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Abstract

Information discovery on the Web has so far been dominated by keyword-based document
search. However, recent years have witnessed arising needs fromWeb users to search for named
entities, e.g., finding all Silicon Valley companies. With existing Web search engines, users
have to digest returned Web pages by themselves to find the answers. Entity search has been
introduced as a solution to this problem. However, existing entity search systems are limited in
their capability to address complex information needs that involve multiple entities and their inter-
relationships. In this report, we introduce a novel entity-centric structured querying mechanism
called Shallow Semantic Query (SSQ) to overcome this limitation. We cover two key technical
issues with regard to SSQ, ranking and query processing. Comprehensive experiments show
that (1) our ranking model beats state-of-the-art entity ranking methods; (2) the proposed query
processing algorithm based on our new Entity-Centric Index is more efficient than a baseline
extended from existing entity search systems.

1 Introduction

With the continuous evolution of the Web, structured data isproliferating on more and more Web
pages. Such data provides us a view of the Web as a repository of “entities” (material or virtual) and
their relationships. For discovering and exploring the entities that fascinate them, Web users are in
need of structured querying facilities, coupled with text retrieval capabilities, that explicitly deal with
the entities, their properties and relationships. In a recent report on self-assessment of the database
field by a group of researchers and practitioners, it is pointed out that the database community is at
a turning point in its history, partly due to the explosion ofstructured data on the Web. One of the
major directions that database research is expanding toward is the interplay between structure and
text [27]. Recently there have been extensive efforts alongthis general direction [13, 22, 8].

Despite the increasing popularity of structured information on the Web, the prevalent manner
in which Web users access such information is still keyword-based document search. Although
keyword search has been quite effective in finding specific Web pages matching the keywords, there
clearly exists a mismatch between itspage-centric text-focused view and the aforementionedentity-
centric structure-focused view of the Web. User information needs often cannot be clearly expressed
with a set of keywords, and processing the search results mayrequire substantial user efforts.

Example 1 (Motivating Examples): Consider a business analyst investigating the developmentof
Silicon Valley. Particularly, she is interested in the following tasks:

Task 1: Find companies located in Silicon Valley.
Task 2: Find companies and their founders, where the companies arein Silicon Valley and the

founders are Stanford graduates.

There are two major mismatches making keyword queries unsuitable for resolving such tasks.
First, our tasks focus ontyped entities such as PERSON and COMPANY and their relations. Second,
our tasks often involve synthesizing information scattered across different places. Hence, a simple
list of articles returned by one keyword search is not sufficient. For instance, one article may tell the
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analyst that Jerry Yangis a founder of Yahoo!, but whether Yahoo!is a Silicon Valley company and
whether Jerry Yangis a Stanford graduate may have to be found in other articles.

While conceptually simple, with only keyword search, the tasks described above require substan-
tial user efforts to assemble information from a potentially large number of articles. To accomplish
Task 2, our analyst may start with a search on “Silicon Valleycompany” and scan through the po-
tentially long list of result articles to, hopefully, fetcha list of companies that are likely to be in
Silicon Valley. She then similarly issues another search on“Stanford graduate” to find a list of
people graduated from Stanford University. She then manually combine entities in these two lists
and, by multiple additional searches, check if a company wasfounded by a person, for each pair
of person and company. Alternatively, she can also go through the list of companies and, for each
company, find its founders and check if Stanford is their almamater by multiple search queries. Both
are painful options and require the user to break down the task into a time-consuming, error-prone
iterative procedure of searching, reading and re-searching.

Query 1 (SSQ Query For Task 2):
SELECT x, y

FROM PERSONx, COMPANYy

WHERE x:["Stanford", "graduate"] // Predicate p1

AND y:["Silicon Valley"] // Predicate p2

AND x, y:["found"] // Predicate p3

Our goal is to provide a declarative query interface for suchtasks and an evaluation mechanism
that produces answers directly. To accomplish this goal, wepropose a structured querying mecha-
nism calledShallow Semantic Query (SSQ). Query 1 illustrates the SSQ query for Task 2. The query
syntax is modeled after SQL, allowing information needs to be specified in a structured manner in-
stead of a flat set of keywords. There are three elementary concepts within this SSQ query. First, the
query centers on twoentity variables, x andy. Variablex is bound to all entities belonging to type
PERSON andc to all entities belonging to type COMPANY. Second, for each variable, the query
specifies aselection predicate as the criterion on the selection of entities. For example, adesired
PERSONp should be a Stanford graduate (p1) . Third, arelation predicate specifies the relation
betweenp andc (p3).

Developing SSQ presents a significant research challenge and involves several important build-
ing pieces. Named entity recognition, disambiguation and categorization are required for properly
identifying entities and assigning them to types. Moreover, the noise and spam on Web pages must
be addressed in order to reach a quality system. Each of theseis an important research problem on
its own and has been studied heavily [23, 17, 21, 9]. While it would be rewarding to apply the results
in these areas as building blocks in developing SSQ, as an initial attempt, we choose to focus on a
special corpus, Wikipedia, which consists of a rich body of community-edited articles annotated
with name-entities.

Since its inception in January 2001, Wikipedia has risen to be the largest encyclopedia ever cre-
ated, containing nearly 3 million articles in English aloneas of 2009. In the meantime, Wikipedia
articles have amazingly evolved, from mostly plain texts atearlier stage to current ones with substan-
tial structural annotations. Some of the important annotations includeinternal links (links to other
Wikipedia articles),infoboxes (summary tables of articles) andcategories (which group articles for
navigational convenience). As a result, it is now the primary knowledge source for many users on a
wide variety of topics, including people, institutions, geographical locations, events, etc.

The distinguishing characteristics of Wikipedia help easethe aforementioned problems (details
in Section 6.1) and thus allow us to focus on the central challenges of SSQ itself, i.e., how to evaluate
SSQ queries. Moreover, the high-impact of Wikipedia on our society makes an SSQ system over
Wikipedia itself a valuable artifact. It is our hope that theresults from this report would lead to
the thorough investigation of SSQ over generic Web pages, once the enabling technologies (e.g.,
Web-scale entity recognition and disambiguation) become available.

Challenges While the structured information in Wikipedia alleviates many peripheral problems
such as entity detection, we are still faced with several keychallenges in SSQ.First, the notion of
Shallow Semantic Query and the semantics of query results must be properly defined.Second, an
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effective ranking mechanism has to be established. Rankingmodels that are typical in document
retrieval systems (e.g., PageRank and Vector Space Model) do not directly apply to ranking SSQ
search results.Third, as a search system involving user interaction, an efficientquery processing
algorithm is needed. This is particularly challenging for SSQ since SSQ queries are structured and
may involve multiple entities and their inter-relationships. This report covers all three issues.

2 Related Work

Shallow Semantic Query is not the only approach to enable entity-centric queries over Web text.
A large body of research works from different areas have beenpublished towards the general goal.
This section provides a review of some most important related works, pointing out their limitations
and differences from SSQ.

The DB-basedapproach explicitly extracts entity-relationship information from text into rela-
tional databases. SQL queries can thus be issued over the populated databases. This approach is
constrained by the capability of the information extraction (IE) [7, 4, 15, 25, 16, 19, 6, 20] and nat-
ural language processing (NLP) [20, 10, 11, 6] techniques. Particularly, it requires explicit identifi-
cation of the “names” of entity relationships. For example,if a “found” relation between Jerry Yang
and Yahoo!was not detected during the extraction phase, such information is lost and could not be
queried.

TheSemantic Webapproach [28, 24, 18, 5] explicitly encodes entities and their relations (and
general knowledge) in RDF [1] format, the W3C recommendationof data model for Semantic Web.
It exploits the full-featured structured query language, SPARQL [1], to support sophisticated entity-
relationship queries, coupled with reasoning power. However, the building blocks of Semantic Web,
RDF data, must be collected beforehand. Some systems reliably extract RDF from structured/semi-
structured semantic data sources [5, 28], like Infoboxes inWikipedia and WordNet. However, such
data sources are still quite limited in scope. Others apply IE techniques over Web pages to boot-
strap RDF extraction [18], but the quality control is much more difficult. Besides, independently
developed Semantic Webs face the issue of interoperability[5].

TheIR-basedapproach, exemplified by the recently formed entity search and ranking problems
in the IR community [12, 26, 2, 3, 30, 29], focuses on retrieving named entities (from free text)
relevant to certain contextual constraints. The problem isoften presented as a natural language
description of the preferred entities plus a type constraint on the entities. To rank the answers,
typical IR techniques like TF-IDF [29, 2], HITS [29] and PageRank [14] are commonly applied
with adaptation.

Shallow Semantic Query uniquely takes the DB-IR integratedapproach in pursing entity-centric
tasks. On the one hand, SSQ queries have explicit structuredcomponents (typed entity variables, se-
lection/relation predicates), offering greater expressiveness than pure keyword queries. On the other
hand, each individual predicate is a keyword-based constraint, avoiding the strong requirements of
explicit schema (as in database) and semantics (as in Semantic Web). The SSQ system finds entities
satisfying predicates by a simple and intuitive requirement: entities should co-occur with keywords
in predicates in some contexts (e.g., a sentence). For example, predicatex:[“Stanford” “graduate”]
requires a PERSON to co-occur with keywords “Stanford” and “graduate” in the same context. In
short, SSQ captures entity properties and relationships through shallow syntax requirements implied
by user-specified predicates at query time1, rather than pre-extracting them at system construction
time. Although such syntax clue is by no means rigorous or error-proof, it becomes robust when we
take into consideration the repetitive nature of the Web: true facts are more likely to be stated on
many different pages. This intuition has been widely used inWeb search and mining [7, 4, 14].

The studies most related to SSQ are [12, 14, 31]. [12] learns an optimal scoring function on prox-
imity feature, but it only scores entities by one evidence and makes no attempt to integrate evidences
found in multiple documents to improve ranking. Leveragingthe redundancy of the Web, [14] ag-
gregates scores of locally evaluated evidences into globalscores. However, neither of the two studies

1We acknowledge that, the effectiveness of such entity-relationship queries partially relies on the users capability in
providing proper keyword constraints, just like in IR queries.
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tackles the challenge of improving ranking beyond the first few true answers. Moreover, they only
focus on queries comparable to our single-predicate queries and thus do not study structured (multi-
predicate) queries. [31] proposes a Content Query Languagefor querying entities, but essentially
is also limited to single-predicate queries. All these works utilize sight variations of the traditional
full text index. These variations are exemplified by the Document-Centric Index in Section 5.1.
SSQ makes use of our novel Entity-Centric Index (Section 5.2, 5.3) to achieve better efficiency in
processing structured queries.

In summary, SSQ is unique in its ability to answer complex structured queries directly over
textual corpus. Although currently experimented with Wikipedia, it can be extended to other corpora
with assistance of entity identification technology. To promote our vision on structured query over
type-annotated corpus, this report provides a full introduction of our current research status on SSQ.
The rest of the report is organized as follows:

• Section 3 brings forth Shallow Semantic Query, an entity-centric structured querying facility
for querying named entities by their properties and relationships, and formalizes its semantics.
Both the ranking problem and the entity retrieval problem are formally defined.

• Section 4 introduces our ranking method based on three position-based features that exploit
entity-keyword co-occurrences.

• A novel Entity-Centric Index and a corresponding Entity-Centric Retrieval algorithm for effi-
cient processing of SSQ queries are presented in Section 5.

• Comprehensive experiments are provided in Section 6.

3 Shallow Semantic Query

In this section, we formally introduce the concept of Shallow Semantic Query (SSQ). An SSQ query
consists ofentity variables andpredicates. Entity variables (e.g.,x in Query 1) are bound to typed
entities and are associated with keyword constraints to form querypredicates (e.g.,x:[“Stanford”
“graduate”]), which express the semantic criteria in selecting and relating entities. Formally:

Definition 1 (Shallow Semantic Query): A shallow semantic query is a quadruple〈V,D, P, U〉:
− V is a set of entity variables{v1, . . . , vn}.
− D is a multi-set of entity types{d1, . . . , dn}, wheredi is the type of the correspondingvi∈V .

Two variables can have the same type (i.e.,di=dj), thusD is a multi-set.
− P is a set of conjunctive predicates. Eachp∈P is a pair〈Vp, Cp〉, whereVp⊆V andCp is

a keyword-based constraint associated withVp. The constraintCp is a set of phrases, where each
phrase is made up of one or more keywords. The predicatep is aselection predicate if |Vp|=1 and
relation predicate otherwise.
− U⊆V is the set of variables constituting the output tuple.

Example 2: By the above definition, Query 1 can be formulated asq=〈V,D, P, U〉, V =U={x, y},
D={PERSON, COMPANY}, P={p1, p2, p3}, wherep1=〈{x}, {“Stanford”, “graduate”}〉, p2=〈{y},
{“Silicon Valley”}〉, andp3=〈{x, y}, {“found”}〉. p1 andp2 are selection predicates;p3 is a relation
predicate.

Note thatU is a subset ofV , resembling the notion of projection in relational algebra. For
example, suppose〈Jerry Yang, Yahoo!〉 and〈David Filo, Yahoo!〉 are both answers to Query 1. If
COMPANY y is the only output variable, only one〈Yahoo!〉 will be in the output. Without loss
of generality, we assumeU=V throughout our discussion. Hence for short, an SSQ query canbe
written asq=〈V,D, P 〉.

We use an SQL-like syntax to express SSQ queries (Query 1), where theSELECT, FROMand
WHEREclauses specify output variables, entity types and predicates, respectively. To concentrate
on the SSQ semantics, we omit the formal definition of query syntax in this report and explain the
queries in plain English when needed.
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As noted before, SSQ is intended to work on textual data, therefore, it only recognizes infor-
mation explicitly stated in text and retrieves entities co-stated with predicate phrases within certain
contexts. In other words, SSQ system searches for query answers supported by textual evidences.
Given a predicatep, if a sentence contains all the phrases inCp and one entity for each variable in
Vp, it is considered anevidence for p and these entities in whole are said to satisfyp. Suppose three
evidences are found in the corpus as a result of Query 1:

s1: Jerry Yang graduated from Stanford University ...
s2: ... a senior manager at Yahoo! in Silicon Valley.
s3: Jerry Yang co-founded Yahoo!.

Jerry Yangsatisfiesp1 by evidences1; Yahoo!satisfiesp2 by evidences2; and they together satisfy
p3 by s3. Assembling the information together, the entity tuple〈Jerry Yang, Yahoo!〉 is composed as
an answer to the query since it satisfies all the query predicates. In this paper, we assume sentence as
the unit of co-occurrence contexts for evidences, while in reality, contexts of coarser granularities,
such as paragraphs and documents, are possible.

Definition 2 (SSQ Answer Tuple): Given a queryq=〈V,D, P 〉, an answer tuplet is defined as
follows:
− t=〈e1, e2, . . . , e|V |〉 is a tuple of entities, where eachei is an entity instantiated from variable

vi∈V and belongs tovi’s typedi∈D.
−Given a predicatep=〈Vp, Cp〉, we usetp to represent the sub-tuple oft such that each entitye ∈

tp is instantiated from a correspondingv ∈ Vp. Takep1 in Query 1 for example.tp1
=〈Jerry Yang〉

becauseVp1
has only one variablex and Jerry Yangis instantiated fromx. Similarly, tp3

=t.
− t is an SSQ answer toq if and only if, for eachp ∈ P , there exists at least one evidence oftp

for p.

Definition 3 (Evidence Representation):Given an answer tuplet to queryq=〈V,D, P 〉, an evi-
dence oftp for predicatep ∈ P is a quadruple〈doc, sent, V̂p, Ĉp〉:
− doc andsent refer to the document ID and the sentence number that together identify a unique

sentence in the corpus.
− V̂p is a set of entity spans. For eachv ∈ Vp, there is a pair〈f, l〉 ∈ V̂p, which is the span of

entity e ∈ tp, wheree is the instantiation ofv. 〈f, l〉 are the positions of the first and last terms of
the phrase representinge in the sentence.
− Ĉ is a set of phrase positions. For each phrasec ∈ Cp, there is a correspondinĝc ∈ Ĉp, which

is the position of the first term ofc in the sentence.

Suppose the aforementioneds1 is the 8th sentence of document 9. It is an evidence of〈Jerry Yang,
Yahoo!〉 for predicatep1, where Jerry Yangspans from position 0 to 1 and the two phrases (“Stan-
ford” and “graduate”) are at positions 4 and 2. This evidenceis represented as〈9, 8, {〈0, 1〉}, {4, 2}〉.
Note that there can be multiple evidences of Jerry Yangfor predicatep1, each being a sentence con-
taining Jerry Yang, “Stanford”, and “graduate”. We denote all evidences oftp for predicatep by
φp(t) (or equivalentlyφp(tp), since entities other than those intp are irrelevant top) and refer totp
as thesignature of φp(t). Without loss of generality, we will use sentence and evidence interchange-
ably unless distinction is needed, since we only consider sentence as the evidence context.

Problem 1 (Position-based Ranking):Denote all answers to queryq=〈V,D, P 〉 by Aq. Our goal
is to rank the answers inAq according to information provided byφq={φp|φp=

⋃
t∈Aq φp(t), p ∈ P}.

Since the information that is used for ranking,φq, is primarily position information (i.e., document
IDs, sentence numbers, entity spans and phrase positions),the problem is called position-based
ranking problem, and any ranking technique relying onφq is classified as position-based ranking.

Our ranking framework consists of three scoring functionsFS , FR andFA, such that for each
answert: (1) its score on a selection predicatep ∈ P is given byFS

p (t), or equivalentlyFS
p (tp); (2)

its score on a relation predicatep ∈ P is given byFR
p (t), or equivalentlyFR

p (tp); and (3) its final
scoreFA(t) (the answer score) aggregates all predicate scores obtained viaFS andFR. Under this
framework, the scores for different predicates are computed independently from each other. The
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intuition can be explained as follows. In Query 1, whether a PERSON is a Stanford graduate (p1)
is independent from whether she founded any COMPANY (p3) and certainly irrelevant to whether a
COMPANY is in Silicon Valley (p2).

Each answer tuple is scored at three levels. At the entity level, every selection predicate is scored
by FS , to evaluate how well an entity satisfies the constraints on itself. At the relation level,FR

evaluates how well the relations among entities hold true. At the query level,FA evaluates how well
a tuple of entities satisfy the predicates altogether, based on the scores of individual predicates. The
answers are ranked by their query-level scoresFA. As an example, supposet=〈Jerry Yang, Yahoo!〉
is an answer to Query 1, withFS

p1
(t)=0.8 (i.e., the score of Jerry Yangbeing a Stanford graduate is

0.8),FS
p2

(t)=0.7,FR
p3

(t)=0.8, thenFA(t)=2.3, assumingFA is summation.
As noted before, letφp(t) be all evidences of an answert for predicatep. The task of entity

retrieval is to retrieve all evidences of every answer tuplefor every query predicate.

Problem 2 (Entity Retrieval): DenoteAq as all answer tuples of queryq=〈V,D, P 〉. The task of
entity retrieval is to retrieveφq={φp|p ∈ P}, whereφp=∪t∈Aqφp(t). Apparently, a system that can
solve the Entity Retrieval problem can be used to support anyposition-based ranking method.

The following two sections address ranking problem and entity retrieval problem respectively.

4 SSQ Ranking

4.1 Position-Based Features

This section studies three position-based features that are derivable from an evidence. These features
are the key components in our Cumulative Model (CM) and Bounded Cumulative Model (BCM) that
are introduced later.

4.1.1 Proximity

Intuitively, if the entities intp and the keyword phrases inCp are close to each other in an evidence
s ∈ φp(t), they are likely to belong to the same grammatical unit of thecorresponding sentence
(e.g., a phrase likeStanford University graduate Jerry Yang) and thus form a valid evidence. Given
predicatep, we define the proximity oftp in s as

proxp(t, s) = proxp(tp, s) =

∑
e∈tp
|token(e, s)|+

∑
c∈Cp

|c|

|scopep(tp, s)|

where|token(e, s)| is the number of tokens ins representing entitye; |c| is the number of tokens
in phrasec; scopep(tp, s) is the smallest scope ins covering all the entities intp and all the phrases
in Cp (a scope is a consecutive sequence of tokens ins); and consequently|scopep(tp, s)| is the
total number of tokens in the scope. Note that the proximity value is in the range of [0,1] by this
definition.

Different representations may be used in various places to refer to the same entity and may have
different number of tokens. For example, the entity IBMmay be represented by “IBM”, “Big Blue”,
or “International Business Machine”. Hence,|token(IBM , s)| may be 1, 2, or 3 in differents.

Example 3: The following two sentences are both evidences of the underlined entities for predicate
p1 in Query 1. Evidences1 is a valid evidence, supporting a true positive, whiles4 is invalid,
supporting a false positive.

s1: Jerry Yang graduated from Stanford University ...

s4: A professor at Stanford University, Colin Marlow had a relationship with Cristina Yang before
she graduated ...

Predicatep1 has two phrases, “Stanford” and “graduate”, each with one token, hence
∑

c∈Cp1

|c|=2.

In s1, the PERSON Jerry Yangis represented by two tokens, “Jerry” and “Yang”, hence
∑

e∈tp1

|token(e, s1)|=2.
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The scope covering the entity and the two phrases spans 5 tokens, from “Jerry” to “Stanford”, thus
|scopep1

(tp1
, s1)|=5. Therefore, the proximity of Jerry Yangin s1 is proxp1

(tp1
, s1)=2+2

5 =0.8.
Similarly, the proximity of Colin Marlowin s4 is 2+2

13 =0.31. Based on proximity alone, we say that
s1 is a more valid evidence and therefore, Jerry Yangis more likely to satisfyp1 than Colin Marlow,
given no other evidence.

4.1.2 Ordering Pattern

An ordering pattern refers to the order of entities and phrases in an evidence. Consider predicate
p1=〈{x}, {“Stanford”, “graduate”}〉 in Query 1. Letc1 be the first phrase (“Stanford”) andc2 the
second (“graduate”). This predicate has six different ordering patterns (xc1c2, xc2c1, c1xc2, c2xc1,
c1c2x andc2c1x). Generally, if we denote all possible patterns of a predicate p by Op, we have
|Op|=(|Vp|+ |Cp|)!. Note that, extra tokens and punctuations between entitiesand phrases are irrele-
vant to the patterns, i.e.,Stanford University graduate, Jerry Yang andStanford graduate Jerry Yang
follow the same patternc1c2x.

We observe that some ordering patterns are better indicators of valid evidences than others. For
example, to express that somebody is a graduate of Stanford University, valid evidences often follow
the patternxc2c1 (e.g.,s1). Those following another pattern,c1xc2, are unlikely to be valid (e.g.,s4).
To distinguish strong patterns (those that tend to indicatevalid evidences) from weak ones, we may
assign a different weight to each pattern, so that entities supported by evidences following strong
patterns are scored higher. However, it is impossible to pre-determine the weights since the goodness
of ordering patterns are predicate-dependent. To illustrate, xc2c1 is a strong pattern for predicate
p1 in Query 1, but may not be equally strong for another predicate p′1=〈{x:NOVEL}, {“by”, “Jane
Austen”}〉, because it is less common to see an evidence such as

... Pride and Prejudice ... Jane Austen ... by ...
In our approach, we assign different weights to different patterns, such that evidences following

strong patterns are weighted higher. The weights of ordering patterns for a predicatep are dynam-
ically derived fromφp, the set of all evidences forp. Denotingφp(o) as the subset of evidences
following patterno, we define the weight ofo for predicatep as its frequency inφp,

fp(o) = |φp(o)|/|φp|

This definition assumes that strong patterns appear more often than weak ones. Although in theory
it may happen that many invalid evidences follow the same pattern, making a weak pattern more
common, we do not observe such cases in our experiments.

Another possible direction is leveraging Machine Learningtechniques to predict which patterns
lead to better results. While we are also exploring this direction as future work, we note here that one
significant challenge of the Machine Learning approach is the need to obtain training data, which
can be costly in terms of human effort.

4.1.3 Mutual Exclusion

Given a predicatep, multiple evidences inφp may have the same〈doc, sent〉 value (i.e., come
from the same sentence). They are evidences of different entities and may follow different ordering
patterns. The co-existence of different patterns in one sentence is calledcollision and the patterns
are referred to ascolliding patterns. The mutual exclusion rule dictates that, when collision happens,
at most one colliding pattern is effective and the sentence is only considered evidences following
that pattern.

Example 4: The following sentence illustrates mutual exclusion rule for p1 in Query 1. The sen-
tence appears as three evidences, one for each underlined entity. Ric Weilandfollows the pattern
o1=xc2c1. Paul Allanand Bill Gatesfollow o2=c2c1x. Semantically, the former pattern is the effec-
tive pattern and the sentence is an evidence of Ric Weiland.

After Ric Weiland graduated from Stanford University, Paul Allen and Bill Gates hired him ...
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Without understanding the semantics, it is difficult to decide which colliding pattern is absolutely
effective. Therefore, we relax the rule with acredit mechanism, where every colliding pattern is
considered partially effective, and patterns with higher credits are more likely to be effective than
those with lower credits. We assume each sentences (that is an evidence of at least one sub-tuple
tp for predicatep) has a total credit of 1, meaning that there is only one effective pattern. Given a
predicatep, denote the colliding patterns ins by Op(s). Eacho ∈ Op(s) gets a creditcreditp(o, s),
and

∑
o∈Op(s) creditp(o, s)=1.

To allocate credits to the colliding patternsOp(s), we adopt the intuition that patterns followed
by more prominent entities are more likely to be effective. Specifically, letTp(o, s) be all sub-tuples
onp following patterno in s. For eacho ∈ Op(s), we choose a representative fromTp(o, s), denoted
byT ∗

p (o, s), which is the one with the highest proximity value, i.e.,T ∗
p (o, s)=arg maxtp∈Tp(o,s) proxp(tp, s).

We compare the representatives (and thus the patterns that they follow), by how prominent they are,
i.e., by their overall numbers of evidences inφp. The credit ofo in sentences is

creditp(o, s) =
|φp(T

∗
p (o, s))|

∑
o′∈Op(s) |φp(T ∗

p (o′, s))|

whereφp(T
∗
p (o, s)) is the set of evidences ofT ∗

p (o, s) for predicatep. Note that we choose the
most proximate sub-tuple as the representative of a colliding pattern and allocate credits based on
representatives only. The intuition is that the most proximate sub-tuple is most likely to form a
grammatical unit with phrases inCp, and hence the most reliable one for allocating credits.

In Example 4,t1=T ∗
p1

(o1, s)=Ric Weiland(i.e., the representative of patternso1 is Ric Weiland)
since he is the only PERSON ins following patterno1. t2=T ∗

p1
(o2, s)=Paul Allenbecause he has

higher proximity (0.67) than Bill Gates(0.44), though both followo2. Suppose Ric Weilandis found
in 4 evidences (|φp1

(t1)|=4) and Paul Allenin 2 (|φp1
(t2)|=2). Then,creditp1

(o1, s)= 4
4+2=0.67 and

creditp1
(o2, s)=0.33.

Note that the pattern credit here is different from the weight of pattern in Section 4.1.2. The
weight of patterno is a global measure (aggregating overφp) of how frequent, and thus how reliable,
patterno is. The credit ofo, on the contrary, is a local measure particular to each sentence s,
indicating how likelyo is the effective pattern ins.

4.2 Single-Predicate Scoring

So far, we have introduced all the features for evaluating the validity of an individual evidence.
Integrating these features together, this section presents Cumulative Model (CM) for scoring an
answer on a single predicate. We assume thatFS is the same asFR (i.e., the same function is used
for scoring all predicates), hence for brevity, we useFp(t) instead ofFS

p (t) andFR
p (t).

Let φp(t, o) ⊆ φp(t) be all evidences oft for predicatep that follow patterno∈Op. Our Cumu-
lative Model (CM ) is

Fp(t) =
∑

o∈Op

(fp(o)
∑

s∈φp(t,o)

proxp(t, s)creditp(o, s))

wherefp(o) is the weight of patterno; proxp(t, s) is tp’s proximity in evidences; creditp(o, s) is
the credit ofo in s.

The model dividesφp(t), t’s evidences forp, into |Op| groups,{φp(t, o)|o ∈ Op}, so that
evidences in each group follow the same pattern. For each group φp(t, o), the model computes a
group score (the inner summation). The group scores are linearly combined using weightsfp(o)
(the outer summation), such that the group scores of strong patterns account more inFp(t). The
kernel of the function,proxp(t, s) creditp(o, s), evaluates the validity ofs being an evidence oft
for predicatep. It is monotonic to both the proximity oftp and the credit oftp’s patterno. Answers
supported by evidences having higher proximities and pattern credits will accumulate higher scores
and thus ranked higher.

It is interesting to note that CM can be customized easily by switching on and off its component
features, so that we can evaluate the effectiveness of individual features. While detailed evaluations
are presented in Section 6, below we list three important customizations.
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Table 1: Example Answers
x y p1 p2 p3 Π Σ

t1 Jerry Yang Yahoo! 0.8 0.7 0.8 0.448 2.3
t2 Larry Page Google 0.6 0.5 0.6 0.18 1.7
t3 Scott McNealy Cisco 0.9 0.8 0.2 0.144 1.9
t4 Bill Gates IKEA 0.3 0.1 0.2 0.006 0.6

COUNT is the straightforward baseline method that scores a tuplet by its number of supporting
evidences for predicatep, i.e.,Fp(t)=|φp(t)|. It can be reduced from the CM model by turning
off all the features, i.e., by settingproxp(t, s) ≡ 1, creditp(o, s) ≡ 1, andfp(o) ≡ 1:

Fp(t) =
∑

o∈Op

(1
∑

s∈φp(t,o)

1) =
∑

o∈Op

|φp(t, o)| = |φp(t)|

PROX applies only the proximity feature (Section 4.1.1) and is reduced from CM bycreditp(o, s) ≡
1 andfp(o) ≡ 1:

Fp(t) =
∑

o∈Op

∑

s∈φp(t,o)

proxp(t, s) =
∑

s∈φp(t)

proxp(t, s)

MEX applies only the mutual exclusion rule (Section 4.1.3). Therepresentative of a colliding
pattern in a sentence is randomly chosen from the tuples following that pattern in the sentence,
given that we are not using proximity. This is derived from CMby settingproxp(t, s) ≡ 1
andfp(o) ≡ 1:

Fp(t) =
∑

o∈Op

∑

s∈φp(t,o)

creditp(o, s) =
∑

s∈φp(t)

creditp(o, s)

4.3 Multi-Predicate Scoring

We extend our single-predicate scoring model to handle multi-predicate queries. Given a query
answer, CM computes a score on each predicate. However, it remains unclear how to derive the
final score,FA(t), from predicate scores.

With CM, predicate scores are unbounded, i.e., the more evidences the higher scores. When mul-
tiple predicate scores are aggregated, some could be so highthat they dominate the aggregate score,
which is calledpredicate dominance. To alleviate this problem, we propose Bounded Cumulative
Model (BCM ) as an alternative for scoring predicates:

Fp(t) =
∑

o∈Op

(fp(o)[1−
∏

s∈φp(t,o)

(1− proxp(t, s)creditp(o, s))])

BCM uses the same three features as CM does, but differs from CM in the computation of group
scores, each of which is computed from a set of evidencesφp(t, o). Basically, BCM bounds all
group scores in the range [0,1], and consequently it bounds the predicate scores within [0,1]. Note
that

∑
o∈Op

fp(o)=1 according to Section 4.1.2.

Given an answert to queryq=〈V,D, P 〉, t’s final score,FA(t), is computed as the product of its
scores on all predicates,

FA(t) =
∏

p∈P

Fp(t)

whereFp(t) can be either BCM or CM. For our problem, product is a more reasonable aggregate
function than summation, another common aggregate function, because it favors answers with bal-
anced predicate scores over those with polarized ones. To illustrate why balanced scores should be
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Table 2: Example Signatures inΦ′
p1

,Φ′
p2

,Φ′
p3

p1 x p2 y p3 x y
a1 Jerry Yang b1 eBay c1 Steve Jobs Apple
a2 Larry Page b2 IKEA c2 Jerry Yang Yahoo!
a3 Bill Gates b3 Yahoo! c3 Larry Page Google
a4 David Filo b4 Apple c4 David Filo Yahoo!
a5 Dick Price c5 Bill Gates IKEA
Step 1:Φ1,3=Φ′

p1
⋊⋉x Φ′

p3
={(a1 c2), (a2 c3), (a3 c5), (a4 c4)}

Step 2:Φ=Φ1,2,3=Φ1,3 ⋊⋉y Φ′
p2

={(a1 b3 c2), (a3 b2 c5), (a4 b3 c4)}
Step 3:Φp1

=πxΦ={a1,a3,a4}, Φp2
=πyΦ={b2,b4}, Φp3

=π(x,y)Φ={c2,c4,c5}

favored, consider the case in Table 1. The table shows four answers to the query of Query 1. For
each answer, it lists all three predicate scores (by BCM), aswell as the final scores using product
and summation, respectively. The two aggregates agree on the ranking oft1 andt4, which get unan-
imously (i.e., balanced) high and low predicate scores, butdisagree ont2 andt3. The true positive,
t2, gets modest and balanced scores on all the predicates. It iscorrectly ranked higher thant3, a
false positive, by product, but loses the comparison by summation. Answert3 gains high scores on
p1 andp2 (Both are indeed satisfied byt3.), but low score onp3 (In reality, it does not satisfyp3.).
However, the final score oft3 by summation is dominated by the high scoring predicates andthust3
is mistakenly ranked abovet2.

5 Processing SSQ Queries

In this section, we focus on how to process SSQ queries, i.e. how to retrieve evidences for all query
answers (Problem 2). In practice, we solve the Entity Retrieval problem in a slight variation. Let
Φp={φp(t)|t ∈ Aq}, whereAq is the answer set. Hence, each element inΦp is a group of evidences.
Instead of retrievingφq, we retrieveΦq={Φp|p ∈ P}. The setΦq can be trivially converted toφq.

Given an SSQ queryq=〈V,D, P 〉, if each predicatep ∈ P is treated as a single-predicate query,
we can decompose entity retrieval forq into a series of independent entity retrieval for single-
predicate queryp, plus additional processing to integrate their results. ByDefinition 2, independent
entity retrieval for “query”p is to findΦp={Φ′

p}, whereΦ′
p={φp(t)|t ∈ Ap}. It can be easily derived

thatΦp ⊆ Φ′
p. If a system can process any predicatep as a single-predicate query (i.e., retrieveΦ′

p),
thenΦq can be obtained by integrating allΦ′

p following the procedure below.
Table 2 shows a toy example ofΦ′

p for all predicates of Query 1. Each element inΦ′
p, which is

an evidence groupφp(t), is represented by its signaturetp. Φ′
p1

has five signatures, a1 to a5;Φ′
p2

has four, b1 to b4; andΦ′
p3

, c1 to c5.
Step 1 calculatesΦ1,3=Φ′

p1
⋊⋉x Φ′

p3
, the join ofΦ′

p1
andΦ′

p3
on x, wherex is the common

variable ofVp1
, Vp3

. Dick Priceis a Stanford graduate (a5) but he does not found any company
(no signature inΦ′

p3
contains him). Hence, a5 is not joinable with any element inΦ′

p3
. Steve Jobs

founded Apple(c1) but he is not a Stanford graduate (not inΦ′
p1

). Hence, c1 is not joinable with
any element inΦ′

p1
. All other PERSONs appear in bothΦ′

p1
andΦ′

p3
. In the end,Φ1,3 contains four

tuples, d1=(a1 c2), d2=(a2 c3), d3=(a3 c5), and d4=(a4 c4).
Step 2 calculatesΦ=Φ1,2,3=Φ1,3 ⋊⋉y Φ′

p2
, the join ofΦ1,3 andΦ′

p2
on y. b1 is not joinable

because eBaydoes not appear inΦ1,3. d2 is not joinable because Googleis not inΦ′
p2

. Eventually,
Φ1,2,3 contains three tuples, (a1 b3 c2), (a3 b2 c5), and (a4 b3 c4).

In general, if a subset of predicatesP ′={pk|k=1..K} ⊆ P have common variablesVP ′=
⋂

p∈P ′ Vp,
theΦ′

pk
’s shall be joined onVP ′ ,

⋊⋉
VP ′

p∈P ′ Φ′
p = Φ′

p1
⋊⋉VP ′ . . . ⋊⋉VP ′ Φ′

pK

whereVP ′ is the join attribute(s) andΦ′
pk

’s are join inputs. A similar shortcut syntax will be used in
our algorithms later. For eachP ′⊆P , whoseVP ′ 6=∅ and∄P ′′⊂P ′, VP ′′=VP ′ , the joins onVP ′ shall
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Figure 1: Document Centric Index

be performed. For brevity, we call the whole join procedure involving all suchP ′ asgraph join (on
V ), denoted byΦ = ⊗V

p∈P Φ′
p.

Step 3 calculatesΦp1
, Φp2

, andΦp3
by projecting (π) Φ onVp of eachp. For example,x is the

only variable ofVp1
. ProjectingΦ onx producesΦp1

=πxΦ={a1, a3, a4}. Similarly,Φp2
=πyΦ={b2,

b4}, andΦp3
=π(x,y)Φ={c2, c4, c5}. Generally, for a query with predicatesP , the series of projec-

tions on individualVp’s are briefly denoted byπP Φ.
The result of step 3 isΦq, the evidences of all query answers. To sum up, we present the

following proposition.

Proposition 1: An SSQ queryq=〈V,D, P 〉 can be evaluated in three phases: (1) process eachp ∈ P
independently as a single-predicate query, obtainingΦ′

p; (2) graph join allΦ′
p on V , obtainingΦ.

(3) projectΦ on individual predicates. In short,

Φq = πP ⊗
V
p∈P Φ′

p

The rest of this section studies how to process queries, particularly, the evaluation of individual
predicates. As a baseline, Section 5.1 reviews entity retrieval algorithm using Document-Centric
Index (DCI). Section 5.2 introduces our novel Entity-Centric Index (ECI) as an alternative. Based on
ECI, Section 5.3 proposes Entity-Centric Retrieval algorithm for efficiently processing SSQ queries.

5.1 Baseline: Document-Centric Retrieval

Document-Centric Index (DCI) (or slight differently versions) is used by existing entity search sys-
tems [12, 14, 31]. It is a variant of full text index. As Figure1 shows, DCI consists of two kinds of
posting lists, term-document posting list (TDPL) and document-entity posting list (DEPL).

A TDPL is created for each unique term in corpus, listing all documents where it appears in
ascending order of document ID. Each document in a TDPL is associated with a list of entries
recording exact term locations in that document. Each entryhas two attributes,sent (sentence where
the term occurs) andpos (position of term within the sentence). In Figure 1(a), term“graduate”
appears in documents 3, 9, 15, 21 and so on. In document 9, it can be located as the second term
(position 2) of sentence 8 and the seventh (position 7) term of sentence 31. As can be seen, TDPL
is almost the same as the posting list used in tradition full text index, except that the “position”
attribute in traditional full text index becomes〈sent, pos〉 in TDPL.

DEPL is structurally similar to TDPL. A DEPL is created for every entity type to be supported.
It lists all documents containing entities of that type in ascending order of document ID. Each doc-
ument in DEPL is associated with a list of entries recording occurrences of entities. In Figure 1(b),
documents 1, 2, 9,... contain PERSONs. In document 9, entity6 (Jerry Yang) appears in sentence 8,
spanning from position 0 to position 1.
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DCI follows the term → doc → entity information flow in the three-dimension space of
{term, doc, entity}. TDPL bridges term to document; while DEPL bridges documentto entity.
With the posting lists in Figure 1, we can easily find all sentences where a PERSON co-occurs with
“graduate” as follows. We scan the two document lists with a merge join (major-join) ondoc. We
first find thatdoc 9 is joinable, as it appears in both. So, we temporarily pausethe major-join and
starts another merge join (sub-join) of the two entry lists associated withdoc 9. The sub-join is on
attributesent, during which sentence 8 is firstly joined and the corresponding positions and entity
ID are retrieved. Thus, we retrieved one co-occurrence of a PERSON (Jerry Yang) with “graduate”
in document 9 sentence 8. The sub-join continues until either entry list is exhausted, at which time
the major-join resumes and proceeds to the next joinable document,doc 21. When the major-join
completes, we would have retrieved all sentences where a PERSON co-occurs with “graduate”,
together with their positions.

In general, given any predicatep, Φ′
p can be evaluated by merge joining all posting lists of

|Vp| ∪ |Cp| on 〈doc, sent〉. By Proposition 1, an arbitrary SSQ query can thus be answered by
Document-Centric Retrieval (DCR) algorithm (Algorithm 1).

Algorithm 1 : Document-Centric Retrieval

Input : Queryq = 〈V,D, P 〉
Output : Φq

foreachp = 〈Vp, Cp〉 ∈ P do1

X ← Vp ∪ Cp;2

R(p)← ∅;3

x1 ← documents in posting list ofx,∀x ∈ X;4

foreach r1 ∈ R1(p) =⋊⋉doc
x∈X x1 do5

x2 ← entries inx associated with documentr1,∀x ∈ X;6

R2(p)←⋊⋉sent
x∈X x2;7

R(p)← R(p) ∪ ({r1} ×R2(p))8

Φ′
p ←sort and groupR(p) by Vp;9

Φq ← πP ⊗
V
p∈P Φ′

p; // Proposition 110

Algorithm 1 follows exactly the 3-phase processing depicted in Proposition 1. As we noted
before, existing entity search systems use DCI to handle a special class of SSQ queries, single-
predicate query. Their processing algorithms are essentially one iteration of the outer-loop in DCR
algorithm. DCR is potentially inefficient as it retrievesΦ′

p rather thanΦp. Processing power is
potentially wasted on retrieving evidences belonging toΦ′

p − Φp.

Example 5: Consider a queryQ with two selection predicates,p1 = 〈{x}, {“Stanford”, “graduate”}〉
andp2=〈{x}, {“Russian”}〉, wherex is a PERSON. Suppose 100 persons satisfiesp1 with 1,000 ev-
idences (10 evidences per person) and 1,000 persons satisfies p2 with 10,000 evidences (10 per
person). A total of 11,000 evidences are retrieved. However, if 10 persons actually satisfy both
predicates, only 200 evidences survive the graph join in phase 2 (10 per person per predicate). Other
evidences (10,800 in total) are trash evidences to be discarded, a huge waste of processing power.

In summary, ordering posting list entries by〈doc, sent〉 makes DCI a convenient structure to
retrieve evidences for arbitrary SSQ predicate. However, for multi-predicate queries, independent
predicate evaluation may waste processing power on retrieving large quantities of trash evidences. It
is unknown how to (and probably not able to) prune trash evidences using the basic DCI. Section 5.3
will show how Entity-Centric Index allows to break this limitation.

5.2 Retrieval with Entity-Centric Index

To overcome the drawback of DCI, we present Entity-Centric Index (ECI) (Figure 2), a novel index
organization of the{term, doc, entity} three-dimension space. ECI has the same number of posting
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Figure 2: Entity-Centric Index

lists as DCI, one for each term and one for each type. However,these posting lists are ordered
by entity ID rather than document ID. A term-entity posting list (TEPL) for termw enlists, in
ascending order, all entities co-occurring withw in some sentence. Each such entity is associated
with a list of entries recording the co-occurrence information with two attributes,occur (entity
occurrence identifier) andpos (w’s position). In Figure 2(a), “graduate” co-occurs with entity 6,
17, etc. It occurs at position 2 of the sentence where entity 6, Jerry Yang, appears for the first time
(occur=1) and position 8 of his 4th occurring sentence. An entity-document posting list (EDPL) for
typeT enlists all entities of typeT in ascending order and associates a complete list of occurrence
information with each entity. In Figure 2(b), entities 3, 6 and 16 all belong to PERSON. The first
occurrence of entity 6 is in document 9 sentence 8, spanning from position 0 to 1.

ECI follows theterm → entity → doc information flow, with TEPL bridging the first arrow
and EDPL bridging the second. By merge joining the two posting lists in Figure 2 on〈entity, occur〉
(in a similar fashion as the major/sub-join on〈doc, sent〉 in DCI), we can retrieve the evidence that
entity 6 co-occurs with “graduate” in document 9 sentence 8.In general, a selection predicate can be
evaluated with ECI as conveniently as with DCI, by merge joining multiple TEPLs with one EDPL
on〈entity, occur〉. Since posting lists are primarily ordered by entity ID, theresulting evidences are
naturally ordered by entity ID and can be grouped byVp to formΦ′

p effortlessly. However, evaluating
relation predicate is quite different because it does not require all posting lists to be joined onentity.
In p3 of Query 1, the EDPLs of PERSON and COMPANY have completely distinct set of entities.
p3 requires a PERSON and a COMPANY to appear in the same sentence, i.e., they must be joined
on 〈doc, sent〉, which are only subsidiary attributes in EDPL. Naively, a costly nested-loop join (on
〈doc, sent〉) of the two posting lists can solve the problem, which accesses both posting lists entirely.
But with the presence of relation keyword “found”, we may do better.

We splitp3 into two selection predicates,px
3=〈{x}, {“found”}〉 andpy

3=〈{y}, {“found”}〉, which
are evaluated as two irrelevant predicates to retrieve all their evidences, denoted asR(px

3) andR(py
3).

The two sets are then joined on〈doc, sent〉 to form evidences forp3. To illustrate, suppose sentence
7 of document 10 reads

Jerry Yang (entity 6)co founded Yahoo! (entity 17)in 1995...

R(px
3) will contain evidence〈10, 7, {〈6, 0, 1〉}, 〈3〉〉 andR(py

3) will contain〈10, 7, {〈17, 4, 4〉}, 〈3〉〉.
The two will be joined to form an evidence ofp3, 〈10, 7, {〈6, 0, 1〉 〈17, 4, 4〉}, 〈3〉〉.

We refer to this processing technique asrelation splitting. It is potentially less costly than the
naive nested-loop join, as it only retrieves evidences for entities in PERSON∩found and entities
in COMPANY∩found. Generally, a relation predicatep=〈Vp, Cp〉 can be split into|Vp| selection
predicates,SP (p)={pv|v∈Vp}, wherepv=〈{v}, Cp〉 is a split predicate of p. The evidences of

p, R(p), can be evaluated asR(p)=⋊⋉
〈doc,sent〉
v∈Vp

R(pv), whereR(pv) is the evidence set forpv.
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R(p) is then sorted and grouped byVp to getΦ′
p. We trivially consider a selection predicate as

a split predicate of itself. Since eachΦpv is a posting list merge join and outputs are ordered by
〈entity, occur〉, the joins⋊⋉ds are still inefficient, which is the major drawback of ECI. Section 5.3
will show how this drawback can be relieved in case of multi-predicate queries.

So far, we have known how to evaluate arbitrary predicate individually. By Proposition 1, we
can evaluate any SSQ query with Basic Entity-Centric Retrieval (bECR) algorithm (Algorithm 2).
bECR also evaluates predicates independently (the outer-loop overP , line 1). Therefore, it retrieves
the same evidences as DCR does, including trash evidences (in case of multi-predicate queries).

Algorithm 2 : Basic Entity-Centric Retrieval

Input : Queryq = 〈V,D, P 〉
Output : Φq

foreachp = 〈Vp, Cp〉 ∈ P do1

SP (p)← {pv|v ∈ Vp}; // Relation splitting2

R(pv)← ∅,∀pv ∈ SP (p);3

foreachpv ∈ SP (p) do4

X ← {v} ∪ Cp;5

x1 ← entities in posting list ofx,∀x ∈ X;6

foreach r1 ∈ R1(pv)=⋊⋉entity
x∈X x1 do7

x2 ← entries inx associated with entityr1,∀x ∈ X;8

R2(pv)←⋊⋉occur
x∈X x2;9

R(pv)← R(pv) ∪ ({r1} ×R2(pv));10

if |Vp| > 1 then11

R(p)←⋊⋉
〈doc,sent〉
v∈Vp

R(pv);12

R(p)←sortR(p) by Vp;13

else14

R(p)← R(pv); // naturally sorted by Vp15

Φ′
p ←groupR(p) by Vp;16

Φq ← πP ⊗
V
p∈P Φ′

p; // Proposition 117

Consider again Example 5 in Section 5.1. Forp1, suppose there are 200 persons appearing in
the posting lists of both “Stanford” and ”graduate”, i.e.,|R1(px

1)|=200 (line 7). Hence for these
200 persons, the inner loop is executed. It will find, according to the example setting, 100 persons
satisfyingp1 with 1,000 evidences. Also forp2, 1,000 persons will be retrieved with 10,000 evi-
dences. In sum, 1,200 persons need to execute the inner loop,and a total of 11,000 evidences will
be retrieved. However, with ECI, a subset of trash evidencescan be prevented from being retrieved.

5.3 Entity-Centric Retrieval with Pruning

Let’s first re-examine Example 5.p1 requires a PERSON to co-occur with “Stanford” and “gradu-
ate”; p2 requires the same person to co-occur with “Russian”. If a person does not co-occur with
all the three keywords, it is guaranteed not an answer to query Q. Suppose forp1, among the
|R1(px

1)|=200 persons appearing in both “Stanford”’s and “graduate”’s posting lists, 30 persons also
appear in “Russian”’s. Then, only for these 30 persons, evidences forp1 andp2 need to be retrieved.
Following the example setting, around 600 evidences will beretrieved (10 per person per predicate),
a huge cut-down from 11,000 evidences.

Ordering posting lists by entity ID provides ECI an opportunity to accomplish such pruning
capability. Based on the intuition described above we propose Entity-Centric Retrieval (ECR) al-
gorithm (Algorithm 3). ECR does not evaluate predicates independently, instead it applies relation
split to all predicates and processes split predicates sharing the same variable in batch.
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Algorithm 3 : Entity-Centric Retrieval

Input : Queryq = 〈V,D, P 〉
Output : Φ(q)
SP (p)← {pv|v ∈ Vp},∀p ∈ P ; // Relation splitting1

SP ←
⋃

p∈P SP (p);2

SP (v)← {pv|pv ∈ SP},∀v ∈ V ; // Group SP by v3

R(pv)← ∅,∀pv ∈ SP ; // Store evidences for pv4

foreachv ∈ V do5

X ← {v} ∪
⋃

pv∈SP (v) Cp;6

x1 ←entities in posting list ofx, ∀x ∈ X;7

foreach r1 ∈ R1(v)=⋊⋉entity
x∈X x1 do8

x2 ←entries inx associated entityr1,∀x ∈ X;9

foreachpv ∈ SP (v) do10

R2(pv)←⋊⋉occur
x∈{v}∪Cp

x2;11

R(pv)← R(pv) ∪ ({r1} ×R2(pv))12

foreachp ∈ P do13

if |Vp| > 1 then // Relation predicate14

R(p)←⋊⋉
〈doc,sent〉
v∈Vp

R(pv);15

R(p)← sortR(p) by Vp;16

else17

R(p)← R(pv) // Selection predicate18

Φ′′
p ←groupR(p) by Vp;19

Φq ← πP ⊗
V
p∈P Φ′′

p20

In ECR, the loop overV (line 5) processes split predicates batch by batch. ForSP (v), EDPL
of v’s type is merge joined (onentity) with all TEPLs from all split predicates inSP (v) (line 8).
For each entityr1 returned by this join, the inner loop (line 10) retrieves evidences for each split
predicatespv ∈ SP (v) respectively. Recall that in our discussion on Example 5 at the beginning of
this subsection,|R1(v)|=30. For each entity inR1(v), line 11 retrieves 10 evidences forpv

1=p1 and
10 for pv

2=p2. Hence,|R(pv
1)|=|R(pv

2)|=300. Then, during the loop overP (line 13), evidences for
split predicates of the same relation predicatep are joined on〈doc, sent〉 to produce evidences for
p (line 15). For eachp ∈ P , its evidences,R(p), are grouped byVp (line 18), producingΦ′′

p . It is
important to note thatΦp ⊆ Φ′′

p ⊆ Φ′
p, due to the pruning of trash evidences.

Pruning Analysis: To better understand the pruning capability of ECR, we compare the exe-
cutions of inner-most loop in both bECR and ECR, because the inner-most loop contains the most
costly step of the two algorithms, the posting list merge join onoccur, ⋊⋉occur. This refers to line 9
of bECR and line 11 of ECR. In both algorithms, the join⋊⋉occur should be performed for every
split predicatepv ∈ SP . The parameter that actually makes difference between the two algorithms
is how many times⋊⋉occur is executed. For a split predicate groupSP (v) in ECR,R1(v) is the
intersection of entities in EDPL ofv and TEPLs from allpv ∈ SP (v). Denotex1 as the set of
entities in the posting list ofx,

R1(v) = v1 ∩ (
⋂

pv∈SP (v)

⋂

w∈Cp

w1)

Governed by the loop of line 8,⋊⋉occur is executed|R1(v)| times, for eachpv ∈ SP (v). Total
executions of line 11 given queryq is

NECR =
∑

v∈V

∑

pv∈SP (v)

|R1(v)| =
∑

pv∈SP

|R1(v)|

15



Table 3: Ten Types from Wikipedia
Type (E)ntities (O)ccurrences O/E
AWARD 1,045 626,340 600
CITY 70,893 28,261,278 389
CLUB 15,688 5,263,865 335
COMPANY 24,191 9,911,372 409
FILM 41,344 3,047,576 74
NOVEL 16,729 1,036,596 63
PERSON 427,974 38,228,272 89
PLAYER 95,347 2,398,959 25
SONG 29,934 732,175 24
UNIVERSITY 19,717 6,141,840 311
TOTAL 742,862 95,648,273 129

bECR computes a differentR1 for eachpv, denoted byR1(pv). By the join ⋊⋉entity in line 7,
R1(pv)=v1 ∩

⋂
w∈Cp

w1. Controlled by the loop of line 7,⋊⋉occur is executed|R1(pv)| times.
Eventually, bECR executes line 9 for

NbECR =
∑

pv∈SP

|R1(pv)|

times. Obviously,∀v, R1(v) ⊆ R1(pv), |R1(v)| ≤ |R1(pv)|, and hence we haveNECR ≤ NbECR.

6 Empirical Results

Our initial attempt of SSQ is a prototype system over Wikipedia. In this section, we provide experi-
mental results on (1) ranking effectiveness of CM and BCM in comparison with other entity ranking
approaches and (2) efficiency of ECR algorithm in comparisonwith the baseline DCR algorithm.

6.1 Prototype and Data Set

Corpus Our system building and experiments were carried out on the 2008-07-24 snapshot of
Wikipedia2. We removed all the category pages and administrative pages, obtaining about2.4 mil-
lion articles as our corpus. For each article, we removed allits section titles, tables, infoboxes, and
references. Although tables and infoboxes also present valuable information for structured query,
they are significantly different from the main body of the article in both format and data character-
istics, thus they should be treated separately by other techniques such as Information Extraction, as
discussed in Section 1.

Entity Set The Wikipedia articles serve as both the text corpus for finding query answers and the
repository of named entities. Each article represents a unique entity named by the article title. We
manually define ten entity types (see Table 3) and use simple regular expressions to assign entities
(articles) to these types based on their categories3. For example, if an article belongs to a category
whose name ends with “novels” (e.g., “British novels”), we treat the article as an entity of type
NOVEL. About 0.75 million out of the 2.4 million articles were assigned to the 10 types in our
system. An entity can fall into multiple types. For instance, David Beckhambelongs to PLAYER,
and the more general category, PERSON. This simple method turns out to be quite accurate and
sufficient for demonstrating the effectiveness of the SSQ system.

2http://download.wikimedia.org
3Most Wikipedia articles belong to one or more categories thatare listed at the bottom of each article.
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Table 4: Compare SSQ and TextRunner(TR)

Query 1 2 3 4 5 6 7 8 9 10 11
SSQ 27 11 31 33 14 25 24 23 4 4 9
TR 13 17 0 14 7 16 2 12 2 1 6

Entity Annotations To identify occurrences of entities in the corpus, we exploit internal links in
Wikipedia articles. An internal link is a hyperlink in some Wikipedia article to another Wikipedia
article. Example 6 shows a sentence with one internal link, in which the anchor text “Cisco” (right to
the vertical bar in double brackets) links to an article titled “Cisco Systems” (left to the vertical bar).
We interpret this internal link as an occurrence of the entity Cisco Systemsand that the sentence
uses one token, “Cisco”, to reference it. Nearly 100 millionannotations are identified in this way
for the 0.75 million entities.

Example 6 (Internal Link): Cisco Career Certifications are IT professional certifications for [[Cisco
Systems|Cisco]] products.

Query Set We use two query sets for experiments, INEX17 and OWN28. The INEX17 is adapted
from topics used in Entity Ranking track of INEX 2009 [2]. There are60 topics available in INEX.
We only adapted topics about entities belonging to our predefined10 types. A total of17 queries
are obtained, including11 single-predicate queries and6 multi-predicate queries (without relation
predicates). OWN28 contains28 manually designed queries, including16 single predicate queries,
5 multi-predicate queries without relation and7 multi-predicate queries with relation. For testing the
efficiency of query processing algorithms, we draw a subset of topics from INEX17 and OWN28,
extend them into more complicated queries (see Section 6.5 for detail).

6.2 SSQ vs. DB-based System

To help better understand the difference between SSQ and DB-based approach, we compare our
prototype system with the state-of-the-art Open IE system,TextRunner4. TextRunner contains facts
extracted from 500 million high-quality Web pages, which ismuch larger than our corpus. For the
comparison, we took the 11 single-predicate queries from INEX17, converted them into TextRunner-
friendly queries, and submitted those queries to TextRunner through their keyword search interface.
The conversion is done to maximize recall from TextRunner. For example, if we are looking for
novels by Neil Gaiman, the SSQ predicates,〈{v}, {“by”, “Neil Gaiman”}〉 are shortened to “Neil”
“Gaiman” for TextRunner (current TextRunner does not support phrases). Table 4 compares the
recall of SSQ and TextRunner on the 11 queries, showing the numbers of correct answers returned
by each system.

Surprisingly, TextRunner provides much less correct answers than SSQ for most of the queries,
though TextRunner extracts from a much larger corpus. However this does not mean SSQ is ”better”
than TextRunner. They are different approaches and have different focuses: (1)TextRunner focuses
on the extraction of relations themselves, thus cannot query facts that are not extracted. SSQ rely
on the users to form appropriate query predicates to “extract” at query time; (2) SSQ supports
multi-predicate queries and aims at better precision at relatively large ranks instead of only top-few
answers, which is not the focus of TextRunner; (3) The two systems use different corpora. Given
its extraction-based nature, TextRunner relies on various part-of-speech patterns, noun-verb-noun
patterns in particular, to extract facts. However, a large number of facts are not expressed in such
patterns and thus cannot be extracted by TextRunner. For example, “American Gods, a novel by
Neil Gaiman”, “US Open champion Roger Federer”. Meanwhile,our SSQ system avoids the pattern
recognition problem by focusing on co-occurrences only.

4http://www.cs.washington.edu/research/textrunner/
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Table 5: MAP and nDCG on INEX17/OWN28
Query COUNT MEX PROX CM BCM ER

nDCG on INEX17
Single-11 0.889 0.911 0.920 0.920 0.9200.904
Multi-6 0.880 0.918 0.932 0.954 0.9580.927
All-17 0.886 0.913 0.924 0.932 0.9330.912

MAP on INEX17
Single-11 0.756 0.812 0.843 0.844 0.8420.779
Multi-6 0.772 0.820 0.852 0.885 0.8940.809
All-17 0.762 0.815 0.846 0.859 0.8600.790

nDCG on OWN28
Single-16 0.917 0.943 0.947 0.953 0.9540.923
Multi-12 0.800 0.812 0.836 0.844 0.8780.781
ALL-28 0.867 0.887 0.899 0.906 0.9220.862

MAP on OWN28
Single-16 0.758 0.825 0.838 0.858 0.8530.760
Multi-12 0.579 0.620 0.660 0.684 0.7480.521
ALL-28 0.681 0.738 0.762 0.783 0.8080.658

6.3 Analyzing Alternative Ranking Methods

In this section, we compare and analyze the multiple rankingmethods discussed earlier, namely
COUNT, PROX, MEX, CM and BCM. All the methods differ in how they compute predicate scores,
i.e., Fp(t). For multi-predicate queries, the same aggregate function, product, is used to compute
answer scores,FA(t). We compare these ranking methods using three popular measures: nDCG,
MAP, andPrecision-at-k.

nDCG (Normalized Discounted Cumulative Gain): The first block inTable 5 shows the average
nDCG on single-predicate queries (Single-11), multi-predicate queries (Multi-6), and all queries
(All-17) from INEX17. Both MEX and PROX improve over COUNT, by 0.02-0.05 across all three
cases. PROX appears to be more effective than MEX. CM and BCM are comparable to PROX on
Single-11, but further improve by more than 0.02 on Multi-6.We only observe minor difference
between CM and BCM.

MAP (Mean Average Precision): The second block of Table 5 shows the MAP on INEX17.
The observations are mostly similar to those from the nDCG analysis. Note that a larger distinction
between CM and BCM is observed on Multi-6, with BCM about 0.01better than CM.

For further investigation, we repeat the above experimentson OWN28 and provide the results in
the bottom half of Table 5. Most results are consistent with INEX17. However, on multi-predicate
queries in OWN28 (Multi-12), BCM shows clear advantage over CM in terms of both nDCG (by
0.034) and MAP (by 0.064). The different observations on INEX17 and OWN28 is because, we
believe, OWN28 has more multi-predicate queries than INEX17and the advantage of BCM is more
stably observed on OWN28.

Precision-at-k: According to the best reported MRR (Mean Reciprocal Rank) ofexisting entity
search systems [12, 14], the first true answer is typically ranked at top 1-2. To further analyze how
different methods perform in detail, especially beyond thetop-few answers, we plot precision-at-k
curves. Figure 3(a,b) show the results fork=10. COUNT has the worst performance. PROX is
consistently better than MEX across all ranks, but worse than CM and BCM, agreeing with the
conclusion drawn from nDCG and MAP analysis. BCM is consistently the best among all, while
CM has inconsistent performance on INEX17 and OWN28. Figure 3(c,d) show the results fork=50.
The curve for each method shows the average precision of the method at rank positionk for queries
that returned 50 or more answers, including 7 queries in INEX17 and 18 in OWN28. In Figure 3(c),
CM and BCM excel beforek=10 and BCM is slightly better. PROX is the best afterk=10 but is
significantly worse than BCM at top ranks. In Figure 3(d), BCMis clearly the best among all,
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Figure 3: Precision-at-k on INEX17/OWN28

although a little worse than CM between 10 and 25.
In summary, the individual features are effective for entity ranking and they work best in concert

when they are integrated into CM and BCM. BCM rivals CM on single-predicate queries, but excels
on multi-predicate queries because BCM alleviates the predicate dominance problem. Besides, it
achieves good precisions consistently across top-50.

6.4 BCM vs. Other Entity Ranking Methods

This section compares BCM with three state-of-the-art entity ranking methods:EntityRank (ER),
INEX andINRIA. All of these systems used Wikipedia as corpus and entity repository, though INEX
and INRIA used different snapshots than ours.

EntityRank (ER) [14] focuses on single-predicate queries. It outperforms another closely re-
lated method [12] by a large margin, in term of MRR. We re-implemented ER as a plugin for scoring
individual predicates in our ranking framework. The same aggregate function, product, is used to
compute answer scores (FA) for multi-predicate queries.

The detailed performance of ER is shown in Table 5 and Figure 3. In Table 5, both CM and
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BCM outperform ER by large margins. The peak margin (0.22) interms of MAP is observed on
Multi-12 from OWN28, between BCM and ER. In Figure 3, ER rivalsPROX, CM, and BCM at
top-2, verifying the high MRR reported in [14]. However, it deteriorates very fast whenk > 2,
dropping below 0.7 aroundk=5, while BCM remains above 0.7 even atk=10.

INEX Entity Ranking track [2] focuses on a different problem setting. INEX queries are speci-
fied as narrative descriptions on the desired entities. Participating systems can use any techniques to
answer the queries, but need to understand the query descriptions, which itself is challenging, thus
their MAPs may tend to be low. The MAP achieved by the best system participating in the 2009
track is 0.517. To avoid the overhead of assessing participating systems, INEX used a sampling
strategy to estimate their MAPs.

INRIA [29] works on the same problem as INEX. Unlike INEX participants, it is not based on
co-occurrence of entities and query inputs. Rather, it ranks entities by link analysis and TF-IDF
weighting. It achieves MAP of 0.390 on 18 topics adapted fromINEX 2006 ad hoc track.

In comparison with INEX and INRIA, the MAP achieved by BCM on INEX17 is 0.860. We
acknowledge that this comparison is not strictly fair. First, the results are based on different query
sets (INEX17 is a subset of INEX Entity Ranking topics) and snapshots of Wikipedia. Second, they
focus on different query styles (structured query vs. narrative description). However, our argument
is that the high MAP of BCM at least indicates that the structured entity-relationship queries can be
highly effective in reality.

In summary, our extensive analysis indicates that the proposed ranking model is very effective
for ranking entities. Given that SSQ is capable of handling more complex queries with structures
(which is absent from all other systems), it is a promising approach to answer entity related queries.

6.5 Efficiency of DCR and ECR

This section reports empirical comparison between ECR and DCR based on our prototype. We use
the de facto standard, count of disk block I/O, as the measureof query processing cost. Basically,
for each test query, we compare the disk block reads incurredby both algorithms. The block size
is 1 KB. Our query set is systematically designed in groups with growing complexity (number of
predicates). Each query is labeled as an x/y/z query, with x the number of entity variables, y the
number relation predicates and z the number of selection predicates.

Query Group 1 (G1) contains fifteen 1/0/1 queries, fifteen 1/0/2 queries and five1/0/3 queries,
designed in the following procedure: 1) design a 1/0/3 queryQ; 2) create three 1/0/2 queries by
trimming one predicate off Q; 3) create three 1/0/1 queries by trimming two predicates off Q; 4)
repeat steps 1-3 for five different Q’s.

Query Group 2 (G2) contains five 2/1/0 queries, five 2/1/2 queries and five 2/1/4 queries, de-
signed in the following procedure: 1) design a 2/1/4 query Q,each variable with two selection
predicates; 2) create one 2/1/2 query by trimming one selection predicate off each variable; 3) create
one 2/1/0 query by trimming off all selection predicates; 4)repeat steps 1-3 for five different Q’s.

Query Group 3 (G3) is created from the five 2/1/2 queries in G2. For each 2/1/2 query, a new
variablev is added in, with a selection predicate onv and a relation predicate betweenv and one of
the existing variable. Thus, G3 has five 3/2/3 queries.

Figure 4(a)-(c) shows comparison results on G1, whose queries involving only one variable.
The y-axis shows the disk I/O counts incurred by processing the queries. To fit the figures for better
visibility, we cut tall bars at the level of 10,000 and attachthe actual disk I/O counts beside the
cut bars. It can be seen that, there is no clear difference between DCR and ECR on 1/0/1 queries.
However, on 1/0/2 queries, ECR incurs significantly less disk I/Os than DCR. And when it comes to
1/0/3 queries, ECR can be orders of magnitude faster than DCR.

It is important to note that as more selection predicates areadded to the queries, processing cost
incurred by ECR could be even reduced. For example in Figure 4(a), many red bars are high above
2000, while in (b), most are below or close to 2000. The reasonis that, when there are multiple
predicates involving the same variable, ECR will find the intersection of entities in TEPLs of all
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(a) 1/0/1 Queries (b) 1/0/2 Queries

(c) 1/0/3 Queries (d) 2/1/0 Queries (e) 2/1/2 Queries

(f) 2/1/4 Queries (g) 3/2/3 Queries

Figure 4: Disk I/O Comparison between DCR and ECR on G1,G2 andG3

predicates’ keywords. As more keywords are introduced in byadditional predicates, this intersection
becomes smaller and smaller, hence less entities need to retrieve evidences.

Figure 4(d)-(f) compares DCR and ECR on G2. Queries in this group involve two variables. On
2/1/0 queries, ECR appears to be noticeably worse, costing 1.5 to 5 times the disk I/O of DCR. The
reason is that 2/1/0 queries are single relation predicate queries. ECR applies relation splitting to the
predicate and evaluates two split predicates separately. While on the other side, DCR process single
relation predicate as conveniently as single selection predicate. However, as we add more predicates
on each variables, we observe that ECR has significant drops of disk I/O on 2/1/2 and 2/1/4 queries.
The reason is the same as discussed before for G1.

Finally 4(g) shows that ECR still scales well on G3, when there are three variables and two
relation predicates in a query, costing in general 1/2 to 1/5disk I/Os of DCR. We stopped the
experiments at 3/2/3 queries due to limit of time. However, based on empirical results on G1 and G2,
it is reasonable to believe that for 3/2/N queries, where N>3 ECR is likely to show more significant
advantage over DCR.

In summary, ECR is not as good as DCR at processing single relation predicate queries. For
single selection predicate queries, it is query-dependentabout which one is better. But their differ-
ence (in terms of disk I/O) is not significant. When each variable in a query is involved in multiple
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predicates, ECR begins to show its pruning power and unequivocally beats the performance of DCR.
To conclude, between DCR and ECR, ECR (together with the enabling DCI index) is a clear choice
for processing complex SSQ queries.

6.6 Efficiency on Pre-Joined Posting List

Very recently, [31] proposed several advanced posting lists to speedup entity search with DCI, in-
cluding (1) pre-joined posting list between a TDPL and a DEPL, (2) pre-joined posting list between
two TDPLs, and (3) neighborhood posting list (first introduced in [10] and used as contextual post-
ing list in [31]). However, completely building all advanced posting lists are too huge to afford.
Hence, [31] studied how to selectively build them as trade-off between space and efficiency. For
ECI, it is possible to build counterparts of all these advanced posting lists. However, this report
takes a simple approach while leaving a comprehensive study, including index selection, as future
work.

Regardless of space consumption, we blindly build pre-joined posting list between each pair of
TDPL and DEPL for DCI. Since all basic TDPLs and DEPLs are covered by pre-joined posting
lists, there is no need to retain them. Hence, they are removed from index. The index consisting of
purely pre-joined posting lists is referred to as JDCI. Similarly, we pre-joined every pair of TEPL
and EDPL in ECI and remove the basic ones in ECI. The new index is referred to as JECI. The DCR
and ECR algorithms are also slightly modified to accommodatechanges in posting list structures.
The new algorithms are referred to as aDCR and aECR respectively.

The comparison result (Figure 5) is summarized as follows. Disk I/O cost of aDCR is mostly
comparable to aECR on 1/0/1, 1/0/2, 2/1/0, 2/1/2 and 3/2/3 queries. This is because pre-joined
posting lists are usually much shorter than basic posting lists. On one hand, there is a lower bound
of evidences that must be retrieved, the ground truth set; onthe other, the posting lists are shortened
a lot due to pre-joining, ruling out many trash evidences in advance. Hence, aDCR does not waste
too much on retrieving trash evidences and aECR has bare chance to show its pruning power. We
also observe that when there are three or more predicates on each variables (1/0/3, 2/1/4 queries),
aECR seems better than aDCR, although not very significant. This means that, aECR could still
be more efficient than aDCR when processing very complex queries. The inherent reason behind
this phenomenon is that aDCR still have to evaluate each predicates independently while aECR can
leverage more predicates to prune trash evidences, the morepredicates the better pruning power.

Overall, it is difficult to claim either algorithm to be clearly better at this moment. However, for
large Web corpus, it is not affordable to build fully pre-joined indexes. Hence, we look forward to a
more comprehensive study on the two retrieval approaches over large corpus, with investigation on
index selection.

7 Conclusion

In this report, we introduced a novel querying mechanism, Shallow Semantic Query, which enables
users to issue structured entity-centric queries over textual content and obtain direct answers. We
thoroughly discussed two key issues in developing a qualitySSQ system, ranking and query pro-
cessing. Although our current study on SSQ is still at its early age, experiments already indicate that
it is a competing approach towards a general solution to entity-centric information needs. We look
forward to more in-depth studies in future.
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