
TableView: A Visual Interface for Generating
Preview Tables of Entity Graphs

Sona Hasani
University of Texas at Arlington

sona.hasani@mavs.uta.edu

Ning Yan∗

Huawei U.S. R&D Center
ning.yan.uta@gmail.com

Chengkai Li
University of Texas at Arlington

cli@uta.edu

Abstract—This paper introduces TableView, a tool that helps
generate preview tables of massive heterogeneous entity graphs.
Given the large number of datasets from many different sources,
it is challenging to select entity graphs for a particular need.
TableView produces preview tables to offer a compact presen-
tation of important entity types and relationships in an entity
graph. Users can quickly browse the preview in a limited space
instead of spending precious time or resources to fetch and
explore the complete dataset that turns out to be inappropriate
for their needs. In this paper we present: 1) a detailed description
of TableView’s graphical user interface and its various features,
2) a brief description of TableView’s preview scoring measures
and algorithms, and 3) the demonstration scenarios we intend to
present to the audience.

Keywords-entity graph; knowledge graph; usability; summa-
rization

I. INTRODUCTION

There is a revolutionary increase of gigantic, heterogeneous
entity graphs that represent entities and their relationships
in various domains. An entity graph is a directed multi-
graph where each vertex represents an entity and each edge
represents a directed relationship from its source entity to
its destination entity. Entity graphs are often represented as
Resource Description Framework (RDF) triples. Some of the
most salient real-world entity graphs are knowledge bases
such as DBpedia [1], YAGO [2], Probase [3], Freebase [4],
and Google’s Knowledge Vault [5]. Numerous applications
use entity graphs in areas such as search, recommendation
systems, business intelligence, and health informatics. An
example of a very small entity graph is displayed in Fig. 1.

Due to the increasing number of entity graphs from many
sources and oftentimes inadequate information available about
them, it is extremely challenging to select the one that satisfies
a particular need. A data worker may need to tackle many
challenges before she can start any real work on an entity
graph. While some descriptions may be provided by the data
sources, the data worker is not able to get a direct look at
an entity graph before fetching it. Moreover, downloading a
dataset and loading it into a database can be a daunting task.

Although a schema graph is much smaller than the cor-
responding entity graph, it is not small enough for easy
presentation and quick preview. For instance, there are 190K
vertices and 1.6M edges in a snapshot of the film domain
of Freebase, and the corresponding schema graph consists of

*The work was performed while the author was with UT-Arlington.

50 entity types (vertices) and 136 relationship types (edges).
Several studies have suggested to generate a summary of the
schema graph, by schema summarization techniques. Some
of these methods work on relational and semi-structured data
instead of graph data [6], [7], [8], while others produce trees
or graphs as output instead of flat tables [8], [9], [10]. The
most closely related work to our approach clusters the tables
in a database but does not reduce the complexity of database
schema [6], [7].

Yan et al. [11] introduced preview tables to assist data
workers in obtaining a quick preview of a given entity graph
before they decide to spend more time and resources to fetch
and investigate the complete graph. They show a few randomly
selected sample tuples in each preview table to facilitate a
better understanding of the data graph. In order to select
the best preview, they proposed a scoring system, including
coverage-based and random-walk based scoring methods for
entity types and coverage-based and entropy-based scoring
methods for relationships. In this paper we present TableView,
a tool based on [11] that automatically produces preview tables
for entity graphs.

Fig. 2 is a possible preview of the entity graph in Fig. 1.
It consists of two preview tables. The upper table includes
attributes Film, Director and Genres, and the lower table has
attributes Film Actor and Award Winners. Film and Film
Actor are the key attributes of the generated preview tables,
marked by the underlines beneath them. Attributes Director
and Genres in the upper table are considered highly related
to Film entities. The two tables contain four and two sample
tuples, respectively.

II. USER INTERFACE

In this section we describe various features implemented in
TableView. Fig. 3 presents its graphical user interface which
consists of four main segments: configuration panel, preview
panel, information panel, and manually generated preview
tables. Below we describe these components.

Configuration Panel: This panel is designed for setting the
parameters of the preview. The user can customize the follow-
ing fields. Domain: The user can select among several domains
provided by the dataset or pre-processed for the dataset. Key
attributes: The user will specify the desired number of key at-
tributes which determines the number of tables in the preview.
Non-key attributes: The user will specify the number of non-

Fig. 1. An excerpt of an entity graph.

Film Director Genres
t1 Men in Black Barry Sonnenfeld {Action Film, Science Fiction}
t2 Men in Black II Barry Sonnenfeld {Action Film, Science Fiction}
t3 Hancock Peter Berg -
t4 I, Robot Alex Proyas {Action Film}

Film Actor Award Winners
t5 Will Smith Saturn Award
t6 Tommy Lee Jones Academy Award

Fig. 2. A preview of the entity graph in Fig. 1.

key attributes in the preview which indicates the total number
of non-key attribute columns of the preview tables. Preview
type: The user can choose their desired type of preview from
a drop-down list of three options. A concise preview is the
optimal preview with the specified number of key and non-
key attributes. A tight preview is a concise preview where the
distance between every two key attributes of the preview is at
most equal to some specific value specified by the user. On
the other hand, a diverse preview is a concise preview where
the distance between every two key attributes in the preview is
at least equal to a distance specified by the user. Distance: If
the user selects tight or diverse preview as the type, this field
will show up and the user can specify the desired distance
between key attributes in the preview. Number of the records:
The user can specify how many sample records she would
like to see in each preview table. Attribute scoring: For key
attribute scoring the user can choose between coverage-based
scoring and random-walk based scoring, while for non-key
attribute scoring she can select coverage-based scoring and
entropy-based scoring.

Preview Panel: When the configuration parameters are set,
the user needs to click the Show Preview button to see the
automatically generated preview in the preview panel. This
panel has three segments, including preview tables, schema
graph, and summarized schema graph. The user can choose
to see the preview tables and the schema graph side by side.
If the user clicks on any column’s header, the corresponding
node or edge in the graph is highlighted and the user can

have a better understanding of the surrounding entities of that
particular item. The user can hide, display or delete the sample
records in each preview table. Moreover, each column can
be renamed and non-key attribute columns can be reordered.
The user can also rearrange the preview tables by dragging
each table to a desired location. In this panel, the user can
choose to see the complete schema graph, or the summarized
schema graph which is the sub graph of the schema graph
corresponding to the generated preview.
Information Panel: When the user clicks on any item in the
preview panel, additional information for that item is displayed
in the information panel. For example, when the user clicks
on a key attribute in a preview table, or a node in a schema
graph, such additional information includes entity type, ID,
and number of the entities in the dataset that belong to the
marked entity type. Similarly, if the user clicks on a non-key
attribute of a preview table or an edge of a schema graph,
additional information such as relationship type, ID, source
and destination entity types is presented.
Manually Generated Preview Tables: TableView enables
data experts to handcraft their own preview tables and cus-
tomize them. Fig. 4 shows the graphical user interface for
handcrafting preview tables. After selecting the dataset, do-
main, number of key attributes, and number of non-key
attributes, the user can manually design her own preview.
The schema graph of the selected domain and the URL to
the dataset are provided to the user. Based on the selected
dataset and domain, a list of key attributes under the selected
domain are shown to the user. When the user chooses a key
attribute, the list of relationships to or from that key attribute
are presented to her. Each preview table must contain one
key attribute and at least one non-key attribute. Once the user
selects a non-key attribute for the chosen key attribute, a new
table is added to the preview with the selected key and non-
key attributes. The user can add more non-key attributes to any
of generated preview tables as long as the total number of the
non-key attributed is not over the specified limit. The numbers
of remaining key and non-key attributes are updated at each
step. The user is able to delete the key and non-key attributes
from the partially generated preview. When the preview is
ready, the user can export the preview in PDF format.

III. SYSTEM OVERVIEW

A preview is a set of preview tables, where each table has
a key attribute, corresponding to an entity type, and a set
of non-key attributes, each corresponding to a relationship
between the key attribute and another entity in the entity
graph. There is thus a large space of possible previews for a
given schema graph. The preview is designed to help the users
attain a quick understanding of the entity graph, therefore,
it must fit into a limited display space. This desideratum is
captured by a constraint on the size of the preview, in terms
of the numbers of key and non-key attributes. Furthermore, in
order to control how tight or diverse the preview can be an
additional constraint on the pairwise distance between preview

Configuration	Panel Preview	Panel Information	Panel

Preview	Type:

Fig. 3. User interface of TableView.

Fig. 4. User interface for handcrafted preview tables.

tables is considered. We formulate the problem as finding a
preview with the highest score among those possible previews
satisfying the size and distance constraints. In the following
we briefly explain the scoring measures used in TableView.

A. Scoring Measures and Algorithms

The score of a preview is simply aggregated from individual
preview tables’ scores, by summation. The score of each pre-
view table is calculated from the product of its key attribute’s
score and the summation of its non-key attributes’ scores.

For key attribute scoring we implemented coverage-based
and random-walk based methods. Given an entity graph
Gd(Vd, Ed) and its corresponding schema graph Gs(Vs, Es),
the key attribute τ of a candidate preview table T corresponds
to an entity type, i.e., τ ∈ Vs. The coverage-based scoring
measure defines the score of τ as the number of entities that
belong to that type:

Scov(τ) = |{v|v ∈ Vd ∧ v has type τ}|

In order to calculate the random-walk based score of a key
attribute, we consider a random-walk process over a graph G
converted from the schema graph Gs(Vs, Es), inspired by the
PageRank algorithm [12]. The edge between τi and τj in G
is weighted by the number of relationships in the entity graph
between entities of types τi and τj .

For non-key attributes scoring we implemented coverage-
based and entropy-based methods. The coverage-based scoring
measure defines the score of a non-key attribute γ as the
number of relationships that belong to that type:

Sτcov(γ) = |{e|e ∈ Ed ∧ e has type γ}|

To calculate the entropy-based score of a non-key attribute,
we measure the value of a non-key attribute γ(τ, τ ′) (or
γ(τ ′, τ))—the edge between entity types τ and τ ′ in the
schema graph—by the entropy of γ (H(γ)) to estimate the
amount of information it provides to T .

Sτent(γ) = H(γ) =
∑
j=1

nj
|t.γ|

log(
|t.γ|
nj

),

where nj is the number of tuples in T that have the same jth
attribute value u on non-key attribute γ(τ, τ ′) (or γ(τ ′, τ)).
|t.γ| is the number of tuples in T with non-empty values on
γ(τ, τ ′) (or γ(τ ′, τ)).

We developed a dynamic programming algorithm for find-
ing the optimal concise preview and an Apriori-style algorithm
for finding optimal tight/diverse previews based on these
scoring measures. Interested readers can find more details in
Yan et al. [11].

B. System Implementation

The algorithms in TableView are implemented in C++ and
Python 2.7. The system is hosted on a Dell T100 server with

TABLE I
SIZES OF ENTITY/SCHEMA GRAPHS.

Domain # of vertices # of edges
book 6M / 91 15M / 201
film 2M / 63 18M / 136
music 27M / 69 187M / 176
TV 2M / 59 17M / 177
people 3M / 45 17M / 78

Dual Core Xeon E3120 processor, 6MB cache, 4GB RAM,
and two 250GB RAID1 SATA hard drives running Ubuntu
8.10. We used Django for implementing the web interface and
Javascript, HTML, and CSS for parsing the results on the client
side. For graph visualization, we used D3.js.

The entity graph used in our demonstration is a dump of
Freebase on September 28, 2012. The dataset is imported
into a MySQL database. We can use the same approach for
generating the preview tables for any entity graph that provides
the type information for entities and relationship. In Freebase,
the entire entity graph is partitioned into several domains. We
pre-processed five of its domains, including film, book, music,
TV, and people. Table I presents the size of each domain.

IV. DEMONSTRATION PLAN

In this section we describe a few scenarios that we intend
to present to the audience.

A: Automatically generating preview tables
Using the following steps, the user will be able to automati-
cally generate a preview. A1) Select Freebase from the dataset
drop-down list. A2) Select one of the domains from the domain
drop-down list. A3) Select the number of the key-attribute. A4)
Select the number of the non-key attributes. A5) Select the
key-attribute scoring method. A6) Select the non-key attribute
scoring method. A7) Click the Show Preview button to see the
automatically generated preview in the preview panel.

B: Interacting with the generated preview
The following steps will show the user how to interact with
the generated preview in scenario A. B1) Delete a preview
table. B2) Delete one of the non-key attributes of a preview
table. B3) Refresh the preview to replace the deleted key and
non-key attributes. B4) Delete a sample record from one of the
tables in the preview. B5) Hide and show the sample records in
a table. B6) Rearrange the tables. B7) Rearrange the non-key
attributes of the tables. B8) Rename non-key attributes.

C: Additional information
The following steps will show the user how to find the
preview tables in the schema graph and look up the additional
information about key attributes and non-key attributes in the
schema. C1) Click on the key attribute or non-key attributes of
a preview table and check the highlighted nodes and/or edges
in the schema graph. C2) Click on any column on the preview
tables and check the additional information in the information
panel. C3) Click the Export button to generate a PDF file of
the preview.

D: Generating a preview manually
The following steps will guide the user towards handcrafting
a preview for a given schema graph. D1) Select one of the
domains in the domain drop-down list. D2) Select the numbers
of key and non-key attributes. D3) Click the Manual Preview
button. D4) Select a key attribute from the key attribute list.
D5) Select non-key attributes from the non-key attribute list.
D6) Check the schema graph and the numbers of remaining
key attributes and non-key attributes. D7) Delete one of
the non-key attributes from the table. D8) Delete the key
attribute of a table. D9) Design and customize the complete
preview by selecting the key attributes and corresponding
non-key attributes. D10) Click on each table and check the
corresponding sub-graph in the schema graph. D11) Export
the preview in PDF format.

In addition to TableView, we implemented the summariza-
tion algorithm from Yang et al. [6]. We will demonstrate the
schema summary of Freebase generated by their algorithm and
compare it with the preview tables produced by TableView.

ACKNOWLEDGMENTS

The authors have been partially supported by NSF grants
1408928, 1719054 and NSF-China grant 61370019. Any opin-
ions, findings, and conclusions in this publication are those
of the authors and do not necessarily reflect the views of
the funding agencies. We also thank Rudresh Ajgaonkar and
Aaditya Kulkarni for their contributions.

REFERENCES

[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, , and Z. Ives,
“DBpedia: A nucleus for a Web of open data,” in ISWC, 2007, pp. 722–
735.

[2] F. M. Suchanek, G. Kasneci, and G. Weikum, “YAGO: a core of
semantic knowledge unifying WordNet and Wikipedia,” in WWW, 2007,
pp. 697–706.

[3] W. Wu, H. Li, H. Wang, and K. Q. Zhu, “Probase: a probabilistic
taxonomy for text understanding,” in SIGMOD, 2012, pp. 481–492.

[4] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase:
a collaboratively created graph database for structuring human knowl-
edge,” in SIGMOD, 2008, pp. 1247–1250.

[5] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,
T. Strohmann, S. Sun, and W. Zhang, “Knowledge vault: A web-scale
approach to probabilistic knowledge fusion,” in KDD, 2014, pp. 601–
610.

[6] X. Yang, C. M. Procopiuc, and D. Srivastava, “Summarizing relational
databases,” PVLDB, vol. 2, no. 1, pp. 634–645, 2009.

[7] X. Yang, C. M. Procopiuc, and D. Srivastava, “Summary graphs for
relational database schemas,” PVLDB, vol. 4, no. 11, pp. 899–910, 2011.

[8] C. Yu and H. V. Jagadish, “Schema summarization,” in VLDB, 2006,
pp. 319–330.

[9] Y. Tian, R. A. Hankins, and J. M. Patel, “Efficient aggregation for graph
summarization,” in SIGMOD, 2008, pp. 567–580.

[10] N. Zhang, Y. Tian, and J. M. Patel, “Discovery-driven graph summa-
rization,” in ICDE, 2010, pp. 880–891.

[11] N. Yan, S. Hasani, A. Asudeh, and C. Li, “Generating preview tables
for entity graphs,” in SIGMOD, 2016, pp. 1797–1811.

[12] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” in WWW, 1998, pp. 107–117.

