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ABSTRACT
MapReduce has become a common programming model for
processing very large amounts of data, which is needed in a
spectrum of modern computing applications. Today several
MapReduce implementations and execution systems exist
and many MapReduce programs are being developed and
deployed in practice. However, developing MapReduce pro-
grams is not always an easy task. The programming model
makes programs prone to several MapReduce-specific bugs.
That is, to produce deterministic results, a MapReduce pro-
gram needs to satisfy certain high-level correctness condi-
tions. A violating program may yield different output val-
ues on the same input data, based on low-level infrastruc-
ture events such as network latency, scheduling decisions,
etc. Current MapReduce systems and tools are lacking in
support for checking these conditions and reporting viola-
tions.

This paper presents a novel technique that systematically
searches for such bugs in MapReduce applications and gen-
erates corresponding test cases. The technique works by
encoding the high-level MapReduce correctness conditions
as symbolic program constraints and checking them for the
program under test. To the best of our knowledge, this is
the first approach to addressing this problem of MapReduce-
style programming.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Symbolic execution, testing tools; D.2.4 [Software Engi-
neering]: Software/Program Verification—Assertion check-
ers, reliability

General Terms
Algorithms, Reliability, Verification
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1. INTRODUCTION
MapReduce-style programming is a new paradigm in large-

scale data processing that has attracted a lot of attention,
both in industry and academia. In the six years since its
publication, according to Google Scholar, the original MapRe-
duce paper [3] has been cited over 2,000 times. In practice,
several large organizations have implemented the MapRe-
duce paradigm, e.g., in Apache/Yahoo! Hadoop [14] and
Pig [8], Apache/Facebook Hive [13], Google Sawzall [9], and
Microsoft Dryad [5].

MapReduce programs are especially well-suited for pro-
cessing very large amounts of data (e.g., two petabyte worth
of log files) on a large number of commodity machines (e.g., a
10,000 node Linux cluster). However, MapReduce systems
are also increasingly being used for other tasks that were
traditionally the domain of parallel database management
systems, for example, data warehousing [13, 11].

There are many notable examples of MapReduce usages in
a variety of application domains. Amazon Elastic Compute
Cloud (EC2) provides cloud computing services on Hadoop.
Yahoo! used Hadoop to sort a terabyte of data in just 209
seconds, which is the fastest with regard to the Jim Gray
terabyte sorting benchmark. Facebook uses Hive as a data
warehouse solution for internal reporting and ad-hoc data
analysis [13].

Programming in MapReduce is complicated by two main
factors. (1) To produce deterministic results, a MapReduce
system requires user programs to satisfy certain high-level
correctness conditions. That is, if a MapReduce program vi-
olates these correctness conditions, the output values emit-
ted by that program may vary based on low-level infras-
tructure events such as network latency, scheduling deci-
sions, etc. This means that running the same MapReduce
program again on the same input data may yield different
results. For many tasks, such non-determinism in their pro-
gram behavior is clearly a bug programmers would like to
avoid. However, (2), neither the MapReduce execution sys-
tem nor current tools we are aware of check these conditions
or warn the user when they may be violated.

This paper addresses this problem with a novel technique
that systematically searches for such bugs in MapReduce
programs and generates test cases that allow programmers
to reproduce the bug. Our technique works by encoding
the high-level MapReduce correctness conditions as sym-
bolic program constraints and checking them for the partic-
ular user program under test. We implement the technique
in a dynamic symbolic execution [4, 1] framework, which al-
lows us to generate test cases that exhibit the bugs found



by our technique. To the best of our knowledge, this is the
first approach to addressing this problem of MapReduce-
style programming.

This paper is phrased in the terms of the Java program-
ming language, which is the language used in Hadoop, the
most popular open-source implementation of MapReduce.
However, the presented technique is independent of a par-
ticular language or system. That is, one can encode the pro-
gram constraints and MapReduce correctness conditions for
programs written in different languages that target different
MapReduce implementations. So the same high-level tech-
nique can be applied to MapReduce programs running on
one of the common MapReduce systems including Hadoop
and the original Google MapReduce system. The technique
can equally be adapted to other mainstream programming
languages such as C++ and C#.

1.1 Novelty and Originality of our Approach
To the best of our knowledge, this is the first approach

that uses dynamic symbolic execution to automatically gen-
erate test cases that can reveal certain types of bugs in
general MapReduce programs. Instead of testing these pro-
grams on the entire data sets, which are often very large, our
method allows programmers to discover hard-to-find bugs
using very small synthetic data sets. Dynamic symbolic ex-
ecution is precise and works well for relatively small pro-
grams, which makes it attractive for map/reduce programs.
Although our paper is focused on enforcing the commuta-
tivity property of the reduce function, it has the potential
of becoming a general framework for automated MapReduce
testing. There is no other published paper on a related ap-
proach by the authors or others. We expect that feedback
from the reviewers and the workshop participants will help
us identify more cases for program testing in a MapReduce
environment.

2. CORRECTNESS CONDITONS
A MapReduce system requires that a user program is ex-

pressed as three separate user-defined functions, which are
named map, reduce, and combine.

Map: A MapReduce job may invoke a given map function
on many nodes in parallel, each processing a portion of the
input data. Each invocation produces a list of (key, value)
pairs. The set of all (key, value) pairs produced by this job
will be passed as input to a reduce function, which may also
be running on multiple nodes.

Reduce: A reduce function receives as input a key and
a list of values that are associated with that key. The value
list is ordered according to the order in which the values are
received on the reducer node, which can be influenced by
network latency, etc. To produce deterministic results, the
implementation of the user-defined reduce function must be
independent of the input value order. We call this require-
ment REQ-1.

More formally, for each input list L, the reduce function
has to return the same result for each permutation P of that
list:

∀L,P : reduce(k, L) = reduce(k, P (L)) (REQ-1)

Combine: A combine function is used in an optional op-
timization step that combines values by key on a map node.
This is useful as reducing values locally, before transmitting

them to the reducer, can save network bandwidth. MapRe-
duce systems may freely decide if and how often to apply a
combine function. Like REQ-1, to produce deterministic re-
sults, the number of times the system invokes a user-defined
combine function must not influence the values produced by
the downstream reduce functions (REQ-2). In this paper,
for space reasons, we focus on checking REQ-1.

3. EXAMPLE: REDUCE BUG
Consider the example reduce method in Listing 1. The

programmer intends to report the average of the top 100
salaries for each unique key, if that average is larger than
100,000. A key corresponds to, say, a department. However,
the code does not satisfy the MapReduce requirement that
reduce must be independent of the order in which it receives
the input values (REQ-1). That is, to compute the average,
instead of finding the highest 100 salaries in the list, the code
just uses the first 100 values. So the value returned by the
reduce function is determined by the salaries that happen
to be at the head of the input list.

1 public void reduce(String key, Iterator<Integer> salaries) {
int sum = 0; int i = 0;

3 while (salaries.hasNext() && i<100) {
sum += salaries.next();

5 i += 1;
}

7 emit((i>0 && sum/i > 100000)? sum/i : −1);
}

Listing 1: The average of the top 100 salaries
for each unique key, if that average is larger than
100,000.

This bug may be due to a number of reasons. One, the
programmer may not be aware of correctness condition REQ-
1. Second, the programmer may mistakenly assume that
the input values are already ordered when they reach the
reduce function. This misunderstanding may stem from the
fact that MapReduce systems, such as Hadoop, have vari-
ous built-in value sorting techniques, but do not always ap-
ply them. The misunderstanding may also stem from the
programmer’s knowledge of the order in which salaries are
being stored in the original input files. Such order is to be
destroyed by the parallel processing of MapReduce.

To find bugs such as the one in Listing 1, at a high level, we
need to check if there exists an input list L and a permuta-
tion P , such that reduce(k, L) 6= reduce(k, P (L)). However,
answering that question is hard, as the number of candidate
lists and their permutations is not finite. E.g., for Listing 1,
the bug is only exposed for a test case that supplies a cer-
tain kind of input list, one that has more than 100 elements
and the average value of the first 100 elements is larger than
100,000. In addition, the test case needs to contain a certain
kind of permutation of that list, one that replaces an element
at position less than 100 with one at position greater than
100. Hence, trying a lot of randomly generated test cases
can be wasteful. On the other hand, finding a desired test
case is hard and requires deep analysis of the program and
the MapReduce correctness conditions.

Although the question is hard in general, we observe that
the number of distinct execution paths through a reduce
method is typically small, since the main purpose of a reduce
method is to aggregate the values it receives. We therefore
do not expect much complex branching decisions based on



the input list elements, as element filtering is typically done
in the map method. Once data arrives at the reduce method,
it is already filtered and merely needs to be combined. This
means that a white-box code analysis system has a chance
to explore a meaningful portion of the execution paths that
are feasible in a reduce method. In the example of Listing 1,
if we fix the input list length to, say, 128, the reduce method
can be covered with just two distinct execution paths, which
differ in whether sum/i is greater than 100,000. Dynamic
symbolic execution is a technique that is well-suited to derive
such a small set of execution paths precisely.

Using dynamic symbolic execution, we can derive the path
condition of the execution paths from executing the reduce
method and tracking the branches taken. For example, we
get one path condition conjunction of: salaries 6= null,
salaries.length > 99, (salaries[0] + ..+ salaries[99])/100 >
100000. By tracking all values symbolically, we also get
the symbolic expression of any values returned, in this case
the value ((salaries[0] + .. + salaries[99])/100). At this
point we can encode the first MapReduce correctness con-
dition (REQ-1) directly on these symbolic values and use
an automated constraint solver to check if they are satis-
fiable. In order to do that, we encode the permutation of
the input list via symbolic integer variables, which encode
the indices of the permuted list. That is, we create 128
variables a0, .., a127, require that they take on distinct val-
ues, and encode the correctness condition as the path con-
dition conjoined with (salaries[0] + ..+ salaries[99])/100 6=
(salaries[a0] + ..+ salaries[a99])/100. If there is a solution,
and this constraint system may have several, we can retrieve
both the list elements and the permutation from it and com-
pile them into a test case. The test case invokes the reduce
function once on the solution list and once on the permuted
solution list, compares the results, and issues a warning if
the results are different.

4. PROPOSED APPROACH
Our technique works by exploring the MapReduce pro-

gram under test with dynamic symbolic execution. It (1)
derives symbolic expressions for path conditions and return
values, (2) maintains them in a novel indexed execution tree
(Section 4.1), (3) encodes with those symbolic expressions
the MapReduce correctness conditions of Section 2, (4) uses
an off-the-shelf constraint solver to infer program input val-
ues that will violate the correctness conditions, and finally
(5) converts the violating input values to test cases. All the
steps can be automated, yielding a fully automated test case
generator for MapReduce programs.

Listing 2 contains the main loop of this process. It starts
by creating default values for the input parameters of the
reduce function in a MapReduce program, e.g., a key value
of null and a list of two default values such as (0, 0). On the
symbolic side, we create a corresponding key variable and
a symbolic array variable that will represent the input list.
Then we evaluate the reduce function, both concretely on
the initial values and symbolically on the variables, where
the symbolic execution merely traces the single path taken
by the concrete execution. Using the results of the symbolic
execution, we can now check, in the check path method, if
the correctness condition REQ-1 can be violated on the same
execution path. That is, in check req1 (Listing 3), we assert
the path condition of the executed path symbolically, to-
gether with the condition that values returned by the reduce

function are different for an input list and a permutation of
that list.

/∗ The reduce method has two parameters: key and values ∗/
2 test reduce(meth<key type, iterator<value type>> reduce) {

key := get default value(key type);
4 Key := get fresh var(key type);

value cnt := 2; // length of input list
6 values := get default array(value type, value cnt);

Values := Get fresh array var(value type);
8 (Path, Result) := Eval(reduce, key, values, Key, Values);

check path(Key, Values, value cnt, Path, Result);
10 while (unexplored paths(value cnt)) {

PathCond := next unexplored path(value cnt); // path p
12 Assert: PathCond; // check if path p is feasible

Assert: Length(Values) == Value cnt;
14 M := GetModel(); // constraint model/solution

if (is empty(M))
16 continue; // no input that would trigger path p

(key, values) := M(Key, Values); // new input from model
18 (Path, Result) := Eval(reduce, key, values, Key, Values);

check path(Key, Values, value cnt, Path, Result);
20 }

value cnt := next value();
22 }

24 check path(Var Key, Var Values, int cnt, Cond Path, Expr Res)
{

26 add to execution tree(cnt, Path, Res);
check req1(Key, Values, cnt, Path, Res, Path, Res);

28 foreach (SibP, SibRes) in exec tree paths(cnt)
check req1(Key, Values, cnt, Path, Res, SibP, SibRes);

30 }

Listing 2: Main dynamic symbolic test case gener-
ator loop. Symbolic entities are capitalized. Eval
evaluates the given program both concretely and
symbolically; Assert adds a conjunct to the con-
straint system; GetModel solves the current con-
straint system, retrieves a solution, and resets the
constraint system; SibP and SibRes are a sibling
path and its respective return value; being a sibling
means using an input list of the same length.

4.1 Indexed Execution Tree
A dynamic symbolic execution system maintains a tree

of the execution paths that it already explored. This exe-
cution tree is a binary tree, in which each node represents
the outcome of a branch condition, expressed in terms of
the symbolic program input variables. For the example of
Listing 1, one tree node is salaries.length > 3, which has
the child node salaries.length > 4, etc. To discover addi-
tional execution paths, the system examines each single par-
ent node, that is, each node that has exactly one child node.
Inverting the branch decision outcome of such a single child
node yields a candidate leaf node of an unexplored execution
path, which is implemented in next unexplored path. The
test reduce algorithm uses this technique to automatically
check as many execution paths as possible.

In our system, the execution tree is extended in two ways.
(1) Each leaf node stores the values (typically, one value)
returned during the given execution. (2) We index the leaf
node by the length of the input list that triggered that ex-
ecution. This is useful, as it allows us to check if a path
triggered by an input list of length l may return a value
that is different than the value returned on a sibling path. A
sibling path is any other path that is triggered by an input
list of the same length l.



check req1(Expr Key, Var Values, int cnt, Cond PathCond,
2 Expr Res, Cond SibPath, Expr SibRes) {

p := PrepareIndexVariables(cnt);
4 Assert: PathCond;

Assert: SubstituteIndices(SibPath, p);
6 Assert: Res != SubstituteIndices(SibRes, p);

M := GetModel(); // constraint model/solution
8 if (has solution(M)) {

log: ‘‘permutations that yield different results:’’
10 M(Key), M(Values[0]), .., M(Values[cnt−1]) ‘‘vs.’’

M(Key), M(Values[M(p[0])]), .., M(Values[M(p[cnt−1])]);
12 }
}

14

IntVar[] PrepareIndexVariables(int cnt) {
16 p := new IntVar[cnt]; // position indices

foreach i in [0,cnt−1] {
18 p[i] := Get fresh var(int);

Assert: 0 ≤ p[i] < cnt;
20 }

Assert: Distinct(p[0], .., p[cnt−1]);
22 return p;
}

Listing 3: Checking REQ-1. Symbolic entities are
capitalized. PrepareIndexVariables returns a list
of symbolic integer variables p0, .., pcnt−1; Substi-
tuteIndices replaces in the given expression each
symbolic literal index i with symbolic variable pi.

4.2 Input Length Heuristic
At a high level, the test reduce algorithm tests if the re-

duce method satisfies REQ-1 for a number of paths the re-
duce execution can take. Each path is triggered by an input
list of a certain length. Clearly, in testing, we cannot check a
method for all possible inputs. In the test reduce algorithm,
we can address this problem by using a heuristic for pick-
ing representative input lengths. That is, test reduce starts
with input list of length 2, as shorter lists cannot expose a
violation of REQ-1. For subsequent iterations, the heuristic
is implemented by the next value function. We currently
experiment with a binary back-off scheme, in which each
iteration doubles the length of the input list. Using this
heuristic we can discover the bug in the motivating example
within the first ten iterations.

5. IMPLEMENTATION
We have implemented the test reduce algorithm of Sec-

tion 4 as a wrapper around our Dsc dynamic symbolic exe-
cution framework [6]. As Dsc analyzes Java programs, our
implementation is currently targeted at programs written for
the popular Java open source MapReduce system Hadoop.

The MapReduce programmer invokes test reduce, maybe
as part of a continuous automated testing process. Our
implementation works by instrumenting the original user
MapReduce program at the bytecode level at load-time [2].
This allows our implementation to run on any standard Java
virtual machine.

6. RELATED WORK
In [7], an algorithm is proposed to generate small and yet

real example data for examining the behavior of dataflow
programs. Their technique is based on nonuniform data
sampling combined with data synthesis. Their goal is not
to directly capture program bugs but to use small example

data to make programs exhibit behavior similar to those ex-
posed by the real data. Specifically, the programmer must
define the semantics of query operators that are to be com-
prehensively covered by the small example data. Mochi [12]
visualizes execution logs to debug Hadoop programs. The
focus of this tool is on execution performance anomalies in-
stead of correctness of programs. Sen and Agha use dynamic
symbolic execution for testing of distributed programs [10].
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