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Abstract—We witness an unprecedented proliferation of knowledge graphs that record millions of entities and their relationships.

While knowledge graphs are structure-flexible and content-rich, they are difficult to use. The challenge lies in the gap between their

overwhelming complexity and the limited database knowledge of non-professional users. If writing structured queries over “simple”

tables is difficult, complex graphs are only harder to query. As an initial step toward improving the usability of knowledge graphs,

we propose to query such data by example entity tuples, without requiring users to form complex graph queries. Our system, GQBE

(Graph Query By Example), automatically discovers a weighted hidden maximum query graph based on input query tuples, to capture

a user’s query intent. It then efficiently finds and ranks the top approximate matching answer graphs and answer tuples. We conducted

experiments and user studies on the large Freebase and DBpedia datasets and observed appealing accuracy and efficiency. Our

system provides a complementary approach to the existing keyword-based methods, facilitating user-friendly graph querying. To the

best of our knowledge, there was no such proposal in the past in the context of graphs.

Index Terms—Knowledge Graphs, Entity Graphs, Query by Example, Graph Query Processing

✦

1 INTRODUCTION

1.1 Motivation

There is an unprecedented proliferation of knowledge graphs

that record millions of entities (e.g., persons, products,

organizations) and their relationships. Fig.1 is an excerpt

of a knowledge graph, in which the edge labeled founded

between nodes Jerry Yang and Yahoo! captures the fact that

the person is a founder of the company. Examples of real-

world knowledge graphs include DBpedia [3], YAGO [19],

Freebase [4] and Probase [24]. Users and developers are

tapping into knowledge graphs for numerous applications,

including search, recommendation, and business intelligence.

Both users and application developers are often over-

whelmed by the daunting task of understanding and using

knowledge graphs. This largely has to do with the sheer

size and complexity of such data. As of March 2012, the

Linking Open Data community had interlinked over 52 billion

RDF triples spanning over several hundred datasets. More

specifically, the challenges lie in the gap between complex

data and non-expert users. Knowledge graphs are often stored

in relational databases, graph databases and triplestores. In

retrieving data from these databases, the norm is often to use
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Fig. 1: An Excerpt of a Knowledge Graph

structured query languages such as SQL, SPARQL, and those

alike. However, writing structured queries requires extensive

experiences in query language, data model, and a good

understanding of particular datasets [10]. If querying “simple”

tables is difficult, aren’t complex graphs harder to query?

Motivated by the aforementioned usability challenge, we

build GQBE1 (Graph Query by Example), a system that

queries knowledge graphs by example entity tuples instead of

graph queries. Given a data graph and a query tuple consisting

of entities, GQBE finds similar answer tuples. Consider the

data graph in Fig.1 and an scenario where a Silicon Valley

business analyst wants to find entrepreneurs who founded

technology companies head-quartered in California. Suppose

she knows an example query tuple such as 〈Jerry Yang, Yahoo!〉
that satisfies her query intent. Entering such an example tuple

to GQBE is simple, especially assisted by user interface tools

such as auto-completion in identifying the exact entities in the

data graph. The answer tuples can be 〈Steve Wozniak, Apple Inc.〉
and 〈Sergey Brin, Google〉, which are founder-company pairs.

1. A demonstration video of the system can be found at http://www.
youtube.com/watch?v=4QfcV-OrGmQ.

http://www.youtube.com/watch?v=4QfcV-OrGmQ
http://www.youtube.com/watch?v=4QfcV-OrGmQ


Fig. 2: The Architecture and Components of GQBE

If the query tuple consists of 3 or more entities (e.g.,

〈Jerry Yang, Yahoo!, Sunnyvale〉), the answers will be similar tuples

of the same cardinality (e.g., 〈Steve Wozniak, Apple Inc., Cupertino〉).

1.2 Overview and Contributions

GQBE is among the first to query knowledge graphs by

example entity tuples. An brief overview of the entire system

and a demonstration description can be found in [12] and [11],

respectively. There are several challenges in building GQBE.

Below we provide a brief overview of our approach in tackling

these challenges. The ensuing discussion refers to the system

architecture and components of GQBE, as shown in Fig. 2.

(1) With regard to query semantics, since the input to GQBE

is a query tuple instead of an explicit query graph, it must

derive a hidden query graph based on the query tuple, to

capture the user’s query intent. GQBE’s query graph discovery

component (Sec.3) fulfills this requirement and the derived

graph is termed a maximum query graph (MQG). The edges

in MQG, weighted by several frequency-based and distance-

based heuristics, represent important “features” of the query

tuple to be matched in answer tuples. More concretely, they

capture how entities in the query tuple (i.e., nodes in a data

graph) and their neighboring entities are related to each other.

Answer graphs matching the MQG are projected to answer

tuples, which consist of answer entities corresponding to the

query tuple entities. GQBE further supports multiple query

tuples as input which collectively better capture the user intent.

(2) With regard to answer space modeling (Sec.4), there

can be a large space of approximate answer graphs (tuples),

since it is unlikely to find answer graphs exactly matching

the MQG. GQBE models the space of answer tuples by a

query lattice formed by the subsumption relation between all

possible query graphs. Each query graph is a subgraph of the

MQG and contains all query entities. Its answer graphs are also

subgraphs of the data graph and are edge-isomorphic to the

query graph. Given an answer graph, its entities corresponding

to the query tuple entities form an answer tuple. Thus the

answer tuples are essentially approximate answers to the

MQG. For ranking answer tuples, their scores are calculated

based on the edge weights in their query graphs and the match

between nodes in the query and answer graphs.

(3) The query lattice can be large. To obtain top-k ranked

answer tuples, the brute-force approach of evaluating all query

graphs in the lattice can be prohibitively expensive. For

efficient query processing (Sec.5), GQBE employs a top-k
lattice exploration algorithm that only partially evaluates the

lattice nodes in the order of their corresponding query graphs’

upper-bound scores.

We summarize the contributions of this paper as follows:

• For better usability of knowledge graph querying systems,

we propose a novel approach of querying by example entity

tuples, which saves users the burden of forming explicit

query graphs.

• The query graph discovery component of GQBE derives a

hidden maximum query graph (MQG) based on input query

tuples, to capture users’ query intent. GQBE models the

space of query graphs (and thus answer tuples) by a query

lattice based on the MQG.

• GQBE’s efficient query processing algorithm only partially

evaluates the query lattice to obtain the top-k answer tuples

ranked by how well they approximately match the MQG.

• We conducted extensive experiments and user study on the

large Freebase and DBpedia datasets to evaluate GQBE’s

accuracy and efficiency (Sec.7). The comparison with a

state-of-the-art graph querying framework NESS [14] and an

exemplar query system EQ [18] shows that GQBE is over

twice as accurate as NESS and EQ. GQBE also outperforms

NESS on efficiency in most of the queries.

2 PROBLEM FORMULATION

GQBE runs queries on knowledge data graphs. A data graph

is a directed multi-graph G with node set V (G) and edge

set E(G). Each node v∈V (G) represents an entity and has a

unique identifier id(v). 2 Each edge e=(vi, vj)∈E(G) denotes
a directed relationship from entity vi to entity vj . It has a label,
denoted as label(e). Multiple edges can have the same label.

The user input and output of GQBE are both entity tuples,

called query tuples and answer tuples, respectively. A tuple

t=〈v1, . . . , vn〉 is an ordered list of entities (i.e., nodes) in G.

The constituting entities of query (answer) tuples are called

query (answer) entities. Given a data graph G and a query

tuple t, our goal is to find the top-k answer tuples t′ with the

highest similarity scores scoret(t
′).

We define scoret(t
′) by matching the inter-entity

relationships of t and that of t′. The best matches for

individual entities in t may not form the best match for the

query tuple t as a whole. It is thus imperative to form a

query graph involving the entities of the query tuple and

other neighboring relationships and entities. These neighboring

relationships and entities are important “features” that might

be of interest to users. Thus scoret(t
′) entails matching two

graphs constructed from t and t′, respectively.
To this end, we define the neighborhood graph for

a tuple, which is based on the concept of undirected

path. An undirected path is a path whose edges are not

2. Without loss of generality, we use an entity’s name as its identifier in
presenting examples, assuming entity names are unique.
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Fig. 4: Two Query Graphs in Fig.3 Fig. 5: Two Answer Graphs for Fig.4(a) Fig. 6: Two Answer Graphs for Fig.4(b)

Fig. 3: Neighborhood Graph for 〈Jerry Yang, Yahoo!〉

necessarily oriented in the same direction. Unless otherwise

stated, we refer to undirected path simply as “path”. We

consider undirected path because an edge incident on a

node can represent an important relationship with another

node, regardless of its direction. More formally, a path p
is a sequence of edges e1, . . . , en and we say each edge

ei ∈ p. The path connects two nodes v0 and vn through

intermediate nodes v1, . . . , vn−1, where either ei=(vi−1, vi)
or ei=(vi, vi−1), for all 1≤i≤n. The path’s length, len(p),
is n and its endpoints, ends(p), are {v0, vn}. There is no

undirected cycle in a path, i.e., v0, . . . , vn are all distinct.

Definition 1 The neighborhood graph of query tuple t,
denoted Ht, is the weakly connected subgraph3 of data graph

G that consists of all nodes reachable from at least one query

entity by an undirected path of d or less number of edges

(including query entities themselves) and the edges on all such

paths. The path length threshold, d, is an input parameter.

More formally, the nodes and edges in Ht are defined as

follows:

V (Ht) = {v|v ∈ V (G) and ∃p s.t. ends(p)={vi, v} where

vi ∈ t, len(p) ≤ d};
E(Ht) = {e|e ∈ E(G) and ∃p s.t. ends(p)={vi, v} where

vi ∈ t, len(p) ≤ d, and e ∈ p}.

Example 1 (Neighborhood Graph) Given the data graph in

Fig.1, Fig.3 shows the neighborhood graph for query tuple

〈Jerry Yang, Yahoo!〉 with path length threshold d=2. The nodes in
dark color are the query entities.

Intuitively, the neighborhood graph, by capturing how query

entities and other entities in their neighborhood are related

to each other, represents features of the query tuple that are

3. A directed graph is weakly connected if there exists an undirected path
between every pair of vertices.

to be matched in query answers. It can thus be viewed as a

hidden query graph derived for capturing user’s query intent.

We are unlikely to find query answers that exactly match

the neighborhood graph. It is however possible to find exact

matches to its subgraphs. Such subgraphs are all query graphs

and their exact matches are approximate answers that match

the neighborhood graph to different extents.

Definition 2 A query graph Q is a weakly connected

subgraph of Ht that contains all the query entities. We use

Qt to denote the set of all query graphs for t, i.e., Qt={Q|Q
is a weakly connected subgraph of Ht s.t. ∀v ∈ t, v ∈ V (Q)}.

Continuing the running example, Fig.4 shows two query

graphs for the neighborhood graph in Fig.3.

Echoing the intuition behind neighborhood graph, the

definitions of answer graph/tuple are based on the idea that

an answer tuple is similar to the query tuple if their entities

participate in similar relationships in their neighborhoods.

Definition 3 An answer graph A to a query graph Q is a

weakly connected subgraph of G that is edge-isomorphic to Q.

Formally, there exists a bijection f :V (Q)→V (A) such that:

• For every edge e = (vi, vj) ∈ E(Q), there exists an edge

e′ = (f(vi), f(vj)) ∈ E(A) such that label(e) = label(e′);
• For every edge e′ = (ui, uj) ∈ E(A), there exists e =
(f−1(ui), f

−1(uj)) ∈ E(Q) such that label(e) = label(e′).

For a query tuple t=〈v1, . . . , vn〉, the answer tuple in A is

tA=〈f(v1), . . . , f(vn)〉. We also call tA the projection of A.
We use AQ to denote the set of all answer graphs of Q.

We note that a query graph (tuple) trivially matches itself,

therefore is not considered an answer graph (tuple).

Example 2 (Answer Graph and Answer Tuple) Fig.5 and

Fig.6 each show two answer graphs for query graphs Fig.4(a)

and Fig.4(b), respectively. The answer tuples in Fig.5 are

〈Steve Wozniak, Apple Inc.〉 and 〈Sergey Brin, Google〉. The answer

tuples in Fig.6 are 〈Bill Gates,Microsoft〉 and 〈Sergey Brin, Google〉.

The set of answer tuples for query tuple t are {tA|A∈AQ,
Q∈Qt}. The score of an answer t′ is given by:

scoret(t
′) = max

A∈AQ,Q∈Qt

{scoreQ(A)|t
′ = tA} (1)

The score of an answer graph A (scoreQ(A)) captures A’s
similarity to query graph Q. Its equation is given in Sec.4.2.

The same answer tuple t′ may be projected from multiple

answer graphs, which can match different query graphs. For

instance, Figs. 5(b) and 6(b), which are answers to different

query graphs, have the same projection—〈Sergey Brin, Google〉.
By Eq. (1), the highest score attained by the answer graphs is

assigned as the score of t′, capturing how well t′ matches t.
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3 QUERY GRAPH DISCOVERY

3.1 Maximum Query Graph

The concept of neighborhood graph Ht (Def.1) was formed to

capture the features of a query tuple t to be matched by answer

tuples. Given a well-connected large data graph, Ht itself can

be quite large, even under a small path length threshold d.
For example, using Freebase as the data graph, the query

tuple 〈Jerry Yang, Yahoo!〉 produces a neighborhood graph with

800K nodes and 900K edges, for d=2. Such a large Ht makes

query semantics obscure, because there might be only few

nodes and edges in it that capture important relationships in

the neighborhood of t.
GQBE’s query graph discovery component constructs a

weighted maximum query graph (MQG) from Ht. The MQG

is expected to be drastically smaller than Ht and capture only

important features of the query tuple. It is worth noting that a

small and plausible MQG can be a Steiner tree connecting all

the query entities. But it will fail to capture features that are

not on any simple path between a pair of query entities. We

thus need a more comprehensive, yet small MQG. We now

define MQG and discuss its discovery algorithm.

Definition 4 The maximum query graph MQGt, given

a parameter m, is a weakly connected subgraph of the

neighborhood graph Ht that maximizes total edge weight
∑

e w(e) while satisfying (1) it contains all query entities in

t and (2) it has m edges. The importance of an edge e in Ht,

given by its weight w(e), is defined in Sec.6.

Two challenges exist in finding MQGt by directly going

after the above definition. First, a weakly connected subgraph

of Ht with exactly m edges may not exist for an arbitrary

m. A trivial value of m that guarantees the existence of

the corresponding MQGt is |E(Ht)|, because Ht is weakly

connected. This value could be too large, which is exactly

why we aim to make MQGt substantially smaller than Ht.

Second, even if MQGt exists for an m, finding it requires

maximizing the total edge weight, which is a hard problem as

given in Theorem 1.

Theorem 1 The decision version of finding the maximum

query graph MQGt for an m is NP-hard.

Proof: We prove the NP-hardness by reduction from the

NP-hard constrained Steiner network (CSN) problem [15].

Given an undirected connected graph G1 = (V,E) with

non-negative weight w(e) for every edge e ∈ E, a subset

Vn ⊂ V , and a positive integer m, the CSN problem finds

a connected subgraph G′ = (V ′, E′) with the minimum

total edge weight, where Vn ⊆ V ′ and |E′| = m. The

polynomial-time reduction from the CSN problem to MQG
problem is by transforming G1 to G2, where each edge

e in G1 is given an arbitrary direction and a new weight

w′(e) = W − w(e), where W =
∑

e∈E w(e). There are two

important observations here: (1) the edge directions do not

matter for the MQG problem as we only look for a weakly

connected subgraph; and therefore, one can add arbitrary

edge directions while constructing G2 from G1. (2) Given an

instance of the CSN problem, W =
∑

e∈E w(e) is constant,

and also W ≥ w(e) for all e ∈ E. Therefore, the new edge

weights w′(e) = W−w(e) are non-negative numbers. Now, let

Algorithm 1: Discovering the Maximum Query Graph

Input: neighborhood graph Ht, query tuple t, an integer r
Output: maximum query graph MQGt

1 m← r
|t|+1

; V (MQGt)← φ; E(MQGt)← φ; G ← φ;

2 foreach vi ∈ t do
3 Gvi ← use DFS to obtain the subgraph containing vertices (and

their incident edges) that connect to other vj in t only through vi;
4 G ← G ∪ {Gvi};

5 Gcore ← use DFS to obtain the subgraph containing vertices and
edges on undirected paths between query entities;

6 G ← G ∪ {Gcore};
7 foreach G ∈ G do

8 step← 1; s1 ← 0; s← m;
9 while s > 0 do

10 Ms ← the weakly connected component found from the
top-s edges of G that contains all of G’s query entities;

11 if Ms exists then
12 if |E(Ms)| = m then break;
13 if |E(Ms)| < m then
14 s1 ← s;
15 if step = −1 then break;

16 if |E(Ms)| > m then
17 if s1 > 0 then
18 s← s1; break;

19 s2 ← s; step← −1;

20 s← s+ step;

21 if s = 0 then s← s2;
22 V (MQGt)← V (MQGt) ∪ V (Ms);
23 E(MQGt)← E(MQGt) ∪ E(Ms);

Vn be the query tuple for the MQG problem. The maximum

query graph MQGVn
found from G2 provides a CSN in G1.

This is because maximizing
∑

e∈MQGVn
w′(e) is equivalent to

minimizing
∑

e∈MQGVn
w(e), which is the objective function

for the CSN problem. This completes the proof.

Based on the theoretical analysis, we present a greedy

method (Alg.1) to find a plausible sub-optimal graph of edge

cardinality close to a given m. The value of m is empirically

chosen to be much smaller than |E(Ht)|. Consider edges

of Ht in descending order of weight w(e). We use Gs

to denote the graph formed by the top s edges with the

largest weights, which itself may not be weakly connected.

We use Ms to denote the weakly connected component (a

maximum subgraph where an undirected path exists for every

pair of vertices) of Gs containing all query entities in t, if it
exists. Our method finds the smallest s such that |E(Ms)|=m
(Line 12). If such an Ms does not exist, the method chooses

s1, the largest s such that |E(Ms)|<m. If that still does not

exist, it chooses s2, the smallest s such that |E(Ms)|>m,

whose existence is guaranteed because |E(Ht)|>m. For each

s value, the method employs a depth-first search (DFS) starting

from a query entity in Gs, if present, to check the existence

of Ms (Line 10).

The Ms found by this method may be unbalanced. Query

entities with more neighbors in Ht likely have more prominent

representation in the resulting Ms. A balanced graph should

instead have a fair number of edges associated with each

query entity. Therefore, we further propose a divide-and-

conquer mechanism to construct a balanced MQGt. The idea

is to break Ht into n+1 weakly connected subgraphs. One

is the core graph, which includes all the n query entities in
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t and all undirected paths between query entities. Other n
subgraphs are for the n query entities individually, where the

subgraph for entity vi includes all entities (and their incident

edges) that connect to other query entities only through vi.
The subgraphs are identified by a DFS starting from each

query entity (Lines 4-6 of Alg.1). During the DFS from vi,
all edges on the undirected paths reaching any other query

entity within distance d belong to the core graph, and other

edges belong to vi’s individual subgraph. The method then

applies the aforementioned greedy algorithm to find n+1
weakly connected components, one for each subgraph, that

contain the query entities in corresponding subgraphs. Since

the core graph connects all query entities, the n+1 components

altogether form a weakly connected subgraph of Ht, which

becomes the final MQGt. For an empirically chosen small r
as the target size of MQGt, we set the target size for each

individual component to be r
n+1 , aiming at a balanced MQGt.

The greedy approach described in Alg. 1 makes a best

effort at pruning unimportant features and finding an MQG

that captures the user intent, by ensuring that only highly

weighted edges are present in the MQG. Ability to capture

the user intent well depends on how good the edge weighting

function w(e) is in assigning high weights to edges that are

intended by users.

Complexity Analysis of Alg.1 The complexity analysis of

this and other algorithms can be found in the Appendix that

appears in the online supplemental material.

3.2 Multi-tuple Queries

The query graph discovery component derives a user’s query

intent from input query tuples. For that, a single query

tuple might not be sufficient. While the experiment results

in Sec.7 show that a single-tuple query obtains excellent

accuracy in many cases, the results also exhibit that allowing

multiple query tuples often help in improving query answer

accuracy. It is because important relationships commonly

associated with multiple tuples express the user intent more

precisely. Suppose a user provides two query tuples—

〈Jerry Yang, Yahoo!〉 and 〈Steve Wozniak, Apple Inc.〉. The entities in

both tuples share common properties such as places lived in San

Jose and headquartered in a city in California, as Fig.1 shows. This

might indicate the user is interested in finding people from

San Jose who founded technology companies in California.

Given a set of tuples T , GQBE finds top-k answer tuples

similar to T collectively. To accomplish this, one approach is

to discover and evaluate the maximum query graphs (MQGs)

of individual query tuples. The scores of a common answer

tuple for multiple query tuples can then be aggregated. This

has two potential drawbacks: (1) Our concern of not being

able to well capture user intent still remains. If k is not

large enough, a good answer tuple may not appear in enough

individual top-k answer lists, resulting in poor aggregated

score. (2) It can become expensive to evaluate multiple MQGs.

We approach this problem by producing a merged and

re-weighted MQG that captures the importance of edges

with respect to their presence across multiple MQGs. The

merged MQG is then processed by the same method for

single-tuple queries. GQBE employs a simple strategy to

Fig. 7: Merging Maximum Query Graphs

merge multiple MQGs. The individual MQG for a query

tuple ti=〈v
i
1, v

i
2, . . . , v

i
n〉∈T is denoted Mti . A virtual MQG

M ′
ti

is created for every Mti by replacing the query entities

vi1, v
i
2, . . . , v

i
n in Mti with corresponding virtual entities

w1, w2, . . . , wn in M ′
ti
. Formally, there exists a bijective

function g:V (Mti)→V (M ′
ti
) such that (1) g(vij)=wj and

g(v)=v if v /∈ti, and (2) ∀e=(u, v)∈E(Mti), there exists an

edge e′=(g(u), g(v)) ∈E(M ′
ti
) such that label(e)=label(e′);

∀e′=(u′, v′)∈E(M ′
ti
), ∃e =(g−1(u′), g−1(v′))∈E(Mti) such

that label(e)=label(e′).

The merged MQG, denoted MQGT , is produced by

including vertices and edges in all M ′
ti
, merging identical

virtual and regular vertices, and merging identical edges that

bear the same label and the same vertices on both ends, i.e.,

V (MQGT ) =
⋃

ti∈T

V (M ′
ti
) and E(MQGT ) =

⋃

ti∈T

E(M ′
ti
).

The edge cardinality of MQGT might be larger than the target

size r. Thus Alg.1 (Sec.3.1) is also used to trim MQGT to a

size close to r. In MQGT , the weight of an edge e is given

by c ∗ wmax(e), where c is the number of M ′
ti

containing e
and wmax(e) is its maximum weight among all such M ′

ti
. (For

complexity analysis, refer to the Appendix that appears in the

online supplemental material.)

Example 3 (Merging Maximum Query Graphs) Let

Figs. 7 (a) and (b) be the Mti for query tuples

〈Steve Wozniak, Apple Inc.〉 and 〈Jerry Yang, Yahoo!〉, respectively.

Fig.7(c) is the merged MQGT . Note that entities Steve Wozniak

and Jerry Yang are mapped to w1 in their respective M ′
ti

(not

shown, for its mapping from Mti is simple) and are merged

into w1 in MQGT . Similarly, entities Apple Inc. and Yahoo! are

mapped and merged into w2. The two founded edges, appearing

in both individual Mti and sharing identical vertices on both

ends (w1 and w2) in the corresponding M ′
ti
, are merged

in MQGT . Similarly the two places lived edges are merged.

However, the two headquartered in edges are not merged, since

they share only one end (w2) in M ′
ti
. The edges nationality and

education, which appear in only one Mti , are also present in

MQGT . The number next to each edge is its weight.

4 ANSWER SPACE MODELING

Since it is unlikely to find exactly matching answer graphs to

the discovered MQG, approximate matches have to be found.

Given the maximum query graph MQGt for t, we thus model

the space of possible query graphs by a lattice. We further

discuss the scoring of answer graphs by how they match query

graphs.
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Fig. 8: Maximum Query Graph and Query Lattice

4.1 Query Lattice

The query lattice L is a partially ordered set (poset) (QGt,

≺), where ≺ represents the subgraph-supergraph subsumption

relation and QGt is the subset of query graphs (Def.2) that

are subgraphs of MQGt, i.e., QGt={Q|Q ∈ Qt and Q �
MQGt}. The top element (root) of the poset is thus MQGt.

When represented by a Hasse diagram, the poset is a directed

acyclic graph, in which each node corresponds to a distinct

query graph in QGt. Thus we shall use the terms lattice node

and query graph interchangeably. The children (parents) of a

lattice node Q are its subgraphs (supergraphs) with one less

(more) edge, as defined below.

Children(Q) = {Q′|Q′ ∈ QGt, Q
′ ≺ Q, |E(Q)|−|E(Q′)|=1}

Parents(Q) = {Q′|Q′ ∈ QGt, Q ≺ Q′, |E(Q′)|−|E(Q)|=1}

The leaf nodes of L constitute of the minimal query trees,

which are those query graphs that cannot be made any simpler

and yet still keep all the query entities connected. A query

graph Q is a minimal query tree if none of its subgraphs is

also a query graph. In other words, removing any edge from

Q will disqualify it from being a query graph—the resulting

graph either is not weakly connected or does not contain all

the query entities. Note that such a Q must be a tree.

Example 4 (Query Lattice and Minimal Query Tree)

Fig.8(a) shows a maximum query graph MQGt, which

contains two query entities in shaded circles and five edges

F,G,H,L, and P . Its corresponding query lattice L is in

Fig.8(b). The root node of L, denoted FGHLP , represents

MQGt itself. The bottom-most nodes, F and HL, are the

two minimal query trees. Each lattice node is a subgraph of

MQGt. For example, the node FG represents a query graph

with only edges F and G. Note that there is no lattice node

for GLP since it is not a valid connected query graph.

The construction of the query lattice, i.e., the generation

of query graphs corresponding to its nodes, is integrated

with its exploration. In other words, the lattice is built in

a “lazy” manner—a lattice node is not generated until the

query algorithm (Sec.5) must evaluate it. The lattice nodes

are generated in a bottom-up way. A node is generated by

adding exactly one appropriate edge to the query graph for

one of its children. The generation of bottom nodes, i.e., the

minimal query trees, is described below.

By definition, a minimal query tree can only contain edges

on undirected paths between query entities. Hence, it must be a

subgraph of the weakly connected component Ms found from

the core graph described in Sec.3.1. To generate all minimal

query trees, our method enumerates all distinct spanning

trees of Ms by the technique in [9] and then prune them.

Specifically, given one such spanning tree, all non-query

entities (nodes) of degree one along with their edges are

deleted. The deletion is performed iteratively until there is no

such node. The result is a minimal query tree. Only distinct

minimal query trees are kept. Enumerating all spanning trees

in a large graph is expensive. However, in our experiments on

the Freebase dataset, the MQGt discovered by the approach

in Sec.3 mostly contains less than 15 edges. Hence, the Ms

from the core graph is also empirically small, for which the

cost of enumerating all spanning trees is negligible.

4.2 Answer Graph Scoring Function

The score of an answer graph A (scoreQ(A)) captures A’s
similarity to the query graph Q. It is defined below and is to

be plugged into Eq. (1) for defining answer tuple score.

scoreQ(A) = s score(Q) + c scoreQ(A)

s score(Q) =
∑

e∈E(Q)

w(e)

c scoreQ(A) =
∑

e=(u,v)∈E(Q)
e′=(f(u),f(v))∈E(A)

match(e, e′)

(2)

In Eq. (2), scoreQ(A) sums up two components—the

structure score of Q (s score(Q)) and the content score for

A matching Q (c scoreQ(A)). s score(Q) is the total edge

weight of Q. It measures the important structure in MQGt

that is captured by Q and thus by A. c scoreQ(A) is the total
extra credit for identical nodes among the matching nodes in A
and Q given by f—the bijection between V (Q) and V (A) as
in Def.3. For instance, among the 6 pairs of matching nodes

between Fig.4(a) and Fig.5(a), the identical matching nodes

are USA, San Jose and California. The rationale for the extra credit

is that although node matching is not mandatory, the more

nodes are matched, the more similar A and Q are.

The extra credit is defined by the following function

match(e, e′). Note that it does not award an identical matching

node excessively. Instead, only a fraction of w(e) is awarded,
where the denominator is either |E(u)| or |E(v)|. (E(u) are

the edges incident on u in MQGt.) This heuristic is based on

that, when u and f(u) are identical, many of their neighbors

can be also identical matching nodes.

match(e, e′)=























w(e)
|E(u)| if u=f(u)
w(e)
|E(v)| if v=f(v)

w(e)
min(|E(u)|,|E(v)|) if u=f(u), v=f(v)

0 otherwise

(3)

5 QUERY PROCESSING

GQBE’s query processing component takes MQGt (Sec.3)

and the query lattice L (Sec.4) and finds answer graphs

matching the query graphs in L. Before we discuss how L
is evaluated (Sec.5.2), we introduce the storage model and

query plan for processing one query graph (Sec.5.1).
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Algorithm 2: Best-first Exploration of Query Lattice

Input: query lattice L, query tuple t, and an integer k
Output: top-k answer tuples

1 lower frontier LF ← leaf nodes of L; Terminate ← false;
2 while not Terminate do

3 Qbest ← node with the highest upper-bound score in LF ;
4 AQbest

← evaluate Qbest; (Sec.5.1)
5 if AQbest

=∅ then
6 prune Qbest and all its ancestors from L;
7 recompute upper-bound scores of nodes in LF ; (Alg. 3)
8 else
9 insert Parents(Qbest) into LF ;

10 if top-k answer tuples found [Theorem 3] then Terminate←true;

5.1 Processing One Query Graph

The abstract data model of knowledge graph can be

represented by the Resource Description Framework (RDF)—

the standard Semantic Web data model. In RDF, a data graph

is parsed into a set of triples, each representing an edge

e=(u, v). A triple has the form (subject, property, object),

corresponding to (u, label(e), v). Among different schemes

of RDF data management, one important approach is to use

relational database techniques to store and query RDF graphs.

To store a data graph, we adopt this approach and, particularly,

the vertical partitioning method [1]. This method partitions a

data graph into multiple two-column tables. Each table is for

a distinct edge label and stores all edges bearing that label.

The two columns are (subj, obj), for the edges’ source and

destination nodes, respectively. For efficient query processing,

two in-memory search structures (specifically, hash tables) are

created on the table, using subj and obj as the hash keys,

respectively. The whole data graph is hashed in memory by

this way, before any query comes in.

Given the above storage scheme, to evaluate a query graph

is to process a multi-way join query. For instance, the query

graph in Fig.8(a) corresponds to SELECT F.subj, F.obj FROM

F,G,H,L,P WHERE F.subj=G.sbj AND F.obj=H.subj AND F.subj=L.subj

AND F.obj=P.subj AND H.obj=L.obj. We use right-deep hash-joins to

process such a query. Consider the topmost join operator in a

join tree for query graphQ. Its left operand is the build relation

which is one of the two in-memory hash tables for an edge e.
Its right operand is the probe relation which is a hash table for

another edge or a join subtree for Q′=Q−e (i.e., the resulting

graph of removing e from Q). For instance, one possible join

tree for the aforementioned query is G⊲⊳(F⊲⊳(P⊲⊳(H⊲⊳L))).
With regard to its topmost join operator, the left operand is

G’s hash table that uses G.sbj as the hash key, and the right

operand is (F⊲⊳(P⊲⊳(H⊲⊳L))). The hash-join operator iterates

through tuples from the probe relation, finds matching tuples

from the build relation, and joins them to form answer tuples.

5.2 Best-first Exploration of Query Lattice

Given a query lattice, a brute-force approach is to evaluate

all lattice nodes (query graphs) to find all answer tuples. Its

exhaustive nature leads to clear inefficiency, since we only

seek top-k answers. Moreover, the potentially many queries are

evaluated separately, without sharing of computation. Suppose

query graph Q is evaluated by the aforementioned hash-join

between the build relation for e and the probe relation for Q′.

By definition, Q′ is also a query graph in the lattice, if Q′

is weakly connected and contains all query entities. In other

words, in processing Q, we would have processed one of its

children query graph Q′ in the lattice.

We propose Alg.2, which allows sharing of computation. It

explores the query lattice in a bottom-up way, starting with

the minimal query trees, i.e., the bottom nodes. After a query

graph is processed, its answers are materialized in files. To

process a query Q, at least one of its children Q′=Q−e must

have been processed. The materialized results for Q′ form the

probe relation and a hash table on e is the build relation.

While any topological order would work for the bottom-

up exploration, Alg.2 employs a best-first strategy that always

chooses to evaluate the most promising lattice node Qbest from

a set of candidate nodes. The gist is to process the lattice

nodes in the order of their upper-bound scores and Qbest is

the candidate with the highest upper-bound score (Line 3).

If processing Qbest does not yield any answer graph, Qbest

and all its ancestors are pruned (Line 6) and the upper-bound

scores of other candidate nodes are recalculated (Line 7). The

algorithm terminates, without fully evaluating all lattice nodes,

when it has obtained at least k answer tuples with scores

higher than the highest possible upper-bound score among all

unevaluated nodes (Line 10).

For an arbitrary query graph Q, its upper-bound score is

given by the best possible score Q’s answer graphs can attain.

Deriving such upper-bound score based on scoreQ(A) in

Eq. (2) leads to loose upper-bound. scoreQ(A) sums up the

structure score of Q (s score(Q)) and the content score for A
matching Q (c scoreQ(A)). While s score(Q) only depends
on Q itself, c scoreQ(A) captures the matching nodes in A
and Q. Without evaluating Q to get A, we can only assume

perfect match(e, e′) in Eq. (2), which is clearly an over-

optimism. Under such a loose upper-bound, it can be difficult

to achieve an early termination of lattice evaluation.

To alleviate this problem, GQBE takes a two-stage

approach. Its query algorithm first finds the top-k′ answers

(k′>k) based on the structure score s score(Q) only, i.e.,

the algorithm uses a simplified answer graph scoring function

scoreQ(A) = s score(Q). In the second stage, GQBE re-

ranks the top-k′ answers by the full scoring function Eq. (2)

and returns the top-k answer tuples based on the new scores.

Our experiments showed the best accuracy for k ranging from

10 to 25 when k′ was set to around 100. Lesser values of k′

lowered the accuracy and higher values increased the running

time of the algorithm. In the ensuing discussion, we will not

further distinct k′ and k.

5.3 Details of the Best-first Exploration Algorithm

(1) Selecting Qbest

At any given moment during query lattice evaluation,

the lattice nodes belong to three mutually-exclusive sets—

the evaluated, the unevaluated and the pruned. A subset of

the unevaluated nodes, denoted the lower-frontier (LF), are

candidates for the node to be evaluated next. At the beginning,

LF contains only the minimal query trees (Line 1 of Alg.2).

After a node is evaluated, all its parents are added to LF
(Line 9). Therefore, the nodes in LF either are minimal query

trees or have at least one evaluated child:
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LF = {Q| Q is not pruned,Children(Q)=∅ or

(∃Q′ ∈ Children(Q) s.t. Q′ is evaluated)}.

To choose Qbest from LF , the algorithm exploits two

important properties, dictated by the query lattice’s structure.

Property 1 If Q1 ≺ Q2, then ∀A2 ∈ AQ2
, ∃A1 ∈ AQ1

s.t.

A1 ≺ A2 and tA1
=tA2

.

Proof: If there exists an answer graph A2 for a query

graph Q2, and there exists another query graph Q1 that

is a subgraph of Q2, then there is a subgraph of A2

that corresponds to Q1. By Definition 3, that corresponding

subgraph of A2 is an answer graph to Q1. Since the

two answer graphs share a subsumption relationship, the

projections of the two yield the same answer tuple.

Property 1 says, if an answer tuple tA2
is projected from

answer graph A2 to lattice node Q2, then every descendent of

Q2 must have at least one answer graph subsumed by A2 that

projects to the same answer tuple. Putting it in an informal

way, an answer tuple (graph) to a lattice node can always be

“grown” from its descendant nodes and thus ultimately from

the minimal query trees.

Property 2 If Q1≺Q2, then s score(Q1)<s score(Q2).
Proof: If Q1 ≺ Q2, then Q2 contains all edges in Q1 and

at least one more. Thus the property holds by the definition

of s score(Q) in Eq. (2).

Property 2 says that, if a lattice node Q2 is an ancestor

of Q1, Q2 has a higher structure score. This can be directly

proved by referring to the definition of s score(Q) in Eq. (2).

For each unevaluated candidate node Q in LF , we define an

upper-bound score, which is the best score Q’s answer tuples

can possibly attain. The chosen node, Qbest, must have the

highest upper-bound score among all the nodes in LF . By

the two properties, if evaluating Q returns an answer graph

A, A has the potential to grow into an answer graph A′ to an

ancestor node Q′, i.e., Q≺Q′ and A≺A′. In such a case, A and

A′ are projected to the same answer tuple tA=tA′ . The answer

tuple always gets the better score from A′, under the simplified

answer scoring function scoreQ(A) = s score(Q), which
Alg.2 adopts as mentioned in Sec. 5.2. Hence, Q’s upper-

bound score depends on its upper boundary— Q’s unpruned

ancestors that have no unpruned parents.The upper boundary

of a node Q in LF , denoted UB(Q), consists of nodes Q′ in

the upper-frontier (UF) that subsume or equal to Q:

UB(Q) = {Q′| Q′ � Q,Q′ ∈ UF},

where UF are the unpruned nodes without unpruned parents:

UF={Q| Q is not pruned, ∄Q′ ≻ Q s.t. Q′ is not pruned}.
The upper-bound score of a node Q is the maximum score

of any query graph in its upper boundary:

U(Q) = max
Q′∈UB(Q)

s score(Q′) (4)

Example 5 (Lattice Evaluation) Consider the lattice in

Fig.9(a) where the lightly shaded nodes belong to the LF and

the darkly shaded node belongs to UF . At the beginning, only

the minimal query trees belong to the LF and the maximum

query graph belongs to the UF . If HL is chosen as Qbest and

evaluating it results in matching answer graphs, all its parents

Fig. 9: Evaluating Lattice in Figure 8(b)

Algorithm 3: Recomputing Upper-bound Scores

Input: query lattice L, null node Qbest, and lower-frontier LF
Output: U(Q) for all Q in LF

1 foreach Q ∈ LF do
2 NB ← φ; // set of new upper boundary candidates of Q.
3 foreach Q′ ∈ UB(Q) ∩ UB(Qbest) do
4 UB(Q)← UB(Q) \ {Q′};
5 UF ← UF \ {Q′};
6 V (Q′′)← V (Q′);
7 foreach e ∈ E(Qbest) \ E(Q) do
8 E(Q′′)← E(Q′) \ {e};
9 find Qsub, the weakly-connected component of Q′′,

containing all query entities;
10 NB ← NB ∪ {Qsub};

11 foreach Qsub ∈ NB do

12 if Qsub ⊀ (any node in UF or NB) then
13 UB(Q)← UB(Q) ∪ {Qsub}, UF ← UF ∪ {Qsub};

14 recompute U(Q) using Eq. (4);

(GHL, HLP and FHL) are added to LF as shown in Fig.9(b).

The evaluated node HL is represented in bold dashed node.

(2) Pruning and Lattice Recomputation

A lattice node that does not have any answer graph is

referred to as a null node. If the most promising node Qbest

turns out to be a null node after evaluation, all its ancestors

are also null nodes based on Property 3 below which follows

directly from Property 1.

Property 3 If AQ1
= ∅, then ∀Q2 ≻ Q1, AQ2

= ∅.

Proof: Suppose there is a query node Q2 such that Q1 ≺
Q2 and AQ1

= ∅, while AQ2
6= ∅. By Property 1, for every

answer graph A in AQ2
, there must exist a subgraph of A that

belongs to AQ1
. This contradiction completes the proof.

Based on Property 3, when Qbest is evaluated to be a null

node, Alg.2 prunes Qbest and its ancestors, which changes the

upper-frontier UF . It is worth noting that Qbest itself may be

an upper-frontier node, in which case only Qbest is pruned. In

general, due to the evaluation and pruning of nodes, LF and

UF might overlap. For nodes in LF that have at least one

upper boundary node among the pruned ones, the change of

UF leads to changes in their upper boundaries and, sometimes,

their upper-bound scores too. We refer to such nodes as dirty

nodes. The rest of this section presents an efficient method

(Alg. 3) to recompute the upper boundaries, and if changed,

the upper-bound scores of the dirty nodes.

Consider all the pairs 〈Q,Q′〉 such that Q is a dirty node in

LF , and Q′ is one of its pruned upper boundary nodes. Three

necessary conditions for a new candidate upper boundary node

of Q are that it is (1) a supergraph of Q, (2) a subgraph of

Q′ and (3) not a supergraph of Qbest. If there are q edges in
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Qbest but not in Q, we create a set of q distinct graphs Q′′.

Each Q′′ contains all edges in Q′ except exactly one of the

aforementioned q edges (Line 8 in Alg. 3). For each Q′′, we

find Qsub which is the weakly connected component of Q′′

containing all the query entities (Lines 9-10). Lemma 1 and

2 show that Qsub must be one of the unevaluated nodes after

pruning the ancestor nodes of Qbest from L.

Lemma 1 Qsub is a query graph and it does not belong to

the pruned nodes of lattice L.

Proof: Qsub is a query graph because it is weakly

connected and it contains all the query entities. Suppose Qsub

is a newly generated candidate upper boundary node from pair

〈Q,Q′〉 and Qsub belongs to the pruned nodes of lattice L.
This can happen only if: 1) it is a supergraph of the current

null node Qbest or 2) it is an already pruned node. The

former cannot happen since the construction mechanism of

Qsub proposed ensures that it is not a supergraph of Qbest. the

latter implies that Qsub was the supergraph of an previously

evaluated null node (or Qsub itself was a null node). In this

case, since Qsub ≺ Q′, Q′ would also have been pruned and

thus could not have been part of the upper-boundary. Hence

〈Q,Q′〉 cannot be a valid pair for recomputing the upper

boundary if Qsub is pruned. This completes the proof.

Lemma 2 Q � Qsub.

Proof: Based on Alg. 3, Q′′ is the result of deleting one

edge from Q′ and that edge does not belong to Q. Therefore,

Q is subsumed by Q′′. By the same algorithm, Qsub is the

weakly connected component of Q′′ that contains all the query

entities. Since Q already is weakly connected and contains all

the query entities, Qsub must be a supergraph of Q.

If Qsub (a candidate new upper boundary node of Q) is not

subsumed by any node in the upper-froniter or other candidate

nodes, we add Qsub to UB(Q) and UF (Lines 11-13). Finally,

we recompute Q’s upper-bound score (Line 14). Theorem 2

justifies the correctness of the above procedure.

Theorem 2 If AQbest
= ∅, then Alg.3 identifies all new upper

boundary nodes for every dirty node Q.

Proof: For any dirty node Q, its original upper boundary

UB(Q) consists of two sets of nodes: (1) nodes that are not

supergraphs of Qbest and thus remain in the lattice, (2) nodes

that are supergraphs of Qbest and thus pruned. By definition

of upper boundary node, no upper boundary node of Q can be

a subgraph of any node in set (1). So any new upper boundary

node of Q must be a subgraph of a node Q′ in set (2). For

every pruned upper boundary node Q′ in set (2), the algorithm

enumerates all (specifically q) possible children of Q′ that are

not supergraphs of Qbest but are supergraphs of Q. For each

enumerated graph Q′′, the algorithm finds Qsub—the weakly

connected component of Q′′ containing all query entities. Thus

all new upper boundary nodes of Q are identified.

Example 6 (Recomputing Upper Boundary) Consider the

lattice in Fig.10(a) where nodes HL and F are the evaluated

nodes and the lightly shaded nodes belong to the new LF .

If node GHL is the currently evaluated null node Qbest and

FGHLP is Q′, let FG be the dirty node Q whose upper

Fig. 10: Recomputing Upper Boundary of Dirty Node FG

boundary is to be recomputed. The edges in Qbest that are not

present in Q are H and L. A new upper boundary node Q′′

contains all edges in Q′ excepting exactly either H or L. This

leads to two new upper boundary nodes, FGHP and FGLP, by

removing L and H from FGHLP, respectively. Since FGHP

and FGLP do not subsume each other and are not subgraphs

of any other upper-frontier node, they are now part of UB(Q)

and the new UF . Fig.10(b) shows the modified lattice where

the pruned nodes are disconnected. FHLP is another node in

UF that is discovered using dirty nodes such as FL and HLP.

(3) Termination

After Qbest is evaluated, its answer tuples are

{tA|A∈AQbest
}. For a tA projected from answer graph

A, the score assigned by Qbest to A (and thus tA) is

s score(Qbest), based on scoreQ(A)=s score(Q)—the

simplified scoring function adopted by Alg.2. If tA was also

projected from already evaluated nodes, it has a current score.

By Eq. 1, the final score of tA will be from its best answer

graph. Hence, if s score(Qbest) is higher than its current

score, then its score is updated. In this way, all found answer

tuples so far are kept and their current scores are maintained

to be the highest scores they have received. The algorithm

terminates when the current score of the kth best answer

tuple so far is greater than the upper-bound score of the next

Qbest chosen by the algorithm, by Theorem 3.

Theorem 3 Suppose tk is the current kth best answer tuple

and scoret(tk)>U(Qbest). If lattice evaluation is terminated,

then scoret(tk)>s score(Q) for any unevaluated query

graph Q.

Proof: Suppose, upon termination, there is an unevaluated

query graph Q such that scoret(tk)≤s score(Q). This

implies that there exists some node in the lower-frontier

LF , whose upper-bound score is at least s score(Q) and

is thus greater than scoret(tk). This is a contradiction to the

termination condition scoret(tk)>U(Qbest).

6 EDGE WEIGHTING FUNCTION

The definition of MQGt (Def.4) depends on edge weights.

There can be various plausible weighting schemes. Any edge

weighting function that reflects the importance of edges can

be used and our system is capable of adopting any such

function. We next present the weighting function used in our

implementation, which is based on several heuristic ideas.

The weight of an edge e in the neighborhood graph Ht,

w(e), is proportional to its inverse edge label frequency

(ief(e)) and inversely proportional to its participation degree

(p(e)), given by

w(e) = ief(e) / p(e) (5)
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Inverse Edge Label Frequency Edge labels that appear

frequently in the entire data graph G are often less important.

For example, edges labeled founded (for a company’s founders)

can be rare and more important than edges labeled nationality.

We capture this by the inverse edge label frequency.

ief(e) = log (|E(G)| / #label(e)) (6)

where |E(G)| is the number of edges in G, and #label(e) is
the number of edges in G with the same label as e.

Participation Degree The participation degree p(e) of an

edge e=(u, v) is the number of edges in G that share the same

label and one of e’s end nodes. Formally,

p(e) = | {e′=(u′, v′) | label(e)=label(e′), u′=u ∨ v′=v} | (7)

Participation degree p(e) measures the local frequencies

of edge labels—an edge is less important if there are other

edges incident on the same node with the same label. For

instance, employment might be a relatively rare edge globally

but not necessarily locally to a company. Specifically, consider

the edges representing the employment relationship between a

company and its many employees and the edges for the board

member relationship between the company and its few board

members. The latter edges are more significant.

Note that ief(e) and p(e) are precomputed offline, since they

are query-independent and only rely on the data graph G.

In discovering MQGt from Ht by Alg.1, the weights of

edges in Ht are defined by Eq. (5) which does not consider an

edge’s distance from the query tuple. The rationale behind the

design is to obtain a balanced MQGt which includes not only

edges incident on query entities but also those in the larger

neighborhood. For scoring answers by Eq. (2) and Eq. (3),

however, our empirical observations show it is imperative to

differentiate the importance of edges in MQGt with respect

to query entities, in order to capture how well an answer graph

matches MQGt. Edges closer to query entities convey more

meaningful relationships than those farther away. Hence, we

define edge depth (d(e)) as follows. The larger d(e) is, the

less important e is.

Edge Depth The depth d(e) of an edge e=(u, v) is its

smallest distance to any query entity vi ∈ t, i.e.,

d(e) = min
vi∈t

min
u,v

{dist(u, vi),dist(v, vi)} (8)

Here, dist(., .) is the shortest length of all undirected paths in

MQGt between the two nodes.

In summary, GQBE uses Eq. (5) as the definition of w(e)
in weighting edges in Ht. After MQGt is discovered from

Ht by Alg.1, it uses the following Eq. (9) as the definition of

w(e) in weighting edges in MQGt. Eq. (9) incorporates d(e)
into Eq. (5). The answer graph scoring functions Eq. (2) and

Eq. (3) are based on Eq. (9).

w(e) = ief(e) / (p(e)× d2(e)) (9)

Several other factors can be considered for the weighting

function. For instance, one can leverage a query log, if

available, to give higher weights to edges that are used

more often by other users. A comprehensive comparison of

various weighting functions is an interesting future study

to pursue. Nevertheless, given a better weighting function,

Query Query Tuple Table Size

F1 〈Donald Knuth, Stanford University, Turing Award〉 18

F2 〈Ford Motor, Lincoln, Lincoln MKS〉 25

F3 〈Nike, Tiger Woods〉 20

F4 〈Michael Phelps, Sportsman of the Year〉 55

F5 〈Gautam Buddha, Buddhism〉 621

F6 〈Manchester United, Malcolm Glazer〉 40

F7 〈Boeing, Boeing C-22〉 89

F8 〈David Beckham, A. C. Milan〉 94

F9 〈Beijing, 2008 Summer Olympics〉 41

F10 〈Microsoft, Microsoft Office〉 200

F11 〈Jack Kirby, Ironman〉 25

F12 〈Apple Inc, Sequoia Capital〉 300

F13 〈Beethoven, Symphony No. 5〉 600

F14 〈Uranium, Uranium-238〉 26

F15 〈Microsoft Office, C++〉 300

F16 〈Dennis Ritchie, C〉 163

F17 〈Steven Spielberg, Minority Report〉 40

F18 〈Jerry Yang, Yahoo!〉 8349

F19 〈C〉 1240

F20 〈TomKat〉 16

D1 〈Alan Turing, Computer Scientist〉 52

D2 〈David Beckham, Manchester United〉 273

D3 〈Microsoft, Microsoft Excel〉 300

D4 〈Steven Spielberg, Catch Me If You Can〉 37

D5 〈Boeing C-40 Clipper, Boeing〉 118

D6 〈Arnold Palmer, Sportsman of the year〉 251

D7 〈Manchester City FC, Mansour bin Zayed Al Nahyan〉 40

D8 〈Bjarne Stroustrup, C++〉 964

TABLE 1: Queries and Ground Truth Table Size

the proposed algorithms can better capture the user intent.

Various edges can also be pruned, i.e., they are given zero

weight. Interested readers can refer to the Appendix in the

online supplemental material for details of a heuristic-based

preprocessing mechanism used in GQBE for pruning edges.

7 EXPERIMENTS

This section presents our experiment results on the accuracy

and efficiency of GQBE. The experiments were conducted on

a double quad-core 24 GB memory 2.0 GHz Xeon server.

Datasets We used two large real-world knowledge graphs—

the 2011 versions of Freebase [4] and DBpedia [3]. We

preprocessed the graphs so that the kept nodes are all named

entities (e.g., Stanford University) and abstract concepts (e.g., Jewish

people). In the Freebase graph, every edge is associated with an

redundant back edge in the opposite direction. For instance,

the back edge of founded is labelled founded by. All back edges

were removed. We also removed administrative edges such as

created by and those nodes having constant or numerical values.

The resulting Freebase graph contains 28M nodes, 47M edges,

and 5, 428 distinct edge labels. The DBpedia graph contains

759K nodes, 2.6M edges and 9, 110 distinct edge labels.

Methods Compared GQBE was compared with a Baseline,

NESS [14] and exemplar queries [18] (EQ). We implemented

all the methods except EQ. For EQ, queries used in our

experiments were provided to the authors of [18] who executed

them on their system and shared the results with us.

NESS is a graph querying framework that finds approximate

matches of query graphs with unlabeled nodes which

correspond to query entity nodes in MQG. Note that, like

other systems, NESS must take a query graph (instead of a

query tuple) as input. Hence, we feed the MQG discovered

by GQBE as the query graph to NESS. For each node v in

the query graph, a set of candidate nodes in the data graph are

identified. Since, NESS does not consider edge-labeled graphs,

we adapted it by requiring each candidate node v′ of v to have
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at least one incident edge in the data graph bearing the same

label of an edge incident on v in the query graph. The score of

a candidate v′ is the similarity between the neighborhoods of v
and v′, represented in the form of vectors, and further refined

using an iterative process. Finally, one unlabeled query node

is chosen as the pivot p. The top-k candidates for multiple

unlabeled query nodes are put together to form answer tuples,

if they are within the neighborhood of p’s top-k candidates.

EQ proposes the concept of exemplar queries [18] which

is similar to the paradigm of GQBE. However, EQ does not

provide a definitive way of discovering query graph given

an exemplar query tuple. Therefore, we provided the MQG

discovered by GQBE as the query graph to the authors

of [18], who then executed the MQG on EQ and shared

the evaluation results with us. Similar to NESS, EQ also

captures the neighborhood information of each node in the

data graph and indexes it. It iteratively picks nodes from the

query graph and finds all similar candidate nodes in the data

graph, while keeping only those candidates of each query

node that also preserve the edges in the query graph with

other nodes’ candidates. It mandates all answer graphs to

be edge preserving isomorphic matches to the query graph

for the query tuple. This precludes their system from finding

approximate answers to the query graph. These answer graphs

are then ranked by the similarity of the nodes in the query

graph and their corresponding nodes in the answer graphs.

Baseline explores a query lattice in a bottom-up manner

and prunes ancestors of null nodes, similar to the best-first

method (Sec.5). Baseline . However, differently, it evaluates

the lattice by breadth-first traversal instead of in the order

of upper-bound scores. There is no early-termination by top-

k scores, as Baseline terminates when every node is either

evaluated or pruned.

Queries and Ground Truth Two groups of queries

are used on the two datasets, respectively. The Freebase

queries F1 and F6 are from Wikipedia tables such as

http://en.wikipedia.org/wiki/List of English football club owners. The

remaining Freebase queries are based on tables obtained

as a result of either constructing structured queries over

Freebase, or pre-defined Freebase tables such as http://

www.freebase.com/view/computer/programming language designer?instances.

The DBpedia queries D1– D8 are based on DBpedia tables

such as the values for property is dbpedia-owl:author of on page

http://dbpedia.org/page/Microsoft. Each such table is a collection of

tuples, in which each tuple consists of one, two, or three

entities. For each table, we used one or more tuples as

query tuples and the remaining tuples as the ground truth for

query answers. All the 28 queries and their corresponding

table sizes are summarized in Table 1. They cover diverse

domains, including people, companies, movies, sports,

awards, religions, universities and automobiles.

Sample Answers Table 2 only lists the top-3 results found

by GQBE for 3 queries (F1, F18, F19), due to space limitations.

(A) Accuracy Based on Ground Truth

We measured the accuracy of GQBE and NESS based on the

ground truth. The accuracy of a system is its average accuracy

on a set of queries. The accuracy on a single query is captured

Query Tuple Top-3 Answer Tuples

〈D. Knuth, Stanford, V. Neumann Medal〉
〈Donald Knuth, Stanford, Turing Award〉 〈J. McCarthy, Stanford, Turing Award〉

〈N. Wirth, Stanford, Turing Award〉
〈David Filo, Yahoo!〉

〈Jerry Yang, Yahoo!〉 〈Bill Gates, Microsoft〉
〈Steve Wozniak, Apple Inc.〉

〈Java〉
〈C〉 〈C++〉

〈C Sharp〉

TABLE 2: Case Study: Top-3 Results for Selected Queries
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Fig. 11: Accuracy of GQBE and NESS over all Freebase Queries

by three widely-used measures [17], as follows.

• Precision-at-k (P@k): the percentage of the top-k results

that belong to the ground truth.

• Mean Average Precision (MAP): The average precision of

the top-k results is AvgP=
∑k

i=1
P@i × reli

size of ground truth
, where reli equals

1 if the result at rank i is in the ground truth and 0 otherwise.

MAP is the mean of AvgP for a set of queries.

• Normalized Discounted Cumulative Gain (nDCG):

nDCGk=
DCGk

IDCGk
, where DCGk is the cumulative gain of the

top-k results, and IDCGk is the cumulative gain for an ideal

ranking of the top-k results. DCGk=rel1+
∑k

i=2
reli

log
2
(i) , i.e.,

it penalizes a system if a ground truth result is ranked low.

Fig.11 shows these measures for different values of k over

all Freebase queries for GQBE and NESS. GQBE has high

accuracy. For instance, its P@25 is over 0.8 as evident in

Fig. 11(a) and nDCG at top-25 is over 0.9 as shown in

Fig. 11(c). For 13 of the 20 queries, either the P@25 was 1,

or when the ground-truth size was less than 25, the AvgP was

1 (indicating that all answers in the ground-truth were ranked

higher than any other answer). The absolute value of MAP is

not high, merely because Fig.11(b) only shows the MAP for

at most top-25 results, while the ground truth size (i.e., the

denominator in calculating MAP) for many queries is much

larger. Moreover, GQBE outperforms NESS substantially, as

its accuracy in all three measures is almost always twice as

better. This is because GQBE finds approximate matches to

the query graph while giving priority to query entities and

important edges in the MQG. NESS on the other hand gives

equal importance to all nodes and edges except the pivot.

Furthermore, the way NESS handles edge labels does not

explicitly require answer entities to be connected by the same

paths between query entities.

Fig. 12 compares the measures for GQBE, NESS and

EQ, on different values of k. Only 11 of the 20 Freebase

queries (F3, F5, F6, F7, F10, F11, F14, F15, F16, F17 and

F18) were considered in this experiment, since the authors

of EQ were unable to produce answer tuples to other query

graphs we provided. EQ performs weakly on these 11 queries.

Furthermore, on 7 of the 11 queries, EQ was unable to

return more than 5 answer tuples. This is because EQ finds
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Fig. 12: Accuracy of GQBE, NESS and EQ over 11 Freebase Queries

Query P@k nDCG AvgP Query P@k nDCG AvgP

D1 1.00 1.00 0.20 D2 1.00 1.00 0.04

D3 1.00 1.00 0.03 D4 0.80 0.94 0.19

D5 0.90 1.00 0.08 D6 1.00 1.00 0.04

D7 0.90 0.98 0.22 D8 1.00 1.00 0.01

TABLE 3: Accuracy of GQBE on DBpedia Queries, k=10

answer graphs that are exact matches to the query graph

structure, and as query graphs get bigger, finding such edge-

preserving isomorphic answer graphs becomes less likely. On

the contrary, GQBE finds approximate matches too and thus

has a better recall and accuracy than EQ. This also highlights

the fact that the initial query graph provided to EQ plays a

crucial role in its accuracy. Both NESS and EQ rely on finding

the best matches for individual entities in the query tuple, and

then integrating them to form the answer tuples. As mentioned

in Section 2, best matches for individual entities may not form

the best match for the query tuple as a whole. This is attested

by the results we present here.

Table 3 further shows the accuracy of GQBE on individual

DBpedia queries at k=10. It exhibits high accuracy on all

queries, including perfect precision in several cases.

(B) Accuracy Based on User Studies

We conducted an extensive user study through Amazon

Mechanical Turk (MTurk, https://www.mturk.com/mturk/) to evaluate

GQBE’s accuracy on Freebase queries, measured by Pearson

Correlation Coefficient (PCC). For each of the 20 queries, we

obtained the top-30 answers from GQBE and generated 50
random pairs of these answers. We presented each pair to 20
MTurk workers and asked for their preference between the two

answers in the pair. Hence, in total, 20, 000 opinions were

obtained. We then constructed two value lists per query, X
and Y , which represent GQBE and MTurk workers’ opinions,

respectively. Each list has 50 values, for the 50 pairs. For

each pair, the value in X is the difference between the

two answers’ ranks given by GQBE, and the value in Y
is the difference between the numbers of workers favoring

the two answers. The PCC value for a query is (E(XY ) −
E(X)E(Y ))/(

√

E(X2)− (E(X))2
√

E(Y 2)− (E(Y ))2). The
value indicates the degree of correlation between the

pairwise ranking orders produced by GQBE and the pairwise

preferences given by MTurk workers. The value range is from

−1 to 1. A PCC value in the ranges of [0.5,1.0], [0.3,0.5)
and [0.1,0.3) indicates a strong, medium and small positive

correlation, respectively [6]. PCC is undefined, by definition,

when X and/or Y contain all equal values.

Table 4 shows the PCC values for F1-F20. Out of the 20
queries, GQBE attained strong, medium and small positive

correlation with MTurk workers on 9, 5 and 3 queries,

respectively. Only query F7 shows no correlation. Note that

PCC is undefined for F12 and F13, because all the top-30
answer tuples have the same score and thus the same rank,

Query PCC Query PCC Query PCC Query PCC

F1 0.79 F2 0.78 F3 0.60 F4 0.80

F5 0.34 F6 0.27 F7 0.06 F8 0.26

F9 0.33 F10 0.77 F11 0.58 F12 undefined

F13 undefined F14 0.62 F15 0.43 F16 0.29

F17 0.64 F18 0.30 F19 0.40 F20 0.65

TABLE 4: Pearson Correlation Coefficient (PCC) between GQBE

and Amazon MTurk Workers, k=30

resulting in all zero values in X , i.e., GQBE’s list.

(C) Accuracy on Multi-tuple Queries

We investigated the effectiveness of the multi-tuple querying

approach (Sec.3.2). We experimented with up to three example

tuples for each query: Tuple1 refers to the query tuple in

Table 1, while Tuple2 and Tuple3 are two tuples from its

ground truth. Fig. 13 shows the accuracy of top-25 GQBE

answers for the three tuples individually, as well as for the

first two and three tuples together by merged MQGs, which

are denoted Combined(1,2) and Combined(1,2,3), respectively.

The results show that, in most cases, Combined(1,2) had better

accuracy than individual tuples and Combined(1,2,3) further

improved the accuracy. In the aforementioned single-tuple

query experiment (A), 13 of the 20 queries attained perfect

precision. Due to space constraints, we present in Fig. 13

the results of only the remaining 7 queries. The results of all

queries can be found in Table 6 of the Appendix that appears

in the online supplemental material.

(D) Efficiency Results

We compared the efficiency of GQBE, NESS and Baseline

on Freebase queries. The total run time for a query tuple is

spent on two components—query graph discovery and query

processing. We did not include EQ in this comparison since

the system configuration on which the authors of [18] executed

the queries was different from ours. Fig.15 compares the three

methods’ query processing time for each Freebase query, in

logarithmic scale. The edge cardinality of the MQG for each

query is shown below the corresponding query id. The query

cost does not appear to increase by edge cardinality, regardless

of the query method. For GQBE and Baseline, this is because

query graphs are evaluated by joins and join selectivity plays a

more significant role in evaluation cost than number of edges.

NESS finds answers by intersecting postings lists on feature

vectors. Hence, in evaluation cost, intersection size matters

more than edge cardinality. GQBE outperformed NESS on 17
of the 20 queries and was more than 3 times faster in 10 of

them. It finished within 10 seconds on 17 queries. However,

it performed very poorly on F4 and F19, which have 10 and

7 edges respectively. This indicates that the edges in the two

MQGs lead to poor join selectivity. Baseline clearly suffered,

due to its inferior pruning power compared to the best-first

exploration employed by GQBE. This is evident in Fig.16

which shows the numbers of lattice nodes evaluated for each

query. GQBE evaluated considerably less nodes in most cases

and at least 2 times less on 11 of the 20 queries.

MQG discovery precedes lattice evaluation and is shared

by all three methods. Column MQG1 in Table 5 lists the time

spent on discovering MQG for each Freebase query. The time

varies across individual queries, depending on the sizes of

query tuples’ neighborhood graphs. Compared to the values

shown in Fig.15, the time taken to discover an MQG in average
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Query Tuple1 Tuple2 Combined (1,2) Tuple3 Combined (1,2,3)

P@k nDCG AvgP P@k nDCG AvgP P@k nDCG AvgP P@k nDCG AvgP P@k nDCG AvgP

F1 0.36 0.76 0.32 0.36 1.00 0.50 0.12 0.38 0.02 0.36 0.73 0.22 0.12 0.49 0.02

F2 0.76 1.00 0.79 0.00 0.00 0.00 0.80 1.00 0.80 0.12 0.70 0.05 0.80 1.00 0.91

F4 0.32 0.73 0.09 0.40 0.65 0.08 1.00 1.00 0.45 1.00 1.00 0.04 1.00 1.00 0.48

F6 0.24 0.89 0.16 0.28 0.89 0.18 0.40 0.87 0.16 0.36 0.98 0.22 0.12 0.94 0.07

F8 0.92 0.79 0.20 1.00 1.00 0.27 0.96 0.98 0.24 0.48 0.86 0.08 1.00 1.00 0.27

F9 0.68 0.72 0.23 0.56 0.66 0.17 0.80 0.86 0.35 1.00 1.00 0.62 1.00 1.00 0.66

F17 0.32 1.00 0.33 0.64 0.83 0.25 0.32 1.00 0.32 0.56 0.84 0.23 0.68 1.00 0.46

Fig. 13: Accuracy of GQBE on Multi-tuple Queries, k=25
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Fig. 16: Lattice Nodes Evaluated

Query MQG1 MQG2 Merge Query MQG1 MQG2 Merge

F1 73.141 73.676 0.034 F2 0.049 0.029 0.006

F3 12.566 4.414 0.024 F4 5.731 7.083 0.024

F5 9.982 2.522 0.079 F6 6.082 4.654 0.039

F7 0.152 0.107 0.007 F8 10.272 2.689 0.032

F9 62.285 2.384 0.041 F10 2.910 5.933 0.030

F11 59.541 65.863 0.032 F12 1.977 0.021 0.006

F13 9.481 5.624 0.034 F14 0.038 0.015 0.004

F15 0.154 5.143 0.021 F16 54.870 6.928 0.057

F17 60.582 69.961 0.041 F18 58.807 75.128 0.053

F19 0.224 0.076 0.003 F20 0.025 0.017 0.002

TABLE 5: Time for Discovering and Merging MQGs (secs.)

is comparable to the time spent in evaluating it.

Fig.14 shows the distribution of GQBE’s query processing

time, in logarithmic scale, on the merged MQGs of 2-tuple

queries in Fig. 13, denoted by Combined(1,2). It also shows

the distribution of the total time for evaluating the two tuples’

MQGs individually, denoted Tuple1+Tuple2. Combined(1,2)

processes 10 of the 20 queries in less than a second while the

fastest query for Tuple1+Tuple2 takes a second. This suggests

that the merged MQGs gave higher weights to more selective

edges, resulting in faster lattice evaluation. Meanwhile, these

selective edges are also more important edges common to the

two tuples, leading to improved answer accuracy shown in

Fig. 13. Table 5 further shows the time taken to discover

MQG1 and MQG2, along with the time for merging them.

The latter is negligible compared to the former.

8 RELATED WORK

The paradigm of query-by-example (QBE) has a long history

in relational databases [26]. Its simplicity and improved

user productivity make QBE an influential database query

language. By proposing to query knowledge graphs by

example tuples, our premise is that the QBE paradigm

will enjoy similar advantages on graph data. The technical

challenges and approaches are vastly different, due to the

fundamentally different data models.

In the literature on graph query, the input to a query system

in most cases is a structured query, which is often graphically

presented as a query graph or pattern. The query graphs and

patterns are formed by using structured query languages. For

instance, PathSim [20] finds the top-k similar entities that are

connected to a query entity, based on a user-defined meta-path

semantics in a heterogeneous network. In [25], given a query

graph as input, the system finds structurally isomorphic answer

graphs with semantically similar entity nodes. In contrast,

GQBE only requires a user to provide an entity tuple, without

knowing the underlying schema.

Lim et al. [16] use example tuples to find similar tuples

in database tables that are coupled with ontologies. They

do not deal with graph data and example entity tuples.

The goal of set expansion is to grow a set of objects

starting from seed objects. Example systems include [23]

and the now defunct Google Sets and Squared services

(http://en.wikipedia.org/wiki/List of Google products). Chang et al. [5]

identify top-k correlated keyword terms from an information

network given a set of terms, where each term can be an entity.

These systems, except [5], do not operate on data graphs.

Instead, they find existing answers within structures such as

HTML tables and lists. Further, except Google Squared, they

all take a set of individual entities as input. GQBE is more

general in that each query tuple contains multiple entities. It

is unrealistic to find web tables that can cover all possible

queries, especially for queries involving multiple entities.

Moreover, knowledge graphs and web tables complement each

other in content. One does not subsume the other.

Several works [13], [8], [7] identify the best subgraphs/paths

in a data graph to describe how several input nodes are related.

The query graph discovery component of GQBE is different in

important ways– (1) Although the graphs in [13], [8], [7] have

many different types of entities and relationships, they cannot

discover hidden attributes that are not in the path between input

nodes. REX [8] and [7] have the further limitation of allowing

only two query entities. Differently, the MQG in GQBE allows

multiple query entities and also includes edges incident on

individual query entities. (2) GQBE uses the discovered query

graph to find answer graphs and answer tuples, which is not
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within the focus of the aforementioned works.

There are many studies on approximate/inexact subgraph

matching in large graphs, e.g., G-Ray [22], TALE [21] and

NESS [14]. GQBE’s query processing component is different

from them on several aspects. (1) GQBE only requires to

match edge labels and matching node identifiers is not

mandatory. This is equivalent to matching a query graph

with all unlabeled nodes and thereby significantly increases

the problem complexity. Only a few previous methods (e.g.,

NESS [14]) allow unlabeled query nodes. (2) In GQBE,

the top-k query algorithm centers around query entities—the

weighting function gives more importance to edges closer

to query entities and the minimal query trees mandate the

presence of entities corresponding to query entities. On the

contrary, previous methods give equal importance to all nodes

in a query graph, since the notion of query entity does not exist

there. Our empirical results show that this difference makes

NESS produce less accurate answers than GQBE. (3) Although

the query relaxation DAG proposed in [2] is similar to GQBE’s

query lattice, the scoring mechanism of their relaxed queries

is different and depends on XML-based relaxations.

9 CONCLUSION

We introduce GQBE, a system that queries knowledge graphs

by example entity tuples. As an initial step toward better

usability of graph query systems, GQBE saves users the

burden of forming explicit query graphs. Its query graph

discovery component derives a hidden query graph based

on example tuples. The query lattice based on this hidden

graph may contain a large number of query graphs. GQBE’s

query algorithm only partially evaluates query graphs for

obtaining the top-k answers. Experiments on Freebase and

DBpedia datasets show that GQBE outperforms the state-of-

the-art systems NESS and EQ on both accuracy and efficiency.
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Supplemental Material to “Querying Knowledge Graphs

by Example Entity Tuples”

A APPENDIX

Complexity Analysis of Alg.1

In the aforementioned divide-and-conquer method, if on

average there are r′= |E(Ht)|
n+1 edges in each subgraph, finding

the subgraph by DFS and sorting its r′ edges takes O(r′ log r′)
time. Given the top-s edges of a subgraph, checking if the

weakly connected component Ms exists using DFS requires

O(s) time. Suppose on average c iterations are required to

find the appropriate s. Let m= r
n+1 be the average target edge

cardinality of each subgraph. Since the method initializes s
with m, the largest value s can attain is m+c. So the time for

discovering Ms for each subgraph is O(r′ log r′+c×(m+c)).
For all n+1 subgraphs, the total time required to find the final

MQGt is O((n+1)× (r′ log r′+c×(m+c))). For the queries

used in our experiments on Freebase, given an empirically

chosen small r=15, s≪|E(Ht)| and on average c=22.

Complexity Analysis of Merging Multiple MQGs

In comparison to evaluating a single-tuple query, the extra

overhead in handling a multi-tuple query includes creating

multiple MQGs, which is |T | times the average cost of

discovering an individual MQG, and merging them, which is

linear in the total edge cardinality of all MQGs.

Complexity Analysis of Alg. 2

Joins are used to evaluate the lattice nodes. Minimal query

trees might require multiple joins and other lattice nodes

require a single join each. In evaluating the latter, if on

average, the number of answer graphs for a lattice node is

j, the time to evaluate a node by joining the answers of

its child node and the new edge added to form the node is

O(j). If |Le| is the actual number of lattice nodes evaluated,

the worst case scenario of query processing is O(|Le|×j). In
practice, due to the pruning power of the best-first exploration

technique, |Le|≪ |L|. For the queries used in our experiments

on Freebase, on average only 8% of |L| is evaluated. The

average number of answers to a lattice node, j, is 6500. Thus,
the time to evaluate a single lattice node has a significant

role in the total query processing time. Therefore, the query

processing time is not only dependent on the size of MQGt,

but also on the join cardinality involving the edges.

Complexity Analysis of Alg.3

The query graphs corresponding to lattice nodes are

represented using bit vectors since we exactly know the edges

involved in all the query graphs. The bit corresponding to

an edge is set if its present in the query graph. Identifying

the dirty nodes, null upper boundary nodes and building

a new potential upper boundary node using a pair of

nodes 〈Q,Q′〉, can be accomplished using bit operations and

each step incurs O(|E(MQGt)|) time. Finding the weakly

connected component of a potential upper boundary using

DFS takes O(|E(Q′)|) time. If Ln is the set of all null

nodes encountered in the lattice and there are Dp such

pairs for every null node and q is the average number of

potential new upper boundary nodes created per pair, the

worst case time complexity of recomputing the upper-frontier

is O(|Ln|×Dp × q × |E(MQGt)|). Our experimental results

show low average values of |Ln|, Dp and q with |Ln| being
only 1% of |L|, Dp around 8 and q around 9. In practice, our

upper-frontier recomputation algorithm quickly computes the

dynamically changing lattice.

Preprocessing: Reduced Neighborhood Graph

Alg. 1 focuses on discovering MQGt from Ht. The

neighborhood graph Ht may have clearly unimportant edges.

As a preprocessing step, GQBE removes such edges from Ht

before applying Alg.1. The reduced size of Ht not only makes

the execution of Alg.1 more efficient but also helps prevent

clearly unimportant edges from getting into MQGt.

Consider the neighborhood graph Ht in Fig.3, based on the

data graph excerpt in Fig.1. Edge e1=(Jerry Yang, Stanford) and

label(e1)=education. Two other edges labeled education, e2 and

e3, are also incident on node Stanford. The neighborhood graph

from a complete real-world data graph may contain many such

edges for people graduated from Stanford University. Among

these edges, e1 represents an important relationship between

Stanford and query entity Jerry Yang, while other edges represent

relationships between Stanford and other entities, which are

deemed unimportant with respect to the query tuple.

We formalize the definition of unimportant edges as follows.

Given an edge e=(u, v) ∈ E(Ht), e is unimportant if it is

unimportant from the perspective of its either end, u or v, i.e.,
if e ∈ UE(u) or e ∈ UE(v). Given a node v ∈ V (Ht), E(v)
denotes the edges incident on v in Ht. E(v) is partitioned

into three disjoint subsets—the important edges IE(v), the
unimportant edges UE(v) and the rest—defined as follows:

IE(v)=
{e ∈ E(v) | ∃vi∈t, p s.t. e∈p, ends(p)={v, vi}, len(p)≤d};

UE(v)=
{e ∈ E(v) | e/∈IE(v), ∃e′∈IE(v) s.t. label(e)=label(e′),
(e=(u, v) ∧ e′=(u′, v)) ∨ (e=(v, u) ∧ e′=(v, u′))}.

An edge e incident on v belongs to IE(v) if there exists a

path between v and any query entity in the query tuple t,
through e, with path length at most d. For example, edge e1
in Fig.3 belongs to IE(Stanford). An edge e belongs to UE(v)
if (1) it does not belong to IE(v) (i.e., there exists no such

aforementioned path) and (2) there exists e′ ∈ IE(v) such that

e and e′ have the same label and they are both either incoming

into or outgoing from v. By this definition, e2 and e3 belong

to UE(v) in Fig.3, since e1 belongs to IE(v). In the same

neighborhood graph, e4 is in neither IE(v) nor UE(v).
All edges deemed unimportant by the above definition are

removed from Ht. The resulting graph may not be weakly

connected anymore and may have multiple weakly connected

components. Theorem 4 states that one of the components—

called the reduced neighborhood graph, denotedH ′
t—contains

all query entities in t. In other words, H ′
t is the largest weakly

connected subgraph of Ht containing all query entities and no

unimportant edges. Alg.1 is applied on H ′
t to produce MQGt.

Theorem 4 Given the neighborhood graph Ht for a query

tuple t, the reduced neighborhood graph H ′
t always exists.

Proof: We prove by contradiction. Suppose that, after

removal of all unimportant edges, Ht becomes a disconnected

1



Query Tuple1 Tuple2 Combined (1,2) Tuple3 Combined (1,2,3)

P@k nDCG AvgP P@k nDCG AvgP P@k nDCG AvgP P@k nDCG AvgP P@k nDCG AvgP

F1 0.36 0.76 0.32 0.36 1.00 0.50 0.12 0.38 0.02 0.36 0.73 0.22 0.12 0.49 0.02

F2 0.76 1.00 0.79 0.00 0.00 0.00 0.80 1.00 0.80 0.12 0.70 0.05 0.80 1.00 0.91

F3 0.76 0.85 1.00 0.76 0.85 1.00 0.72 0.82 1.00 0.76 0.85 1.00 0.68 0.79 1.00

F4 0.32 0.73 0.09 0.40 0.65 0.08 1.00 1.00 0.45 1.00 1.00 0.04 1.00 1.00 0.48

F5 1.00 1.00 0.04 1.00 1.00 0.04 1.00 1.00 0.04 1.00 1.00 0.04 1.00 1.00 0.04

F6 0.24 0.89 0.16 0.28 0.89 0.18 0.40 0.87 0.16 0.36 0.98 0.22 0.12 0.94 0.07

F7 1.00 1.00 0.28 1.00 1.00 0.28 1.00 1.00 0.28 1.00 1.00 0.28 1.00 1.00 0.29

F8 0.92 0.79 0.20 1.00 1.00 0.27 0.96 0.98 0.24 0.48 0.86 0.08 1.00 1.00 0.27

F9 0.68 0.72 0.23 0.56 0.66 0.17 0.80 0.86 0.35 1.00 1.00 0.62 1.00 1.00 0.66

F10 1.00 1.00 0.12 1.00 1.00 0.12 1.00 1.00 0.12 1.00 1.00 0.12 1.00 1.00 0.13

F11 0.96 0.97 1.00 0.32 0.50 0.29 0.72 0.82 0.78 0.00 0.00 0.00 0.36 0.55 0.41

F12 1.00 1.00 0.08 1.00 1.00 0.08 0.96 0.88 0.07 0.36 0.39 0.01 0.96 0.88 0.07

F13 1.00 1.00 0.04 1.00 1.00 0.04 1.00 1.00 0.04 0.00 0.00 0.00 1.00 1.00 0.04

F14 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.97 1.00 1.00 1.00 1.00 0.92 0.95 1.00

F15 1.00 1.00 0.08 0.56 0.48 0.02 1.00 1.00 0.08 1.00 1.00 0.08 1.00 1.00 0.08

F16 1.00 1.00 0.15 1.00 1.00 0.15 1.00 1.00 0.15 1.00 1.00 0.15 1.00 1.00 0.15

F17 0.32 1.00 0.33 0.64 0.83 0.25 0.32 1.00 0.32 0.56 0.84 0.23 0.68 1.00 0.46

F18 1.00 1.00 0.01 1.00 1.00 0.01 1.00 1.00 0.01 1.00 1.00 0.01 1.00 1.00 0.01

F19 1.00 1.00 0.02 1.00 1.00 0.02 1.00 1.00 0.02 1.00 1.00 0.02 1.00 1.00 0.02

F20 0.52 0.68 0.86 0.52 0.68 0.86 0.52 0.68 0.92 0.52 0.68 0.86 0.52 0.68 1.00

TABLE 6: Accuracy of GQBE on all 20 Freebase Multi-tuple Queries, k=25

graph, of which none of the weakly connected components

contains all the query entities. The deletion of unimportant

edges must have disconnected at least a pair of query entities,

say, vi and vj . By Def. 1, before removal of unimportant

edges, Ht must have at least a path p of length at most d
between vi and vj . By the definition of unimportant edges,

every edge e=(u, v) on p belongs to both IE(u) and IE(v)
and thus cannot be an unimportant edge. However, the fact

that vi and vj become disconnected implies that p consists of

at least one unimportant edge which is deleted. This presents

a contradiction and completes the proof.

Accuracy on Multi-tuple Queries

We show the accuracy of multi-tuple queries in Table 6.

Tuple1 refers to the query tuple in Table 1, while Tuple2

and Tuple3 are two tuples from its ground truth. Table 6

shows the accuracy of top-25 GQBE answers for the three

tuples individually, as well as for the first two and three tuples

together by merged MQGs, which are denoted Combined(1,2)

and Combined(1,2,3), respectively. The ground truth size of

queries F1, F2, F3, F11, F14 and F20 is less than or equal to

25. Therefore, the P@k and nDCG values of these queries is

lesser than 1, in spite of a complete recall. A value of 1 of

the AvgP values of the corresponding entries indicates that all

the tuples from the ground truth were ranked higher than any

other answer tuple.
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