

An Empirical Study on Identifying Sentences with Salient Factual Statements

The Innovative Database and Information Systems Research Laboratory (IDIR)

Damian Jimenez, Chengkai Li

MOTIVATION

To believe or not to believe..?

DONALD TRUMP

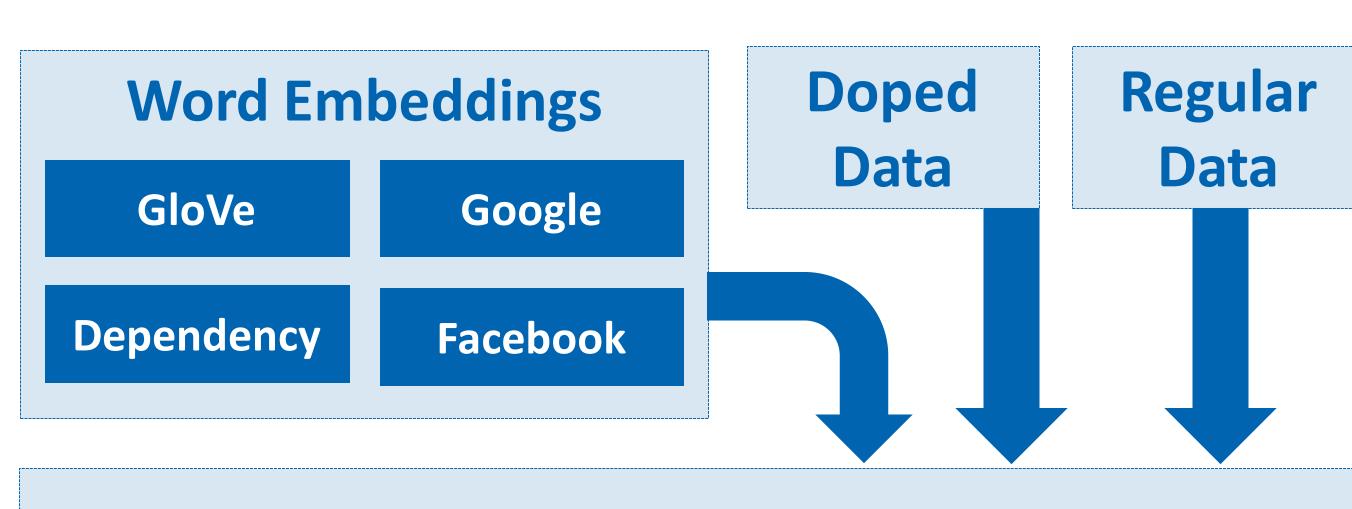
"This Russia thing with Trump and Russia is a made-up story. It's an excuse by the Democrats for having lost an election that they should've won."

GWEN MOORE

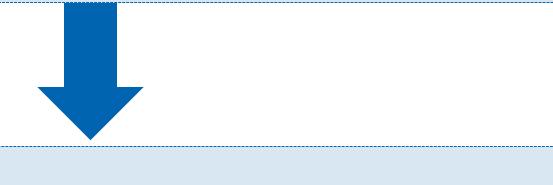
"Under 'Trumpcare," domestic violence and sexual assault "could be considered preexisting conditions."

Source: http://www.politifact.com/

No, though conditions arising from assaults could be



SVM Model



Conclusion: SVM model is easily tricked into giving sentences high scores based on a few key features.

OBJECTIVES

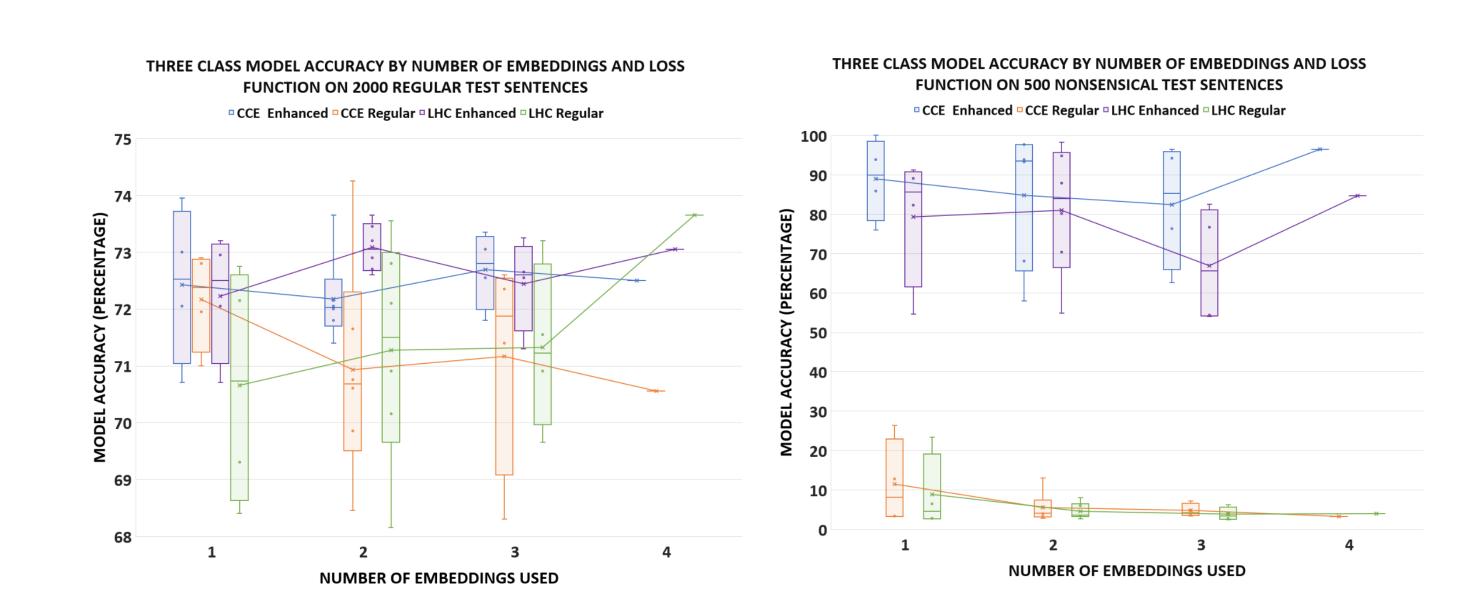
Train models with different combinations of these

Evaluate models to observe effects of variations

RESULTS OVERVIEW

MODEL ACCURACY ON THE 2000 REGULAR SENTENCE TEST DATASET

		Enhanced Dataset			Regular Dataset		
		Precision	Recall	F1-Score	Precision	Recall	F1-Score
Two Class Models	NFS	0.86	0.87	0.87	0.87	0.87	0.87
	CFS	0.60	0.58	0.58	0.60	0.59	0.59
	AVG	0.80	0.80	0.80	0.80	0.80	0.80
Three Class Models	NFS	0.78	0.86	0.83	0.80	0.84	0.82
	UFS	0.60	0.26	0.35	0.57	0.27	0.34
	CFS	0.61	0.60	0.60	0.68	0.65	0.61
	AVG	0.71	0.73	0.71	0.71	0.71	0.70
Original SVM Model	NFS	0.62	0.99	0.76	0.78	0.14	0.23
	UFS	0	0	0	0.15	0.13	0.14
	CFS	0.19	0.01	0.02	0.28	0.88	0.43
	AVG	0.42	0.61	0.47	0.57	0.32	0.27

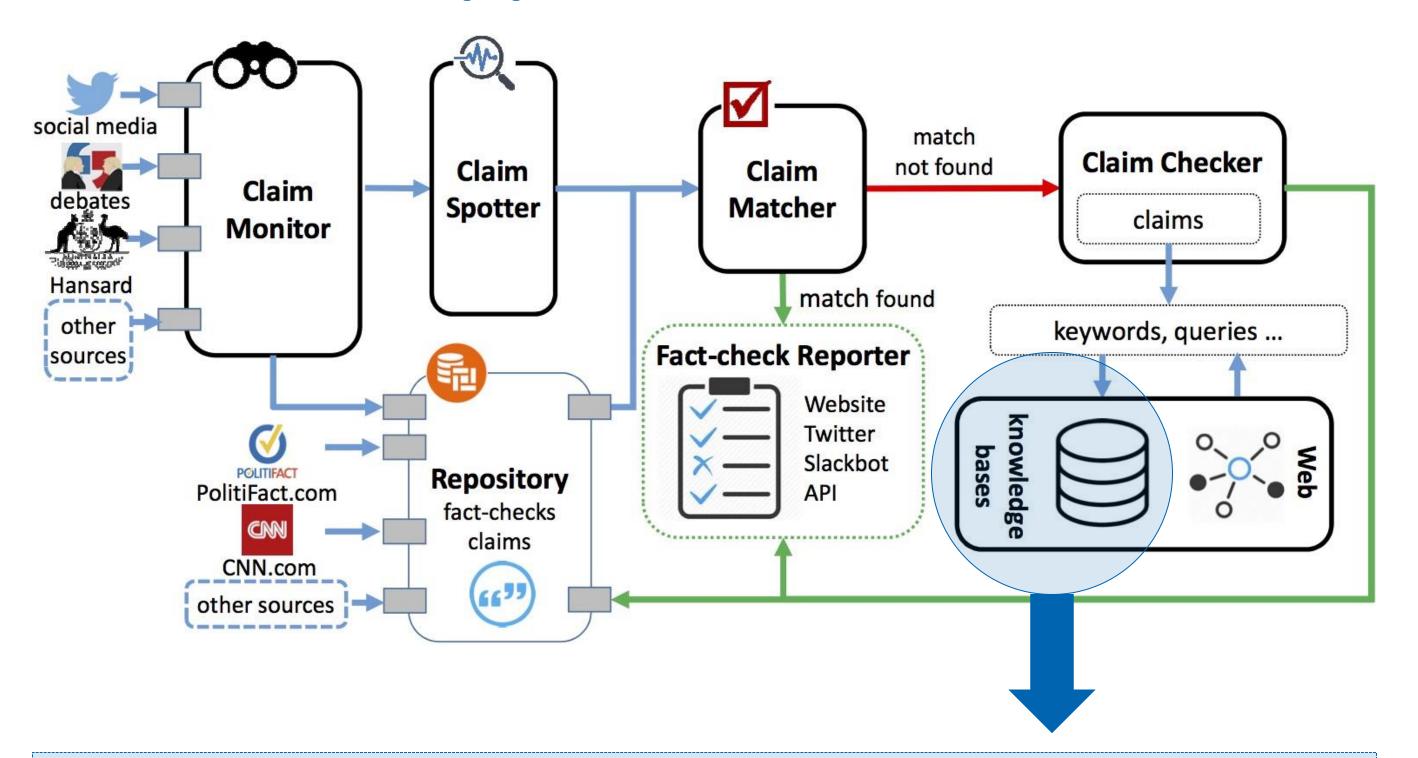

Model Accuracy on the 500 Nonsensical Sentence Test Dataset

	Models Trained on the Enhanced Dataset	Models Trained on the Regular Dataset		
Two Class Models N/UFS Recall	0.81	0.07		
Three Class Models NFS Recall	0.81	0.06		
SVM Model NFS Recall	1.0	0.45		

* We observe that the SVM model actually has better recall in identifying non-factual statements, but realize that this is due to overfitting and actually hurts its performance in the CFS category seen in the first table.

SCORES ON SENTENCES BY FOUR DIFFERENT SELECT MODELS

	Model Scores					
Sentence	GloVe, Gooogle, Dep	GloVe, Google, Facebook	SVM Model	SVM Model		
	Embeddings	Embeddings	Enhanced Dataset	Regular Dataset		
I ate apples.	0.06	0.02	0.10	0.20		
I ate 2 apples.	0.06	0.02	0.10	0.20		
I ate 500 apples.	0.06	0.02	0.10	0.23		
Iraq does not have weapons of mass destruction.	0.05	0.76	0.16	0.33		
Millions of illegal immigrants voted last year.	0.014	0.98	0.07	0.65		
The U.S. allowed 320 million illegal immigrants	0.91	0.98	0.09	0.82		
to vote in the 2016 elections.		0.98				
The 534 apples spread out across 3 tables had been	0.09	0.97	0.09	0.80		
left out for 1 day 9 hours and 23 minutes.		0.97				



CONCLUSIONS

- Differentiating data into more than two classes provided little to no benefit.
- Combinations of word-embeddings had no significant impact on model accuracy.
- Some embeddings tend to produce models that have an affinity for sentences with digits.
- The inclusion of nonsensical sentences did mitigate issues with the original SVM model.

LOOKING FORWARD

- Explore new methods for improving the classifier. Adversarial training is currently being explored by our group.
- Create a pipeline for which to fact check salient statements on a knowledge graph using our own internal pipeline.

Currently we make use of commercial databases like Wolfram Alpha which are a black-box. We are working to replace this with an in-house system.

LEARN MORE

http://idir.uta.edu/claimbuster http://idir.uta.edu/factchecker