
4

Computational Fact Checking through Query Perturbations

YOU WU and PANKAJ K. AGARWAL, Duke University
CHENGKAI LI, University of Texas at Arlington
JUN YANG, Duke University
CONG YU, Google Research

Our media is saturated with claims of “facts” made from data. Database research has in the past focused on
how to answer queries, but has not devoted much attention to discerning more subtle qualities of the resulting
claims, for example, is a claim “cherry-picking”? This article proposes a framework that models claims based
on structured data as parameterized queries. Intuitively, with its choice of the parameter setting, a claim
presents a particular (and potentially biased) view of the underlying data. A key insight is that we can
learn a lot about a claim by “perturbing” its parameters and seeing how its conclusion changes. For example,
a claim is not robust if small perturbations to its parameters can change its conclusions significantly.
This framework allows us to formulate practical fact-checking tasks—reverse-engineering vague claims,
and countering questionable claims—as computational problems. Along with the modeling framework, we
develop an algorithmic framework that enables efficient instantiations of “meta” algorithms by supplying
appropriate algorithmic building blocks. We present real-world examples and experiments that demonstrate
the power of our model, efficiency of our algorithms, and usefulness of their results.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications

General Terms: Design, Algorithms

Additional Key Words and Phrases: Sensitivity analysis, fact checking, computational journalism

ACM Reference Format:
You Wu, Pankaj K. Agarwal, Chengkai Li, Jun Yang, and Cong Yu. 2017. Computational fact checking
through query perturbations. ACM Trans. Database Syst. 42, 1, Article 4 (January 2017), 41 pages.
DOI: http://dx.doi.org/10.1145/2996453

1. INTRODUCTION

While much of database research is devoted to the art of answering queries, equally
critical to our understanding of data is the art of discerning the “quality” of claims and

You Wu is now at Google Research.
This work is supported by NSF grants IIS-14-08846 and IIS-14-08928. P.A. is also supported by NSF grants
CCF-11-61359, CCF-15-13816, and CCF-15-46392, by an ARO grant W911NF-15-1-0408, and by Grant
2012/229 from the U.S.-Israel Binational Science Foundation. C.L. is also supported by NSF grant IIP-15-
65699 and a Knight Prototype Fund. J.Y. is also supported by NSF grant IIS-13-20357 and a Google Faculty
Research Award.
Authors’ addresses: Y. Wu and C. Yu, Structured Data Group, Google Research, 111 8th Avenue, New York,
NY 10011, USA; emails: {wuyou, congyu}@google.com; P. K. Agarwal, Department of Computer Science,
Levine Science Research Center D214A, Duke University, Box 90129, Durham, NC 27708-0129, USA; email:
pankaj@cs.duke.edu; C. Li, Department of Computer Science and Engineering, Engineering Research Build-
ing (ERB) Room 628, The University of Texas at Arlington, 500 UTA Boulevard, Arlington, TX 76019-0015;
email: cli@uta.edu; J. Yang, Department of Computer Science, Levine Science Research Center D327, Duke
University, Box 90129, Durham, NC 27708-0129, USA; email: junyang@cs.duke.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 0362-5915/2017/01-ART4 $15.00
DOI: http://dx.doi.org/10.1145/2996453

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

http://dx.doi.org/10.1145/2996453
http://dx.doi.org/10.1145/2996453

4:2 Y. Wu et al.

Fig. 1. New York City adoptions by year, 1989–2012. Giuliani’s years in red.

asking queries that lead to high-quality claims. But first, what does “quality” mean?
Consider the following.

Example 1.1 (Giuliani’s Adoption Claim (from factcheck.org)). During a Republican
presidential candidates’ debate in 2007, Rudy Giuliani claimed that “adoptions went
up 65 to 70 percent” in New York City “when he was the mayor.” More precisely, the
comparison was between the total number of adoptions during 1996–2001 and that
during 1990–1995. Giuliani was in office 1994–2001. The claim “checks out” according
to data, but that does not mean we should stop here. Why did the claim compare these
two particular 6-year periods? As it turns out (as shown in Figure 1), the underlying
data reveal that while adoption increased steadily before 1998, it began to slow down in
1998, a trend that continued through 2006. Lumping data into the periods of 1990–1995
and 1996–2001 masks this trend. However, if we compare Giuliani’s first and second
4-year terms, that is, 1994–1997 and 1998–2001, we will see that the total number of
adoptions in fact decreased by 1%.1

Example 1.2 (Vote Correlation Claim (from factcheck.org)). A TV ad in the 2010
elections claimed that Jim Marshall, a Democratic incumbent from Georgia “voted the
same as Republican leaders 65 percent of the time.”2 This comparison was made with
Republican Leader John Boehner over the votes in 2010. If we look at the history
since 2007, however, the number would have been only 56%, which is not very high
considering the fact that even the Democratic Whip, Jim Clyburn, voted 44% of the

1The original factcheck.org article countered Giuliani’s claim by comparing the adoption rates at the begin-
ning and the end of his tenure, which led to a smaller increase of 17%. Here, we use a different counterargu-
ment found by our proposed method, because comparing 1-year windows is more susceptible to fluctuations
in data.
2This ad was in response to an earlier ad attacking Marshall’s “party loyalty votes” for voting with Nancy
Pelosi (a notable Democrat as the Speaker of the U.S. House of Representatives at the time of the claim)
“almost 90 percent of the time,” which, not surprisingly, also tailored the claim in ways to further its own
argument, by quoting a high voting correlation with the Republican leadership.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

file:factcheck.org
file:factcheck.org
file:factcheck.org

Computational Fact Checking through Query Perturbations 4:3

time with Boehner during that period. Basically, many votes in Congress are not as
controversial as the public would think!

For both of the previously mentioned claims, we can verify their correctness using
SQL queries over reliable, structured datasets available to the public. Database sys-
tems are good at verifying whether these claims are correct, but from the preceding
discussion, it is obvious that assessing claim quality involves much more than testing
correctness. Indeed, both of the previously mentioned claims are correct on the surface,
but they present misleading views of the underlying data. The list of so-called “lies,
d—ed lies, and statistics” goes on, in politics, sports, business, and even research—
practically wherever numbers and data are involved.

While the lines of reasoning behind our assessment of the previously mentioned
claims are intuitive, deriving them requires considerable skill and effort. Not all users
think as critically as we would hope. Not all users who are suspicious of a claim have
the time or expertise to conduct further data analysis. Can we automate this process
of “fact checking,” making it easier and more effective?

Challenges. To have any hope for automated fact checking, can we formalize, mathe-
matically, intuitions of seasoned fact checkers when assessing claim quality (such as in
Examples 1.1 and 1.2)? Do different claims require different intuitions and procedures
to check? To what extent can fact checking be approached in general ways?

Besides numerical measures of claim quality, counterarguments are critical in help-
ing users, especially a nonexpert public audience, understand why a claim has poor
quality. As examples, we counter Giuliani’s adoption claim with the argument that “. . .
compare the Giuliani’s first and second 4-year terms, . . . the total number of adoptions in
fact decreased by 1%”; we counter the Marshall-Boehner vote correlation claim with the
argument that “. . . even the Democratic Whip, Jim Clyburn, voted 44 percent of the time
with Boehner” since 2007. Can we automatically generate such counterarguments?

In many situations, the original claims were stated in a vague way (often intention-
ally). Claims in both Examples 1.1 and 1.2 omit important details such as the exact
time periods of comparison. Numbers are usually rounded, sometimes in ways that
are “convenient.” Fact checkers thus need to seek clarification from original claimants,
but such prodding requires effort and credential, and often leads to delays. Can we
automatically “reverse-engineer” vague claims to recover the omitted details?

Our Contributions. To address the previously mentioned challenges, we propose in
Section 2 a fact-checking framework general enough to handle various types of claims
and fact-checking tasks. The key insight is that a lot of fact checking can be accom-
plished by “perturbing” the claims in interesting ways. Thus, in Section 2.1, we model
a claim as a parameterized query over data, whose result would vary as we change its
parameter setting, forming a (high-dimensional) surface, which we call the Query Re-
sponse Surface (QRS). In conjunction with QRS, we introduce the notions of relative re-
sult strength, which captures how a perturbation strengthens or weakens a claim, and of
parameter sensibility, which captures how natural and relevant a perturbation is in the
context of the claim being checked. To illustrate the modeling power of this framework:

—We show in Section 2.2 that many intuitive measures of claim qualities can be defined
naturally. For example, a claim has low “robustness” if sensible perturbations of claim
parameters lead to substantially weaker, or even opposite, conclusions.

—We show also in Section 2.2 how to formulate fact-checking tasks—such as find-
ing counterexamples and reverse-engineering vague claims, as discussed earlier—as
optimization problems on the QRS.

—As concrete examples, we show how to use our framework to check window aggregate
comparison claims (generalization of Giuliani’s adoption claim in Example 1.1) in

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

4:4 Y. Wu et al.

Table I. Notations for the Modeling Framework

Notation Description

P parameter space
p parameter setting
p0 parameter setting of the original claim
R result space
r result of a claim
r0 result of the original claim

q : P → R parameterized query template
SP(p; p0) sensibility of parameter p relative to p0

SR(r; r0) strength of result r relative to r0

Section 4.1 and time series similarity claims (generalization of the Marshall-Boehner
vote correlation claim in Example 1.2) in Section 5.1.

Besides the modeling challenges of fact checking, we also address its computational
challenges. Given a claim, it is costly (and sometimes infeasible) to compute the full
QRS by evaluating a database query for every possible parameter setting. It is not
surprising that more efficient algorithms are only possible by exploiting claim-specific
properties, but to make our techniques broadly applicable, we want to develop more
generic algorithms that require little claim-specific configuration:

—We propose “meta” algorithms in Section 3 that work across different claims that
share the same (general) properties, or those for which certain low-level algorithmic
building blocks are available.

—For window aggregate comparison claims and time series similarity claims, we de-
velop efficient, specialized algorithmic building blocks in Sections 4.2 and 5.2, re-
spectively, that can be plugged into the preceding meta algorithms to enable fact
checking in real time for interactive users.

Our approach enables an extensible system architecture with “pay-as-you-go” sup-
port for efficient fact checking—more efficient support can be enabled without re-
implementing the high-level meta algorithms, but simply by plugging in instantiations
of low-level building blocks.

Finally, we experimentally validate the ability of our framework in modeling fact-
checking tasks and producing meaningful results in Section 6.1, as well as the efficiency
of our computational techniques in Section 6.2.

We herein focus on the challenges of finding counterexamples and reverse-
engineering vague claims. We also note that fact checking in general requires a
repertoire of techniques including but not limited to ours—such as how to find datasets
relevant to given claims, how to translate claims to queries, how to check claims that
cannot be readily derived from structured data, just to mention a few. We briefly
discuss these other challenges in Section 7.

2. MODELING FRAMEWORK FOR FACT CHECKING

2.1. Components of the Modeling Framework

On a high level, we model the claim of interest as a parameterized query over a
database, and consider the effect of perturbing its parameter setting on the query
result. Besides the parameterized query, our model has two other components: (1) a
measure of relative “strengths” of query results as we perturb query parameters, and
(2) a measure of the “sensibility” of parameter settings, as not all perturbations make
equal sense. In the following, we give additional intuition and formal definitions for
our model. Notations are summarized in Table I.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

Computational Fact Checking through Query Perturbations 4:5

Parameterized Query Templates, QRS, and Claims. Let q : P → R denote a param-
eterized query template, where P is the parameter space, whose dimensionality is the
number of parameters expected by q, and R is the result space, or the set of possible
query results over the given database.3 The QRS of q is the “surface” {(p, q(p)) | p ∈ P}
in P × R.4

A claim of type q is specified by 〈q, p, r〉, where p ∈ P is the parameter setting used
by the claim and r ∈ R is the result as stated by the claim. Obviously, if r differs
significantly from q(p), the claim is incorrect. However, as motivated in Section 1, we
are interested in the more challenging case where the claim is correct but nonetheless
misleading. Doing so will involve exploring the QRS not only at the parameter setting
p, but also in its neighborhood.

For example, to check Giuliani’s claim in Example 1.1, suppose we have a table
adopt(year, number) of yearly adoption numbers. The parameterized query template
here can be written in SQL, with parameters w (length of the period being compared),
t (end of the second period), and d (distance between the two periods):

SELECT after.total / before.total − − (Q1)
FROM (SELECT SUM(number) AS total FROM adopt

WHERE year BETWEEN t − w − d + 1 AND t − d) AS before,
(SELECT SUM(number) AS total FROM adopt
WHERE year BETWEEN AND t − w + 1 AND t) AS after;

Giuliani’s claim (after reverse-engineering) is specified by 〈Q1, (w = 6, t = 2001, d =
6), 1.665〉.

Relative Strength of Results. To capture the effect of parameter perturbations on
query results, we need a way to compare results. For example, if a perturbation in
Giuliani’s claim leads to a lower increase (or even decrease) in the total adoption
number, this new result is “weaker” than the result of the claim. To this end, let
SR : R × R → R denote the (relative) result strength function: SR(r; r0), where r, r0 ∈
R, returns the strength of r relative to the reference result r0. If SR(r; r0) is positive
(negative), r is stronger (weaker, respectively) than r0. We require that SR(r; r) = 0.
For example, we let SR(r; r0) = r/r0 − 1 for Giuliani’s claim.

Given a claim 〈q, p0, r0〉 to check, SR allows us to simplify the QRS of q relative to
(p0, r0) into a surface {(p, SR(q(p); r0) | p ∈ P} in P × R. We call this simplified surface
the relative result strength surface. For example, Figure 2(a) illustrates this surface for
Giuliani’s adoption claim. Since a surface in R

4 is difficult to visualize, we fix w to 6
and plot SR over possible t and d values. Intuitively, we see that while some pertur-
bations (near the diagonal, shown in greener colors) strengthen the original claim, the
vast majority of the perturbations (shown in redder colors) weaken it. In particular,
increasing t and decreasing d both lead to weaker claims. Thus, the surface leaves the
overall impression that Giuliani’s claim overstates the adoption rate increase. How-
ever, before we jump to conclusions, note that not all parameter settings are equally
“sensible” perturbations; we discuss how to capture this notion next.

Relative Sensibility of Parameter Settings. Some parameter perturbations are less
“sensible” than others. For example, in Giuliani’s claim, it makes little sense to compare

3Here, we focus on perturbing query parameters, and assume the database D to be given and fixed. In general,
we can let q additionally take D as input, and consider the equally interesting question of perturbing data,
or both data and query parameters; Section 7 briefly discusses this possibility.
4Strictly speaking, for this set to be regarded a surface, we need P× R to be continuous. In general, P can
be discrete or even categorical, and R is the powerset of all possible result tuples. In this case, we assume
that P is sampled from some underlying continuous space and the query results can be mapped to a numeric
domain and are interpolated between sampled points to form a surface.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

4:6 Y. Wu et al.

Fig. 2. Perturbing t (end of the second period) and d (distance between periods) in Giuliani’s claim while
fixing w = 6 (length of periods). Note the constraint t − d − w ≥ 1988; 1989 is when the data became available.

periods with “unnatural” lengths (e.g., 13 years), or to compare periods “irrelevant” to
Giuliani’s term (e.g., periods in the 1970s). While “naturalness” of values is an intrinsic
property of the domain, “relevance” is relative to the original claim (or its context).
To capture overall sensibility, which is generally relative, we use either a parameter
sensibility function or a parameter sensibility relation.

A (relative) parameter sensibility function SP : P × P → R scores each parameter
setting with respect to a reference parameter setting: SP(p; p0) returns the sensibility
score of p ∈ P with respect to p0 ∈ P. Higher scores imply more sensible settings.
As an example, Figure 2(b) illustrates the relative sensibility of parameter settings
for checking Giuliani’s claim (again, we fix w and vary only t and d). Darker shades
indicate higher sensibility. Here, we model relevance using a Gaussian kernel centered
at p0, because intuitively, parameter settings far away from p0 are not relevant to the
claim context. We model naturalness based on the observation that it is more natural
to compare periods that are 4 or 8 years apart, because New York City mayors have
4-year terms. The combination (multiplication) of naturalness and relevancy results
in generally decaying sensibility around (t0, d0) = (2001, 6) (because of relevancy), but
with bumps when d = 4 and d = 8 (because of naturalness). Intuitively, portions of the
QRS over the high-sensibility regions of the parameter space are more “important” in
checking the claim. See Section 4 for more details on SP for Giuliani’s claim.

In some cases, there is no clear choice of SP for ordering all parameter settings, but
a weaker structure may exist on P. A (relative) parameter sensibility relation �p0 , with
respect to a reference parameter setting p0 ∈ P, is a partial order over the parameter
space P: p1 �p0 p2 means p1 is less sensible than or equally sensible as p2 (relative
to p0). The sensibility relation �p0 imposes less structure on P than the sensibility
function SP—the latter actually implies a weak order (i.e., total order except ties) on
P. As an example, consider perturbing the Marshall-Boehner vote correlation claim by
replacing Marshall with Clyburn. Intuitively, U.S. Representatives who are well recog-
nizable to the public lead to more “natural” perturbations; on the other hand, “relevant”
perturbations are Representatives who are even more liberal in ideology than Marshall
(so as to counter the original claim’s suggestion that Marshall is conservative). While
it is difficult to totally order the discrete domain of Representatives, it makes sense

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

Computational Fact Checking through Query Perturbations 4:7

to define a partial order based on their recognizability and ideology (see Section 5 for
more details).

Assumption on Data. We assume that the dataset is “sufficient” for checking the
claim, in the sense that a sensibility function appropriately defined by a domain expert
would not consider perturbing parameter settings beyond what the underlying dataset
can support (e.g., if a perturbation requires accessing historical data that was not
recorded).

Relationship between Query Perturbations and Data. While query perturbations may
appear data agnostic, they are in fact governed by domain knowledge, through the
specification of parameter sensibility function. Such domain knowledge can be reflected
by data, and may even be derived from data. However, there are many cases where
exploration is better guided by domain knowledge that cannot be derived by data alone.
For example, the yearly adoption dataset by itself cannot tell us that comparing across
the terms of a mayor is more natural.

At the same time, it is possible to exploit data characteristics for more efficient pro-
cessing. For example, the sparsity in data may readily imply that results for some
nearby parameter settings are identical. As we shall see in Sections 4 and 5, for both
Window Aggregate Comparison (WAC) and Time Series Similarity (TSS), we use this
idea in our algorithms by employing prefix sums computed over the data, which effec-
tively identify the locations of possible result changes in the parameter space, without
having to consider every parameter setting.

2.2. Formulating Fact-Checking Tasks

We now show how to cast various fact-checking tasks as questions about the QRS with
the help of our framework.

Finding Counterarguments. Given original claim 〈q, p0, r0〉, a counterargument is a
parameter setting p such that SR(q(p); r0) < 0; that is, it weakens the original claim.
For example, Figure 2(a) shows counterarguments to Giuliani’s claim in orange and
red; they result in a lower percentage of increase (or even decrease) than what Giuliani
claimed. Since there may be many counterarguments, we are most interested in those
weakening the original claim significantly, and those obtained by highly sensible pa-
rameter perturbations. There is a trade-off between parameter sensibility and result
strength: if we consider counterarguments with less sensible parameter perturbations,
we might be able to find those that weaken the original claim more. Finding counter-
arguments thus involves bicriteria optimization. We define the following problems:

(CA-τττRRR). Given original claim 〈q, p0, r0〉 and a result strength threshold τR ≤ 0, find
all p ∈ P with SR(q(p); r0) < τR that are maximal with respect to �p0 ; that is,
there exists no other p′ ∈ P with SR(q(p′); r0) < τR and p′
p0 p.

(CA-τττPPP). Beyond the partial order on P, this problem requires the parameter sen-
sibility function SP. The problem is to find, given original claim 〈q, p0, r0〉 and
a sensibility threshold τP, all p ∈ P where SP(p; p0) > τP and SR(q(p); r0) is
minimized.

For interactive exploration and situations when the choices of thresholds τR and τP

are unclear, it is useful to enumerate Pareto-optimal counterarguments in descending
order of parameter setting sensibility, until the desired counterargument is spotted.5
This problem is formulated below:

5It is easy to see that when SP exists, for any τR (τP), CA-τR (CA-τP) always finds a Pareto-optimal counter-
argument. The same is true for RE-τR and RE-τP problems.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

4:8 Y. Wu et al.

(CA-po). This problem requires the parameter sensibility function SP. Given original
claim 〈q, p0, r0〉 and an integer k > 0, find the k Pareto-optimal counterarguments
p ∈ P with the highest SP(p; p0) values. More precisely, we say that a counterar-
gument p dominates a counterargument p′ if (i) SP(p; p0) ≥ SP(p′; p0) (i.e., p is
more sensible than or equally sensible as p′); (ii) SR(q(p); r0) ≤ SR(q(p′); r0) (i.e.,
p weakens the original claim as much as or more than p′); and (iii) inequality is
strict for at least one of the preceding problems. A Pareto-optimal counterargu-
ment is one that is dominated by no counterarguments.

Reverse-Engineering Vague Claims. As motivated in Section 1, many claims are not
stated precisely or completely; for example, Giuliani’s adoption claim omits its param-
eter values and rounds its result value. We still represent a vague claim by 〈q, p0, r0〉.
However, p0 and r0 are interpreted differently from other problem settings. Here, r0
may be an approximation of the actual result. For parameter values mentioned explic-
itly by the claim, p0 sets them accordingly. On the other hand, for omitted parameters,
p0 sets them to “reasonable” values capturing the claim context. For example, Giuliani’s
adoption claim does not state the periods of comparison. We simply use 1993–1993 and
2001–2001 for p0, that is, (w0, t0, d0) = (1, 2001, 8), to capture the claim context that
Giuliani was in office 1994–2001 (p0 represents the comparison between two 1-year
windows—the year before Giuliani’s term and the last year of his term). Note that
when picking p0, we do not need to tweak it to make q(p0) match r0; with our problem
formulation below, this reverse-engineering task will be carried out automatically.

Any parameter setting is a candidate for a reverse-engineered claim. The reverse-
engineering problem turns out to be very similar to the problem of finding
counterarguments—we still seek a sensible parameter setting p relative to p0, but
we want p to lead to a result that is close to r0 instead of weaker than it. The problem
has three variants, analogous to those for finding counterarguments.

(RE-τττRRR). Given vague claim 〈q, p0, r0〉 and a result strength threshold τR > 0, find
all p ∈ P with |SR(q(p); r0)| < τR that are maximal with respect to �p0 .

(RE-τττPPP). Find, given vague claim 〈q, p0, r0〉 and a sensibility threshold τP, all p ∈ P
where SP(p; p0) > τP and |SR(q(p); r0)| is minimized.

(RE-po). Given vague claim 〈q, p0, r0〉, and an integer k > 0, find the k Pareto-
optimal reverse-engineered parameter settings p ∈ P with the highest SP(p; p0)
values. We say that a reverse-engineered parameter setting pdominates another
one p′ if (i) p �p0 p; (ii) |SR(q(p); r0)| ≤ |SR(q(p′); r0)|; and (iii) inequality is strict
for at least one of the preceding variants. A Pareto-optimal reverse-engineered
parameter setting is one that is dominated by no others.

Measuring Claim Quality. Quantifying claim quality requires a parameter sensibility
function SP : P × P → R. Given the original parameter setting p0, we further require
SP(·; p0) to define a probability mass function (pmf),6 or, if P is continuous, a probability
density function (pdf). Consider a “random fact-checker,” who randomly perturbs the
parameter setting according to SP; SP(p; p0) represents the relative likelihood that the
original parameter setting p0 will be perturbed to p. This random fact checker is more
likely to pick settings that are “natural” and “relevant” (with respect to the original
claim), as explained earlier.

There are a number of meaningful measures of claim quality; we highlight three
here. For simplicity of exposition, we assume that P is finite and discrete, and that SP
is a pmf. Generalization to the continuous case is straightforward.

6When P is finite and discrete, given any definition for SP, we can simply normalize it by
∑

p∈P SP(p; p0) to
obtain a pmf.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

Computational Fact Checking through Query Perturbations 4:9

(Fairness). The fairness of a claim 〈q, p0, r0〉 is∑
p∈P

SP(p; p0) · SR(q(p); r0). (1)

Intuitively, fairness is the expected strength (relative to r0) of a perturbed claim
generated by the random fact-checker. Fairness of 0 means the claim is unbiased;
positive fairness means the claim is understated; negative fairness means it is
overstated.

(Robustness). The robustness of a claim 〈q, p0, r0〉 is

exp

⎛
⎝−

∑
p∈P

SP(p; p0) · (min{0, SR(q(p); r0)})2

⎞
⎠ . (2)

Intuitively, robustness is computed from the mean squared deviation (from r0)
of perturbed claims generated by the random fact checker. If a perturbed claim
is stronger than the original, we consider the deviation to be 0. We use exp(−·)
to ensure that robustness falls in (0, 1]. Robustness of 1 means all perturbations
result in stronger or equally strong claims; low robustness means the original
claim can be easily weakened.

(Uniqueness). The uniqueness [Wu et al. 2012] of a claim 〈q, p0, r0〉 is

1
|P| ·

∑
p∈P

1
(
SR(q(p); r0) < 0

)
. (3)

Here, 1(·) is an indicator function. In other words, uniqueness is the fraction of
all possible parameter settings that yield results weaker than the original claim.
This definition does not require a parameter sensibility relation or function (or it
can be seen as assuming a uniform pmf SP(p; p0) = 1

|P|). Low uniqueness means
it is easy to find perturbed claims that are at least as strong as the original one.

Different quality measures make sense for claims of different types, or the same
claim viewed from different perspectives. For example, for a claim that singles out
some “entity” to be special—for example, the Marshall-Boehner vote correlation claim
in Example 1.2, or one-of-the-few claims in Wu et al. [2012]—uniqueness measures
how special this entity really is among its peers. In this case, a peak in QRS (over
perturbations to the entity) is rewarded. On the other hand, for a claim whose context is
set by a condition—for example, the Marshall-Boehner claim compute vote correlation
over a particular time period—fairness and robustness measure how the claim holds up
in different contexts. In this case, a peak in QRS (over perturbations to the condition)
is penalized.

Also, note that a claim can be fair but not robust—in that case, the claim reflects
the “average” case but still can be easily weakened because of variability in the QRS.
For example, Giuliani’s claim fares better in fairness than in robustness. For fairness,
those perturbations that strengthen this claim (recall Figure 2) can somewhat offset the
perturbations that weaken it. For robustness, however, the strengths of the stronger
claims do not contribute to the measure, which focuses on the weaker claims.

3. ALGORITHMIC FRAMEWORK FOR FACT CHECKING

With the modeling framework in place, we now turn to our algorithmic framework for
fact checking. To make our techniques broadly applicable, we want to develop more
generic algorithms than those specialized for particular types of claims. However, more
efficient algorithms are only possible by exploiting specific properties of the claims. To

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

4:10 Y. Wu et al.

Fig. 3. Notations for the algorithmic framework.

gain efficiency without sacrificing generality, we develop a series of “meta” algorithms
(also summarized in Figure 3):

—Our baseline algorithms (Section 3.1) assume only the availability of a generator
function GetP, which returns, one at a time, all possible parameter perturbations of
the claim to be checked.

—To avoid considering all possible parameter perturbations, our advanced algorithms
assume more powerful building blocks: functions that generate parameter settings in
decreasing sensibility order (Section 3.2), and those that support a locus approach for
searching the parameter space (Section 3.3). Instantiations of such building blocks
for claims generalizing Examples 1.1 and 1.2 will be presented in Sections 4.2 and 5.2,
respectively.

—Besides intelligent strategies for searching the parameter space, preprocessing of the
input data can significantly reduce the cost of query evaluation for each parameter
setting. Thus, we allow a customized data preprocessing function to be plugged in.
Sections 4.2 and 5.2 present examples of how plugged-in preprocessing helps with
checking claims in Examples 1.1 and 1.2.

This approach enables an extensible system architecture with “pay-as-you-go” sup-
port for efficient fact checking—new claim types can be supported with little config-
uration effort up front, but more efficient support can be enabled by plugging in in-
stantiations of low-level building blocks, without re-implementing the high-level meta
algorithms.

We tackle finding Counterarguments (CA) and Reverse-Engineering (RE) here, and
do not discuss how to compute various claim quality measures. Furthermore, we focus

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

Computational Fact Checking through Query Perturbations 4:11

on CA below, because (unless otherwise noted) our meta algorithms for RE are straight-
forward adaptions of their counterparts for CA. Whenever their counterparts use
SR(q(p); r0), these algorithms use |SR(q(p); r0)| instead; other aspects remain the same.

When analyzing the time complexity of the meta algorithms below, we use μq to
denote the cost (in time) of evaluating the query template with a specific parameter
setting; we use μp to denote the cost of one GetP call. For brevity, we assume that the
cost of computing SR(q(p); r0) is dominated by that of computing q(p), so it is O(μq);
we assume the cost of SP(p; p0) is O(μp). The space complexity of the meta algorithms
below does not include the space used for evaluating queries or calling the plugin
functions—unless otherwise noted, the total space consumption is bounded by their
sum, and is not affected by the number of times that these queries and functions are
evaluated.

3.1. Baseline Algorithms

The baseline algorithms assume nothing beyond the minimum required to define the
problems. To find counterarguments, these algorithms simply call GetP to consider all
possible parameter settings exhaustively. More details are presented below. Suppose
the original claim is 〈q, p0, r0〉.

(BaseCA-τP). Given a parameter sensibility threshold τP, BaseCA-τP solves CA-τP

as follows. For each parameter setting p obtained from GetP, if p’s sensibility
SP(p; p0) > τP, and if its result strength SR(q(p); r0) is no less than the lowest
result strength seen so far, BaseCA-τP remembers p and its result strength. After
considering all p ∈ P, BaseCA-τP returns its remembered parameter setting(s).

Base CA-τP makes |P| calls to GetP, SP, q, and SR; therefore, its time complexity
is �(|P|(μp + μq)). BaseCA-τP may need to remember multiple settings that tie
for the lowest result strength so far. Such ties are rare in practice, so BaseCA-τP

usually uses constant space.
(BaseCA-τR). Given a result strength threshold τR, BaseCA-τR solves CA-τR by

calling GetP and considering each parameter setting p with SR(q(p); r0) < τR—
for brevity, we call such parameter settings qualified. BaseCA-τR remembers the
maximal subset A of all qualified parameter settings it has seen so far. To update
A, BaseCA-τR compares p to each element p′ ∈ A: it removes all p′ from A where
p′ �p0 p, and adds p to A if p ��p0 p′ for all p′ ∈ A. After considering all p ∈ P,
BaseCA-τR returns A.

Let t ≤ |P| denote the maximum size reached by Aduring execution. BaseCA-τR

makes |P| calls to GetP, q, and SR, and O(|P|t) calls to �p0 . Its time complexity is
O(|P|(tμp + μq)) and its space complexity is O(t).

Note that BaseCA-τR gracefully handles the special (and common) case where
�p0 defines a weak order (e.g., when �p0 is derived from SP(p; p0)). In this case, A
contains only the qualified parameter settings that tie for the highest sensibility,
and the total number of calls to �p0 is only |P|.

(BaseCA-po). Given k, BaseCA-po solves CA-po by calling GetP to consider each
possible parameter setting p. Finding the Pareto-optimal parameter settings
amounts to the well-studied problem of computing maximal points in D (sen-
sibility and strength) [Kung et al. 1975; Börzsönyi et al. 2001]. To avoid storing
sensibility and strength for all possible parameter settings, BaseCA-po remem-
bers only the Pareto-optimal subset A of all parameter settings seen so far. We
store A in a search tree indexed by sensibility, which supports O(log t) update
time, where t ≤ |P| denotes the maximum size reached by A during execution. Af-
ter considering all p ∈ P, BaseCA-po returns the k elements in A with the highest
sensibility.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

4:12 Y. Wu et al.

Base CA-po makes |P| calls to GetP, SP, q, and SR. It runs in O(|P|(μp log t+μq)
time with O(t) space.

The baseline algorithms are practical for small parameter spaces. Their running
times, however, become prohibitive (especially for interactive use) when |P| is large, be-
cause they must exhaustively examine all possible parameter settings before returning
any answer at all. Next, we propose more efficient algorithms enabled by additional
knowledge of the problem instances.

3.2. Ordered Enumeration of Parameters

We now develop algorithms that take advantage of functions that enumerate, on de-
mand, all possible parameter settings in nonincreasing order of sensibility. Ties are
broken arbitrarily. When the parameter space P is large, such functions enable us to
focus first on exploring the most sensible parts of P. There are three cases.

We start with the case (Section 3.2.1) when the parameter sensibility function
SP(p; p0) is defined, and an improved version of GetP, which we denote by GetP↓,
is available for generating parameter settings with high SP first.

The second case (Section 3.2.2) extends the first, and is rather common for multi-
dimensional parameter spaces. Here, instead of requiring GetP↓, we require, for each
axis ı, a function GetP-d ı

↓ for enumerating the values along this axis in nonincreasing
order. We assume this order is consistent with the overall sensibility: that is, given
a parameter setting p, replacing its value for axis ı with one that appears earlier in
this order cannot decrease SP(p; p0). We give a general procedure that uses the single-
dimensional GetP-dı

↓’s to implement a single multidimensional GetP↓, so we can then
apply the algorithms for the first case mentioned previously. Giuliani’s adoption claim
can be handled with this approach, as we will see in Section 4—we need to specify how
to enumerate values in each of the three axes for w, t, and d individually, but we do not
need to define how to enumerate (w, t, d) settings manually.

In the third case (Section 3.2.3), again, no single GetP↓ is given, but parameter set-
tings can be compared according to multiple criteria. For each criterion j , a function
GetP-cj

↓ exists to enumerate parameter settings in order according to j . The GetP-cj

↓ ’s
together define a partial order �p0 on P. For example, as we will see in Section 5, the
Marshall-Boehner vote correlation claim, as far as entity permutation is concerned,
falls into this case—U.S. Representatives can be ordered by either recognizability or
ideology, and the two criteria together define a partial order. Furthermore, if a param-
eter sensibility function SP can be defined by monotonically combining scores for these
criteria, we provide a general procedure7 that uses the multiple GetP-cj

↓ ’s to implement
a single overall GetP↓, so we can apply the algorithms for the first case.

We now present our algorithms for the previously mentioned cases. In the following,
as an abuse of notation for simplicity, we shall continue using μp to denote the time for
all GetP↓ variants, but keep in mind that μp varies across different instances of these
functions.

3.2.1. Algorithms based on GetP↓. Suppose that given the parameter setting p0 of the
original claim, GetP↓(p0) is available for generating parameter settings one at a time
in nonincreasing order of SP(p; p0). The algorithms for finding counterarguments can
be improved as follows.

(EnumCA-τP). Given a parameter sensibility threshold τP, EnumCA-τP calls GetP↓
repeatedly until it gets a parameter setting p with SP(p; p0) ≤ τP, at which

7Note that this procedure differs from the analogous procedure for the second, previously mentioned, case;
see the end of Section 3.2.3 for detailed discussion.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

Computational Fact Checking through Query Perturbations 4:13

point EnumCA-τP terminates and returns the parameter settings with the lowest
relative strength seen so far.
Enum CA-τP improves on BaseCA-τP by examining only those parameter settings
whose sensibility is above the threshold.

(Enum
weak

CA-τR). Enum
weak

CA-τR solves CA-τR for the special case where a weak order on
P is available (recall from Section 2.2 that CA-τR requires only a partial order;
that more general case will be discussed in Section 3.2.3). Given a result strength
threshold τR, Enum

weak
CA-τR calls GetP↓ repeatedly until it gets a qualified parameter

setting p, that is, with SR(q(p); r0) < τR. At this point, Enum
weak

CA-τR knows that
p is an answer because unseen parameter settings must have equal or lower
sensibility. To get remaining answers (that tie with p in sensibility), Enum

weak
CA-τR

continues until GetP↓ yields a parameter setting with lower sensibility.
Enum

weak
CA-τR improves on BaseCA-τR because Enum

weak
CA-τR can terminate as

soon as it finds an answer and finishes examining other parameter settings with
the same sensibility. Also, its space complexity improves to O(1) because there is
no need to remember A as BaseCA-τR does.

(EnumCA-po). On a high level, EnumCA-po is similar to BaseCA-po. As EnumCA-
po considers each parameter setting returned by GetP↓, it also incrementally
maintains the Pareto-optimal subset A of parameter settings seen so far, as in
BaseCA-po. Because GetP↓ returns parameter settings in nonincreasing order of
sensibility, maintenance of A becomes much easier. We can store A as a list and
update A in O(1) time, as in Kung et al.’s algorithm for a 2 D skyline [Kung
et al. 1975]. Furthermore, |A| grows monotonically, so we can terminate once |A|
reaches k. For details, see Algorithm 1.

Enum CA-po runs in O(s(μp+μq)) time, where s ≤ |P| is the number of parameter
settings it examines. It runs with O(k) space, where k is the desired number of
results. The improvement over BaseCA-po (O(|P|(μp log t + μq)) time and O(t)
space) is significant in practice, because oftentimes s � |P| and k � t.

Recall that we introduced CA-po in Section 2.2 as a method for interactive exploration
when the choices of thresholds τR and τP are unclear for CA-τR and CA-τP, respectively.
With GetP↓ and EnumCA-po, it is convenient to solve CA-po incrementally without a
predetermined value for k, thereby enabling interactive exploration.

3.2.2. Enumerating Values along Each Axis. Given the parameter setting p0 of the origi-
nal claim, suppose that for each axis ı of the parameter space, a function GetP-dı

↓(p0)
is available for returning values for axis ı in order, such that SP(p; p0) is monotoni-
cally nonincreasing with respect to the ordinal number of p’s value for axis ı in the
sequence returned by GetP-dı

↓(p0). Note that it is possible for some combinations of
single-dimensional values to be an invalid parameter setting. To comply with the as-
sumption on data stated at the end of Section 2.1, we also assume a Boolean function
IsPValid(p; p0) that tests the validity of p. With these functions, we now show how to
implement an overall GetP↓ by combining these multiple GetP-dı

↓’s.
A simple strategy is to obtain the list of values for each axis ı by repeatedly call-

ing GetP-dı
↓(p0), perform the Cartesian product of all lists to generate all parame-

ter settings, and then sort those that are valid. Suppose the number of values per
axis is O(η). The space complexity is O(ηdim(P)) and �(|P|). The time complexity is
O(ηdim(P) + |P|(μq + log |P|)).

We can do better by exploiting the monotonicity of SP and calling GetP-dı
↓(p0) only

when needed. The details are in Algorithm 2. We maintain the set of candidate param-
eter settings in a priority queue Q, whose priority is defined by sensibility. (Q.add(e, s)
adds entry e with priority s to Q; Q.removeMax() deletes the entry e with the highest

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

4:14 Y. Wu et al.

ALGORITHM 1: EnumCA-po(〈q, p0, r0〉, k).

1 A ← ∅;γA ← ∞; // γA always tracks the strength for the last answer in A
2 p ← GetP↓(p0);
3 while |A| < k do
4 � ← ∅; // next set of answers, which tie with sensibility ρ and strength γ�

5 ρ ← SP(p; p0); γ� ← ∞;
6 while SP(p; p0) = ρ do // consider all parameter settings with sensibility ρ
7 γ ← SR(q(p); r0);
8 if γ < γA then // to be an answer, strength must be lower than γA
9 if γ < γ� then // a new low strength is found

10 � ← {p}; γ� ← γ ;
11 else if γ = γ� then // same strength; a tie
12 � ← � ∪ {p};
13 p ← GetP↓(p0);
14 if p = ⊥ then return A∪ �;

15 if � �= ∅ then // add new Pareto-optimal answers
16 A ← A∪ �; γA ← γ�;

17 return A;

priority s in Q, and returns (e, s); Q.contains(e) tests if Q contains entry e.) Q is ini-
tialized with an entry whose components are obtained by calling each GetP-dı

↓(p0) for
the first time. Because of the monotonicity of SP, this entry has the highest sensibility
in P. We always remove the highest-priority entry from Q and, if it is valid, return it
as the next parameter setting for GetP↓. Suppose the entry removed is (v1, . . . , vdim(P)).
We insert the “successors” of this entry into Q as candidate parameter settings. Two
entries e and e′ form a predecessor-successor relationship if e′ can be obtained from e
by replacing one component vı with the value that GetP-dı

↓(p0) returns after vı. On the
implementation end, for each axis ı, we use Vı to cache the values returned by GetP-dı

↓
as a list. (Vı.len() returns the length of the list; Vı.get(j), where 0 ≤ j < Vı.len(), returns
the j-th value; Vı.append(v) appends v to the list.) And for the priority queue Q, instead
of storing the value for each axis ı, we store the index of this value in Vı. Line 19 further
ensures that we insert each candidate parameter setting into Q exactly once (when its
first predecessor in lexicographical order is returned). For brevity of presentation, we
assume there are no ties; it is straightforward to extend the results here to handle the
general case involving ties.

The space complexity of this algorithm is O(ηdim(P)−1), which is dominated by the
priority queue;8 cached values from GetP-d·

↓ calls together take only O(dim(P)η). The
time complexity is O(ηdim(P) dim(P) log η), with O(log ηdim(P)−1) for each of the O(ηdim(P))
parameter settings enumerated. If we exhaust the parameter space P using this algo-
rithm, by enumerating all possible values along all axes, the time complexity can be
higher than the baseline. However, this algorithm can stop execution early, enumer-
ating only parameters in the “neighborhood” of p0. Additional analysis in Section 4
will demonstrate this point analytically for a concrete problem, where we also show an
example of constructing such GetP-dı

↓(p0) functions from the SP function (Algorithm 4).

8To see this bound, note that Q never contains two entries where one precedes the other (immediately or
transitively) in the partial order induced by the single-dimensional orders. This property is ensured by the
order of processing and line 19 of Algorithm 2. Therefore, the projection of entries in Q onto any subspace of
dimensionality dim(P) − 1 is one-to-one.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

Computational Fact Checking through Query Perturbations 4:15

ALGORITHM 2: GetP↓(p0) usingGetP-d·
↓(p0) and IsPValid(·; p0).

1 d ← dim(P);
2 Vı ← ∅ foreach ı ∈ [1, d];
3 def nextVı(j) begin
4 if j = Vı.len() − 1 then
5 v ← GetP-dı

↓(p0);
6 if v = ⊥ then return ⊥;
7 Vı.append(v);

8 return j + 1;

9 Q ← ∅;
10 def p(〈 j1, j2, . . . , jd〉) begin
11 return (V1.get(j1), V2.get(j2), . . . , Vd.get(jd);

12 Q.add
(〈nextV1(−1), . . . , nextVd(−1)〉, SP(p(〈0, . . . , 0︸ ︷︷ ︸

d

〉); p0)
)
;

13 while Q �= ∅ do
14 (e, s) ← Q.removeMax(); // remove the highest-sensibility entry
15 for ı ← 1 to d do // add successor e′ along each axis
16 e′ ← e; e′[ı] ← nextVı(e[ı]);
17 if e′[ı] �= ⊥ then
18 Q.add(e′, SP(p(e′); p0));

19 if e[ı] > 0 then break;

20 if IsPValid(p(e); p0) then yield p(e);

3.2.3. Enumerating Parameters by Criteria. Finally, consider the case where parameter
settings can be compared according to multiple criteria. More formally, given the pa-
rameter setting p0 of the original claim, suppose that for each criterion j , GetP-cj

↓ (p0)
is available for generating parameter settings in decreasing order according to j
(again, we assume no ties for brevity; it is straightforward to extend our results to
handle the general case). The parameter sensibility relation p1 �p0 p2 is defined as
∀j , GetP-cj

↓ (p0) returns p1 later than p2. The algorithm for CA-τR can be improved as
follows.

(Enum
partial

CA-τR). Enum
partial

CA-τR calls each GetP-cj

↓ (p0) in a round-robin fashion, and stops
as soon as it has encountered (and processed) a parameter setting that has been
returned by all GetP-cj

↓ (p0)’s. This strategy is the same as the one employed by
Borzsonyi et al.’s B-tree-based skyline algorithm [Börzsönyi et al. 2001], and has
an obvious connection to Fagin’s Threshold Algorithm [Fagin et al. 2003], which
efficiently computes k parameters with the highest aggregated scores given by a
monotone function with respect to each criterion.

As in BaseCA-τR, Enum
partial

CA-τR maintains the maximal subset A of all qualified
parameter settings seen so far. For each qualified parameter setting p (i.e., with
SR(q(p); r0) > τR), Enum

partial
CA-τR adds it to A if p ��p0 p′ for all p′ ∈ A. To facilitate

this check, we store A in a dynamic spatial index for orthogonal range counting
query, for example, range tree. Note that Enum

partial
CA-τR never deletes from Abecause

the order of processing implies that p′ ��p0 p for all p′ ∈ A.
Let t denote the final size of the answer set, and let c denote the number of

criteria. With O(logc t) time for querying and updating the dynamic orthogonal
range counting data structure [Chazelle 1988], in the worst case, Enum

partial
CA-τR has

time complexity O(|P|(logc t + μp + μq)) and space complexity O(t).9 In practice,

9In implementation, instead of using such a dynamic orthogonal range counting data structure, we simply
compare a qualified parameter setting against each of the O(t) parameters of A. The worse case time

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

4:16 Y. Wu et al.

however, it can perform significantly better than BaseCA-τR, because its early
stopping condition often results in examining much fewer than |P| parameter
settings. Also, the term t here is the size of the final answer set, whereas the term
t in BaseCA-τR’s complexity is the maximum size of A during execution, which
can be much larger.

For CA-τP and CA-po, recall that a parameter sensibility function SP is required.
Suppose that (1) parameter settings can be scored according to each criterion j ,
(2) GetP-cj

↓ (p0) returns them in decreasing score according to j , and (3) SP can be
defined by a monotone function combining scores for individual criteria. In this case,
using Fagin’s Threshold Algorithm [Fagin et al. 2003], it is straightforward to im-
plement GetP↓(p0) by calling the GetP-cj

↓ (p0)’s. With this GetP↓(p0), we can then use
EnumCA-τP and EnumCA-po (Section 3.2.1) to solve CA-τP and CA-po, respectively.

While the setup of monotone SP in the previous paragraph makes the problem
strikingly similar to that in Section 3.2.2, there is a fine but important distinction.
Here, each GetP-cj

↓ returns (full) parameter settings in P. In contrast, each GetP-dı
↓

returns only values for a single axis ı of P, and the values must be combined to generate
full parameter settings. Therefore, while we can simply use the Threshold Algorithm to
implement GetP↓ from GetP-cj

↓ ’s, the same approach does not work for GetP-dı
↓’s—the

algorithm in Section 3.2.2 is needed.
An example application of the Enum

partial
CA-τR algorithm is the TSS-CAu problem de-

scribed in Section 5.1. When applying the TSS claim template on the U.S. Congressional
voting data, the generator functions GetP-cj

↓ correspond the orderings of voter entity u
by two criteria, namely, recognizability and ideology. See Section 5.1 for details.

3.3. The Locus Approach

For certain types of query templates, there exist more powerful algorithmic building
blocks for efficiently finding parameter settings with the “best” result strengths within
a region of the parameter space P, without trying all parameter settings therein. For
example, given a time series, with some preprocessing, it is possible to find the data
point with the minimum value within a given time range; as we will show in Section 4.2,
this building block allows us to find counterarguments for Giuliani’s adoption claim
quickly.

For these types of query templates, we develop algorithms that assume the avail-
ability of two functions: DivP is the parameter space division function, and OptP is the
parameter optimization function. On a high level, these two functions together enable
a locus approach: DivP divides P into “zones,” and OptP returns the “best” parameter
setting within each zone.

Formally, given a reference parameter setting p0 and a parameter sensitivity thresh-
old τP, DivP(p0, τP) returns a set of zones10 in P, whose union covers {p ∈ P | SP(p; p0) >
τP}, the subset of P with sensibility above τP. Given a zone ψ and a reference result
r0, OptP has two variants: OptP-∞(r0, ψ), for CA, returns arg minp∈ψ SR(q(p); r0), that is,
the parameter setting(s) in ψ with minimum result strength relative to r0; OptP0(r0, ψ),
for RE, returns arg minp∈ψ |SR(q(p); r0)|, that is, the parameter setting(s) in ψ whose
result is closest to r0.

complexity of Enum
partial

CA-τR becomes O(|P|(t + μp + μq)). With independent axes/criteria, the expected size of
A is O(logc |P|) [Buchta 1989].
10We leave the definition for a “zone” of P up to DivP and OptP. The only requirement is that zones have
compact descriptions, so they can be passed efficiently from DivP to OptP during processing. For example,
a zone in N

3 may be succinctly described as a convex region defined by a small number of inequalities. In
contrast, an explicit list of member points would not be a good description for the zone.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

Computational Fact Checking through Query Perturbations 4:17

Using DivP and OptP-∞, we have the following algorithms for CA. The algorithms for
RE are mostly identical, except that they use OptP0 instead of OptP-∞. In the following,
let μd (and μo) denote the running time of DivP (and OptP per zone, respectively).

(LocCA-τP). Given a parameter sensibility threshold τP, LocCA-τP simply calls
DivP(p0, τP) to divide the set of parameter settings above the sensibility thresh-
old (relative to p0) into a set of zones. Then, for each zone ψ , LocCA-τP calls
OptP(r0, ψ) to find the best counterarguments. Finally, it returns the overall best
counterarguments across all zones.

Let m denote the number of zones returned by DivP. The time complexity of
LocCA-τP is O(μd + mμo). The improvement over EnumCA-τP comes from the
fact that m is oftentimes far less than the number of parameter settings with
sensibility above τP; on the other hand, μo is likely bigger than μq. Thus, the
overall savings hinge on the efficiency of OptP.

(LocCA-τR). This algorithm builds on top of LocCA-τP, and is applicable only when
a parameter sensibility function SP is available. Given τR, we take a guess of the
value of τP and call LocCA-τP. Suppose it returns an answer with sensibility x and
result strength y. We know we have found the desired answer if (1) y < τR, and
(2) calling LocCA-τP with τP = x would return an answer with result strength no
less than τR.

We look for the right τP using an exponential search. Starting with a high
initial guess for τP, we iteratively lower it—effectively doubling the search range
for τP—until y > τR. Then, we perform a binary search in the inferred range of τR.

The number of steps in the exponential search is O(log |P|), though it can be
much smaller in practice when answers have high sensibility. The time complexity
of LocCA-τR is thus a factor of O(log |P|) higher than LocCA-τP.

(LocCA-po). This algorithm also builds on top of LocCA-τP. We take an initial guess
of τP, and compute the Pareto-optimal parameter settings (up to k of them) with
sensibility higher than τP in decreasing sensibility order. These parameter set-
tings are obtained by calling LocCA-τP repeatedly—first with the initial τP, and
then subsequently with τP set to the sensibility of the parameter setting returned
by the last LocCA-τP call.

We look for the value of τP that gives us the desired number of Pareto-optimal
parameter settings using an exponential search. During this search, we take care
to avoid repeating LocCA-τP calls with sensibility thresholds that are (effectively)
the same.

The algorithm presents the details of the search. Assume that sensibility of all
parameter settings fall within the range (šp, ŝp). Atop and Abot are lists of 〈key, val〉
pairs, sorted in decreasing key order. Assuming each val is a set, total() returns
the total size of all sets in the list, and totalXLast() returns the total size of all
but the last set. Atop contains all answers with sensibility higher than τ top; Abot

contains all answers with sensibility between a guessed threshold τ ∈ (šp, τ
top)

and τ top, right inclusive. The algorithm progressively decreases τ top and increases
the number of answers until at least k answers are found. The number of answers
returned is capped around k.

The number of steps in the exponential search is O(log |P|), though it can be
much smaller in practice as explained in the case of LocCA-τR above. The time
complexity of LocCA-po is O(k log |P|(μd + mμo)), where m denotes the maximum
number of zones returned by a single DivP call.

We will see instantiations of DivP and OptP in Sections 4.2 and Section 5.2 that would
enable the preceding algorithms for claims generalizing our running examples.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

4:18 Y. Wu et al.

ALGORITHM 3: LocCA-po(〈q, p0, r0〉, k).

1 Atop ← ∅; τ top ← ŝp; Abot ← ∅;
2 τ ← initial guess in (šp, ŝp);
3 while τ − šp > ε do
4 Abot ← ∅; γ ← τ ;
5 while true do // grow Abot upwards
6 (γ ′, �) ← LocCA-τP(〈q, p0, r0〉, γ);
7 if � = ∅ or γ ′ > τ top then // Abot merges into Atop; start new round
8 Atop ← Atop ∪ Abot; τ top ← τ ; break;

9 Abot.prepend(〈γ ′, �〉);
10 while Abot �= ∅ and Atop.total() + Abot.totalXLast() ≥ k do
11 Abot.removeLast();

12 γ ← γ ′;

13 if Atop.total() ≥ k then break;
14 τ ← new guess in (šp, τ);

15 return Atop;

4. WAC CLAIMS

Having described our modeling and algorithmic frameworks, we now show how to
check a class of claims generalizing Giuliani’s in Example 1.1. The generalized claim
template can also be applied to other time series data. As an example, we show its
application on the U.S. monthly unemployment data in Section 6 (Section 6.1.3 details
our choice of model parameters for that application).

4.1. Modeling WAC

Parameterized Query Template. Here, the database is a sequence of positive numbers
x1, x2, . . . , xn. A window aggregate with window length w and endpoint t computes∑

i∈(t−w,t] xi.11 The WAC query template is the function

q(w, t, d) =
∑

i∈(t−w,t] xi∑
i∈(t−d−w,t−d] xi

, (4)

which compares two windows of the same length w ∈ [1, n − 1] ending at t and t − d,
respectively. We call t ∈ [w + 1, n] the current time and d ∈ [1, t − w] the lead. Hence,
the parameter space P is the set of points in N

3 enclosed by a convex polytope, and the
result space R is R

+. The size of P for a data sequence of length n is O(n3).
Result Strength. Suppose the claim boasts an increase of aggregate value over time

(which is the case for Giuliani’s adoption claim). As mentioned in Section 2.2, we define
the result strength function as SR(r; r0) = r/r0 − 1. (On the other hand, if the claim
boasts a decrease, for example, “crime rate is dropping,” we would replace r/r0 with
r0/r in SR(r; r0).)

Parameter Sensibility. We define parameter sensibility by dividing it into two
components—“naturalness” Nat(p) (independent of p0) and “relevance” Rel(p; p0) (de-
pendent on p0):

SP(p; p0) ∝ Nat(p) · Rel(p; p0). (5)

We normalize SP(p; p0) so that it is a pmf over P given p0. Note that it also induces a
weak order on P.

11Here we assume sum; extensions to other common aggregation functions are straightforward.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

Computational Fact Checking through Query Perturbations 4:19

First, consider naturalness. In general, for time series data, certain durations are
more natural than others. For example, for monthly data, multiples of 12 (i.e., years)
are more natural than multiples of 3 but not of 12 (i.e., quarters), who are in turn
more natural than integers not divisible by 3. For Giuliani’s adoption claim over yearly
adoption data, durations that are multiples of 4 are natural because the term of the
New York City mayor is four years. Recognizing that values along an axis of time
durations often has a periodic structure, we define naturalness for values for such an
axis using a set of (usually a few, and often not disjoint) levels whose union is N. Each
level � is specified by a pair (χ�, π�). Here, χ� is the naturalness score associated with
level �; π� ≥ 1 is an integral period that defines the values in level � as N

(�) = {v ∈ N |
v mod π� = 0}. The naturalness score of a duration v is given by max{χ� | v ∈ N

(�)}; that
is, the maximum score that v is associated with.

For WAC, let p = (w, t, d). Window length w and lead d are both durations, and
contribute to the naturalness of p. We define

Nat(p) = Natwin(w) · Natlead(d), (6)

where Natwin and Natlead are naturalness scoring functions for the values for the axes of
w and d as discussed previously. Specifically, for Giuliani’s claim, we define naturalness
for both w and d using three levels (1, 1), (e, 4), (e2, 8). Here, periods 4 and 8 reflect
the natural term lengths of New York City mayors; the choice of e as bases is for
convenience (when multiplied with a Gaussian relevance term). More sophisticated
naturalness modeling is certainly possible, but we have found this definition to be
adequate in our experiments.

Second, consider relevance. Generally speaking, the relevance of a parameter setting
decreases with the magnitude of perturbation from the parameter setting of the original
claim. For WAC, let p0 = (w0, t0, d0) denote the original parameter setting. We define
Rel(p; p0) to be a 3D normal distribution centered at p0, that is,

Rel(p; p0) = Relwin(w; w0) · ReltEnd(t; t0) · Rellead(d; d0), where

Relwin(w; w0) = 1√
2πσwin

exp
(

− (w − w0)2

2σwin
2

)
,

ReltEnd(t; t0) = 1√
2πσ tEnd

exp
(

− (t − t0)2

2σ tEnd
2

)
,

Rellead(d; d0) = 1√
2πσ lead

exp
(

− (d − d0)2

2σ lead
2

)
.

(7)

In other words, Rel(p; p0) = (2π)−3/2|�|−1/2 exp(− 1
2 (p − p0)T �−1(p − p0)) is the pdf of a

3D normal distribution N(p0; �), where � = diag(σ 2
win, σ

2
tEnd, σ

2
lead).

Specifically, for Giuliani’s claim, (σwin, σtEnd, σlead) = (5, 1, 10). Here, a small σ tEnd pe-
nalizes perturbation in t, because its original setting reflects the end of Giuliani’s term;
a large σ lead allows more flexibility in perturbing d than w, as w is more constrained
by Giuliani’s term.

Recall that Figure 2(b) illustrates the overall parameter sensibility function—the
product of naturalness and relevance—for Giuliani’s claim when fixing w = 6.

Fact-Checking Tasks. The preceding modeling immediately enables the formula-
tion of all problems in Section 2.2 related to finding counterarguments and reverse-
engineering for WAC claims. Among the claim quality measures, fairness and robust-
ness are useful to WAC claims in the sense discussed in Example 1.1; uniqueness could
be useful in seeing whether the adoption trend existed under other mayors’ terms (had
more historical data been available).

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

4:20 Y. Wu et al.

ALGORITHM 4: GetP-dw
↓ (w0) for WAC claims.

Priority queue Q stores triples of the form (v, s, �), where v is the parameter value, s is its
contribution to SP and serves as priority, and � is the level (with the highest naturalness
score) that v is associated with. Methods add(·, ·, ·) and removeMax() are self-explanatory.

1 def contrib�(w) begin
2 return χ�(

w−w0
σw

)2;

3 def next�(w, increase) begin
4 if increase then
5 if w = w0 then w′ ← w0 − (w0 mod π�) + π� else w′ ← w + π�;
6 else
7 if w = w0 then w′ ← w0 − (w0 mod π�) else w′ ← w − π�;

8 if w′ ∈ [1, n] then return w′ else return ⊥;

9 Q ← ∅;
10 foreach level � do
11 foreach increase ∈ {true, false} do
12 w ← next�(w0, increase); Q.add(w, contrib�(w), �);

13 while Q �= ∅ do
14 (w, s, �) ← Q.removeMax();
15 w′ ← next�(w, (w > w0));
16 if w′ �= ⊥ then Q.add(w′, contrib�(w′), �);
17 yield w;

4.2. Algorithmic Building Blocks for WAC

4.2.1. Preprocessing to Speed Up Queries. Answering a WAC query given parameters
(w, t, d) normally takes �(w) time because it must examine all data in the windows
being compared. By preprocessing the input sequence into a sequence of prefix sums, we
can reduce the query time to O(1). More specifically, given the input data x1, x2, . . . , xn,
define x̄i = ∑i

j=1 xj for i ∈ [1, n]. With one pass over the input data, we compute and
materialize the prefix sums x̄1, . . . , x̄n in O(n) time. For a given point (w, t, d), the WAC
query becomes q(w, t, d) = x̄t−x̄t−w

x̄t−d−x̄t−d−w
, which can be computed in O(1) time.

4.2.2. Ordered Enumeration of Parameters. Enabling ordered enumeration of parameters
for WAC is straightforward. As discussed in Section 3.2.2, for each of the three dimen-
sions w, t, and d of P, we simply need to provide a function to enumerate its values in
descending order of their contribution to SP; we also need to define the Boolean func-
tion IsPValid to test the validity of (w, t, d) combinations. Algorithm 2 in Section 3.2.2
can then combine these functions automatically to provide ordered enumeration of full
parameter settings.

We show how to implement GetP-dw
↓ (w0) that enumerates possible w values with

decreasing sensibility with respect to w0 from the original claim’s parameter setting.
Recall from Section 4.1 that w contributes to both naturalness and relevance. For
w values within the same level of naturalness, enumerating them in the decreasing
relevance order is straightforward, because they are found at increasing distance from
w0. To enumerate w values in order of their overall contribution to SP, we perform
enumeration across all levels of naturalness in parallel, using a priority queue to
merge values from different levels into single stream. For details, see Algorithm 4.

Ordered enumeration of lead d is analogous. Ordered enumeration of endpoint t is
simpler as it does not contribute to naturalness; we simply return t values in increasing
distance from t0. Function IsPValid checks t − d − w > 0, to ensure that the earlier
window falls completely within the input sequence.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

Computational Fact Checking through Query Perturbations 4:21

Fig. 4. Illustration of zones ψw,�,h (for a fixed w) dividing the parameter space of WAC claims. The yellow
dots () belong to the zone for the level with period 1 and the lowest naturalness; the four types of red dots
(), distinguished by their color saturation and orientation, belong to the four zones (with h = 0, 1, 2, 3)
that make up the level with period 4 and higher naturalness. We show only two levels here for simplicity.

To understand the complexity of ordered enumeration, we note that all param-
eter settings above a given sensibility τP fall within the ellipsoid centered at p0
given by

(p − p0)T �−1(p − p0) = −(2 ln τP + ln |�| + 3 ln(2π)). (8)

See Figure 4 for an illustration (a slice of the bounding ellipsoid is outlined in red;
ignore the “zones” for now). Let r̃ denote the length of the longest semiprincipal axis
(measure by the number of possible values on it) of this ellipsoid; we call r̃ the interesting
solution radius. For CA-τP, r̃ is determined by the given τP. For CA-τR (or CA-po),
r̃ is determined by the “effective” τP, that is, the sensibility of the answer (or the
lowest sensibility in the answer set, respectively). The same analysis applies to the
variants of RE. Using the results in Section 3.2.2, the time and space complexities of
ordered enumeration for WAC are O(r̃3 log r̃) and O(r̃2), respectively. In the worst case,
r̃ = �(n). However, in practice, a counterargument or reverse-engineered claim is often
close to p0, so r̃ � n, and ordered enumeration will run much faster than the O(n3)
baseline.

4.2.3. The Locus Approach. We now show how to enable efficient locus approaches,
LocCA-τP and LocRE-τP, to checking WAC claims, by defining functions DivP and OptP
(Section 3.3). The subset of P above sensibility threshold τP is a set of 3D grid points.
Roughly speaking, our approach “slices” this subset using planes perpendicular to the
w axis, and computes the best answer within each slice.

Divide. In more detail, the parameter space division function DivP works as follows.
Recall that naturalness levels for d-values are specified by {(χd

� , πd
�)}, where πd

� specifies
the period of d-values on naturalness level �. Consider the uniform (t, d) grid in the
plane with a fixed w-value shown in Figure 4. For a subset of grid points bounded
by a convex region, dictated by the problem definition and the minimum sensibility
threshold τP, we further divide it into πd

� subsets, with spacing of πd
� , and offsets

0, 1, . . . , πd
� − 1 along the t-axis. This further division is for the convenience of OptP as

we will show next. Formally, for each h ∈ [0, πd
�), we define such a subset as a zone

ψw,�,h as follows:

t ≤ n ∧ t − d ≥ w; (9)

d mod πd
� = 0; (10)

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

4:22 Y. Wu et al.

ALGORITHM 5: OptP-∞(r0, ψw,�,h) for WAC claims.

Lines 1, 5, and 6 optimize under Constraints (9), (10), (11), and (12); details are omitted.
// Determine the range of time points:

1 imin ← min{t − d | (w, t, d) ∈ ψw,�,h}; imax ← max{t | (w, t, d) ∈ ψw,�,h};
2 for (i ← imin; i ≤ imax; i ← i + πd

�) do yi ← x̄i − x̄i−w;
3 Y ← a data structure for {yi} supporting range-maximum queries;

// Search the zone, one t value at a time:
4 (t�, d�) ← (⊥,⊥); s� ← ∞;
5 foreach i2 ∈ {t | ∃d : (w, t, d) ∈ ψw,�,h} do
6 imin

1 ← min{i2 − d | (w, i2, d) ∈ ψw,�,h}; imax
1 ← max{i2 − d | (w, i2, d) ∈ ψw,�,h};

7 (i1, yi1) ← Y.range-max([imin
1 , imax

1]);
8 s ← yi2

yi1
/r0 − 1;

9 if s < s� then
10 (t�, d�) ← (i2, i2 − i1); s� ← s;

11 return (w, t�, d�);

(
t − t0

σt

)2

+
(

d − d0

σd

)2

< − ln τ, where τ = τP

Natwin(w) · Relwin(w; w0) · χd
�

; (11)

t mod πd
� = h. (12)

Here is some intuition of why a zone is defined as above. Consider a zone ψw,�,h.
First, with w fixed, q(w, t, d) can be written as yt/yt−d (y will be formally defined in the
following). Given this decomposition of q, in order to maximize/minimize q(w, t, d), we
only need to maximize/minimize yt and minimize/maximize yt−d, which is a 1D problem.
However, not all combinations of (t, d) are valid according to the semantics of WAC
claim. Constraint (12) ensures that for any t, values of d for valid (t, d) combinations
are contiguous in ψw,�,h, which is convenient for optimization as shown in the following.

For example, in Giuliani’s example where the three naturalness levels {(χd
� , πd

�)}3
�=1 =

{(1, 1), (e, 4), (e2, 8)} are defined for d, DivP returns, for all parameters on the lowest
naturalness level � = 1 (within the plausible region defined by Equations (9) and (11),
a single zone ψw,1,0. For � = 2, where πd

� = 4, four zones are returned, denoted by
ψw,2,h, h = 0, 1, 2, 3. Each zone contains parameters on naturalness level � = 2, with
the additional constraint that t mod 4 = h; similar for level � = 3 with πd

3 = 8 zones
returned by DivP.

Optimize: CA. Next, we show how to optimize each zone returned by DivP. For the
problem of finding counterarguments, we define OptP-∞ for WAC (Algorithm 5) as fol-
lows. Note that for each zone ψw,�,h there exists an equally spaced subsequence of time
points I = {i | i mod πd

� = h ∧ imin ≤ i ≤ imax} (where imin and imax are derived from
the constraints on t and d imposed by the zone), such that for every (t, d) setting in
ψw,�,h, both t mod πd

� = h and t − d mod πd
� = h. We compute the window aggregate

result (with window length w) for each of these time points in I, obtaining a sequence
Y = {yi | i ∈ I}, where yi = ∑

j∈(i−w,i] xj = x̄i − x̄i−w. Recall that the x̄i ’s are precomputed
prefix sums, so computing Y takes O(|Y |) time. Every (t, d) setting in zone ψw,�,h cor-
responds to a pair of time values, namely, (i1, i2) = (t − d, t); we call such pairs valid.
Note that SR((w, t, d); r0) = 1

r0
· yi2

yi1
− 1.

Thus, to minimize SR((w, t, d); r0) within the zone, we look for a valid (i1, i2) pair that
minimizes yi2

yi1
. To this end, for each valid i2 value, we determine the range of valid i1

values within which to maximize yi1 . Because of the convexity of the zone, this range
covers a contiguous subsequence of {yi}. Hence, given i2, the maximization problem

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

Computational Fact Checking through Query Perturbations 4:23

Fig. 5. Illustration of the sweep line procedure used by OptP0 for reverse-engineering WAC claims. Points
corresponding to Y are drawn as black dots. Segments currently intersected by the (red) sweepline are drawn
using thick lines.

reduces to a range-maximum query over a (static) sequence, a well-studied problem.
The sequence Y can be preprocessed in linear (O(|Y |)) time into a linear-space data
structure, such that any range-maximum query can be answered in O(1) time [Harel
and Tarjan 1984].12 We use the same notion of “interesting solution radius” r̃ introduced
in Section 4.2.2 to analyze the complexity of the locus approach for WAC with the DivP
and OptP-∞ described here. The time complexity of finding counterarguments for WAC
is improved to O(r̃2)—with the space divided into O(r̃) slices, each taking O(r̃) time
to solve—compared with O(r̃3 log r̃) for ordered enumeration. The space complexity is
improved to O(r̃), compared with O(r̃2) for ordered enumeration.

Note that complexity analysis discussed previously is for LocCA-τP. For the other two
versions, as mentioned in Section 3.3, LocCA-τR invokes LocCA-τP, within an additional
multiplicative factor of O(log |P|) in its time complexity, that is, O(r̃2 log n). For LocCA-
po, with another multiplicative factor of O(k), the time complexity is O(kr̃2 log n).

Optimize: RE. For reverse-engineering WAC claims, we define OptP0 as follows. Given
a zone ψw,�,h, we derive I and precompute the sequence Y = {yi | i ∈ I} as in OptP-∞,
such that each (t, d) setting in the zone corresponds to a pair of time points in I, namely,
(i1, i2) = (t − d, t). However, instead of minimizing 1

r0
· yi2

yi1
− 1 over all valid (i1, i2) pairs

as in OptP-∞, we want to minimize the absolute result strength difference | 1
r0

· yi2
yi1

− 1|,
or equivalently, | 1

yi1
| · |yi1 − yi2

r0
|.

Given a valid i2 value, we can determine the range of valid i1 values associated with
i2, as in OptP-∞. Recall that OptP-∞ preprocesses Y , issues a query for each i2 to find
the best i1 in the associated range, and then picks the overall best (i1, i2) pair. Here,
however, we find the overall best (i1, i2) using a sweep line procedure, which essentially
considers the i1 ranges associated with all valid i2’s in batch. To illustrate, let us map
the sequence Y = {yi | i ∈ I} to a set of points {(i, yi) | i ∈ I} in 2D as shown in
Figure 5. For each valid i2 value and its associated i1 range, we draw a horizontal
line segment spanning the i1 range, at height yi2

r0
. It is easy to see that the i1 value

that minimizes | 1
r0

· yi2
yi1

− 1| within this range corresponds to either the closest point
above the segment or the closest point below the segment (with the constraint that the
segment contains the projections of these points). Hence, the problem reduces to that
of finding such closest point-segment pairs. To solve this problem, we sort the segments

12We actually use a simple implementation based on Tarjan’s offline LCA algorithm [Tarjan 1979]. It has
linear space and preprocessing time, but O(α(|Y |)) time per range-maximum query (where α(·) is the inverse
Ackermann function), which already provides adequate performance.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

4:24 Y. Wu et al.

by the horizontal coordinates of their endpoints. We sweep a vertical line from left to
right. During the sweep, we incrementally maintain the set of segments intersected by
the sweep line in a 1D search tree (e.g., B-tree) with the height of a segment as its key.
For each point (i, yi) encountered by the sweep line, we probe the search tree with yi
for the active segments with heights closest to yi (above and below). We keep track of
the best point-segment pair (i.e., one with the smallest | 1

r0
· yi2

yi1
− 1|) seen so far during

the sweep, and return it at the end of the sweep.
Preparing the segments for the sweep takes O(|Y | log |Y |) time. The sweep takes

O(|Y |) steps, each of which takes O(log |Y |) time. Therefore, OptP0 takes O(|Y | log |Y |)
time and O(|Y |) space. Similar to finding counterarguments earlier, the parameter
space is divided into O(r̃) slices by DivP, each taking O(r̃ log r̃) time to solve by OptP0.
Thus, the overall time complexity is O(r̃2 log r̃). The space requirement is again linear.

Similar to CA, the time complexities of LocRE-τR and LocRE-po are factors
of O(log |P|) and O(k log |P|) higher than that of LocRE-τP, respectively, hence
O(r̃2 log r̃ log n) and O(kr̃2 log r̃ log n).

5. TSS: TIME SERIES SIMILARITY CLAIMS

We now turn to a class of claims generalizing the vote correlation claim in Example 1.2.

5.1. Modeling TSS

Parameterized Query Template. Here the database contains information about m en-
tities identified as 1, 2, . . . , m. Each entity u is associated with a time series Xu =
{xu,1, xu,2, . . . , xu,n}. A function simT (Xu, Xv), where T ⊆ [1, n] and u, v ∈ [1, m], com-
putes the similarity between two time series {xu,t ∈ Xu | t ∈ T } and {xv,t ∈ Xv | t ∈ T },
that is, Xu and Xv restricted to the subset of timesteps in T . The TSSquery template is
the function

q(u, v, a, b) = sim[a,b](Xu, Xv), (13)

which compares source entity u against target entity v (u �= v) over the time period
[a, b] ⊆ [1, n]. Entity v is typically well recognizable to the audience, and serves as the
target of comparison in order to claim something desirable about u.

For example, in the Marshall-Boehner claim (reverse-engineered) of Example 1.2, v
is Boehner and u is Marshall; a corresponds to January 2007, and b corresponds to
October 14, 2010, the time when the claim was made. Each vote is one of yea, nay,
present but not voting, and absent. The similarity between two Representatives over a
period is computed as the number of times they both voted yea or nay, divided by the
number of times neither is absent.

Result Strength and Parameter Sensibility. We can investigate a TSS claim in mul-
tiple ways by parameter perturbation—changing the period of comparison, replacing
the entities being compared, or both—which lead to multiple useful problem formula-
tions. In many cases, it makes sense to perturb some instead of all parameters; doing
so gives cleaner problem formulations and solutions that are easier to interpret. Since
different problem formulations call for different setups for parameter sensibility and
result strength, we organize our discussion below by problem formulation.

Finding Counterarguments by Perturbing Comparison Period (TSS-CAaaabbb). Here, we
fix u and v to those in the original claim, and consider counterarguments obtained
by perturbing a and b. We call this problem TSS-CAab. Suppose higher similarity
strengthens the claim (which is the case for the Marshall-Boehner claim). We define
the result strength function as SR(r; r0) = r − r0. For parameter sensibility, we define
the sensibility of (a, b) relative to (a0, b0) as the product of naturalness and relevance,
as in Equation (5).

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

Computational Fact Checking through Query Perturbations 4:25

In more detail, naturalness stems from a. In the vote correlation example, values of
a that correspond to the beginning of some session of Congress are the most natural.
As with the naturalness of durations discussed in Section 4.1, we define naturalness of
time points using a set of (not necessarily disjoint) levels whose union is N. However,
we do not require levels to be periodic in this case. In general, each level � is specified
by a pair (χ�, λ�), where χ� is the naturalness score associated with level � and λ� : N →
{false, true} is a condition that “selects” the values in level �. Again, the naturalness
score of a time point t is given by max{χ� | λ�(t) = true}; that is, the maximum score that
v is associated with. Specifically, for the Marshall-Boehner claim, we define naturalness
of a using two levels (1, t �→ true) and (e, t �→ t ∈ N

begin), where N
begin is the subset of

[1, n] corresponding to the beginning of some session of Congress.
The relevance of p = (a, b) relative to p0(a0, b0) decreases with the distance between

them, and is defined analogously to WAC claims in Equation (7), Section 4.1:

Reltime(p; p0) = (2π)−1|�|−1/2 exp
(

1
2

(p − p0)T �−1(p − p0)
)

,

where � = diag(σ begin
2, σ end

2).
(14)

Specifically, for the Marshall-Boehner claim, (σ begin, σ end) = (1000, 1). We use a small
σ end to penalize perturbation in b, because its original setting reflects the time of the
claim.

With the preceding definitions, we obtain the three variants of the problem of finding
counterarguments in Section 2.2, for perturbations of the comparison time period.

Finding Counterarguments by Perturbing Entities (TSS-CAuuu). Now, consider coun-
terarguments obtained by perturbing entity parameters, while fixing a and b (to their
settings from the original claim, a counterargument obtained from TSS-CAab, or a
reverse-engineered claim as discussed later). Replacing both u and v would lead to
settings with strenuous connection to the original claim, so we consider perturbing u
only (as in the counterarguments made by professional fact checkers at factcheck.org
in Example 1.2).13 We call this problem TSS-CAu.

Intuitively, we want to find an entity u that is recognizable to the audience, yet does
not have the property that the original claim tries to suggest for u0. For example, the
property suggested by the Marshall-Boehner claim is “being conservative,” so to counter
it, we choose a well-known Democrat Jim Clyburn. In general, we model the aspects
of recognizability and (deviation from) suggested property as naturalness Natsrc(u) and
relevancy Natsrc(u), respectively. Instead of combining the two scores into a parameter
sensibility function, we use a parameter sensibility relation �u0 to define a partial
order: u1 �u0 u2 if and only if Natsrc(u1) ≤ Natsrc(u2) and Natsrc(u1; u0) ≤ Natsrc(u2; u0).

Specifically, for the vote correlation claim, we assume that each Representative e is
annotated with a recognizability score e.rec ∈ R (higher means more recognizable) and
an ideology score e.ide ∈ R (higher means more conservative); see Section 6 for how we
obtain these annotations. We define

Natsrc(u) = u.rec; (15)

Natsrc(u; u0) = u0.ide − u.ide. (16)

Note that Natsrc(e; u0) is defined such that liberal Representatives will be scored higher,
because for this example, we want to use such Representatives to counter the claim
that high vote correlation with Boehner implies being conservative.

13It is also plausible to consider perturbing v alone; for example, we could replace Boehner in the vote
correlation claim with a leading Democrat to argue that Marshall also votes with liberals. We omit the
discussion here as the problem formulation changes only slightly.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

file:factcheck.org

4:26 Y. Wu et al.

As for result strength, note that a Representative used to counter the claim should
have reasonable (relative to Marshall) vote correlation with Boehner—the higher the
better. Therefore, we define the result strength function as SR(r; r0) = r0 − r (note the
reversal from the case of TSS-CAab). In other words, higher vote correlations in this
case lead to better counterarguments that weaken the original claim more.

With the preceding definitions, we obtain variant CA-τR of the problem of finding
counterarguments for perturbations of the source entity.

Reverse-Engineering Vague Claims. TSS claims always mention u explicitly, so for
reverse-engineering, we only consider settings of a, b, and v. For example, in the original
claim of Example 1.2, u is Marshall; v is vaguely stated as “Republican leaders”; a and b
are omitted. Suppose SPtgt(v) captures how “sensible” v is in the context of the original
claim. We then define the overall parameter sensibility function by multiplying this
v-based score with the time-based scores defined earlier for TSS-CAab:

SP
(
(v, a, b); (v0, a0, b0)

) = SPtgt(v) · Natbegin(a) · Relbegin(a; a0) · Relend(b; b0). (17)

Given the nature of vague TSS claims, choices of v are often limited; such is the case
for “Republican leaders” in Example 1.2. Suppose there are η “sensible” choices of v. We
can simply define SPtgt(v) = 1/η for all sensible choices of v, and 0 for other entities. For
the specific definition of “sensible choices” for the vote correlation claim, see Section 6.

We define the result strength as SR(r; r0) = r − r0, which simply reflects the differ-
ence between results (reversing the direction of subtraction would make no practical
difference).

These definitions give us all variants of the reverse-engineering problem discussed
in Section 2.2.

Measuring Claim Quality. Claim qualities can be measured by perturbing either
the comparison period or the entities. First, consider the perturbations of a and b
while fixing the original u and v. We use the result strength and parameter sensibility
functions defined earlier for TSS-CAab (SP needs to be normalized to a pmf). Among
the claim quality measures defined in Section 2.2, both fairness and robustness are
useful in this case; uniqueness is not.

Second, considering other settings of uand v gives us a sense of how special the degree
of similarity in the original claim is. (Fixing either u or v, instead of both, also leads to
meaningful formulations.) Here, we define the parameter space P to be all possible (u, v)
pairs (unique up to order) where u �= v. In this case, uniqueness makes obvious sense,
when we define SR(r; r0) = r − r0 (assuming higher similarity strengthens the claim).

In the second case mentioned earlier, we can further define a parameter sensibility
function that assigns equal probability to each (u, v) ∈ P. With this pmf, fairness be-
comes a useful measure as well. It computes the average relative strength of perturbed
claims; a positive or small negative value means the claimed similarity is actually not
high in comparison.

Other Applications. TSS claims can be applied to other multitime series datasets,
such as stock prices over time, and sports players’ game-by-game performance stats.
We do not detail the other applications in this article.

5.2. Algorithmic Building Blocks for TSS

5.2.1. Preprocessing to Speed Up Queries. For TSS-CAab, we are given entities u and v
but need to permute the time period [a, b]. We preprocess the two time series Xu = {xu,t}
and Xv = {xv,t} so that queries with any (a, b) setting can be quickly answered. At the
very least, the two time series can be materialized separately from the input data
and further indexed by time. If the similarity function sim[a,b](Xu, Xv) is a distributive
or algebraic aggregate [Gray et al. 1996] over the set {sim[t,t](Xu, Xv) | t ∈ [a, b]} of

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

Computational Fact Checking through Query Perturbations 4:27

pointwise similarities—which is the case for vote correlation claims—we can do better.
In this case, using an idea similar to that of prefix sums in Section 4.2.1, we define s̄i
as the number of times during [1, i] that u and v agreed (i.e., they both voted yea or
nay), and c̄i as the number of times u and v both voted (i.e., neither was absent), where
i ∈ [0, n]. We can incrementally compute the s̄i ’s and c̄i ’s with one pass over Xu and Xv,
starting with s̄0 = c̄0 = 0. Then, with materialized s̄i ’s and c̄i ’s, we can compute each
query sim[a,b](Xu, Xv) = s̄b−s̄a−1

c̄b−c̄a−1
in O(1) time.

For TSS-CAu, we are given the time period [a, b] and the target entity v, but need
to permute the source entity u. In this case, precomputing the queries for different
source entities brings no benefit compared with computing them on demand. However,
in the preprocessing step, we cache the portion of Xv during [a, b] in memory, so any
subsequent queries comparing Xu with Xv only needs to retrieve the corresponding
portion of Xu.

For TSS-RE, we need to find the best (v, a, b) settings while u is fixed. In this case,
for each sensible choice of v, we perform the same preprocessing as in TSS-CAab, so
that we can compute each query in O(1) time.

5.2.2. Ordered Enumeration of Parameters. For TSS-CAab, enabling ordered enumeration
of (a, b) settings is straightforward—we follow the same approach as for WAC claims
in Section 4.2.2, that is, by providing a function to enumerate values in each axis of the
parameter space in order. Since b contributes only to naturalness, we simply enumerate
b values in increasing distance from b0. a contributes to both naturalness and relevance,
and can be handled in a way similar to w for WAC claims in Section 4.2.2—enumerating
values across all levels of naturalness in parallel and merging them using a priority
queue. The only modification required to Algorithm 4 is a slight generalization of the
procedure next�: here, instead of returning the next value divisible by period π� of level
�, we return the next value satisfying the condition λ� for level �. Finally, we define
IsPValid to ensure that a ≤ b. Following the notion of interesting solution radius r̃
introduced in Section 4.2.2, the time and space complexities are O(r̃2 log r̃) and O(r̃),
respectively.

For TSS-CAu, the source entity parameter u needs to be permuted, and its values
are partially ordered by the two criteria of naturalness and relevance. In the case of
vote correlation claims, these criteria are recognizability (Equation (15)) and ideology
(Equation (16)), respectively. It is straightforward to provide a function for enumerating
entities by each criterion. Then, as discussed in Section 3.2.3, algorithm Enum

partial
CA-τR

immediately becomes applicable.
Finally, for TSS-RE, we extend the method for enumerating (a, b) described previ-

ously for TSS-CAab with the additional axis for target entity v. In addition to the already
defined functions for enumerating a and b, we simply add a function that enumerates v
in decreasing order of SPtgt(v) (recall Equation (17)). For the Marshall-Boehner claim,
this function simply enumerates all Representatives who can be regarded as “Repub-
lican leaders.”

5.2.3. The Locus Approach. We now describe how to enable the locus approach for TSS-
CAab and TSS-RE (this approach is not applicable to TSS-CAu). At a high level, the
approaches are similar to those for WAC claims described in Section 4.2.3, but the
details and underlying algorithmic challenges differ.

TSS-CAaaabbb. Given a p0 = (a0, b0) and a sensibility threshold τP, we want to compute
p = (a, b) that minimizes SR(q(p); q(p0)), where p satisfies SP(p; p0) > τP.

Observe that the subset of (a, b) parameter settings above τP is a set of 2D grid points.
This subset is analogous to a slice of the 3D grid points (with w fixed) in Section 4.2.3,
but further division into zones is simpler in this case. For each naturalness level � along

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

4:28 Y. Wu et al.

the a-axis specified by (χ�, λ�), we let DivP return zone ψ� defined by the constraints
below14:

1 ≤ a ≤ b ≤ n; (18)

λ�(a) = true; (19)

(
a − a0

σa

)2

+
(

b − b0

σb

)2

< − ln
τP

χ�

. (20)

In the case of vote correlation claims, there are simply two zones: the low-naturalness
zone is the set of grid points within a clipped ellipse defined by Constraints (18) and (20);
the high-naturalness zone is a subset of the grid points with a ∈ N

begin.
OptP-∞ for TSS-CAab can be formulated as follows. For a given a ∈ [1, n], let Ja ⊆ [1, n]

denote the interval of b values that satisfy Constraints (18) and (20). Given a zone ψ�,
for each value of a that is valid in ψ�, we compute

b�
a = arg min

b∈Ja

s̄b − s̄a−1

c̄b − c̄a−1
. (21)

Intuitively, the objective is to minimize the slope of the line from oa−1 to ob ∈ Ja. We
describe a data structure for computing b�

a for a given value of a.
Let O = {oi = (c̄i, s̄i) | 0 ≤ i ≤ n} be a set of points in R

2 representing the pairs
formed by the corresponding elements of the two series {c̄i} and {s̄i} obtained by the
preprocessing step in Section 5.2.1. For simplicity, we assume that n = 2k for some
integer k ≥ 0. Since c̄i+1 ≥ c̄i and s̄i+1 ≥ s̄i, the points in O form an xy-monotone chain.
For a subset X ⊆ O and a value a ∈ [1, n], let

Q(X, a) = arg min
(c̄b,s̄b)∈X

s̄b − s̄a−1

c̄b − c̄a−1
. (22)

As an auxiliary function, Q(X, a) denotes the point in X that minimizes the slope of
the line formed together with oa−1. Let Oa = {ob | b ∈ Ja}. Then Q(Oa, a) = ob�

a
. It thus

suffices to describe how to compute Q(Oa, a). The line connecting oa−1 and Q(Oa, a) must
be tangent to the lower boundary of the convex hull of X. This observation leads us
to the following data structure supporting fast computation of the lower boundary of
convex hulls over different ranges of points in O.

We construct a 1D quad tree T on the interval (0, n], a complete binary tree with
n leaves whose i-th leaf is associated with the interval (i − 1, i]. Each node θ of T is
associated with a canonical interval γθ such that for an internal node θ with children
ζ and ξ , γθ = γζ ∪ γξ ; the root interval γroot = (0, n]. Let Oθ = {oi | i ∈ γθ }. We construct
LHθ , the lower boundary of the convex hull of Oθ , using LHζ and LHξ , in O(|Oθ |) time [De
Berg et al. 2000]. Figure 6 illustrates an example of this data structure (ignore the blue
portions for now). We store the sequence of vertices of LHθ in an array, augmented with
the fractional-cascading data structure [De Berg et al. 2000]. The fractional-cascading
structure enables us to perform binary search at nodes along a path in O(1) time per
node, after spending O(log n) time at the root (see De Berg et al. [2000] for details).

Given a ∈ [1, n], we compute Ca, the (unique) canonical interval decomposition of Ja
on T. It is well known that Ca consists of O(log n) nodes with disjoint canonical intervals,
whose union is Ja. It is easy to see that Oa = ⋃

θ∈Ca
Oθ , so Q(Oa, a) = Q({Q(Oθ , a) | θ ∈

Ca}, a), that is, the optimal solution for a on Ja comes from the optimal solutions for a
on one of the canonical intervals in Ca. Fix a node θ ∈ Ca, since the line passing through

14Narrow windows do not make sense. The model and algorithm can be adapted to penalize for this.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

Computational Fact Checking through Query Perturbations 4:29

Fig. 6. Illustration of the locus approach for TSS-CAab. The two dashed chains show LHζ and LHξ ; the solid
chain shows LHθ . Suppose a = 8 and Ja = [11, 16]. Then Ca = {δ, ξ} (note that LHδ = {o11, o12} is not labeled
in the figure). Since �

ξ

a−1 has smaller slope than �δ
a−1, we have b�

a = 16 and Q(O8, 8) = o16.

oa−1 and Q(Oθ , a), denoted by �θ
a−1, has the minimum slope among all lines passing

through oa−1 and a point of Oθ , LHθ lies above �θ
a−1 and thus �θ

a−1 is tangent to LHθ . We
can thus find Q(Oθ , a) by doing a binary search over the vertices of LHθ . See (the blue
portions of) Figure 6 for an illustration. Note that the nodes in Ca lie along two paths
of T. Using the fractional-cascading structure, we can compute Q(Oθ , a) for all θ ∈ Ca
in a total of O(log n) time. Hence, b�

a can be computed in O(log n) time.
By querying T with all values of a that are valid for ψ�, and repeating this procedure

for all zones, OptP-∞ returns arg minp∈ψ�
SR(q(p); q(p0)) in O(n log n) time. For TSS-

CAab, the number of zones is the same as the number of naturalness levels, which is a
domain-specific constant. So the overall time complexity is also O(n log n), or O(r̃ log r̃),
following the notion of interesting solution radius.

TSS-RE. In this case, the space of (v, a, b) parameter settings has one more axis
v than the previous case of TSS-CAab. Given a p0 = (v0, a0, b0), a reference response
r0, and a sensibility threshold τP, the goal is to compute p = (v, a, b) that minimizes
|SR(q(p); r0)|, where p satisifies SP(p; p0) > τP.

We slice the subset of parameter settings with sensibility above τP by all possible
values of v, and then further divide each slice into zones in a way similar to the case
of TSS-CAab. More precisely, for each v with nonzero SPtgt(v) and for each naturalness
level � along the a axis, we let DivP return zone ψv,�, which is defined by Constraints (18)
and (19), as well as the following (which replaces Constraint (20)):(

a − a0

σa

)2

+
(

b − b0

σb

)2

< − ln
τP

SPtgt(v) · χ�

. (23)

Given zone ψv,� and reference result r0, we define OptP0(r0, v, �) as follows. For a value
a, let Ja be the interval of b values that satisfy (18) and (20), and let

b̂a = arg min
b∈Ja

∣∣∣∣ s̄b − s̄a−1

c̄b − c̄a−1
− r0

∣∣∣∣ . (24)

Then the goal is to find the pair (a, b̂a), over all valid values of a in ψv,�, such that
| s̄b−s̄a−1

c̄b−c̄a−1
− r0| is minimized.

We adapt the algorithm for TSS-CAab. Let O and Oa be the same as for the TSS-CAab
case. For a given a ∈ [1, n], let �a−1 be the line of slope r0 passing through oa−1, and let

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

4:30 Y. Wu et al.

Fig. 7. Illustration of the locus approach for TSS-RE. Suppose a = 4 and Ja = [6, 10]. The line of slope r0
passes through oa−1, and divides the points in range Ja into O�

a and O⊥
a . The lower and upper convex hulls

of O�
a and O⊥

a are shown as dashed chains. Dotted line ��
a−1 (�⊥

a−1, respectively) passes through oa−1 and
b�

a = o8 (b⊥
a = o6, respectively). Because �⊥

a−1 is closer to target slope, b̂a = 6.

O�
a (O⊥

a , respectively) be the subset of Oa of the points lying above (below, respectively)
�a−1, and let b�

a (b⊥
a , respectively) be the index such that the line ��

a−1 (�⊥
a−1, respectively)

passing through oa−1 and ob�
a

(ob⊥
a
, respectively) has the smallest (largest, respectively)

slope among all lines passing through oa−1 and a point of O�
a (O⊥

a , respectively). Then,
b̂a = b�

a if �a−1 makes a smaller angle with ��
a−1 than with �⊥

a−1, and b̂a = b⊥
a otherwise.

Figure 7 illustrates this intuition.
We now describe how to adapt the data structure for TSS-CAab to compute b�

a for all
valid a values in the case of TSS-RE (b⊥

a can be computed in an analogous manner).
There are two main differences in the data structure: (i) we process the a values in a
specific order, and (ii) we build a semidynamic quad tree T in which the points in O are
inserted one by one. More precisely, let �0 be the line of slope r0 passing through the
origin, and let u0 be the unit vector normal to �0 and lying in the half-plane below �0.
We process the a values in increasing order of the dot product 〈oa, u0〉. In other words,
we sweep a line of slope r0 from top to bottom, and process the points in O as the line
sweeps across them.

As in TSS-CAab, we use a 1D quad tree T whose nodes store the lower convex hulls
of the points in the corresponding canonical ranges. We augment T with the semidy-
namic fractional-cascading structure [Mehlhorn and Näher 1990]. During the sweep,
we maintain T such that it indexes all points above the sweep line. Suppose we now
encounter point oa−1. At this moment, T indexes the subset O′ of the points above �a−1;
each node θ ∈ T stores LHθ , the lower hull of O′ ∩γθ . We compute b�

a by querying T with
Ja as in the algorithm for TSS-CAab. After computing b�

a , we insert oa−1 into T, which
updates the lower convex hulls and the fractional-cascading structure. The amortized
time spent in computing b�

a and inserting oa−1 is O(log n). Hence, the total time spent
by the algorithm is O(n log n).

The total time spent on all zones of a fixed entity v is the same as that of TSS-
CAab, that is, O(n log n). Repeating this process for all mentities takes O(mn log n) time.
Again, using the notion of interesting solution radius, the time complexity becomes
O(mr̃ log r̃).

6. EXPERIMENTS

Our experiments serve two purposes. First, we begin with proof-of-concept experiments
that apply our QRS framework to real-life claims and datasets, and illustrate the
usefulness of our results. Then, we demonstrate the efficiency and scalability of our
algorithms, showing how enumeration and locus approaches lead to faster running
times for interactive fact checking.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

Computational Fact Checking through Query Perturbations 4:31

All algorithms are implemented in C++. All experiments ran on a machine with the
Intel Core i7-2600 3.4GHz processor and 7.8GB of memory. Besides the small adoption
dataset for New York City, we use the following datasets: UNEMP records the U.S.
monthly unemployment rate for 782 months from January 1948 to February 201315;
AUTO contains daily auto accident statistics in Texas from 2003 to 2011 (with 3, 287
data points)16; VOTE contains 22.32 million votes cast by 12,572 members of the U.S.
Congress from May 1789 to April 2013.17

Besides the evaluation of algorithms in this section, we refer interested readers to Wu
et al. [2014], a demonstration-track paper describing a system prototype implementing
our framework and algorithms in a hierarchical and extensible way.

6.1. Proof of Concept

We first show the quality of results of solving the reverse-engineering and the counter-
argument finding problems within the QRS framework for both the WAC and the TSS
claims. We apply the WAC claim template on the NYC adoption data (as described in
Section 4) and the UNEMP data, and then the TSS claim template on the VOTE data
(as described in Section 5).

6.1.1. Giuliani’s Adoption Claim. We first use our technique to reverse-engineer Giuliani’s
vague adoption claim in Example 1.1. Recall the model in Section 4.1. As discussed
in Section 2.2, we set p0 = (1, 2001, 8), which captures the claim context that Giuliani
served the 8-year term during 1994–2001. Since the claim stated a “65 to 70 percent”
increase, we set r0 to be the geometric mean of 1.65 and 1.70. We ran our algorithm for
RE-po; the top two answers (ordered by sensibility) were (4, 2001, 7) and (6, 2001, 6).
The second (comparing 1990–1995 and 1996–2001) is exactly what Giuliani’s claim
used. The first one (comparing 1991–1994 and 1998–2001) also gives “65 to 70 percent”
increase, and is arguably more sensible because it compares 4-year periods (term for
mayor).

Next, given Giuliani’s claim, reverse-engineered as (6, 2001, 6), we ran our algorithm
for CA-po to find counterarguments. The top answer was (4, 2001, 4), which compares
1994–1997 and 1998–2001, that is, Giuliani’s first and second 4-year terms. This coun-
terargument leads to a 1% decrease in the adoption rate (as opposed to the big increase
in the original claim), exposing the actual trend after Giuliani took office.

6.1.2. Marshall’s Vote Correlation Claim. As another proof of concept, consider Marshall’s
vote correlation claim in Example 1.2. Recall the model in Section 5.1. For the recogniz-
ability score, we use a rather crude measure—the length (in bytes) of a Representative’s
Wikipedia page. For the ideology score, we use the well-known NOMINATE method.18

To reverse-engineer the original claim, we set up its context as follows. We let b0
be the time when the claim was made (Oct. 2010), and a0 be the start of the term in
which the claim was made (Jan. 2010). We define the search space for the “Republican
leader” as the five most recognizable Republican Representatives active as of b0 (Ron
Paul, Paul Ryan, Michele Bachmann, John Boehner, and Aaron Schock). We set u
to be Marshall and r0 = 0.65 as stated in the claim. We then invoke our algorithm
for TSS-RE. The correct solution (John Boehner, Jan. 2010, Oct. 2010) showed up as
the best answer with 66.94% voting correlation with Marshall in the specified time
interval, a deviation of 1.94% from r0. Other sensible solutions with similar relative
strengths include (Michele Bachmann, Jan. 2009, Oct. 2010) with 3.77% deviation,

15http://data.bls.gov/timeseries/LNS14000000.
16http://www.dot.state.tx.us/txdot_library/drivers_vehicles/publications/crash_statistics/.
17http://www.govtrack.us/.
18http://en.wikipedia.org/wiki/NOMINATE_(scaling_method).

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

http://data.bls.gov/timeseries/LNS14000000
http://www.dot.state.tx.us/txdot_library/drivers_vehicles/publications/crash_statistics/
http://www.govtrack.us/
http://en.wikipedia.org/wiki/NOMINATE_(scaling_method)

4:32 Y. Wu et al.

(Aaron Schock, Jan. 2009, Oct. 2010) with 1.62% deviation, and (Paul Ryan, Jan. 2009,
Oct. 2010) with 4.32% deviation. The ordered answers provided by our algorithm thus
significantly help reduce the difficulty of recovering missing parameter settings from
hundreds of Representatives and various possible comparison periods.

Next, given the reverse-engineered claim, we ran the CA-po algorithm for TSS-CAab
to find counterarguments with other sensible comparison periods that yield lower vote
correlations between Marshall and Boehner. The top counterarguments, in decreasing
sensibility, perturb the start of the period to the beginning of 2009, 2008, and 2007,
yielding decreasing correlations of 59.65%, 57.36%, and 53.63%. These results include
the counterargument found by factcheck.org , and suggest that the vote correlation
between Marshall and Boehner had not always been high.

Finally, we ran the CA-po algorithm for TSS-CAu to find counterarguments com-
paring Marshall and other Representatives with equally high vote correlations but
far from conservative (perturbing the target entity John Boehner, but compare the
voting correlation over the same time interval). It turned out that we did not find
Clyburn (which was used by factcheck.org), because our sensibility measure does
not consider the roles played by the Representatives (Clyburn was the Democratic
Whip). Instead, our algorithms found counterarguments involving Dennis Kucinich,
Jim Oberstar, and Jackie Speier—all of whom not only vote more with Marshall,
but are also more recognizable and liberal (according to the measures we used).
More specifically, we use a triplet tu to measure the quality of a counterargument
by replacing Marshall with Representative e. The triplet consists of (i) u.rec (rec-
ognizability; the higher the better), (ii) u.ide (ideology; higher means more conser-
vative, thus the lower the better), and (iii) vote correlation between u and Boehner
(the higher the better). We have tKucinich = (325707,−0.779, 41.79%), tOberstar =
(135894,−0.533, 42.71%), and tSpeier = (160116,−0.48, 47.17%), all of which dominate
tClyburn = (122309,−0.404, 41.29%). Note that while higher recognizability is better
most of the time, which direction is better for ideology and vote correlation depends
on the purpose of the counterargument. In this example, a good counterargument
would translate into “Kucinich/Oberstar/Speier, a well-known Democrat, voted the
same as Republican leader Boehner for as much as 41.79%/42.71%/47.17% between
Jan. 2010 and Oct. 2010.” While better measures of recognizability and ideology could
find Clyburn as factcheck.org did, we believe that our counterarguments are also very
strong. Other counterarguments we found automatically include Charles Rangel and
Marcy Kaptur, for example.

6.1.3. Unemployment Claims. Many claims made by politicians are about trends in un-
employment rate. In this experiment, we use UNEMP data to show that our framework
finds high-quality counterarguments. Consider a subset of the data dated from Jan-
uary 2005 to February 2013 (Figure 8(a)). A WAC claim on this data can be stated
in the following form: The w-month average unemployment rate starting from time t
increased/decreased by |r − 1| · 100%, compared to the w-month average starting d
month before t. Two of such claims are marked by red triangles and green squares,
respectively, in Figure 8.

Claim 1. p1 = (w1, t1, d1) = (6, October 2009, 30); r1 = 2.1487 (114.87% increase).
Claim 2. p2 = (w2, t2, d2) = (6, November 2010, 30); r2 = 1.8849 (88.49% increase).

Both of the preceding claims point out increases in unemployment rate. A natural
counterargument would point out a trend of decrease or lesser increase. We adopt
the strength function SR(r; r0) = r/r0 − 1 for r0 > 1 from Section 2.1. For the sensi-
bility function, we set σw = 2.5, σt = 5, and σd = 10. We use a four-level hierarchy
for naturalness on t and d with (χ1, π1) = (e0, 1) (month), (χ2, π2) = (e1, 3) (quarter),
(χ3, π3) = (e2, 6) (half year), and (e3, 12) (year).

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

file:factcheck.org
file:factcheck.org
file:factcheck.org

Computational Fact Checking through Query Perturbations 4:33

Fig. 8. Unemployment data and the query response surface for WAC claims. In (b), p1 and p2 correspond to
the two WAC claims in (a), whose comparison intervals are represented by red triangles and green squares,
respectively, both with 6-month windows.

Table II. Summary of Time Complexities of Algorithms

Meta-problems WAC TSS-CAab TSS-RE TSS-CAu

Base-τP O(|P|(μp + μq)) O(n3) O(n2) N/A
Base-τR O(|P|(tμp + μq)) O(n3) O(n2) O(mn)
Base-po O(|P|(μp log t + μq)) O(n3 log t) O(n2 log t) O(m(log t + n))
Enum-τPEnum-po O(dηd(log η + μq)) O(r̃3 log r̃) O(r̃2 log r̃) N/A
Enum-τR O(dηd(log η + μq)) O(r̃3 log r̃) O(r̃2 log r̃) O(m(log t + n))
Loc-τP O(μd + mμo) O(r̃2) - CA O(r̃2 log r̃) - RE O(r̃ log r̃) N/A

From Figure 8(a), we see that Claim 1 reasonably captures the trend around its
“current time” of October 2009, while for Claim 2 the unemployment rate starts to go
down around its “current time” of November 2010. Intuitively, it should be easier to find
high-sensibility counterarguments for Claim 2 than for Claim 1. Figure 8(b) visualizes
the response surface (not relative strength surface) by fixing w = 6 and varying t and
d. By setting τR = 0, we find the most sensible counterargument (solution to CA-τR)
for Claim 2 to be to its left, a red dot pointed to by the horizontal arrow going out of p2;
that counterargument yields a relative strength of −17.62% with respect to r2. To get
an equally strong counterargument for Claim 1 (with a relative strength of −17.41%
with respect to r1), we need to go further to the upper-right of p1. Furthermore, to find
the most sensible counterargument that changes the trend of increase to a decrease,
we need to perturb p1 to as far as (6, October 2010, 12), while we only need to perturb
p2 to (6, July 2011, 24). These counterarguments are shown as yellow dots pointed to
by arrows in Figure 8(b). The preceding results confirm our intuition that it is easier
to find counterarguments for Claim 2, and imply that Claim 1 is more robust.

6.2. Efficiency and Scalability of Algorithms

We now turn to experiments comparing the performance of three classes
of algorithms—Base (baseline), Enum (enumeration-based), and Loc (locus).
Table II19,20,21 summarizes the complexities of the meta-algorithms and their

19For TSS-RE, the complexity is for each of the m target entities.
20For Enum-τR , the complexity is for Enum

partial
τR for TSS-CAu, and for Enum

weak
τR for the others.

21Time complexities of Loc-τR and Loc-po are always factors of O(log |P|) (i.e., O(log n)) and O(k log |P|) higher
than their Loc-τP counterparts; omitted for brevity.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

4:34 Y. Wu et al.

Fig. 9. Running time of CA and RE algorithms for WAC claims on UNEMP.

instantiations for WAC and TSS, as discussed in previous sections. In each cell of
the table, the complexities are the same for both CA and RE problems, unless stated
otherwise.

For brevity, when the context is clear, we shall use these names to refer to the re-
spective algorithms for a given problem. We focus mainly on finding counterarguments
(CA), since algorithms for reverse-engineering (RE) are similar to CA, and the compar-
ison among the three classes of algorithms also shows similar trends. We also focus
more on WAC than on TSS.

Each data point in the figures below is obtained by averaging over 100 original claims
with randomly generated parameter settings. Unless otherwise noted, all algorithms
(including Base) implement the preprocessing optimization (Sections 4.2.1 and 5.2.1).

Varying τP in CA-τP for WAC on UNEMP. Figure 9(a) shows the running times of
the CA-τP algorithms for WAC claims on UNEMP, as we vary the parameter sensibil-
ity threshold τP. Since Base always explores the entire parameter space P, overall it
is much slower than Enum and Loc. However, as τP decreases, the region of P meet-
ing this threshold becomes larger. According to Equation (8), the interesting solution
radius r̃ is determined by τP – r̃ = O(| ln τP|1/2). Enum explores O(| ln τP|3/2) settings
in O(| ln τP|3/2 log | ln τP|) time (Section 4.2.2), which explains Enum’s super-linear in-
crease in running time in Figure 9(a). Loc, with its powerful low-level building blocks,
runs in time linear in | ln τP| (O(r̃2)—Section 4.2.3). This trend is difficult to see in the
figure, as Loc remains fast even with very low sensibility thresholds.

Varying τR in CA-τR for WAC on UNEMP. Figure 9(b) considers the CA-τR problem for
WAC claims on UNEMP, and compares the algorithms as we vary the result strength
threshold τR. Here, as τR decreases, we want counterarguments with results that
deviate farther from the original claim (i.e., r̃ increases) and are harder for Enum and
Loc to find. On the other hand, lower τR makes Base faster because it needs to call

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

Computational Fact Checking through Query Perturbations 4:35

Fig. 10. Running time of CA algorithms for WAC claims on AUTO when varying data size.

SP with fewer parameter settings that meet the result strength threshold.22 When
τR is as small as −0.5, a large portion of P must be examined by Enum and Loc. In
fact, counterarguments found at this point are starting to be no longer useful, because
their parameter settings are already too far from the original claim. Thus, for practical
values of τR, Enum and Loc are faster than Base. Also, we see that for CA-τR, when |τR|
is as small as 0.4, Loc (O(r̃2 log n)—Sections 3.3, 4.2.3) holds no advantage over Enum
(O(r̃3 log r̃)—Section 4.2.2). Only when τR < −0.4 does the running time of Enum start
to outgrow that of Loc.

Varying k in CA-po for WAC on UNEMP. We now turn to CA-po, which returns the k
Pareto-optimal counterarguments with highest sensibility. As explained in Section 2.2,
this problem formulation is attractive because it avoids the sometimes tricky task of
choosing thresholds for CA-τP and CA-τR. Figure 9(c) shows the running time of the
three algorithms for WAC claims on UNEMP when we vary k (effectively increasing r̃ as
k increases). Enum and Loc show comparable performance up to k = 35. After that, the
running time of Enum (O(r̃3 log r̃)—Section 4.2.2) increases rapidly, and approaches
that of Base (O(n3 log t)—Section 3.1). On the other hand, the running time of Loc
(O(kr̃2 log n—Sections 3.3 and 4.2.3) shows a much slower increase and remains much
faster than Base for all k values tested.

Varying τP in RE-τP for WAC on UNEMP. For RE-τP, the problem of reverse-
engineering, Figure 9(d) compares the three algorithms for WAC claims on UNEMP.
As we decrease the parameter sensibility threshold τP, we observe the same trend
as in Figure 9(a) for CA-τP: Base is the slowest, while Loc (O(| ln τP| log | ln τP|)—
Section 4.2.3) scales better than Enum (O(| ln τP|3/2 log | ln τP|)—Section 4.2.2) in the
size of the high-sensibility region of the parameter space. Note that Loc for RE-τP in
Figure 9(d) is slightly slower than Loc for CA-τP in Figure 9(a), because of the more
expensive building block (OptP0 vs. OptP-∞ in Section 4.2.3).

Varying Data Size in CA for WAC on AUTO. Besides testing the performance of the
algorithms while varying their input parameters, we also show how they scale with
respect to data size. In Figure 10, we show the results on the three variants of the
problem of finding counterarguments—CA-τP, CA-τR, and CA-po—as we change the
data size by taking prefixes of the AUTO time series with varying lengths (from 10% to
100% of the whole series). For CA-τR (Figure 10(b)), Enum shows a rate of increase in
running time similar to Base, while Loc shows a slower rate of increase. This increas-
ing trend is expected because more data points lead to more counterarguments with

22One might wonder why fewer SP calls matter so much. It turns out that in this case, thanks to precomputed
prefix sums, SR is much faster than SP, so the cost of SP calls dominates. This effect also explains why Base
did not see visible improvement with fewer SR calls in Figure 9(a). In practice, when query evaluation is
more expensive, the opposite may hold.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

4:36 Y. Wu et al.

Fig. 11. Running time of CA-τP algorithms for TSS-
CAab on VOTE, varying τP .

Fig. 12. Running time of CA-τR algorithms for TSS-
CAu on VOTE, varying τR .

required strength threshold. For CA-τP (Figure 10(a)) and CA-po (Figure 10(c)), Base
continues to suffer from bigger data sizes, but Enum and Loc remain fast. The reason
is that Enum and Loc limit their search within high-sensibility neighborhoods around
the original claims; a bigger dataset spanning a longer time period does not necessarily
increase the size of these neighborhoods. For all three variant problems of CA, Enum
and Loc are orders of magnitude faster than Base.

Varying τP in CA-τP for TSS-CAab on VOTE. We now turn to TSS claims on VOTE
data. Figure 11 compares the three algorithms for TSS-CAab, that is, fixing two voters
and perturbing the time period [a, b] to find counterarguments that show lower vote
correlation than originally claimed. Here, we consider the CA-τP variant of the problem,
and decrease the parameter sensibility threshold τP (thereby enlarging the region of
P meeting this threshold). We observe trends similar to those in Figures 9(a) and 9(d)
for WAC claims: Loc performs best, while Base is the slowest by a big margin. The
only notable difference is that the parameter space is 3D for WAC but only 2D here.
Hence, Enum and Loc fare better here with an increasing search space, with time
complexities O(| ln τP| log | ln τP|) (O(r̃2 log r̃)—Section 5.2.2) and O(| ln τP|1/2 log | ln τP|)
(O(r̃ log r̃)—Section 5.2.3), respectively.

Varying τR in CA-τR for TSS-CAu on VOTE. Continuing with TSS claims on VOTE,
we now compare algorithms for TSS-CAu, that is, perturbing Representative u to be
compared with the claim subject, while fixing the period of comparison, to find counter-
arguments involving liberal Representatives with high vote correlations. As discussed
in Section 5.1, we consider the CA-τR variant of the problem, which finds the coun-
terarguments that meet the given result strength threshold τR and are maximal with
respect to the parameter sensibility relation �u0 (no parameter sensibility function is
defined in this case).

We compare only Base and Enum (more precisely, Enum
partial

CA-τR), as no Loc algorithm is
applicable here. For this experiment, a database system stores the full VOTE data, and
we simply issue SQL queries to compute vote correlations; we do not store or preprocess
VOTE data in memory. We observed that SQL queries dominate the running times.
We also observed that using one SQL query to compute vote correlations for multiple
Representatives in a batch is faster than using one query for each Representative.
Therefore, for Base, we computed all vote correlations in a single SQL query; for
Enum, we tested both batched (with five correlation computations per SQL query) and
unbatched versions.

Figure 12 shows the results. As |τR| increases, the number of parameter settings
meeting the required result strength threshold decreases. Because Base evaluates the
correlation between v and all possible u’s using SQL queries (regardless of τR) and these
SQL queries dominate the running time, the running time of Base remains roughly

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

Computational Fact Checking through Query Perturbations 4:37

constant. Enum simultaneously enumerates u’s in descending order of Natsrc and Natsrc,
respectively, and tries to minimize the number of correlation computations. We see
that Enum, with or without batching, outperforms Base by a big margin. Between
the batched (shown as Enum-batch in Figure 12) and unbatched versions of Enum, we
see that batching can be slower than no batching when |τR| is small (where the total
number of correlation computations needed is even lower than the batch size), but the
advantage of batching starts to show when |τR| is large.

7. DISCUSSION AND RELATED WORK

A large body of work on uncertain data management [Dalvi et al. 2009; Aggarwal 2009;
Jampani et al. 2011] considers the effect of data perturbations on query results. Our
study of query parameter perturbations offers a conceptual counterpoint—while un-
certain databases consider one query over many database instances (possible worlds),
we are interested in many queries (perturbed versions of each other) over one database
instance. Interestingly, one could, at least in theory, mimic query parameter perturba-
tions by constructing tables of uncertain query parameters, and “joining” them with
data tables in some fashion to compute the QRS. However, the resulting query will be
awkward and difficult to optimize. Furthermore, we are interested in certain questions
about QRS—beyond computing a representation of the surface or computing expecta-
tions from it—that have not been the goal of query evaluation in uncertain databases.
Nonetheless, uncertain data management offers many ideas relevant to fact checking.
For example, our future work (further discussed in Section 8) includes investigating
sampling and approximation, and extending our model to consider parameter and data
perturbations jointly.

The notion of response surfaces has appeared in various contexts, but usually with
specific uses different from ours. In parametric query optimization [Ioannidis et al.
1992; Ganguly 1998; Hulgeri and Sudarshan 2003; D. et al. 2008], a response surface
represents the best query execution plan (and its cost) over the space of parameters
relevant to query optimization, including system parameters, selectivity factors, and/or
query parameters. In our recent work on publish/subscribe, we use QRS to succinctly
represent (and index) answers to a large number of continuous linear preference top-k
queries with different parameter settings [Yu et al. 2012]. Similar ideas have been used
in understanding the sensitivity of such top-k rankings with respect to their parameter
settings [Soliman et al. 2011; Mouratidis and Pang 2012]. Lin et al. [2013] uses a
surface to concisely represent how the set of association rules varies with support and
confidence settings.

Also related to the idea of retrieving more relevant results via query perturbation, is a
large body of work on query generalization and specialization [Chaudhuri 1990]. Jensen
and Snodgrass [1994] studied the generalization and specialization of relational queries
along the temporal dimension. The problem has also been studied in the cooperative
and hierarchical setting [Huh et al. 2000; Chu et al. 1991]. Beyond relational queries,
the idea has also been applied to search queries [Koh et al. 2013].

The reverse-engineering problem is related to recent work on query by output [Tran
et al. 2009] and view synthesis [Das Sarma et al. 2010], which tries to find queries
returning a given result. Unlike these problems, we are given not only the claim re-
sult but also additional information—the context of the original claim (including any
explicitly mentioned parameter values) and the query template. Tran and Chan [2010]
consider how to modify a query such that it returns both the original result as well as
additional desired tuples. He and Lo [2012] tackle the specific setting of linear prefer-
ence top-k queries. Wu and Madden [2013] study how to use queries to explain away
outliers in aggregate results. Roy and Suciu [2014] consider how removal of tuples by
a predicate affects query results. While the work discussed previously is similar to our

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

4:38 Y. Wu et al.

problem in spirit, their search spaces and goals are very different, and none of them
models query perturbations probabilistically.

As mentioned toward the end of Section 1, fact checking in general requires a reper-
toire of techniques including but not limited to the computational ones presented in
this article, such as how to find datasets relevant to given claims and how to trans-
late claims to queries. These questions are broadly related to areas including Natural
Language Processing (NLP), Natural Language Querying (NLQ) [Li et al. 2007, 2006;
Popescu et al. 2003], information integration [Bernstein and Haas 2008; Doan et al.
2012], and source selection [Balakrishnan and Kambhampati 2011; Dong et al. 2009;
Zhao et al. 2012]. Fully automatic solutions would be nice, but they are unlikely. Exist-
ing NLQ techniques cannot handle complex and/or ambiguously stated queries, which
are common in our setting. Therefore, in general, we take the approach of combining
automation with human input.

Fact checking with structured data has many applications in domains where assess-
ments and decisions are increasingly driven by data. Computational journalism [Cohen
et al. 2011a, 2011b] is one domain with the most pressing need for better fact-checking
techniques. With the movement toward accountability and transparency, the amount of
data available to the public is ever increasing. Such data open up endless possibilities
for empowering journalism’s watchdog function—to hold governments, corporations,
and powerful individuals accountable to society. However, we are facing a widening
divide between the growing amount of data on one hand, and the shrinking cadre of
investigative journalists on the other. Computing is a key to bridge this divide. Au-
tomating fact checking, as much as possible, will help data realize their potentials in
serving the public.

There are also claims that cannot be readily derived from structured data (e.g., “does
the health care reform create ‘death panels’?”). Recently, there has been interesting
work that relies on collective intelligence [Quinn and Bederson 2011] for fact checking,
either by involving experts or the public (e.g., factcheck.org, politifact.com, hypothes.is;
see Giles [2012] for more discussion), or by collecting evidence from human-created
data (e.g., Li et al. [2011], Yamamoto and Tanaka [2009], and Yamamoto et al. [2008]).
This line of work is quite different from ours in style. Our quality measures have
the advantage of objectivity that protects them from manipulation of and bias in per-
sonal opinions. Though far from a universal solution, our approach is attractive from
claims based on structured data—which are increasingly common as more structured
datasets become available either directly or by information extraction. Targeting this
important type of tasks (or subtasks), our approach complements those that rely on
human intelligence.

8. CONCLUSION AND FUTURE WORK

In this article, we have shown how to turn fact checking into a computational problem.
Interestingly, by regarding claims as queries with parameters, we can check them—
not just for correctness, but more importantly, for more subtle measures of quality—
by perturbing their parameters. This observation leads us to a powerful framework
for modeling and for developing efficient algorithms for fact-checking tasks, such as
reverse-engineering vague claims and countering questionable claims. We have shown
how to handle real-world claims in our framework, and how to obtain efficient algo-
rithms by supplying appropriate building blocks.

Our proposed framework has opened up more research problems than we can pos-
sibly hope to address in a single paper. There are several lines of work underway. For
example, sampling and approximation are effective for large parameter spaces and
data sizes. All algorithms in this article are exact; developing faster approximation
algorithms would be a natural next step. Computing various claim quality measures

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

file:factcheck.org
file:politifact.com
file:hypothes.is

Computational Fact Checking through Query Perturbations 4:39

from the QRS, a subject that this article does not focus on, is clearly amenable to
sampling. We are also working on extending the QRS framework to incorporate data
changes as a dimension of perturbation orthogonal to parameter perturbations; this
extension enables a new suite of useful and interesting questions related to fact check-
ing. Specialized building blocks for many other claim types remain to be discovered. We
have been working on a new parallel system [Walenz and Yang 2016] for perturbation
analysis of database queries that cover new claim types, as well as the study of the
orthogonal aspect of data perturbations. Another line of work is to go from fact checking
to lead finding. Besides the interesting problems at the back-end, we are also working
on making our techniques easier to apply. For parameters in the CA and RE problems,
we have shown how the selection of thresholds τR and τP are supported interactively.
For the claim modeling components in the problem definition, we rely on human ex-
perts to help define the parameterized query response function q and its domain, the
relative strength function SR, and the parameterized relative sensibility SP. On top of
that, selecting parameters for SP (e.g., covariance matrix of a Gaussian kernel), may
involve a fair amount of human work, as the perception of a sensible perturbation is
both user and context dependent. Along this line, we are investigating a learning-based
approach that relies on user feedback to help choose appropriate parameters for the
SP function.

The culmination of this work will be an end-to-end system to empower journalists and
the public in combating the “lies, d—ed lies, and statistics” that permeate our public
life today. To that end, we also need advances in complementary research areas such
as source identification, data integration, data cleansing, natural language querying,
and crowdsourcing.

REFERENCES

Charu C. Aggarwal (Ed.). 2009. Managing and Mining Uncertain Data. Springer.
Raju Balakrishnan and Subbarao Kambhampati. 2011. SourceRank: Relevance and trust assessment for

deep web sources based on inter-source agreement. In Proceedings of the 2011 International Conference
on World Wide Web. 227–236.

Philip A. Bernstein and Laura M. Haas. 2008. Information integration in the enterprise. Commun. ACM 51,
9 (2008), 72–79.

Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. 2001. The skyline operator. In Proceedings of
the 2001 International Conference on Data Engineering. 421–430.

Christian Buchta. 1989. On the average number of maxima in a set of vectors. Inform. Process. Lett. 33, 2
(1989), 63–65.

Surajit Chaudhuri. 1990. Generalization and a framework for query modification. In Proceedings of the 6th
International Conference on Data Engineering, 1990. IEEE, 138–145.

Bernard Chazelle. 1988. A functional approach to data structures and its use in multidimensional searching.
SIAM J. Comput. 17, 3 (1988), 427–462.

Wesley W. Chu, Qiming Chen, and Rei-Chi Lee. 1991. Cooperative Query Answering via Type Abstraction
Hierarchy. Springer.

Sarah Cohen, James T. Hamilton, and Fred Turner. 2011a. Computational journalism. Commun. ACM 54,
10 (2011), 66–71.

Sarah Cohen, Chengkai Li, Jun Yang, and Cong Yu. 2011b. Computational journalism: A call to arms to
database researchers. In Proceedings of the 2011 Conference on Innovative Data Systems Research.

Harish D., Pooja N. Darera, and Jayant R. Haritsa. 2008. Identifying robust plans through plan diagram
reduction. In Proceedings of the 2008 International Conference on Very Large Data Bases. 1124–1140.

Nilesh N. Dalvi, Christopher Ré, and Dan Suciu. 2009. Probabilistic databases: Diamonds in the dirt.
Commun. ACM 52, 7 (2009), 86–94.

Anish Das Sarma, Aditya G. Parameswaran, Hector Garcia-Molina, and Jennifer Widom. 2010. Synthesizing
view definitions from data. In Proceedings of the 2010 International Conference on Database Theory. 89–
103.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

4:40 Y. Wu et al.

Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong Schwarzkopf. 2000. Computational
Geometry. Springer.

AnHai Doan, Alon Halevy, and Zachary Ives. 2012. Principles of Data Integration (1st ed.). Morgan
Kaufmann.

Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava. 2009. Integrating conflicting data: The role of
source dependence. Proc. VLDB Endow. 2, 1 (2009), 550–561.

Ronald Fagin, Amnon Lotem, and Moni Naor. 2003. Optimal aggregation algorithms for middleware. J.
Comput. System Sci. 66, 4 (2003), 614–656.

Sumit Ganguly. 1998. Design and analysis of parametric query optimization algorithms. In Proceedings of
the 1998 International Conference on Very Large Data Bases. 228–238.

Jim Giles. 2012. Truth goggles. The New Scientist 2882 (Sept. 2012), 44–47.
Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh. 1996. Data cube: A relational aggrega-

tion operator generalizing group-by, cross-tab, and sub-total. In Proceedings of the 1996 International
Conference on Data Engineering. 152–159.

Dov Harel and Robert E. Tarjan. 1984. Fast algorithms for finding nearest common ancestors. SIAM J.
Comput. 13, 2 (1984), 338–355.

Zhian He and Eric Lo. 2012. Answering why-not questions on top-k queries. In Proceedings of the 2012
International Conference on Data Engineering. 750–761.

Soon-Young Huh, Kae-Hyun Moon, and Hee-Seok Lee. 2000. A data abstraction approach for query relax-
ation. Inf. Softw. Technol. 42, 6 (2000), 407–418.

Arvind Hulgeri and S. Sudarshan. 2003. AniPQO: Almost non-intrusive parametric query optimization for
nonlinear cost functions. In Proceedings of the 2003 International Conference on Very Large Data Bases.
766–777.

Yannis E. Ioannidis, Raymond T. Ng, Kyuseok Shim, and Timos K. Sellis. 1992. Parametric query optimiza-
tion. In Proceedings of the 1992 International Conference on Very Large Data Bases. 103–114.

Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Chris Jermaine, and Peter J. Haas. 2011. The Monte
Carlo database system: Stochastic analysis close to the data. ACM Trans. Database Syst. 36, 3 (2011), 18.

Christian S. Jensen and Richard Snodgrass. 1994. Temporal specialization and generalization. IEEE Trans.
Knowl. Data Eng. 6, 6 (1994), 954–974.

Jia-Ling Koh, Kuang-Ting Chiang, and I.-Chih Chiu. 2013. The strategies for supporting query specialization
and query generalization in social tagging systems. In Database Systems for Advanced Applications.
Springer, 164–178.

Hsiang-Tsung Kung, Fabrizio Luccio, and Franco P. Preparata. 1975. On finding the maxima of a set of
vectors. J. ACM 22, 4 (1975), 469–476.

Xian Li, Weiyi Meng, and Clement T. Yu. 2011. T.-verifier: Verifying truthfulness of fact statements. In
Proceedings of the 2011 International Conference on Data Engineering. 63–74.

Yunyao Li, Ishan Chaudhuri, Huahai Yang, Satinder Singh, and H. V. Jagadish. 2007. DaNaLIX: A domain-
adaptive natural language interface for querying XML. In Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data. 1165–1168.

Yunyao Li, Huahai Yang, and H. V. Jagadish. 2006. Constructing a generic natural language interface for an
XML database. In Proceedings of the 2006 International Conference on Extending Database Technology.
737–754.

Xika Lin, Abhishek Mukherji, Elke A. Rundensteiner, Carolina Ruiz, and Matthew O. Ward. 2013. PARAS:
A parameter space framework for online association mining. Proc. VLDB Endow. 6, 3 (2013), 193–204.

Kurt Mehlhorn and Stefan Näher. 1990. Dynamic fractional cascading. Algorithmica 5, 1–4 (1990), 215–241.
Kyriakos Mouratidis and HweeHwa Pang. 2012. Computing immutable regions for subspace top-k queries.

Proc.VLDB Endow. 6, 2 (2012), 73–84.
Ana-Maria Popescu, Oren Etzioni, and Henry A. Kautz. 2003. Towards a theory of natural language interfaces

to databases. In Proceedings of the 2003 International Conference on Intelligent User Interfaces. 149–157.
Alexander J. Quinn and Benjamin B. Bederson. 2011. Human computation: A survey and taxonomy of a

growing field. In Proceedings of the 2011 International Conference on Human Factors in Computing
Systems. 1403–1412.

Sudeepa Roy and Dan Suciu. 2014. A formal approach to finding explanations for database queries. In
Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. 1579–1590.

Mohamed A. Soliman, Ihab F. Ilyas, Davide Martinenghi, and Marco Tagliasacchi. 2011. Ranking with uncer-
tain scoring functions: Semantics and sensitivity measures. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data. 805–816.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

Computational Fact Checking through Query Perturbations 4:41

Robert Endre Tarjan. 1979. Applications of path compression on balanced trees. J. ACM 26, 4 (1979), 690–715.
Quoc Trung Tran and Chee-Yong Chan. 2010. How to ConQueR why-not questions. In Proceedings of the

2010 ACM SIGMOD International Conference on Management of Data. 15–26.
Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. 2009. Query by output. In Proceedings

of the 2009 ACM SIGMOD International Conference on Management of Data. 535–548.
Brett Walenz and Jun Yang. 2016. Perturbation analysis of database queries. Proc. VLDB Endow 9, 14 (2016).
Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining away outliers in aggregate queries. Proc. VLDB

Endow. 6, 8 (June 2013), 553–564.
You Wu, Pankaj K. Agarwal, Chengkai Li, Jun Yang, and Cong Yu. 2012. On “one of the few” objects. In

Proceedings of the 2012 ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 1487–1495.

You Wu, Brett Walenz, Peggy Li, Andrew Shim, Emre Sonmez, Pankaj K. Agarwal, Chengkai Li, Jun Yang,
and Cong Yu. 2014. iCheck: Computationally combating lies, d–ned lies, and statistics. In Proceedings
of the 2014 ACM SIGMOD International Conference on Management of Data. ACM, 1063–1066.

Yusuke Yamamoto and Katsumi Tanaka. 2009. Finding comparative facts and aspects for judging the credi-
bility of uncertain facts. In Proceedings of the 2009 International Conference on Web Information Systems
Engineering. 291–305.

Yusuke Yamamoto, Taro Tezuka, Adam Jatowt, and Katsumi Tanaka. 2008. Supporting judgment of fact
trustworthiness considering temporal and sentimental aspects. In Proceedings of the 2008 International
Conference on Web Information Systems Engineering. 206–220.

Albert Yu, Pankaj K. Agarwal, and Jun Yang. 2012. Processing a large number of continuous preference
top-k queries. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of
Data. 397–408.

Bo Zhao, Benjamin I. P. Rubinstein, Jim Gemmell, and Jiawei Han. 2012. A Bayesian approach to discovering
truth from conflicting sources for data integration. Proc. VLDB Endow. 5, 6 (2012), 550–561.

Received June 2015; revised May 2016; accepted September 2016

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 4, Publication date: January 2017.

