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Abstract

Information discovery on the Web has so far been dominated by kelylhased document
search. However, recent years have witnessed arising need$\iebrasers to search for named
entities, e.g., finding all Silicon Valley companies. With existing Web seangjines, users
have to digest returned Web pages by themselves to find the answdity. SEarch has been
introduced as a solution to this problem. However, existing entity seartbnsysare limited in
their capability to address complex information needs that involve multiple esritie their inter-
relationships. In this report, we introduce a novel entity-centric strudtquerying mechanism
called Shallow Semantic Query (SSQ) to overcome this limitation. We cover éyaechnical
issues with regard to SSQ, ranking and query processing. Compgiedexperiments show
that (1) our ranking model beats state-of-the-art entity ranking meth{@jithe proposed query
processing algorithm based on our new Entity-Centric Index is moraegftithan a baseline
extended from existing entity search systems.

1 Introduction

With the continuous evolution of the Web, structured datarddiferating on more and more Web
pages. Such data provides us a view of the Web as a reposittagtities” (material or virtual) and
their relationships. For discovering and exploring thetiestthat fascinate them, Web users are in
need of structured querying facilities, coupled with tettieval capabilities, that explicitly deal with
the entities, their properties and relationships. In aneoeport on self-assessment of the database
field by a group of researchers and practitioners, it is poimtut that the database community is at
a turning point in its history, partly due to the explosionstiuctured data on the Web. One of the
major directions that database research is expanding doiwahe interplay between structure and
text [27]. Recently there have been extensive efforts atbisggeneral direction [13, 22, 8].

Despite the increasing popularity of structured informaton the Web, the prevalent manner
in which Web users access such information is still keywmaded document search. Although
keyword search has been quite effective in finding specifib /éges matching the keywords, there
clearly exists a mismatch between pege-centric text-focused view and the aforementionesitity-
centric structure-focused view of the Web. User information needs often cannot be jlexpressed
with a set of keywords, and processing the search results@eayre substantial user efforts.

Example 1 (Motivating Examples): Consider a business analyst investigating the developofent
Silicon Valley. Particularly, she is interested in the doling tasks:

Task 1. Find companies located in Silicon Valley.

Task 2 Find companies and their founders, where the companieis &#con Valley and the
founders are Stanford graduates.

There are two major mismatches making keyword queries tatdaifor resolving such tasks.
First, our tasks focus aigped entities such as PERSON and COMPANY and their relationsoi8&c
our tasks often involve synthesizing information scatieaeross different places. Hence, a simple
list of articles returned by one keyword search is not swfiti For instance, one article may tell the



analyst that Jerry Yanig a founder of Yahog'but whether Yahools a Silicon Valley company and
whether Jerry Yangs a Stanford graduate may have to be found in other articles.

While conceptually simple, with only keyword search, thdsadescribed above require substan-
tial user efforts to assemble information from a potentildrge number of articles. To accomplish
Task 2, our analyst may start with a search on “Silicon Vatlegnpany” and scan through the po-
tentially long list of result articles to, hopefully, fetehlist of companies that are likely to be in
Silicon Valley. She then similarly issues another searcliQtanford graduate” to find a list of
people graduated from Stanford University. She then minaambine entities in these two lists
and, by multiple additional searches, check if a companyfeasded by a person, for each pair
of person and company. Alternatively, she can also go thrdhg list of companies and, for each
company, find its founders and check if Stanford is their aimager by multiple search queries. Both
are painful options and require the user to break down tHeit#s a time-consuming, error-prone
iterative procedure of searching, reading and re-seagchin

Query 1 (SSQ Query For Task 2):

SELECT z, y

FROM PERSON, COMPANYy

WHERE z:["Stanford", "graduate"] /I Predicate p1
AND y:["Silicon Valley"] /I Predicate P2
AND z,y:["found"] /I Predicate D3

Our goal is to provide a declarative query interface for siaslks and an evaluation mechanism
that produces answers directly. To accomplish this goalpmepose a structured querying mecha-
nism calledshallow Semantic Query (SSQ). Query 1 illustrates the SSQ query for Task 2. The query
syntax is modeled after SQL, allowing information needsdcaspecified in a structured manner in-
stead of a flat set of keywords. There are three elementageptsiwithin this SSQ query. First, the
guery centers on twentity variables, x andy. Variablezx is bound to all entities belonging to type
PERSON and to all entities belonging to type COMPANY. Second, for eaahiable, the query
specifies aselection predicate as the criterion on the selection of entities. For exampldegired
PERSONp should be a Stanford graduatg Y. Third, arelation predicate specifies the relation
betweerp andc (p3).

Developing SSQ presents a significant research challerdygamives several important build-
ing pieces. Named entity recognition, disambiguation aateégorization are required for properly
identifying entities and assigning them to types. Moreptlex noise and spam on Web pages must
be addressed in order to reach a quality system. Each of ihasemportant research problem on
its own and has been studied heavily [23, 17, 21, 9]. While illdte rewarding to apply the results
in these areas as building blocks in developing SSQ, as #al iaitempt, we choose to focus on a
special corpus, Wikipedia, which consists of a rich body aihmunity-edited articles annotated
with name-entities.

Since its inception in January 2001, Wikipedia has riseretthle largest encyclopedia ever cre-
ated, containing nearly 3 million articles in English alaseof 2009. In the meantime, Wikipedia
articles have amazingly evolved, from mostly plain textsatier stage to current ones with substan-
tial structural annotations. Some of the important anmmatincludeinternal links (links to other
Wikipedia articles)jnfoboxes (summary tables of articles) amdtegories (which group articles for
navigational convenience). As a result, it is now the priyrlarowledge source for many users on a
wide variety of topics, including people, institutions pgaphical locations, events, etc.

The distinguishing characteristics of Wikipedia help etlgeaforementioned problems (details
in Section 6.1) and thus allow us to focus on the central englts of SSQ itself, i.e., how to evaluate
SSQ queries. Moreover, the high-impact of Wikipedia on amgiety makes an SSQ system over
Wikipedia itself a valuable artifact. It is our hope that thlesults from this report would lead to
the thorough investigation of SSQ over generic Web pagess tlre enabling technologies (e.g.,
Web-scale entity recognition and disambiguation) becovadable.

Challenges While the structured information in Wikipedia alleviates mggoeripheral problems
such as entity detection, we are still faced with severaldtellenges in SS(irst, the notion of
Shallow Semantic Query and the semantics of query resulss beuproperly definedSecond, an



effective ranking mechanism has to be established. Rankiogels that are typical in document
retrieval systems (e.g., PageRank and Vector Space Modeiptdirectly apply to ranking SSQ
search resultsThird, as a search system involving user interaction, an effigjarty processing
algorithm is needed. This is particularly challenging f&@G@since SSQ queries are structured and
may involve multiple entities and their inter-relationsi This report covers all three issues.

2 Related Work

Shallow Semantic Query is not the only approach to enabliéyergntric queries over Web text.
A large body of research works from different areas have Ipedatished towards the general goal.
This section provides a review of some most important rdlaterks, pointing out their limitations
and differences from SSQ.

The DB-basedapproach explicitly extracts entity-relationship infation from text into rela-
tional databases. SQL queries can thus be issued over théagep databases. This approach is
constrained by the capability of the information extraet{tE) [7, 4, 15, 25, 16, 19, 6, 20] and nat-
ural language processing (NLP) [20, 10, 11, 6] techniquestid@ilarly, it requires explicit identifi-
cation of the “names” of entity relationships. For examfla,“found” relation between Jerry Yang
and_Yahoolwas not detected during the extraction phase, such infasméat lost and could not be
queried.

The Semantic Webapproach [28, 24, 18, 5] explicitly encodes entities andt ttedations (and
general knowledge) in RDF [1] format, the W3C recommendatiostata model for Semantic Web.
It exploits the full-featured structured query languageABQL [1], to support sophisticated entity-
relationship queries, coupled with reasoning power. Haxgahe building blocks of Semantic Web,
RDF data, must be collected beforehand. Some systemslyedigtibact RDF from structured/semi-
structured semantic data sources [5, 28], like Infobox&¥ikipedia and WordNet. However, such
data sources are still quite limited in scope. Others aplyechniques over Web pages to boot-
strap RDF extraction [18], but the quality control is muchrendifficult. Besides, independently
developed Semantic Webs face the issue of interoperafility

ThelR-basedapproach, exemplified by the recently formed entity seanchranking problems
in the IR community [12, 26, 2, 3, 30, 29], focuses on retrigvhamed entities (from free text)
relevant to certain contextual constraints. The probleroften presented as a natural language
description of the preferred entities plus a type constrainthe entities. To rank the answers,
typical IR techniques like TF-IDF [29, 2], HITS [29] and P&pnk [14] are commonly applied
with adaptation.

Shallow Semantic Query uniquely takes the DB-IR integraiggroach in pursing entity-centric
tasks. On the one hand, SSQ queries have explicit structoragonents (typed entity variables, se-
lection/relation predicates), offering greater expnessess than pure keyword queries. On the other
hand, each individual predicate is a keyword-based cdnstevoiding the strong requirements of
explicit schema (as in database) and semantics (as in Seréati). The SSQ system finds entities
satisfying predicates by a simple and intuitive requiretmentities should co-occur with keywords
in predicates in some contexts (e.g., a sentence). For égaprpdicater:[“Stanford” “graduate”]
requires a PERSON to co-occur with keywords “Stanford” agihiuate” in the same context. In
short, SSQ captures entity properties and relationshipsitiin shallow syntax requirements implied
by user-specified predicates at query tigather than pre-extracting them at system construction
time. Although such syntax clue is by no means rigorous argroof, it becomes robust when we
take into consideration the repetitive nature of the Webe facts are more likely to be stated on
many different pages. This intuition has been widely used/@b search and mining [7, 4, 14].

The studies most related to SSQ are [12, 14, 31]. [12] learmptmal scoring function on prox-
imity feature, but it only scores entities by one evidenag rmakes no attempt to integrate evidences
found in multiple documents to improve ranking. Leveraging redundancy of the Web, [14] ag-
gregates scores of locally evaluated evidences into giulmmes. However, neither of the two studies

1We acknowledge that, the effectiveness of such entityiaziship queries partially relies on the users capability i
providing proper keyword constraints, just like in IR quaxi



tackles the challenge of improving ranking beyond the fest frue answers. Moreover, they only
focus on queries comparable to our single-predicate guarid thus do not study structured (multi-
predicate) queries. [31] proposes a Content Query Langfmagguerying entities, but essentially
is also limited to single-predicate queries. All these vgoukilize sight variations of the traditional

full text index. These variations are exemplified by the Dueunt-Centric Index in Section 5.1.

SSQ makes use of our novel Entity-Centric Index (Section %.2) to achieve better efficiency in

processing structured queries.

In summary, SSQ is unique in its ability to answer complexdtired queries directly over
textual corpus. Although currently experimented with Widlia, it can be extended to other corpora
with assistance of entity identification technology. Tomuode our vision on structured query over
type-annotated corpus, this report provides a full intitiiun of our current research status on SSQ.
The rest of the report is organized as follows:

e Section 3 brings forth Shallow Semantic Query, an entitytiée structured querying facility
for querying named entities by their properties and retetidps, and formalizes its semantics.
Both the ranking problem and the entity retrieval problemfarmally defined.

e Section 4 introduces our ranking method based on threeigrodiased features that exploit
entity-keyword co-occurrences.

¢ A novel Entity-Centric Index and a corresponding Entitya@i Retrieval algorithm for effi-
cient processing of SSQ queries are presented in Section 5.

e Comprehensive experiments are provided in Section 6.

3 Shallow Semantic Query

In this section, we formally introduce the concept of Shalfemantic Query (SSQ). An SSQ query
consists ofentity variables andpredicates. Entity variables (e.g4 in Query 1) are bound to typed
entities and are associated with keyword constraints tm fguerypredicates (e.g., z:[“Stanford”
“graduate”]), which express the semantic criteria in sighgcand relating entities. Formally:

Definition 1 (Shallow Semantic Query): A shallow semantic query is a quadruglé D, P, U):

— V is a set of entity variablegvy, ..., v, }.

— D is a multi-set of entity type$d,, ..., d,}, whered; is the type of the correspondingeV'.
Two variables can have the same type (dg=d;), thusD is a multi-set.

— P is a set of conjunctive predicates. EgehP is a pair(V},, C,), whereV,CV andC), is
a keyword-based constraint associated With The constraint,, is a set of phrases, where each
phrase is made up of one or more keywords. The predjcit@ selection predicate if |V,|=1 and
relation predicate otherwise.

— UCV is the set of variables constituting the output tuple.

Example 2: By the above definition, Query 1 can be formulateda&/, D, P,U), V=U={z,y},

D={PERSON, COMPANY, P={p1, p2, p3 }, wherep,=({z}, {“Stanford”, “graduate}), p-=({y},

{“Silicon Valley"}), andps={{x, y}, {“found”}). p; andp, are selection predicates; is a relation
predicate.

Note thatU is a subset o/, resembling the notion of projection in relational algebfeor
example, suppos@lerry Yang Yahoo! and (David Filo, Yahoo! are both answers to Query 1. If
COMPANY y is the only output variable, only ongrahool) will be in the output. Without loss
of generality, we assum&=V" throughout our discussion. Hence for short, an SSQ quenpean
written asq=(V, D, P).

We use an SQL-like syntax to express SSQ queries (Query BrentheSELECT, FROMand
WHERElauses specify output variables, entity types and présicaespectively. To concentrate
on the SSQ semantics, we omit the formal definition of quentayin this report and explain the
queries in plain English when needed.




As noted before, SSQ is intended to work on textual datagfbes, it only recognizes infor-
mation explicitly stated in text and retrieves entitiesstated with predicate phrases within certain
contexts. In other words, SSQ system searches for queryeassupported by textual evidences.
Given a predicate, if a sentence contains all the phrase€’jnand one entity for each variable in
V., itis considered amvidence for p and these entities in whole are said to satjsfpuppose three
evidences are found in the corpus as a result of Query 1:

s1: Jerry Yang graduated from Stanford University ...

s9t ... asenior manager at Yahoo! in Slicon Valley.

s3: Jerry Yang co-founded Yahoo!.
Jerry Yangsatisfieg; by evidences;; Yahoo!satisfieg, by evidences,; and they together satisfy
ps by s3. Assembling the information together, the entity tufllerry Yang Yahoo is composed as
an answer to the query since it satisfies all the query praicén this paper, we assume sentence as
the unit of co-occurrence contexts for evidences, whileslity, contexts of coarser granularities,
such as paragraphs and documents, are possible.

Definition 2 (SSQ Answer Tuple): Given a queryg=(V, D, P), an answer tuple is defined as
follows:

—t=(e1,e2,...,€v|) is atuple of entities, where eaehis an entity instantiated from variable
v;€V and belongs te;’s typed;€D.

— Given a predicatg=(V,,, C, ), we use, to represent the sub-tupleto$uch that each entity ¢
t, is instantiated from a correspondings V,. Takep; in Query 1 for examplet,, =(Jerry Yang
becauséd/,, has only one variable and Jerry Yangs instantiated fromx. Similarly, ¢,,,=t.

— tis an SSQ answer pif and only if, for eachp € P, there exists at least one evidence of
for p.

Definition 3 (Evidence Representation):Given an answer tupleto queryq=(V, D, P), an evi-
dence oft,, for predicatep € P is a quadruplédoc, sent, V,, C,):

— doc andsent refer to the document ID and the sentence number that tagdtmify a unique
sentence in the corpus.

— V;) is a set of entity spans. For eache V,, there is a pai(f,l) € Vp, which is the span of
entity e € ¢,, wheree is the instantiation of. (f,) are the positions of the first and last terms of
the phrase representirgn the sentence.

— C'is a set of phrase positions. For each phraseC,, there is a correspondirige C‘p, which
is the position of the first term afin the sentence.

Suppose the aforementionegdis the 8th sentence of document 9. Itis an evidengdafry Yang
Yahoo!) for predicatep,, where Jerry Yangpans from position 0 to 1 and the two phrases (“Stan-
ford” and “graduate”) are at positions 4 and 2. This evidéacepresented &9, 8, {(0, 1)}, {4, 2}).
Note that there can be multiple evidences of Jerry Yangredicatep,, each being a sentence con-
taining Jerry Yang“Stanford”, and “graduate”. We denote all evidences,pfor predicatep by
¢, (t) (or equivalentlyp, (t,), since entities other than thosetinare irrelevant tg) and refer ta,,
as thesignature of ¢,,(t). Without loss of generality, we will use sentence and eviggnterchange-
ably unless distinction is needed, since we only consideiesee as the evidence context.

Problem 1 (Position-based Ranking):Denote all answers to quegye(V, D, P) by A?. Our goal

is to rank the answers iA? according to information provided kY ={¢,|¢,=,c 44 ?»(t),p € P}.
Since the information that is used for rankirg, is primarily position information (i.e., document
IDs, sentence numbers, entity spans and phrase posititresproblem is called position-based
ranking problem, and any ranking technique relyingséris classified as position-based ranking.

Ourranking framework consists of three scoring functiod®’, F* andF4, such that for each
answetrt: (1) its score on a selection predicate P is given byFI;g (t), or equivalentIprs (tp): (@)
its score on a relation predicgtec P is given byFIﬁ(t), or equivalentIny(tp); and (3) its final
scoreF4(t) (the answer score) aggregates all predicate scores obtaame™ and #'%. Under this
framework, the scores for different predicates are contpitdependently from each other. The



intuition can be explained as follows. In Query 1, whethelERRBON is a Stanford graduatg, §
is independent from whether she founded any COMPAPMY &nd certainly irrelevant to whether a
COMPANY is in Silicon Valley {-).

Each answer tuple is scored at three levels. At the entigllevery selection predicate is scored
by %, to evaluate how well an entity satisfies the constraintstsmifi At the relation level 7
evaluates how well the relations among entities hold trughéquery level F4 evaluates how well
a tuple of entities satisfy the predicates altogether,dasdghe scores of individual predicates. The
answers are ranked by their query-level scdrés As an example, suppose(Jerry Yang Yahoo)
is an answer to Query 1, Witﬁps1 (¢)=0.8 (i.e., the score of Jerry Yatging a Stanford graduate is
0.8),F; (t)=0.7, FX(t)=0.8, then"4(¢)=2.3, assuming’4 is summation.

As noted before, lep, (¢) be all evidences of an answefor predicatep. The task of entity
retrieval is to retrieve all evidences of every answer tdiptesvery query predicate.

Problem 2 (Entity Retrieval): DenoteA? as all answer tuples of queg(V, D, P). The task of
entity retrieval is to retrieve?={¢,|p € P}, where¢,=U,c 4.9, (t). Apparently, a system that can
solve the Entity Retrieval problem can be used to supporpasition-based ranking method.

The following two sections address ranking problem andyeretrieval problem respectively.

4 SSQ Ranking

4.1 Position-Based Features

This section studies three position-based features tbataaivable from an evidence. These features
are the key components in our Cumulative Model (CM) and Bedr@umulative Model (BCM) that
are introduced later.

4.1.1 Proximity

Intuitively, if the entities int,, and the keyword phrases @, are close to each other in an evidence
s € ¢p(t), they are likely to belong to the same grammatical unit ofadbeesponding sentence
(e.g., a phrase lik&anford University graduate Jerry Yang) and thus form a valid evidence. Given
predicatep, we define the proximity of,, in s as

S eer, [token(e, s)| + Yoo, Ie

|scopep(tp, 9)|

proxy(t, s) = prox,(t,, s) =

where|token(e, s)| is the number of tokens ia representing entity; |c| is the number of tokens
in phrasec; scope,(t,, s) is the smallest scope incovering all the entities in, and all the phrases
in C, (a scope is a consecutive sequence of tokeng;imnd consequentlyscope,(t,, s)| is the
total number of tokens in the scope. Note that the proximitlpe is in the range of [0,1] by this
definition.

Different representations may be used in various placesféo to the same entity and may have
different number of tokens. For example, the entity |BMy be represented by “IBM”, “Big Blue”,
or “International Business Machine”. Hend&ken(IBM, s)| may be 1, 2, or 3 in different.

Example 3: The following two sentences are both evidences of the umgerkentities for predicate
p1 in Query 1. Evidences; is a valid evidence, supporting a true positive, whileis invalid,
supporting a false positive.

s1: Jerry Yang graduated from Stanford University ...

s4: A professor at Sanford University, Colin Marlow had a relationship with Cristina Yang before
she graduated ...

Predicatg, has two phrases, “Stanford” and “graduate”, each with okertohence _ .., [c[=2.
In s1, the PERSON Jerry Yarig represented by two tokens, “Jerry” and “Yang”, heEgetp1 [token(e, s1)|=2.



The scope covering the entity and the two phrases spans Bstalkem “Jerry” to “Stanford”, thus
|scopey, (tp,,51)|=5. Therefore, the proximity of Jerry Yanig s, is prowz,, (tp,,s1)=2:2=0.8.
Similarly, the proximity of Colin Marlowin s, is 2£2=0.31. Based on proximity alone, we say that
s1 is amore valid evidence and therefore, Jerry Yengore likely to satisfy, than_ Colin Marlow
given no other evidence.

4.1.2 Ordering Pattern

An ordering pattern refers to the order of entities and pfsas an evidence. Consider predicate
p1=({z}, {“Stanford”, “graduate}) in Query 1. Letc; be the first phrase (“Stanford”) and the
second (“graduate”). This predicate has six different ondgpatterns{cica, xcacy, c1xes, cazey,
cicor andcaciz). Generally, if we denote all possible patterns of a pradipeby O,, we have
|0,1=(]V,|+]Cyp|)!. Note that, extra tokens and punctuations between erditiéphrases are irrele-
vant to the patterns, i.eSanford University graduate, Jerry Yang andStanford graduate Jerry Yang
follow the same pattera, cox.

We observe that some ordering patterns are better indicatamalid evidences than others. For
example, to express that somebody is a graduate of Stanfovendity, valid evidences often follow
the pattermccocy (€.9.,51). Those following another pattera,zc,, are unlikely to be valid (e.gsy).

To distinguish strong patterns (those that tend to indicalie evidences) from weak ones, we may
assign a different weight to each pattern, so that entitipparted by evidences following strong
patterns are scored higher. However, it is impossible tajetermine the weights since the goodness
of ordering patterns are predicate-dependent. To illtestiaoc, is a strong pattern for predicate
p1 in Query 1, but may not be equally strong for another prediggt({x:NOVEL}, {"by”, “Jane
Austen’}), because it is less common to see an evidence such as

... Pride and Prejudice ... Jane Austen ... by ...

In our approach, we assign different weights to differertgras, such that evidences following
strong patterns are weighted higher. The weights of ordgratterns for a predicageare dynam-
ically derived fromg,, the set of all evidences fgr. Denoting¢, (o) as the subset of evidences
following patterno, we define the weight af for predicatep as its frequency i,

fp(0) = [p(0)l/¢s]

This definition assumes that strong patterns appear mae tifan weak ones. Although in theory
it may happen that many invalid evidences follow the sam&patmaking a weak pattern more
common, we do not observe such cases in our experiments.

Another possible direction is leveraging Machine Learrneghniques to predict which patterns
lead to better results. While we are also exploring this ¢iveas future work, we note here that one
significant challenge of the Machine Learning approachésribed to obtain training data, which
can be costly in terms of human effort.

4.1.3 Mutual Exclusion

Given a predicatg, multiple evidences i, may have the saméioc, sent) value (i.e., come
from the same sentence). They are evidences of differeitiesrand may follow different ordering
patterns. The co-existence of different patterns in onéeser is callectollision and the patterns
are referred to asolliding patterns. The mutual exclusion rule dictates that, when collisiopgens,
at most one colliding pattern is effective and the sentesamly considered evidences following
that pattern.

Example 4: The following sentence illustrates mutual exclusion rdeyf; in Query 1. The sen-
tence appears as three evidences, one for each underlitisd &ic Weilandfollows the pattern
o1=xcoc1. Paul Allanand Bill Gatedollow os=coci 2. Semantically, the former pattern is the effec-
tive pattern and the sentence is an evidence of Ric Weiland

After Ric Weiland graduated from Stanford University, Paul Allen and Bill Gates hired him ...




Without understanding the semantics, it is difficult to diecivhich colliding pattern is absolutely
effective. Therefore, we relax the rule withceedit mechanism, where every colliding pattern is
considered partially effective, and patterns with highedds are more likely to be effective than
those with lower credits. We assume each sentar(tigat is an evidence of at least one sub-tuple
t, for predicatep) has a total credit of 1, meaning that there is only one dffeqiattern. Given a
predicatep, denote the colliding patterns inby O,,(s). Eacho € O,(s) gets a creditredit, (o, s),
and}_ .o (s creditp(o, s)=1.

To allocate credits to the colliding patter@s (s), we adopt the intuition that patterns followed
by more prominent entities are more likely to be effectiveedfically, letT, (o, s) be all sub-tuples
onp following patterno in s. For eactv € O,(s), we choose a representative frdiy(o, s), denoted
by T (o, s), which is the one with the highest proximity value, iE; o, s)=arg max; cr, (o,s) Prozy(tp, s).
We compare the representatives (and thus the patternfiéyafidilow), by how prominent they are,
i.e., by their overall numbers of evidencesfin The credit ofo in sentence is

16,(T3 (0,9))]
oo 65T (0 9))]

where ¢, (T, (o, s)) is the set of evidences df; (o, s) for predicatep. Note that we choose the
most proximate sub-tuple as the representative of a cafjigiattern and allocate credits based on
representatives only. The intuition is that the most pratensub-tuple is most likely to form a
grammatical unit with phrases {ti,, and hence the most reliable one for allocating credits.

In Example 4t1:T;1 (01, s)=Ric Weiland(i.e., the representative of pattemsis Ric Weiland
since he is the only PERSON infollowing patterno; . t2=T;1 (02, s)=Paul Allenbecause he has
higher proximity (0.67) than Bill Gatg®.44), though both follows,. Suppose Ric Weilanid found
in 4 evidences|6,, (t')|=4) and Paul Allerin 2 (|¢,,, (t*)|=2). Thengredit,, (o1, 5)24%2:0.67 and
credity, (02,5)=0.33.

Note that the pattern credit here is different from the weigfhpattern in Section 4.1.2. The
weight of patterrv is a global measure (aggregating oge) of how frequent, and thus how reliable,
patterno is. The credit ofo, on the contrary, is a local measure particular to each seate
indicating how likelyo is the effective pattern is.

credit, (o0, s) =

4.2 Single-Predicate Scoring

So far, we have introduced all the features for evaluatirgudllidity of an individual evidence.
Integrating these features together, this section presenimulative Model (CM) for scoring an
answer on a single predicate. We assume Frats the same ag'” (i.e., the same function is used
for scoring all predicates), hence for brevity, we #¢t) instead ofF7 (¢) and F1*(t).

Let ¢, (t,0) C ¢,(t) be all evidences of for predicatep that follow patterrocO,,. Our Cumu-
lative Model CM) is

F,(t) = Z (fp(0) Z proxy(t, s)eredity,(o, s))

0€0, sEPp(t,0)

where f,, (o) is the weight of pattere; proxz,(t, s) is t,'s proximity in evidences; credit, (o, s) is
the credit ofo in s.

The model dividesp,(t), t's evidences fomp, into |O,| groups,{¢,(t,0)lo € O,}, so that
evidences in each group follow the same pattern. For eaalpgsg(¢, o), the model computes a
group score (the inner summation). The group scores are linearly coetbirsing weightsf, (o)
(the outer summation), such that the group scores of straitgrps account more if,(t). The
kernel of the functionprox,(t, s) credit,(o, s), evaluates the validity of being an evidence af
for predicatep. It is monotonic to both the proximity af, and the credit of,,’s patterno. Answers
supported by evidences having higher proximities and patteedits will accumulate higher scores
and thus ranked higher.

It is interesting to note that CM can be customized easilywtiyching on and off its component
features, so that we can evaluate the effectiveness ofithdil/features. While detailed evaluations
are presented in Section 6, below we list three importartbooigations.



Table 1: Example Answers
x Yy PL P2 D3 I >
ty Jerry Yang Yahoo!l 0.8 0.7 0.8 0.448 2.3
to Larry Page Google 0.6 0.5 0.6/ 0.18 1.7
t3 | ScottMcNealy Cisco| 0.9 0.8 0.2| 0.144 1.9
t4 Bill Gates IKEA | 0.3 0.1 0.2| 0.006 0.6

COUNT s the straightforward baseline method that scores a tupleits number of supporting
evidences for predicage i.e., F},(t)=|¢,(t)|. It can be reduced from the CM model by turning
off all the features, i.e., by settingroz, (¢, s) = 1, credit, (o, s) = 1, and f,(0) = 1:

Fy(t) = Z (1 Z 1) = Z |9 (t, 0)| = |9p(t)]

0€0,  s€dp(t,0) 0€0,

PROX applies only the proximity feature (Section 4.1.1) and ékieed from CM byeredit, (o, s) =
landf,(o) = 1:

Fo(t) = Z Z proxy(t,s) = Z proxy(t, s)

0€0, s€¢,(t,0) SEPp (L)

MEX applies only the mutual exclusion rule (Section 4.1.3). Téyresentative of a colliding
pattern in a sentence is randomly chosen from the tuplesioity that pattern in the sentence,
given that we are not using proximity. This is derived from @M settingproz,(t,s) = 1
andf,(o) = 1

Fo(t) = Z Z credity(o, s) = Z credity(o, s)

0€0, s€d,(t,0) s€Pp (L)

4.3 Multi-Predicate Scoring

We extend our single-predicate scoring model to handleisprddicate queries. Given a query
answer, CM computes a score on each predicate. Howevemdime unclear how to derive the
final score,F'4(t), from predicate scores.

With CM, predicate scores are unbounded, i.e., the moreneis the higher scores. When mul-
tiple predicate scores are aggregated, some could be sthaigthey dominate the aggregate score,
which is calledpredicate dominance. To alleviate this problem, we propose Bounded Cumulative
Model BCM) as an alternative for scoring predicates:

Fy(t)= Y (flolt = [ (1 —proz,(t s)eredity(o,s)))

0€0, s€¢p(t,0)

BCM uses the same three features as CM does, but differs fidnmGhe computation of group
scores, each of which is computed from a set of evidedgés o). Basically, BCM bounds alll
group scores in the range [0,1], and consequently it bourglpredicate scores within [0,1]. Note
that) .o, fp(0)=1 according to Section 4.1.2.

Given an answerto queryq=(V, D, P), t's final score F'“(t), is computed as the product of its
scores on all predicates,

FA(t) = H Fp(t)

peP

whereF),(t) can be either BCM or CM. For our problem, product is a moreaeable aggregate
function than summation, another common aggregate fumdbiecause it favors answers with bal-
anced predicate scores over those with polarized oneslustrdte why balanced scores should be



Table 2: Example Signatures @}, , ®;,,, @

P2’

P1 z P2 Y P3 €z Y

al JerryYang| bl eBay | c1 Steve Jobs Apple
a2 LarryPage b2 IKEA | c2 Jerry Yang Yahoo!
a3 BillGates | b3 Yahoo!| c3 Larry Page Google
a4 DavidFilo| b4 Apple | c4 David Filo Yahoo!
a5 Dick Price c¢5 Bill Gates IKEA

Step 1:@y 3=®;, ~* &, ={(al c2), (a2 c3), (a3 c5), (a4 g4)
Step 2:9=0, 5 3=d; 3 x¥ &) ={(al b3 c2), (a3 b2 c5), (a4 b3 ¢4)
Step 3.9, =m,®={al,a3,a}, ®,,=m,®={b2,b4, ¢, =n(, ., P={c2,c4,c§

favored, consider the case in Table 1. The table shows fawens to the query of Query 1. For
each answer, it lists all three predicate scores (by BCMjyelbas the final scores using product
and summation, respectively. The two aggregates agreesganking oft; andt,, which get unan-
imously (i.e., balanced) high and low predicate scoresdluaigree ort, andt¢s. The true positive,
to2, gets modest and balanced scores on all the predicatescdtrisctly ranked higher thaty, a
false positive, by product, but loses the comparison by satiom. Answerts gains high scores on
p1 andp, (Both are indeed satisfied by.), but low score oms (In reality, it does not satisfys.).
However, the final score @f by summation is dominated by the high scoring predicatestaunsi;

is mistakenly ranked abovsg.

5 Processing SSQ Queries

In this section, we focus on how to process SSQ queries,dw th retrieve evidences for all query
answers (Problem 2). In practice, we solve the Entity Redfiproblem in a slight variation. Let
®,={¢,(t)|t € A7}, whereA? is the answer set. Hence, each elemedtjiis a group of evidences.
Instead of retrieving?, we retrieved?={®,|p € P}. The set®? can be trivially converted t¢4.

Given an SSQ query=(V, D, P), if each predicatg € P is treated as a single-predicate query,
we can decompose entity retrieval fgrinto a series of independent entity retrieval for single-
predicate query, plus additional processing to integrate their resultsDRfinition 2, independent
entity retrieval for “query’pis to find®?={®} }, where®;,={¢, (t)|t € AP}. It can be easily derived
that®, C @, If a system can process any predicats a single-predicate query (i.e., retriévg),
then®? can be obtained by integrating &lf, following the procedure below.

Table 2 shows a toy example &f, for all predicates of Query 1. Each elementiify, which is
an evidence group,(t), is represented by its signaturg @, has five signatures, al to ay,,,
has four, b1 to b4; and,, , c1to c5.

Step 1 caIcuIate@l 3= <I> X7 <I>’ the join of<I>’ and <I>’ on z, wherez is the common
variable ofV,, ,V,,. Dick Prlcels a Stanford graduate (ab) but he does not found any company
(no signature inb;, . contains him). Hence, a5 is not joinable with any elemeni;jn. Steve Jobs
founded Apple(cl) but he is not a Stanford graduate (notify ). Hence, c1 is not joinable with
any elementinb;, . All other PERSONSs appear in bo#, and®;, . Inthe end®, 3 contains four
tuples, d1=(al c2), d2=(a2 c3), d3=(a3 c5), and d4=(a4 c4).

Step 2 calculate®=®; 5 3=®; 3 x¥ & , the join of &, 3 and®;,, ony. bl is not joinable
because eBagloes not appear i, 3. d2 is notjomable because Googﬂaenot in®;, . Eventually,
®, 3 contains three tuples, (al b3 c2), (a3 b2 c5), and (a4 b3 c4).

In general, if a subset of predicatB&{p;|k=1..K} C P have common variabléger =, p Vp,
the<I>;,k’s shall be joined orV/p,

Vp/ I & Vpr Vpr &'
Moep Op =@ XTF LMDy

whereVp: is the join attribute(s) and, 's are join inputs. A similar shortcut syntax will be used in
our algorithms later. For ead® C P, whoseVp/;é@ andAP"cP’, Vpn=Vp:, the joins onVp: shall
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Document 9, Sentence 8. Jerry Yang is entity 6:

Jerry Yang graduated from Stanford University ... ...

0 1 2 3 4 5
graduate PERSON
Doc: 3 (9 1521 .. | [doc: 1 2 (9) 14 21 ..
sent pos sent entity first last
8 2 3 5 9 11
31 7 8 6 0 1
(a) Term-Doc posting list (b) Doc-Entity posting list

Figure 1: Document Centric Index

be performed. For brevity, we call the whole join proceduelving all suchP’ asgraph join (on
V), denoted byp = @V, ®,.

Step 3 calculate®,, , ¢,,, and®,, by projecting ¢) ¢ onV,, of eachp. For exampley is the
only variable ofV/,, . Projecting® onx producesp,, =m, ®={al, a3, a}. Similarly, ®,,,=r, ®={b2,
b4}, and®,,=r, , ®={c2, c4, c§. Generally, for a query with predicaté} the series of projec-
tions on individualV,'s are briefly denoted by p®.

The result of step 3 i®9?, the evidences of all query answers. To sum up, we present the
following proposition.

Proposition 1: An SSQ query;=(V, D, P) can be evaluated in three phases: (1) processeach
independently as a single-predicate query, obtairﬁgg(Z) graph join aII<I>; on V, obtaining®.
(3) project® on individual predicates. In short,

q _ 14 !
(0] *’/TP®p6P(pp

The rest of this section studies how to process queriedcplantly, the evaluation of individual
predicates. As a baseline, Section 5.1 reviews entityesgthialgorithm using Document-Centric
Index (DCI). Section 5.2 introduces our novel Entity-Canlindex (ECI) as an alternative. Based on
ECI, Section 5.3 proposes Entity-Centric Retrieval algponi for efficiently processing SSQ queries.

5.1 Baseline: Document-Centric Retrieval

Document-Centric Index (DCI) (or slight differently veosis) is used by existing entity search sys-
tems [12, 14, 31]. Itis a variant of full text index. As Figuteshows, DCI consists of two kinds of
posting lists, term-document posting list (TDPL) and doeutrentity posting list (DEPL).

A TDPL is created for each unique term in corpus, listing altuiments where it appears in
ascending order of document ID. Each document in a TDPL iscésed with a list of entries
recording exact term locations in that document. Each drasytwo attributessent (sentence where
the term occurs) angos (position of term within the sentence). In Figure 1(a), té¢graduate”
appears in documents 3, 9, 15, 21 and so on. In document 9 he¢ocated as the second term
(position 2) of sentence 8 and the seventh (position 7) tdreeatence 31. As can be seen, TDPL
is almost the same as the posting list used in tradition &xt index, except that the “position”
attribute in traditional full text index becomésent, pos) in TDPL.

DEPL is structurally similar to TDPL. A DEPL is created foregy entity type to be supported.
It lists all documents containing entities of that type isexsding order of document ID. Each doc-
ument in DEPL is associated with a list of entries recordioguorences of entities. In Figure 1(b),
documents 1, 2, 9,... contain PERSONSs. In document 9, éhfitgrry Yang appears in sentence 8,
spanning from position 0 to position 1.

11



DCI follows theterm — doc — entity information flow in the three-dimension space of
{term, doc, entity}. TDPL bridges term to document; while DEPL bridges docuntergntity.
With the posting lists in Figure 1, we can easily find all sents where a PERSON co-occurs with
“graduate” as follows. We scan the two document lists witheaga join (major-join) onloc. We
first find thatdoc 9 is joinable, as it appears in both. So, we temporarily péusenajor-join and
starts another merge join (sub-join) of the two entry ligsaiated withioc 9. The sub-join is on
attributesent, during which sentence 8 is firstly joined and the correspangositions and entity
ID are retrieved. Thus, we retrieved one co-occurrence &RFON (Jerry Yangwith “graduate”
in document 9 sentence 8. The sub-join continues until eéhtry list is exhausted, at which time
the major-join resumes and proceeds to the next joinablardent,doc 21. When the major-join
completes, we would have retrieved all sentences where éPERco-occurs with “graduate”,
together with their positions.

In general, given any predicaje @; can be evaluated by merge joining all posting lists of
[Vu| U |C,p| on (doc, sent). By Proposition 1, an arbitrary SSQ query can thus be ansiveye
Document-Centric Retrieval (DCR) algorithm (Algorithm 1)

Algorithm 1: Document-Centric Retrieval
Input: Queryq = (V, D, P)
Output: 17
1 foreachp = (V,,,Cp) € P do
X =V, UGl
R(p) < 0;
z! <« documents in posting list of, Vz € X;
foreachr! € R'(p) =xd%, 2! do
z? — entries inz associated with document, vz € X;
R2(p) 3% 2%

R(p) < R(p) U ({r'} x R*(p))
9 ®;, «sort and grougi(p) by V,;

10 &7 — wp QY p B; /I Proposition 1

0 N o g b~ wWw N

Algorithm 1 follows exactly the 3-phase processing dejpidte Proposition 1. As we noted
before, existing entity search systems use DCI to handleseiapclass of SSQ queries, single-
predicate query. Their processing algorithms are essigntiage iteration of the outer-loop in DCR
algorithm. DCR is potentially inefficient as it retrievés, rather thand,. Processing power is
potentially wasted on retrieving evidences belonging@fo- ®,,.

Example 5: Consider a querg) with two selection predicates; = ({z}, {“Stanford”, “graduate})
andp,=({z}, {“Russian’}), wherex is a PERSON. Suppose 100 persons satigfi@gth 1,000 ev-
idences (10 evidences per person) and 1,000 persons safisfieith 10,000 evidences (10 per
person). A total of 11,000 evidences are retrieved. Howaf@i0 persons actually satisfy both
predicates, only 200 evidences survive the graph join is@2510 per person per predicate). Other
evidences (10,800 in total) are trash evidences to be diedaa huge waste of processing power.

In summary, ordering posting list entries koc, sent) makes DCI a convenient structure to
retrieve evidences for arbitrary SSQ predicate. Howewrnfulti-predicate queries, independent
predicate evaluation may waste processing power on ratgéarge quantities of trash evidences. It
is unknown how to (and probably not able to) prune trash exids using the basic DCI. Section 5.3
will show how Entity-Centric Index allows to break this litation.

5.2 Retrieval with Entity-Centric Index

To overcome the drawback of DCI, we present Entity-Centritek (ECI) (Figure 2), a novel index
organization of théterm, doc, entity} three-dimension space. ECI has the same number of posting

12



Document 9, Sentence 8.occurrence of entity 6 Jerry Yang:
Jerry Yang graduated from Stanford University ... ...

0 1 2 3 4 5
graduate "t PERSON
‘entity: (6)17 ‘ // ‘ ‘entity: 3(6) 16 21 .
occur pos |~ occur doc sent first last
-7 @ 9 8 0 1

4 8 2 14 3 11 12

(a) Term-Entity posting list  (b) Entity-Doc posting list

Figure 2: Entity-Centric Index

lists as DCI, one for each term and one for each type. Howélvese posting lists are ordered
by entity ID rather than document ID. A term-entity postirgt (TEPL) for termw enlists, in
ascending order, all entities co-occurring within some sentence. Each such entity is associated
with a list of entries recording the co-occurrence inforioratwith two attributes,occur (entity
occurrence identifier) angos (w's position). In Figure 2(a), “graduate” co-occurs with ign®,

17, etc. It occurs at position 2 of the sentence where entifeBy Yang appears for the first time
(occur=1) and position 8 of his 4th occurring sentence. An entiigttment posting list (EDPL) for
type T enlists all entities of typ&” in ascending order and associates a complete list of ocmere
information with each entity. In Figure 2(b), entities 3, i6dal6 all belong to PERSON. The first
occurrence of entity 6 is in document 9 sentence 8, spannamg position O to 1.

ECI follows theterm — entity — doc information flow, with TEPL bridging the first arrow
and EDPL bridging the second. By merge joining the two padists in Figure 2 ofentity, occur)

(in a similar fashion as the major/sub-join afvc, sent) in DCI), we can retrieve the evidence that
entity 6 co-occurs with “graduate” in document 9 sentendea §eneral, a selection predicate can be
evaluated with ECI as conveniently as with DCI, by mergeij@mmultiple TEPLs with one EDPL
on (entity, occur). Since posting lists are primarily ordered by entity ID, thsulting evidences are
naturally ordered by entity ID and can be grouped/hyo form @/, effortlessly. However, evaluating
relation predicate is quite different because it does reptire all posting lists to be joined amtity.

In p3 of Query 1, the EDPLs of PERSON and COMPANY have completedyimtit set of entities.
p3 requires a PERSON and a COMPANY to appear in the same sentencéhey must be joined
on (doc, sent), which are only subsidiary attributes in EDPL. Naively, attpnested-loop join (on
(doc, sent)) of the two posting lists can solve the problem, which acees®th posting lists entirely.
But with the presence of relation keyword “found”, we may dhxitér.

We splitps into two selection predicateg;=({z}, {“found”}) andp4=({y}, {“found”}), which
are evaluated as two irrelevant predicates to retrieveaill evidences, denoted &$p% ) andR(p}).
The two sets are then joined adloc, sent) to form evidences fops. To illustrate, suppose sentence
7 of document 10 reads

Jerry Yang (entity 6) co founded Yahoo! (entity 17)in 1995...

R(p%) will contain evidence10, 7, {(6,0,1) }, (3)) andR(p¥) will contain (10, 7, {(17,4,4) }, (3)).
The two will be joined to form an evidence pf, (10,7, {(6,0,1) (17,4,4)}, (3)).

We refer to this processing techniquerakation splitting. It is potentially less costly than the
naive nested-loop join, as it only retrieves evidences faities in PERSON found and entities
in COMPANYN found. Generally, a relation predicage=(V,,, C},) can be split intgV,| selection
predicates,SP(p)={p"|veV, }, wherep’=({v},C,) is asplit predicate of p. The evidences of

(doc,sent)

p, R(p), can be evaluated aB(p)=x ¢/ R(p"), whereR(p") is the evidence set for".
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R(p) is then sorted and grouped BY to get®;,. We trivially consider a selection predicate as
a split predicate of itself. Since eadh,. is a posting list merge join and outputs are ordered by
(entity, occur), the joinsx?® are still inefficient, which is the major drawback of ECI. Sen 5.3

will show how this drawback can be relieved in case of muléiicate queries.

So far, we have known how to evaluate arbitrary predicat&iithaally. By Proposition 1, we
can evaluate any SSQ query with Basic Entity-Centric RedtibECR) algorithm (Algorithm 2).
bECR also evaluates predicates independently (the catereverP, line 1). Therefore, it retrieves
the same evidences as DCR does, including trash evidemcess@ of multi-predicate queries).

Algorithm 2 : Basic Entity-Centric Retrieval
Input: Queryq = (V, D, P)
Output: 17
1 foreachp = (V,,,C,) € P do
SP(p) «— {p“lv e V,}; /I Relation splitting
R(p®) « 0,Vp® € SP(p);
foreachp” € SP(p) do
X — {v}uCy;
x! « entities in posting list of;, Vo € X;
foreachr! € R (p*)=x 2" 2! do
x? « entries inz associated with entity!, Vo € X;
R2(pv) <_N;c€c)tér 1.2;
R(p”) < R(p") U ({r'} x R*(p"));

© 0 N O O~ W N

=
o

1 | if [V, > 1then

12 R(p) HNf}deoéjenw R(p");

13 | R(p) «sortR(p) by V,;

14 else

15 | R(p) — R(p"); /I naturally sorted by V,
16 | @, <groupR(p) by V,;

17 ¥ — 7p Q) p B; /I Proposition 1

Consider again Example 5 in Section 5.1. By suppose there are 200 persons appearing in
the posting lists of both “Stanford” and "graduate”, i.g2!(p?)|=200 (line 7). Hence for these
200 persons, the inner loop is executed. It will find, acanydd the example setting, 100 persons
satisfyingp; with 1,000 evidences. Also fgr,, 1,000 persons will be retrieved with 10,000 evi-
dences. In sum, 1,200 persons need to execute the innerdndg total of 11,000 evidences will
be retrieved. However, with ECI, a subset of trash evidenaase prevented from being retrieved.

5.3 Entity-Centric Retrieval with Pruning

Let's first re-examine Example %, requires a PERSON to co-occur with “Stanford” and “gradu-
ate”; po requires the same person to co-occur with “Russian”. If a@eidoes not co-occur with
all the three keywords, it is guaranteed not an answer toyg@er Suppose fop;, among the

| R (p?)|=200 persons appearing in both “Stanford”’s and “gradusadsting lists, 30 persons also
appear in “Russian™s. Then, only for these 30 persons,endds fop; andps need to be retrieved.
Following the example setting, around 600 evidences witltgeved (10 per person per predicate),
a huge cut-down from 11,000 evidences.

Ordering posting lists by entity ID provides ECI an oppoiturio accomplish such pruning
capability. Based on the intuition described above we psefentity-Centric Retrieval (ECR) al-
gorithm (Algorithm 3). ECR does not evaluate predicategpahdently, instead it applies relation
split to all predicates and processes split predicatesrghtire same variable in batch.
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Algorithm 3: Entity-Centric Retrieval
Input: Queryq = (V, D, P)
Output: ®(q)

1 SP(p) < {p"lv € V,,},Vp € P; /I Relation splitting

2 SP «— UpEP SP(p);

3 SP(v) «— {p"|p* € SP},Yv e V; /Il Group SP by v
4 R(p¥) < 0,vp® € SP; /I Store evidences for pv

5 foreachv € V do

6 X —{vtu Upvesp(u) Ch;

7 x! «—entities in posting list of, Vo € X;

s | foreachr! € R'(v)=x Y z' do

9 x? «—entries inr associated entity!, Vx € X;

10 foreachp” € SP(v) do

1 (") —MGEtluc, o

12 R(p’) < R(p") U ({r'} x R*(p"))

13 foreachp € P do

14 if |V,| > 1then /I Relation predicate
15 R(p) —x & R(p");

16 | R(p) < sortR(p) by V,,;

17 else

18 | R(p) — R(p") Il Selection predicate

19 | @ «—groupR(p) by V,,;

q \4 "
20 Q1 —7p Qpcp P

In ECR, the loop ovel/ (line 5) processes split predicates batch by batch. 9fv), EDPL
of v's type is merge joined (oantity) with all TEPLs from all split predicates if P(v) (line 8).
For each entity-! returned by this join, the inner loop (line 10) retrievesdevices for each split
predicates’ € SP(v) respectively. Recall that in our discussion on Example fabieginning of
this subsection,?! (v)|=30. For each entity if!(v), line 11 retrieves 10 evidences f@f=p; and
10 for py=p>. Hence,|R(pY)|=|R(p%)|=300. Then, during the loop ovét (line 13), evidences for
split predicates of the same relation predigatzre joined ondoc, sent) to produce evidences for
p (line 15). For eaclp € P, its evidencesR(p), are grouped by, (line 18), producingb;. It is
important to note thab, C @ C &, due to the pruning of trash evidences.

Pruning Analysis: To better understand the pruning capability of ECR, we caomplze exe-
cutions of inner-most loop in both bECR and ECR, becausentherimost loop contains the most
costly step of the two algorithms, the posting list merge o occur, x°<“". This refers to line 9
of bECR and line 11 of ECR. In both algorithms, the joii““*" should be performed for every
split predicatey” € SP. The parameter that actually makes difference betweemibafgorithms
is how many times<°<“" is executed. For a split predicate grof@’(v) in ECR, R!(v) is the
intersection of entities in EDPL of and TEPLs from alp” € SP(v). Denotez! as the set of
entities in the posting list of,

R'(v) = v' n( m ﬂ wh)

PP ESP(v) weC,

Governed by the loop of line 8¢°¢*" is executed R!(v)| times, for eachp’ € SP(v). Total
executions of line 11 given quetyis

NECR:Z Z R (v)| = Z |R' (v)]

veV preSP(v) pvESP
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Table 3: Ten Types from Wikipedia

Type (E)ntities  (O)ccurrences O/E
AWARD 1,045 626,340 600
CITY 70,893 28,261,278 389
CLUB 15,688 5,263,865 335
COMPANY 24,191 9,911,372 409
FILM 41,344 3,047,576 74
NOVEL 16,729 1,036,596 63
PERSON 427,974 38,228,272 89
PLAYER 95,347 2,398,959 25
SONG 29,934 732,175 24
UNIVERSITY 19,717 6,141,840 311
TOTAL 742,862 95,648,273 129

bECR computes a differem®! for eachp?, denoted byR!(p¥). By the join x¢** in line 7,

R'(p*)=v' NN,ec, w'. Controlled by the loop of line 7xc*" is executed R (p")| times.
Eventually, bECR executes line 9 for

Nogcr = Y |R'(p")]
preSP

times. Obviouslyyv, R*(v) C RY(p¥), |[R*(v)| < |RY(p?)|, and hence we ha®rcr < Nygcr-

6 Empirical Results

Our initial attempt of SSQ is a prototype system over Wikipeth this section, we provide experi-
mental results on (1) ranking effectiveness of CM and BCMaomparison with other entity ranking
approaches and (2) efficiency of ECR algorithm in compansitin the baseline DCR algorithm.

6.1 Prototype and Data Set

Corpus Our system building and experiments were carried out on @@8-D7-24 snapshot of
Wikipedia?. We removed all the category pages and administrative pagésining aboug.4 mil-
lion articles as our corpus. For each article, we removeilsadlection titles, tables, infoboxes, and
references. Although tables and infoboxes also presentbld information for structured query,
they are significantly different from the main body of thd@etin both format and data character-
istics, thus they should be treated separately by othenigebs such as Information Extraction, as
discussed in Section 1.

Entity Set The Wikipedia articles serve as both the text corpus for figdjuery answers and the
repository of named entities. Each article represents guenentity named by the article title. We
manually define ten entity types (see Table 3) and use siregldar expressions to assign entities
(articles) to these types based on their categdri€or example, if an article belongs to a category
whose name ends with “novels” (e.g., “British novels”), weat the article as an entity of type
NOVEL. About 0.75 million out of the 2.4 million articles werassigned to the 10 types in our
system. An entity can fall into multiple types. For instanPavid Beckharnbelongs to PLAYER,
and the more general category, PERSON. This simple methrod tut to be quite accurate and
sufficient for demonstrating the effectiveness of the SS&esy.

2http://download.wikimedia.org
3Most Wikipedia articles belong to one or more categoriesahatisted at the bottom of each article.
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Table 4: Compare SSQ and TextRunner(TR)

Query 1 2 3 4 5 6 7 8 9 10 11
SSQ 27 11 31 33 14 25 24 23 4 4 9
TR 13 17 0 14 7 16 2 12 2 1 6

Entity Annotations  To identify occurrences of entities in the corpus, we expliernal links in
Wikipedia articles. An internal link is a hyperlink in someikipedia article to another Wikipedia
article. Example 6 shows a sentence with one internal Imighich the anchor text “Cisco” (right to
the vertical bar in double brackets) links to an articletitfCisco Systems” (left to the vertical bar).
We interpret this internal link as an occurrence of the griisco Systemsnd that the sentence
uses one token, “Cisco”, to reference it. Nearly 100 milleomotations are identified in this way
for the 0.75 million entities.

Example 6 (Internal Link): Cisco Career Certifications are IT professional certifaatifor [[Cisco
System§gCisco]] products.

Query Set  We use two query sets for experiments, INEX17 and OWN28. TiEeXN is adapted
from topics used in Entity Ranking track of INEX 2009 [2]. There60 topics available in INEX.
We only adapted topics about entities belonging to our pgireelé 10 types. A total ofl7 queries
are obtained, including1 single-predicate queries asdmulti-predicate queries (without relation
predicates). OWN28 contair28 manually designed queries, including single predicate queries,
5 multi-predicate queries without relation andhulti-predicate queries with relation. For testing the
efficiency of query processing algorithms, we draw a subktdpics from INEX17 and OWN28,
extend them into more complicated queries (see Sectioro6detail).

6.2 SSQ vs. DB-based System

To help better understand the difference between SSQ an8d3Bd approach, we compare our
prototype system with the state-of-the-art Open IE syst@xtRunnet. TextRunner contains facts
extracted from 500 million high-quality Web pages, whichmisch larger than our corpus. For the
comparison, we took the 11 single-predicate queries froBEXN7, converted them into TextRunner-
friendly queries, and submitted those queries to TextRutimeugh their keyword search interface.
The conversion is done to maximize recall from TextRunnex éxample, if we are looking for
novels by Neil Gaiman, the SSQ predicatgs;}, {“by”, “Neil Gaiman”}) are shortened to “Neil”
“Gaiman” for TextRunner (current TextRunner does not supphbrases). Table 4 compares the
recall of SSQ and TextRunner on the 11 queries, showing thebets of correct answers returned
by each system.

Surprisingly, TextRunner provides much less correct anstiean SSQ for most of the queries,
though TextRunner extracts from a much larger corpus. HewtNs does not mean SSQ is "better”
than TextRunner. They are different approaches and hafezatit focuses: (1)TextRunner focuses
on the extraction of relations themselves, thus cannotygiaets that are not extracted. SSQ rely
on the users to form appropriate query predicates to “eiktetcquery time; (2) SSQ supports
multi-predicate queries and aims at better precision atively large ranks instead of only top-few
answers, which is not the focus of TextRunner; (3) The twdesgs use different corpora. Given
its extraction-based nature, TextRunner relies on various part-of-speech yatt@oun-verb-noun
patterns in particular, to extract facts. However, a largmiber of facts are not expressed in such
patterns and thus cannot be extracted by TextRunner. Fonmga“American Gods, a novel by
Neil Gaiman”, “US Open champion Roger Federer”. Meanwlile,SSQ system avoids the pattern
recognition problem by focusing on co-occurrences only.

4http://www.cs.washington.edu/research/textrunner/
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Table 5: MAP and nDCG on INEX17/OWN28
Query \ COUNT MEX PROX CM BCM \ ER

nDCG on INEX17
Single-11| 0.889 0.911 0.920 0.920 0.9200.904
Multi-6 0.880 0.918 0.932 0.954 0.9580.927
All-17 0.886 0.913 0.924 0.932 0.9330.912
MAP on INEX17
Single-11| 0.756  0.812 0.843 0.844 0.8420.779
Multi-6 0.772 0.820 0.852 0.885 0.8940.809
All-17 0.762 0.815 0.846 0.859 0.8600.790

nDCG on OWN28
Single-16| 0.917 0.943 0.947 0.953 0.9540.923
Multi-12 0.800 0.812 0.836 0.844 0.8780.781
ALL-28 0.867 0.887 0.899 0.906 0.9220.862
MAP on OWN28
Single-16| 0.758 0.825 0.838 0.858 0.8530.760
Multi-12 0.579 0.620 0.660 0.684 0.7480.521
ALL-28 0.681 0.738 0.762 0.783 0.8080.658

6.3 Analyzing Alternative Ranking Methods

In this section, we compare and analyze the multiple rankmeghods discussed earlier, namely
COUNT, PROX, MEX, CM and BCM. All the methods differ in how theompute predicate scores,
i.e., Fj,(t). For multi-predicate queries, the same aggregate funatiaduct, is used to compute
answer scoresi“ (t). We compare these ranking methods using three popular nesasdCG,
MAP, andPrecision-at-k.

nDCG (Normalized Discounted Cumulative Gain): The first blocHable 5 shows the average
nDCG on single-predicate queries (Single-11), multi-prat queries (Multi-6), and all queries
(All-17) from INEX17. Both MEX and PROX improve over COUNTYy#.02-0.05 across all three
cases. PROX appears to be more effective than MEX. CM and BeMa@mparable to PROX on
Single-11, but further improve by more than 0.02 on Multi\&%e only observe minor difference
between CM and BCM.

MAP (Mean Average Precision): The second block of Table 5 showdMAP on INEX17.
The observations are mostly similar to those from the nDC&yais. Note that a larger distinction
between CM and BCM is observed on Multi-6, with BCM about Gb@tter than CM.

For further investigation, we repeat the above experimam®WN28 and provide the results in
the bottom half of Table 5. Most results are consistent witBX17. However, on multi-predicate
gueries in OWN28 (Multi-12), BCM shows clear advantage ovist i@ terms of both nDCG (by
0.034) and MAP (by 0.064). The different observations on XE and OWN28 is because, we
believe, OWN28 has more multi-predicate queries than INEXid'the advantage of BCM is more
stably observed on OWNZ28.

Precision-at+: According to the best reported MRR (Mean Reciprocal Ranlexadting entity
search systems [12, 14], the first true answer is typicaliked at top 1-2. To further analyze how
different methods perform in detail, especially beyondttipefew answers, we plot precision-at-
curves. Figure 3(a,b) show the results far10. COUNT has the worst performance. PROX is
consistently better than MEX across all ranks, but worse 88 and BCM, agreeing with the
conclusion drawn from nDCG and MAP analysis. BCM is considyethe best among all, while
CM has inconsistent performance on INEX17 and OWN28. Fig(cglBshow the results fér=50.
The curve for each method shows the average precision of éitieoth at rank positiok for queries
that returned 50 or more answers, including 7 queries in INEXnd 18 in OWNZ28. In Figure 3(c),
CM and BCM excel beforé&=10 and BCM is slightly better. PROX is the best afterl0 but is
significantly worse than BCM at top ranks. In Figure 3(d), B@vklearly the best among all,
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Figure 3: Precision-at-on INEX17/OWN28

although a little worse than CM between 10 and 25.

In summary, the individual features are effective for gménking and they work best in concert
when they are integrated into CM and BCM. BCM rivals CM on &#agredicate queries, but excels
on multi-predicate queries because BCM alleviates theipatael dominance problem. Besides, it
achieves good precisions consistently across top-50.

6.4 BCM vs. Other Entity Ranking Methods

This section compares BCM with three state-of-the-arttgméinking methodsEntityRank (ER),
INEX andINRIA. All of these systems used Wikipedia as corpus and entiysiggry, though INEX
and INRIA used different snapshots than ours.

EntityRank (ER) [14] focuses on single-predicate queries. It outperformstizer closely re-
lated method [12] by a large margin, in term of MRR. We re-ieménted ER as a plugin for scoring
individual predicates in our ranking framework. The samgragate function, product, is used to
compute answer scoreg' (') for multi-predicate queries.

The detailed performance of ER is shown in Table 5 and Figurtn3rable 5, both CM and
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BCM outperform ER by large margins. The peak margin (0.2Zemms of MAP is observed on
Multi-12 from OWN28, between BCM and ER. In Figure 3, ER rivRBIROX, CM, and BCM at
top-2, verifying the high MRR reported in [14]. However, étdriorates very fast wheh > 2,
dropping below 0.7 arounk=5, while BCM remains above 0.7 eveniat10.

INEX Entity Ranking track [2] focuses on a different problemisett INEX queries are speci-
fied as narrative descriptions on the desired entitiesidjzating systems can use any techniques to
answer the queries, but need to understand the query dastsipvhich itself is challenging, thus
their MAPs may tend to be low. The MAP achieved by the bestesygtarticipating in the 2009
track is 0.517. To avoid the overhead of assessing partiogpaystems, INEX used a sampling
strategy to estimate their MAPs.

INRIA [29] works on the same problem as INEX. Unlike INEX particips it is not based on
co-occurrence of entities and query inputs. Rather, it saitities by link analysis and TF-IDF
weighting. It achieves MAP of 0.390 on 18 topics adapted fitifaX 2006 ad hoc track.

In comparison with INEX and INRIA, the MAP achieved by BCM ddEX17 is 0.860. We
acknowledge that this comparison is not strictly fair. Eitke results are based on different query
sets (INEX17 is a subset of INEX Entity Ranking topics) andpshots of Wikipedia. Second, they
focus on different query styles (structured query vs. nagaescription). However, our argument
is that the high MAP of BCM at least indicates that the strrexduentity-relationship queries can be
highly effective in reality.

In summary, our extensive analysis indicates that the mepoanking model is very effective
for ranking entities. Given that SSQ is capable of handlimmyercomplex queries with structures
(which is absent from all other systems), it is a promisingrapch to answer entity related queries.

6.5 Efficiency of DCR and ECR

This section reports empirical comparison between ECR &R Dased on our prototype. We use
the de facto standard, count of disk block 1/0, as the measfuneery processing cost. Basically,
for each test query, we compare the disk block reads incuoydabth algorithms. The block size
is 1 KB. Our query set is systematically designed in grougs @wiowing complexity (number of
predicates). Each query is labeled as an x/y/z query, withexaiumber of entity variables, y the
number relation predicates and z the number of selectiaiqates.

Query Group 1 (G1) contains fifteen 1/0/1 queries, fifteen 1/0/2 queries andlfiOé3 queries,
designed in the following procedure: 1) design a 1/0/3 qu@ry) create three 1/0/2 queries by
trimming one predicate off Q; 3) create three 1/0/1 queries$rimming two predicates off Q; 4)
repeat steps 1-3 for five different Q’s.

Query Group 2 (G2) contains five 2/1/0 queries, five 2/1/2 queries and five 2/1€rigs, de-
signed in the following procedure: 1) design a 2/1/4 querye@ch variable with two selection
predicates; 2) create one 2/1/2 query by trimming one deteptedicate off each variable; 3) create
one 2/1/0 query by trimming off all selection predicateste}eat steps 1-3 for five different Q’s.

Query Group 3 (G3) is created from the five 2/1/2 queries in G2. For each 2/1/2yqaenew
variablev is added in, with a selection predicate®and a relation predicate betweemnd one of
the existing variable. Thus, G3 has five 3/2/3 queries.

Figure 4(a)-(c) shows comparison results on G1, whose egiémnivolving only one variable.
The y-axis shows the disk 1/O counts incurred by processiagjueries. To fit the figures for better
visibility, we cut tall bars at the level of 10,000 and attable actual disk 1/O counts beside the
cut bars. It can be seen that, there is no clear differenceeeet DCR and ECR on 1/0/1 queries.
However, on 1/0/2 queries, ECR incurs significantly lesk tids than DCR. And when it comes to
1/0/3 queries, ECR can be orders of magnitude faster than. DCR

It is important to note that as more selection predicatesdded to the queries, processing cost
incurred by ECR could be even reduced. For example in Fig{@g #hany red bars are high above
2000, while in (b), most are below or close to 2000. The reasdhat, when there are multiple
predicates involving the same variable, ECR will find thesisection of entities in TEPLs of all
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Figure 4: Disk I/O Comparison between DCR and ECR on G1,G2z%d

predicates’ keywords. As more keywords are introduced iaduitional predicates, this intersection
becomes smaller and smaller, hence less entities needigvestvidences.

Figure 4(d)-(f) compares DCR and ECR on G2. Queries in tlasiginvolve two variables. On
2/1/0 queries, ECR appears to be noticeably worse, costingp b times the disk I/O of DCR. The
reason is that 2/1/0 queries are single relation prediastées. ECR applies relation splitting to the
predicate and evaluates two split predicates separatelije\Wthe other side, DCR process single
relation predicate as conveniently as single selectiodipage. However, as we add more predicates
on each variables, we observe that ECR has significant dfafiskol/O on 2/1/2 and 2/1/4 queries.
The reason is the same as discussed before for G1.

Finally 4(g) shows that ECR still scales well on G3, when ¢hare three variables and two
relation predicates in a query, costing in general 1/2 todigk 1/0s of DCR. We stopped the
experiments at 3/2/3 queries due to limit of time. Howevasdal on empirical results on G1 and G2,
it is reasonable to believe that for 3/2/N queries, where8NECR is likely to show more significant
advantage over DCR.

In summary, ECR is not as good as DCR at processing singlgorelgredicate queries. For
single selection predicate queries, it is query-dependeotit which one is better. But their differ-
ence (in terms of disk 1/O) is not significant. When each vdeia a query is involved in multiple
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predicates, ECR begins to show its pruning power and uneqaily beats the performance of DCR.
To conclude, between DCR and ECR, ECR (together with thelieigaDCl index) is a clear choice
for processing complex SSQ queries.

6.6 Efficiency on Pre-Joined Posting List

Very recently, [31] proposed several advanced posting tsspeedup entity search with DCI, in-
cluding (1) pre-joined posting list between a TDPL and a DER) pre-joined posting list between
two TDPLs, and (3) neighborhood posting list (first introddén [10] and used as contextual post-
ing list in [31]). However, completely building all advartt@osting lists are too huge to afford.
Hence, [31] studied how to selectively build them as trafldsetween space and efficiency. For
ECI, it is possible to build counterparts of all these adeshposting lists. However, this report
takes a simple approach while leaving a comprehensive situglyding index selection, as future
work.

Regardless of space consumption, we blindly build preg@iposting list between each pair of
TDPL and DEPL for DCI. Since all basic TDPLs and DEPLs are oeddy pre-joined posting
lists, there is no need to retain them. Hence, they are retnivom index. The index consisting of
purely pre-joined posting lists is referred to as JDCI. &nty, we pre-joined every pair of TEPL
and EDPL in ECI and remove the basic ones in ECI. The new irelexférred to as JECI. The DCR
and ECR algorithms are also slightly modified to accommodh#nges in posting list structures.
The new algorithms are referred to as aDCR and aECR reselyctiv

The comparison result (Figure 5) is summarized as followisk DO cost of aDCR is mostly
comparable to aECR on 1/0/1, 1/0/2, 2/1/0, 2/1/2 and 3/2Kigs. This is because pre-joined
posting lists are usually much shorter than basic poststg.lilOn one hand, there is a lower bound
of evidences that must be retrieved, the ground truth set@nther, the posting lists are shortened
a lot due to pre-joining, ruling out many trash evidencesdwasmce. Hence, aDCR does not waste
too much on retrieving trash evidences and aECR has bareeharshow its pruning power. We
also observe that when there are three or more predicatescbrnvariables (1/0/3, 2/1/4 queries),
aECR seems better than aDCR, although not very significanis mMeans that, aECR could still
be more efficient than aDCR when processing very complexiegie he inherent reason behind
this phenomenon is that aDCR still have to evaluate eachqated independently while aECR can
leverage more predicates to prune trash evidences, theprexizates the better pruning power.

Overall, it is difficult to claim either algorithm to be cléabetter at this moment. However, for
large Web corpus, it is not affordable to build fully prefjed indexes. Hence, we look forward to a
more comprehensive study on the two retrieval approacheslarge corpus, with investigation on
index selection.

7 Conclusion

In this report, we introduced a novel querying mechanisnalliv Semantic Query, which enables
users to issue structured entity-centric queries oveustxdontent and obtain direct answers. We
thoroughly discussed two key issues in developing a qu8l8Q system, ranking and query pro-
cessing. Although our current study on SSQ is still at itéyesge, experiments already indicate that
it is a competing approach towards a general solution tayeodintric information needs. We look
forward to more in-depth studies in future.
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