesis are for flexible data retrieval, exploration, and analysis. The pre-

vious works do not consider such applications. They use quantiles of data for query optimization,

result size estimation, association rule mining, data cleaning, and data partitioning.
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Chapter 8

Conclusion and Future Agenda

Towards enabling data retrieval, this thesis focuses on how to fundamentally integrate ranking into

databases and how to enable retrieval mechanisms beyond just ranking. This section summarizes

the contributions and discusses some open issues that warrant further research.

We introduced our RankSQL system for full support of ranking as a first-class operation in

real-world database systems. As the foundation of our work, we present the key insight that rank-

ing is another logical property of data, parallel to the “membership” property. Centering around

this insight, we first introduced a novel and general framework for supporting ranking in relational

query engines based on extending the relational algebra. The extended rank-relational algebra cap-

tures the ranking property with rank-relational model and introduces new and extended operators

to fully express top-k queries. We also defined a set of algebraic laws for rewriting, hence opti-

mizing, top-k query plans. Second, we presented a pipelined and incremental execution model of

ranking query plans, by realizing the fundamental ranking principle in the extended algebra, thus

enabling efficient processing of ranking queries. Third, based on the insight of the duality between

ranking and membership properties, we introduced a generalized rank-aware optimization frame-

work that defines ranking as an additional plan enumeration dimension beyond enumerating joins

and generates the full space of rank-aware query evaluation plans. For practical purposes, we in-

troduced heuristics that limit the generated space. Moreover, we introduced a novel technique for

estimating the cardinality of top-k operations, hence, providing an effective plan pruning mech-

anism to get efficient ranking query plans. We presented the experimental results on our initial

implementation of the RankSQL system.

Upon the algebraic foundation, we introduced a principled and systematic framework to sup-
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port ad-hoc top-k (ranking) aggregate queries efficiently. We developed the Upper-Bound Prin-

ciple that dictates the requirements of early pruning, and the Group-Ranking and Tuple-Ranking

Principles that dictate the group-ordering and tuple-ordering requirements. The principles together

realize optimal aggregate query processing. Guided by the principles, we proposed an execution

framework for exploiting the principles. We addressed the challenges in applying the principles

and implementing the new query operators. The experiment results validate our framework by

showing significant performance improvement. To the best of our knowledge, this is the first piece

of work that provides efficient support of ad-hoc top-k aggregates. Thus the techniques address a

significant research challenge and can be very useful in many decision support applications.

Beyond ranking, we proposed to generalize group-by to enable fuzzy grouping (clustering

in particular) of database query results, and to integrate grouping with ranking and further with

Boolean filtering, for supporting structured data retrieval applications. We defined a new type of

ClusterRank queries for this purpose. We designed a summary-based framework to meet the chal-

lenges in supporting such integration. We realized the framework by utilizing bitmap index to con-

struct the summary on-the-fly, and to efficiently integrate Boolean filtering, clustering, and ranking

altogether. Experimental study with our implementation shows that the framework achieves orders

of magnitude better efficiency than the straightforward approach available in current databases, and

at the same time it maintains high clustering quality. To the best of our knowledge, this work is the

first to propose such generalization of fuzzy grouping and integration with ranking within DBMSs.

We also proposed a new type of inverse ranking queries, that obtain the ranks of given query

objects among certain context objects. Such queries are useful in supporting data retrieval and

exploration, thus can be important in many applications. We further developed a framework for

processing these queries, and discussed several alternative methods within this general framework.

Some of these methods utilize common data structures existing in current database systems and

some others are based on the new data structures proposed. We analytically studied the cost model

of these methods, and empirically compared them with each other as well, to understand the trade-

off in applying these methods. We also compared these methods with the traditional straightfor-
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ward method, and verified that our method is much more efficient. To the best of our knowledge,

ours is the first work that studies inverse ranking queries. We believe that we have conducted a

thorough investigation on the definition of the novel queries, the design of efficient processing

methods for such queries, and the experimental evaluation of the methods.

Towards the ultimate goal of building next-generation data retrieval systems, many interesting

and challenging problems remain open. First, we want to explore more retrieval mechanisms. Sec-

ond, my thesis work focused on retrieval in traditional structured databases. However, as abundant

data nowadays exist in a space of heterogeneous and interconnected sources, it is imperative to

use auxiliary information from related sources for robust ranking of database records. Finally, to

take full advantages of the processing techniques developed for retrieval queries, we must have a

general and robust query optimizer for such queries.

Data Retrieval and Exploration Primitives beyond Ranking: For flexible, intuitive, and explo-

rative querying of databases, we must look for novel retrieval mechanisms that go beyond ranking,

such as the fuzzy grouping in Chapter 4 and the inverse ranking in Chapter 5. For such purpose,

it is promising to investigate the primitive operations in information retrieval, data mining, and

user interfaces. For instance, can we use association or correlation in relaxing restrictive query

conditions? Can we automatically produce a navigation “map” that guides users to find informa-

tion in databases? Supporting such alien concepts inside databases is surely challenging. We must

integrate them with traditional Boolean constructs. We must invent efficient processing methods

for them. Moreover, in supporting data exploration, we must look for innovative techniques of

database user interfaces and data visualization.

Optimizing Retrieval Queries: While most existing works on ranking focus on query processing,

there is a serious lack of general and accurate optimization techniques for ranking queries, and

more generally for retrieval queries. For instance, in cost estimation, a key component in query

optimizer, most existing works only deal with special cases under unrealistic assumptions such

as uniform data distribution. We must tackle this challenge by inventing non-traditional database
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statistics and analytical cost models that utilize the statistics. For example, results from order

statistics may guide us in developing such statistics.

Context-Aware Ranking: Database tuples and queries are tightly connected to their “context”

residing in diverse information sources outside the databases. Therefore instead of treating tuples

in isolation, we must utilize the context for robust ranking. Such context includes data context

(e.g., textual annotations, data history and provenance) and query context (e.g., personalized in-

formation, query history and workload). For instance, we can provide personalized retrieval by

incorporating user profiles into ranking. There are many challenges in realizing context-aware

ranking. We must combine context with tuples themselves in determining ranking; Context infor-

mation from heterogeneous sources can be incomplete, imprecise, or even conflicting; Finally we

must design efficient ways to coordinate query processing across multiple data sources.

Ranking by Object Relationships: In many non-traditional applications, we can utilize ranking

criteria that are unavailable in conventional databases. For instance, object relationships (e.g., co-

recommendations, co-occurrences of text descriptions) are powerful for recommending top objects

(e.g., videos, music, and Blog articles) to users. While similar ideas were applied in collaborative

filtering, current techniques have difficulties in coping with the dynamic nature of large systems.

For example, as a video sharing Web site accepts new videos continuously, how to keep up with

the scale and make active recommendations to each user individually?
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Appendix

Proofs of Properties and Theorems

1 Proof of Property 2

Property 2 (Best-Possible Goal): With respect to a ranking aggregate F= G(T ), let the lowest

top-k group score be θ. For any group g, let Hmin
g be its minimal tuple depth, i.e., the number of

tuples to retrieve from g before it can be pruned from further processing, or otherwise determined

to be in the top-k groups. The Hmin
g is the smallest number of tuples from g that makes the

maximal possible score of g to be below θ, i.e.,

Hmin
g = min{|Ig||F Ig

[g] < θ, Ig ⊆ g}, (1)

or otherwise Hmin
g =|g| if such a depth does not exist.

Proof: By definition, Hmin
g is the number of tuples retrieved from g when the query processing

stops, i.e., g is pruned from further processing or otherwise determined to be in the top-k groups.

If g belongs to the real top k groups, say K′, g must be completely processed to obtain its exact

aggregate. That is, Hmin
g =|g|.

For any g /∈ K′, suppose a subset of tuples Ig ⊆ g have been accessed. We now prove the

minimal tuple depth Hmin
g is the smallest |Ig| that makes F Ig

[g] < θ. On the one hand, Hmin
g

cannot be smaller than such smallest |Ig|, otherwise F Ig
[g] > θ. (Note that we assume no ties in

scores.) Under such situation, no algorithm can exclude g from further processing since g still has

a chance to achieve better than the lowest top-k group. On the other hand, Hmin
g does not need to

be larger than such |Ig|, because we already have F Ig
[g] < θ when Ig tuples from g are retrieved.
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Under such situation, g does not have a chance to get into the final top k groups. An algorithm that

has obtained the final top k groups can safely exclude g from further processing. There Hmin
g is

the smallest possible tuple depth.

2 Proof of Property 3

Property 3 (Must-Have Information): For any group g, with a trivial upper-bound F Ig
[g]= +∞

under every Ig, Hmin
g =|g|.

Proof: If the upper-bound of a g is always infinity, no algorithm can prune g early since g always

has a chance to be one of the final top k groups. That is, all the tuples in g must be accessed, i.e.,

Hmin
g =|g|.

3 Proof of Property 4

Property 4 (Group-Ranking Principle): Let g1 be any group in the current top-k ranked by

maximal-possible scores F and g2 be any group not in the current top-k. We have 1) g1 must

be further processed if g1 is not fully evaluated, 2) it may not be necessary to further process g2

even if g2 is not fully evaluated, and 3) the current top-k groups are the query answers if they are

all fully evaluated.

Proof: Suppose at any moment, the current top-k groups are K, such that F Ig1
[g1] > F Ig2

[g2],

∀g1 ∈ K and ∀g2 /∈ K. Assume there is no tie in scores since ties can be broken by the “tie-breaker”

mentioned in Section 3.1.

For any incomplete group g1 ∈ K (Ig1 ⊂ g1), further processing g1 is necessary, otherwise

g1 remains belonging to K (based on Eq. 3.3, F never increases as more tuples are obtained) and

incomplete, resulting in that it is impossible to get the real top k groups and their exact aggregates.

(g1 may be one of the real top k groups since it remains belonging to K; and the exact aggregate

of g1 can not be obtained since it is not fully evaluated).
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Given any such g1 ∈ K and g2 /∈ K, since F Ig1
[g1] > F Ig2

[g2], whatever score g2 can achieve,

g1 can possibly do better. Thus, further processing g2 (when g2 is incomplete) may not be neces-

sary, since K may turn out to be the real top k groups, i.e., F [g1] > F Ig2
[g2], ∀g1 ∈ K. Further

processing of g2 can become necessary only if we further process some incomplete group g1 ∈ K

such that g2 belongs to the updated K.

When all the groups in K are complete, we can sufficiently declare K as the real top k groups,

because F [g1] = F Ig1
[g1] > F Ig2

[g2], ∀g1 ∈ K and ∀g2 /∈ K.

4 Proof of Property 5

We present the following lemma before the proof.

Lemma 1: With respect to a ranking aggregate F= G(T ), let the lowest top-k group score be θ.

At any moment, suppose K is the current top k groups ranked by maximal-possible scores F , we

have F [g] ≥ θ, ∀g ∈ K.

Proof: Suppose the set of the real top k groups is K′. For any g′ ∈ K′, at any moment, F [g′] ≥

F [g′] ≥ θ, and thus there are at least k groups with maximal-possible scores over θ. Therefore for

the current top k groups K at the moment, F [g] ≥ θ, ∀g ∈ K.

Property 5 (Tuple-Ranking Principle): With respect to a ranking aggregate F= G(T ), let the

lowest top-k group score be θ. For any group g, let Hα
g be the tuple depth with respect to tuple

order α: t1→ · · · → tn, when the inter-group ordering follows Requirement 2.

• (Order Independence) The depth Hα
g depends on only α (the order of this group) and θ (the

global threshold), and not on the order of other groups. Specifically, Hα
g is the smallest depth l of

sequence α that makes the maximal possible score of g to be below θ, i.e.,

Hα
g = minl∈[1:n]

{l|F {t1 ,...,tl}[g] < θ}, (2)

or otherwise Hα
g =n if such a depth does not exist.
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• (T -based Ranking) To find the optimal order α that results in the minimum Hα
g , i.e., Hα

g =Hmin
g ,

we need to only consider the class of orders T -desc/asc =

{α : t1 → · · · → tn|
either T [ti] ≥ T [tj ]∀j > i (from top);
or T [ti] ≤ T [tj ]∀j > i (from bottom).

∀ti}. (3)

Proof:

Order Independence: By definition, Hα
g is the number of tuples retrieved from g when the query

processing stops. If Requirement 2 is followed, by the Stop condition, when we stop and conclude

the real top k groups, say K′, g is complete ∀g ∈ K′ and therefore Hα
g =n.

For any g /∈ K′, if it has been accessed to some depth l, t1, . . . , tl are the accessed tuples since

the order is α: t1 → · · · → tn. We now prove the tuple depth Hα
g is the smallest l that makes

F {t1 ,...,tl}[g] < θ. On the one hand, Hα
g cannot be smaller than such l, otherwise F {t1 ,...,t ′

l
}[g] > θ

(say, Hα
g =l′ < l). (Note that we assume no ties in scores.) Under such situation, we could not have

concludedK′ as the real top k groups if Requirement 2 is followed, since the Progressive condition

would require to further process some incomplete group such as g. (Remember θ is the lowest F [g]

among groups inK′.) On the other hand, Hα
g cannot be larger than such l, because we already have

F {t1 ,...,tl}[g] < θ when l tuples from g are retrieved. Under such situation, g cannot get into the

current top k groups K anymore (Lemma 1). By the Progressive condition of Requirement 2, g

cannot get any chance to be further processed.

T -based Ranking: We prove that for any rest order, there is always a better order in T -desc/asc.

As the complement of T -desc/asc, the space of all orders in the rest class is defined as

Ωr = {α′|α′ : t1 → · · · → tn, ∃x,j,k,j>x∧k>xT [tx] > T [tj ] ∧ T [tx] < T [tk]}.

That is, given any α′ ∈ Ωr, there exists at least one “next” tuple obtained at some step that is

neither the highest nor the lowest score among the unseen tuples. (Without such “middle” tuple,

α′ becomes a T -desc/asc order.)

There can be multiple instances of such “middle” tuple tx at various steps of the tuple sequence

of α′. Without loss of generality, let us focus on the first instance of such tx. Before that retrieval,

suppose Ig is the set of retrieved tuples and the maximal-possible score for unseen tuples is T Ig
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(Eq. 3.3). After the retrieval, the maximal-possible score of unseen tuples is unchanged, i.e.,

T Ig∪{tx}=T Ig
. Therefore

F Ig∪{tx }[g] =

G













{Ti|

Ti = T [ti] if ti ∈ Ig (seen tuples);

Ti = T [ti] = T [tx] if ti = tx (just retrieved);

Ti = T Ig∪{tx} = T Ig
otherwise (unseen tuples).

∀ti ∈ g}













. (4)

However, if the one with the lowest score among unseen tuples, t⊥ = argmint∈g−Ig
T [t],

instead of tx was retrieved, we have F Ig∪{t⊥}[g] < F Ig∪{tx}[g] according to the following Eq. 5,

which is the same as Eq. 4 except that T [t⊥] < T [tx].

F Ig∪{t⊥}[g] =

G













{Ti|

Ti = T [ti] if ti ∈ Ig (seen tuples);

Ti = T [ti] = T [t⊥] if ti = t⊥ (just retrieved);

Ti = T Ig∪{t⊥} = T Ig
otherwise (unseen tuples).

∀ti ∈ g}













. (5)

Now we show that we can convert any α0 ∈ Ωr into a T -desc/asc order αm by a series of

transformations, α0⇒ α1⇒ . . .⇒ αm, and Hαm
g ≤ Hα0

g . In each transformation from αi to αi+1,

we find the first instance of such “middle” tuple tx in αi, and swap the position of tx and t⊥, i.e.,

αi : 〈. . . , tx, . . . , t⊥, . . .〉 ⇒ αi+1 : 〈. . . , t⊥, . . . , tx, . . .〉. According to Eq. 4 and Eq. 5, the value

of F Ig
[g] at each step of αi+1 is equal to or smaller than that of αi, therefore H

αi+1
g ≤ Hαi

g based

on Eq. 3.4, thus Hαm
g ≤ Hα0

g . Moreover, for a group with n tuples, such transformation ends in at

most n− 1 steps, therefore we will reach a better hybrid order. The reason is as follows. Since tx

is the first instance of “middle” tuple in αi, the retrieved tuple at each step before tx is the one with

either the highest or the lowest score among the unseen tuples. Suppose there are s tuples before

tx in the sequence of αi. Then after the transformation from αi to αi+1, there are at least s + 1

tuples before the first instance of “middle” tuple in αi+1, and finally there is no such instance in

αm.
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5 Proof of Theorem 1

Theorem 1 (Optimal Aggregate Processing): If query processing follows Requirements 2 and

3, the number of tuples processed across all groups, i.e., ΣgHg, is the minimum possible for query

answering, i.e., ΣgH
min
g .

Proof: Among all the tuple orders that follow Requirement 2, for any group g, according to Prop-

erty 5, the number of processed tuples Hg is minimized when Requirement 3 is followed as well,

i.e., Hg = Hα
g where α is the optimal intra-group order for g.

Moreover, this Hα
g is indeed the smallest number of g’s tuples to retrieve under any total tuple

order, i.e., Hα
g = Hmin

g , because any smaller number would result in F [g]≥ θ so that we can neither

get the exact aggregate of g (if g belongs to the real top k groups) nor conclude g does not belong

to the real top k. In other words, the optimality of α is independent from whether Requirement 2

is followed or not because α is the optimal among all possible orders of retrieving g’s tuples. In

summary, the minimal total number of retrieved tuples is ΣgH
min
g and this minimum is achieved

when both Requirement 2 and 3 are followed.

6 Proof of Property 6

Property 6: With respect to a relation T , a ranking functionF(R), and k, suppose the top k tuples

are Tk. The set of candidate buckets B′ obtained by the algorithm in Figure 4.4 is both correct:

B′ contains all the top k tuples, i.e., Tk ⊆ TB′; and optimal: B′ is the smallest set of buckets that

contain Tk, i.e., ∀B′′ s.t. ∃Bi ∈ B
′ and Bi /∈ B′′, there exists an instance of T s.t. Tk * TB′′ .

Proof: ∀t ∈ T , we use B(t) to denote the bucket which t falls into in G(T, R). With respect

to a bucket Bi, we use T+
Bi

to denote the set of tuples that belong to the buckets whose lower-

bound scores are higher than or equal to the upper-bound score of Bi, and T−
Bi

to denote the

remaining tuples (T−T+
Bi

), i.e., T+
Bi

={t|t ∈ T and lowerB(t)≥upperBi
} and T−

Bi
={t|t ∈ T and

lowerB(t)<upperBi
}.
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Correctness: We prove the correctness by proving ∀t ∈Tk, B(t) ∈ B′, by contradiction. If

B(t) /∈ B′, then |T+
B(t)| > k and ∀t′ ∈ T+

B(t), F(R)[t′]≥lowerB(t′)≥upperB(t)>F(R)[t] 1 (step 4-8

in Figure 4.4). This means there exists at least k tuples whose scores are higher than that of t, thus

t /∈ Tk, contradicting t ∈ Tk.

Optimality: Consider any B′′ s.t. Bi∈B
′ and Bi /∈B

′′. Since Bi∈B
′, we have |T+

Bi
|<k and

|T−
Bi
|>|T |−k. Use max(T−

Bi
) to denote the maximal score among the tuples in T−

Bi
. We prove the

optimality by proving there exists an instance of T s.t. ∃t, t ∈Tk and B(t)=Bi. One such instance

is: ∀t′∈T−
Bi

, F(R)[t′]=lowerB(t′), and ∃t, B(t)=Bi and F(R)[t]=1
2
× (max(T−

Bi
) + upperBi

), thus

F(R)[t]>F(R)[t′], ∀t′∈T−
Bi

. According to |T−
Bi
| > |T | − k, t∈Tk. Since B(t)=Bi and Bi /∈B

′′,

therefore Tk*TB′′ .

1Note that upperB(t)>F(R)[t] since the ranges are defined as left-end closed and right-end open, cf. Section 4.4.2.
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