
Crowdsourcing Pareto-Optimal Object
Finding by Pairwise Comparisons
Abolfazl Asudeh, Gensheng Zhang, Naeemul Hassan, Chengkai Li, Gergely V. Zaruba

Department of Computer Science and Engineering
University of Texas at Arlington

CIKM, October 21, 2015, Melbourne, Australia

©2015 The University of Texas at Arlington. All Rights Reserved.

Humans’ Obsession: Comparing Things
Who is the better footballer?

Which is the better company to work for?

http://visual.ly/messi-vs-ronaldo

©2015 The University of Texas at Arlington. All Rights Reserved.

Facebook vs. Google

http://www.businessinsider.com/facebook-vs-google-best-employer-2013-11
©2015 The University of Texas at Arlington. All Rights Reserved.

Facebook vs. Google

Overall
satisfaction

CEO approval Employee
confidence in the
future

Perks and salaries Interview
difficulty

≻ ≻ ≻ ≻ ≻

Multiple criteria

Which one is better?

©2015 The University of Texas at Arlington. All Rights Reserved.

Overview
1. Ask crowd to compare objects on individual criteria

2. Derive partial knowledge about preference relations based
on responses from crowd

3. Find all Pareto-optimal objects without exhausting all
possible comparison questions

General framework and its instantiations (algorithms), with the
goal of minimizing number of questions

Preference (Better-Than) Relation Pc
(x , y) ∈ Pc (or x ≻c y)
“x is better than (preferred over) y with regard to criterion c”

Assumptions on data model:
o Pc is a strict partial order (as opposed to a total order)
 Irreflexivity, Transitivity, Asymmetry
o No explicit attribute representation,
 thus no equivalence on a criterion

Notations:
o (indifferent) x ∼c y ⇔ (x, y) ∉ Pc ∧ (y, x) ∉ Pc
o (not better than) x ⊁c y ⇔ (x, y) ∉ Pc

Pareto-optimal Objects
Object dominance: consider objects O, criteria C
y ≻ x ⇔ ∀c ∈ C : x ⊁c y and ∃c ∈ C such that y ≻c x (i.e., x is not
better than y by any criterion and y is better than x by at least one criterion)

x ∈ O is Pareto-optimal ⇔ x is not dominated by any
other object

Example:
o c ≻ d ⇐ c ≻story d, c ≻music d, c ∼acting d
o Only one Pareto-optimal object: b

Deriving Preference Relations by Aggregating
Crowd’s Responses to Pairwise Comparisons

Pareto-Optimal Object Finding
Problem statement: Given objects O and criteria C, find all Pareto-optimal
objects, using pairwise comparisons by individual criteria

Cost metric
o Goal: as few pairwise comparison questions as possible
o Simple, but reflect real-world monetary cost and time delay
o Brute-force approach : |C| x |O| x (|O|-1)/2 questions

Assumptions on execution model
o Sequential execution: get rlt(qi) before asking q i+1

o No consideration of worker quality

Applications
Collecting Public Opinion
o Best companies to work for, best cities to live in
Group Decision Making
o Where for lunch, which product to use, which candidate to hire
Information Exploration
o Compare photos by color, sharpness, and landscape
Back to the “which one is better”?
o After finding Pareto-optimal objects, further actions (ranking, filtering,

visualization) to find desirable objects

Related Work

[12] Chen et al. WSDM13 || [15] Davidson et al. ICDT13 || [17] Grozet al. PODS15 ||
[23] Lofi et al. EDBT13 || [25] Polychronopoulos et al. WebDB13 || [4] technical report of
this paper
Other related work: collaborative filtering, learning to rank, …

Related Work
Explicit attribute representation
o Total order on ordinal attributes (sizes of houses, ratings of

restaurants), Partial-order on categorical attributes (genres of movies)
o Not always easy to model and/or for users to provide missing values

(e.g., story of movies)
Pairwise comparisons
o Known to be easier, faster, and less error-prone. Widely used in social

choice and welfare, preferences, and voting
Partial order vs. Total order
o A direct effect of using pairwise comparisons
o Not always natural to enforce a total order

General, Iterative Algorithm Framework
4-steps in each iteration
(1) Question selection
(2) Outcome derivation
(3) Contradiction resolution
(4) Termination test

(2) Outcome Derivation

{

Question
o q = x ?c y (compare x and y by criterion c)
Three possible outcomes based on voting
 x ≻c y
rlt(q) = y ≻c x
 x ∼c y

The framework is agnostic to the outcome derivation method.
Other conceivable method can be plugged in.

(3) Contradiction Resolution
Assume transitivity in preference relation, and enforce it.

x

y

z
criterion c

case 1

(3) Contradiction Resolution
Assume transitivity in preference relation, and enforce it.

x

y

z
criterion c

assumed case 1

(3) Contradiction Resolution
Assume transitivity in preference relation, and enforce it.

x

y

z
criterion c

assumed
x y

z
~

criterion c
case 1 case 2

(3) Contradiction Resolution
Assume transitivity in preference relation, and enforce it.

x

y

z
criterion c

assumed
x y

z
~ ~

criterion c
assumed case 1 case 2

(4) Termination Test
At the end of each iteration, objects are partitioned into 3 sets, based on
incomplete preference relations R+(Q) so far.

o O√ : Pareto-optimal objects
o O× : Non Pareto-optimal objects
o O? : R+(Q) is insufficient for discerning these objects’ Pareto-optimality

o O? = ∅ ⇒ terminate

(1) Question Selection
The process of executing a question sequence Q = 〈q1, ..., qn〉
o Q is a terminal sequence if O? = ∅ based on R+(Q).
o Goal: among many terminal sequences, execute a short sequence
Lower bound
o Theorem 2: At ldeast (|O|−k)×|C|+(k−1)×2 pairwise comparison questions are

necessary, where k is the number of Pareto-optimal objects.

Bad news
o Worst-case : |C| x |O| x (|O|-1)/2 questions; cannot do better than brute-force
o E.g., suppose all objects are indifferent by every criterion. If any comparison x ?c y is

skipped, we will not be able to determine if x and y are indifferent or if one dominates
another.

Transitivity of Object Dominance: Doesn’t Hold

A cost-saving property for skyline queries

o Object dominance transitivity: x ≻ y, y ≻ z ⇒ x ≻ z

o Immediately prune a dominated object from further comparison.

(Any object dominated by y is also dominated by x.)

Transitivity of Object Dominance: Doesn’t Hold
Fundamental reason: lack of explicit attribute representation
o In skyline/preference queries:
 on any attribute, x >= y, y>=z ⇒ x>=z.
o In Pareto-optimal object finding:
 x ≻c or ∼c y, y ≻c or ∼c z ⇒ x ≻c or ∼c z (not true)

Even possible that an object is dominated by only one non-
Pareto optimal object.

Can Still Benefit From A Similar Idea
For a non-Pareto optimal object, we only need to know at least
one object dominates it. We don’t care about which other objects
also dominate it.

Overriding principle of the framework:
o Identify non-Pareto objects as early as possible
o Postpone their comparisons with other objects as much as possible

Candidate Questions
Given asked questions Q = 〈q1, ..., qn〉, x ?c y is a
candidate question iff it satisfies 3 conditions:

(i) The outcome of x ?c y is unknown yet, i.e., rlt(x ?c y) ∉ R+(Q)
(ii) x ∈ O?
(iii) Based on R+(Q), y ≻ x is not ruled out yet.

How to rule out y ≻ x ?
∃c∈C such that x ≻c y ∈ R+(Q) ⇒ y⊁x

Only Choosing from Candidate Questions
Sufficient
Property 2: Qcan = ∅ ⇔ O? = ∅

Efficient
Theorem 1: If Q contains non-candidate questions, there exists a shorter
or equally long sequence Q’ without non-candidate questions such that Q’
finds at least all dominated objects found by Q.

Macro-ordering, Micro-ordering
Both guided by the overriding principle
Macro-ordering: When available, we choose a candidate question x ?c y such that y ∉ O×

Micro-ordering: Several question ordering heuristics:

o Random Question (RandomQ): randomly choose a candidate question x ?c y
o Random Pair (RandomP): randomly choose a candidate question x ?c y,

continue to finish all remaining candidate questions between x and y.
o Fewest Remaining Questions (FRQ): Choose a pair with the fewest

remaining questions. Ties are broken based on how many objects are
better/worse than x and y on the criterion.

Experiments by Simulation

o Used an 10000-tuple NBA dataset that records players’ per-
season performance on 10 criteria (points-per-game, …)

o Simulated Partial orders based on players’ performance

comparison, with some perturbations.

Effectiveness of Candidate Questions and Macro-
Ordering

Effectiveness of Micro-Ordering

Experiments using Amazon Mechanical Turk
o Compare 100 photos of UT-Arlington campus, by color, sharpness,

landscape.

o All 14, 850 possible pairwise questions were partitioned into 1, 650 tasks,
each containing 9 questions on a criterion.

o Worker qualification:
 responded to at least 100 HITs before with at least 90% approval rate
 2 additional validation questions mixed in each task

Experiments using Amazon Mechanical Turk

Limitations and Future Work
No performance guarantee: as bad as brute-force in worst-case
Non-deterministic results: due to contradiction resolution
Possibly empty result: due to lack of object dominance transitivity
No consideration of different levels of confidence on question
outcomes or crowdsourcers' quality.
 Future work: Pareto-optimal objects in probabilistic sense?
No consideration of parallel/batch-execution scheme
 Future work: Parallel scheme

Thank You! Questions?
Chengkai Li
http://ranger.uta.edu/~cli
cli@uta.edu

©2015 The University of Texas at Arlington. All Rights Reserved.

(3) Contradiction Resolution
How often does contradiction happen?

o Depends on data itself, k, and θ
o It may not happen a lot.

 Intuitively: as long as the underlying relation is transitive,
collective wisdom of crowd should reflect it.

 Preference judgments of relevance in document retrieval are
transitive [27, 11].

6 objects, 3 criteria: 45 comparisons

Brute-Force on the Toy Example

RandomQ on the Toy Example

RandomP on the Toy Example

FRQ on the Toy Example

	Slide Number 1
	Humans’ Obsession: Comparing Things
	Facebook vs. Google
	Facebook vs. Google
	Overview
	Preference (Better-Than) Relation Pc
	Pareto-optimal Objects
	Deriving Preference Relations by Aggregating Crowd’s Responses to Pairwise Comparisons
	Pareto-Optimal Object Finding
	Applications
	Related Work
	Related Work
	General, Iterative Algorithm Framework
	(2) Outcome Derivation
	(3) Contradiction Resolution
	(3) Contradiction Resolution
	(3) Contradiction Resolution
	(3) Contradiction Resolution
	(4) Termination Test
	(1) Question Selection
	Transitivity of Object Dominance: Doesn’t Hold
	Transitivity of Object Dominance: Doesn’t Hold
	Can Still Benefit From A Similar Idea
	Candidate Questions
	Only Choosing from Candidate Questions
	Macro-ordering, Micro-ordering
	Experiments by Simulation
	Effectiveness of Candidate Questions and Macro-Ordering
	Effectiveness of Micro-Ordering
	Experiments using Amazon Mechanical Turk
	Experiments using Amazon Mechanical Turk
	Limitations and Future Work
	Thank You! Questions?
	(3) Contradiction Resolution
	Brute-Force on the Toy Example
	RandomQ on the Toy Example
	RandomP on the Toy Example
	FRQ on the Toy Example

