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Humans’ Obsession: Comparing Things 
Who is the better footballer?  
 
 
Which is the better company to work for?  

http://visual.ly/messi-vs-ronaldo 
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Facebook vs. Google 

http://www.businessinsider.com/facebook-vs-google-best-employer-2013-11 
©2015 The University of Texas at Arlington. All Rights Reserved.



Facebook vs. Google 

Overall 
satisfaction 

CEO approval Employee 
confidence in the 
future 

Perks and salaries Interview 
difficulty 

≻ ≻ ≻ ≻ ≻ 

Multiple criteria 

Which one is better? 
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Overview 
1. Ask crowd to compare objects on individual criteria 

 

2. Derive partial knowledge about preference relations based 
on responses from crowd 
 

3. Find all Pareto-optimal objects without exhausting all 
possible comparison questions 
 

General framework and its instantiations (algorithms), with the 
goal of  minimizing number of  questions 



Preference (Better-Than) Relation Pc 
(x , y) ∈ Pc (or x ≻c y)  
“x is better than (preferred over) y with regard to criterion c” 
 

Assumptions on data model:  
o Pc is a strict partial order (as opposed to a total order)  
      Irreflexivity, Transitivity, Asymmetry   
o No explicit attribute representation,  
      thus no equivalence on a criterion 
 

Notations: 
o (indifferent) x ∼c y  ⇔  (x, y) ∉ Pc ∧ (y, x) ∉ Pc 
o (not better than) x ⊁c y  ⇔  (x, y) ∉ Pc     



Pareto-optimal Objects 
Object dominance: consider objects O,  criteria C 
y ≻ x   ⇔  ∀c ∈ C : x ⊁c y and ∃c ∈ C such that y ≻c x   (i.e., x is not 
better than y by any criterion and y is better than x by at least one criterion) 

 

x ∈ O is Pareto-optimal  ⇔  x is not dominated by any 
other object 

 

Example:   
o c ≻ d ⇐ c ≻story d, c ≻music d, c ∼acting d 
o Only one Pareto-optimal object:  b 



Deriving Preference Relations by Aggregating 
Crowd’s Responses to Pairwise Comparisons 



Pareto-Optimal Object Finding 
Problem statement: Given objects O and criteria C, find all Pareto-optimal 
objects, using pairwise comparisons by individual criteria  
 

Cost metric 
o Goal: as few pairwise comparison questions as possible 
o Simple, but reflect real-world monetary cost and time delay 
o Brute-force approach : |C| x |O| x (|O|-1)/2 questions 

 

Assumptions on execution model 
o Sequential execution: get rlt(qi) before asking q i+1 

o No consideration of  worker quality 



Applications 
Collecting Public Opinion  
o Best companies to work for, best cities to live in 
Group Decision Making 
o Where for lunch, which product to use, which candidate to hire  
Information Exploration 
o Compare photos by color, sharpness, and landscape 
Back to the “which one is better”?  
o After finding Pareto-optimal objects, further actions (ranking, filtering, 

visualization) to find desirable objects  



Related Work 

[12] Chen et al. WSDM13  ||  [15] Davidson et al.  ICDT13  ||  [17] Grozet al.  PODS15  ||  
[23] Lofi et al.  EDBT13  ||  [25] Polychronopoulos et al. WebDB13  ||  [ 4]  technical report of 
this paper 
Other related work: collaborative filtering, learning to rank, … 



Related Work 
Explicit attribute representation 
o Total order on ordinal attributes (sizes of  houses, ratings of  

restaurants), Partial-order on categorical attributes (genres of  movies) 
o Not always easy to model and/or for users to provide missing values 

(e.g., story of  movies) 
Pairwise comparisons 
o Known to be easier, faster, and less error-prone. Widely used in social 

choice and welfare, preferences, and voting 
Partial order vs. Total order 
o A direct effect of  using pairwise comparisons 
o Not always natural to enforce a total order 



General, Iterative Algorithm Framework 
4-steps in each iteration 
(1) Question selection 
(2) Outcome derivation 
(3) Contradiction resolution 
(4) Termination test 



(2) Outcome Derivation 

{ 

Question 
o q = x ?c y   (compare x and y by criterion c)
Three possible outcomes based on voting 
                   x ≻c y  
rlt(q) =       y ≻c x  
                   x ∼c y 

The framework is agnostic to the outcome derivation method. 
Other conceivable method can be plugged in.  



(3) Contradiction Resolution 
Assume transitivity in preference relation, and enforce it. 

x 

y 

z 
criterion c 

case 1 



(3) Contradiction Resolution 
Assume transitivity in preference relation, and enforce it. 
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(3) Contradiction Resolution 
Assume transitivity in preference relation, and enforce it. 
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(3) Contradiction Resolution 
Assume transitivity in preference relation, and enforce it. 
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assumed case 1 case 2 



(4) Termination Test 
At the end of each iteration, objects are partitioned into 3 sets, based on 
incomplete preference relations R+(Q) so far. 
 

 

 

 

 

 

 

o O√ :  Pareto-optimal objects 
o O× :  Non Pareto-optimal objects 
o O?  :  R+(Q) is insufficient for discerning these objects’ Pareto-optimality 

 

o O? = ∅  ⇒   terminate 



(1) Question Selection 
The process of  executing a question sequence Q = 〈q1, ..., qn〉 
o Q is a terminal sequence if  O? = ∅ based on R+(Q). 
o Goal: among many terminal sequences, execute a short sequence 
Lower bound 
o Theorem 2:  At ldeast (|O|−k)×|C|+(k−1)×2 pairwise comparison questions are 

necessary, where k is the number of Pareto-optimal objects. 

Bad news 
o Worst-case : |C| x |O| x (|O|-1)/2 questions; cannot do better than brute-force  
o E.g., suppose all objects are indifferent by every criterion. If  any comparison x ?c y is 

skipped, we will not be able to determine if  x and y are indifferent or if  one dominates 
another. 



Transitivity of  Object Dominance: Doesn’t Hold 

A cost-saving property for skyline queries 
 
o Object dominance transitivity:  x ≻ y, y ≻ z ⇒ x ≻ z 

 
o Immediately prune a dominated object from further comparison. 

(Any object dominated by y is also dominated by x.) 
 



Transitivity of  Object Dominance: Doesn’t Hold 
Fundamental reason: lack of  explicit attribute representation 
o In skyline/preference queries:  
     on any attribute,  x >= y,  y>=z  ⇒ x>=z. 
o In Pareto-optimal object finding:  
     x ≻c or ∼c y,  y ≻c or ∼c z ⇒ x ≻c or ∼c z (not true) 
 
Even possible that an object is dominated by only one non-
Pareto optimal object. 
 

 
 



Can Still Benefit From A Similar Idea 
For a non-Pareto optimal object, we only need to know at least 
one object dominates it. We don’t care about which other objects 
also dominate it.  

 

Overriding principle of  the framework:  
o Identify non-Pareto objects as early as possible 
o Postpone their comparisons with other objects as much as possible 



Candidate Questions 
Given asked questions Q = 〈q1, ..., qn〉, x ?c y is a 
candidate question iff  it satisfies 3 conditions: 
 
(i) The outcome of  x ?c y is unknown yet, i.e., rlt(x ?c y) ∉ R+(Q) 
(ii) x ∈ O?  
(iii) Based on R+(Q), y ≻ x is not ruled out yet.     
 
How to rule out y ≻ x ?   
∃c∈C such that x ≻c y ∈ R+(Q) ⇒ y⊁x 



Only Choosing from Candidate Questions 
Sufficient 
Property 2:  Qcan = ∅   ⇔   O? = ∅ 
 
Efficient 
Theorem 1: If  Q contains non-candidate questions, there exists a shorter 
or equally long sequence Q’ without non-candidate questions such that Q’ 
finds at least all dominated objects found by Q.  



Macro-ordering, Micro-ordering 
Both guided by the overriding principle 
Macro-ordering: When available, we choose a candidate question x ?c y such that y ∉ O× 

Micro-ordering: Several question ordering heuristics:   

o Random Question (RandomQ): randomly choose a candidate question x ?c y  
o Random Pair (RandomP): randomly choose a candidate question x ?c y, 

continue to finish all remaining candidate questions between x and y. 
o Fewest Remaining Questions (FRQ): Choose a pair with the fewest 

remaining questions. Ties are broken based on how many objects are 
better/worse than x and y on the criterion.  



Experiments by Simulation 

o Used an 10000-tuple NBA dataset that records players’ per-
season performance on 10 criteria (points-per-game, …) 

 
o Simulated Partial orders based on players’ performance 

comparison, with some perturbations.  



Effectiveness of  Candidate Questions and Macro-
Ordering 



Effectiveness of  Micro-Ordering 



Experiments using Amazon Mechanical Turk 
o Compare 100 photos of UT-Arlington campus, by color, sharpness, 

landscape.   
 

o All 14, 850 possible pairwise questions were partitioned into 1, 650 tasks, 
each containing 9 questions on a criterion. 
 

o Worker qualification:  
 responded to at least 100 HITs before with at least 90% approval rate 
 2 additional validation questions mixed in each task 



Experiments using Amazon Mechanical Turk 



Limitations and Future Work 
No performance guarantee: as bad as brute-force in worst-case 
Non-deterministic results: due to contradiction resolution 
Possibly empty result: due to lack of  object dominance transitivity 
No consideration of  different levels of  confidence on question 
outcomes or crowdsourcers' quality. 
 Future work: Pareto-optimal objects in probabilistic sense? 
No consideration of  parallel/batch-execution scheme 
 Future work: Parallel scheme 



Thank You!  Questions? 
Chengkai Li 
http://ranger.uta.edu/~cli 
cli@uta.edu 

©2015 The University of Texas at Arlington. All Rights Reserved.



(3) Contradiction Resolution 
How often does contradiction happen? 
 
o Depends on data itself, k, and θ  
o It may not happen a lot.  

 Intuitively: as long as the underlying relation is transitive, 
collective wisdom of  crowd should reflect it. 

 Preference judgments of  relevance in document retrieval are 
transitive [27, 11]. 



6 objects, 3 criteria: 45 comparisons 

Brute-Force on the Toy Example 



RandomQ on the Toy Example 



RandomP on the Toy Example 



FRQ on the Toy Example 
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