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ABSTRACT

Cyber-physical system (CPS) development tool chains are widely
used in the design, simulation, and verification of CPS data-flow
models. Commercial CPS tool chains such as MathWorks” Simulink
generate artifacts such as code binaries that are widely deployed in
embedded systems. Hardening such tool chains by testing is cru-
cial since formally verifying them is currently infeasible. Existing
differential testing frameworks such as CyFuzz can not generate
models rich in language features, partly because these tool chains
do not leverage the available informal Simulink specifications. Fur-
thermore, no study of existing Simulink models is available, which
could guide CyFuzz to generate realistic models.

To address these shortcomings, we created the first large col-
lection of public Simulink models and used the collected models’
properties to guide random model generation. To further guide
model generation we systematically collected semi-formal Simulink
specifications. In our experiments on several hundred models, the
resulting SLforge generator was more effective and efficient than
the state-of-the-art tool CyFuzz. SLforge also found 8 new con-
firmed bugs in Simulink.

CCS CONCEPTS

« Software and its engineering — Model-driven software en-
gineering; Software testing and debugging;
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1 INTRODUCTION

Cyber-physical system developers rely heavily on complex devel-
opment environments or tool chains, which they use to design
graphical models (i.e., block-diagrams) of cyber-physical systems.
Such models enable engineers to do rapid prototyping of their
systems through simulation and code generation [23]. Since au-
tomatically generated native code from these data-flow models
are often deployed in safety-critical environments, it is crucial to
eliminate bugs from cyber-physical system tool chains [7, 40].

Ideally, one should formally verify such tool chains, since a tool
chain bug may compromise the fidelity of simulation results or
introduce subtle bugs in generated code [8]. However, a commer-
cial cyber-physical system (CPS) development tool chain consists
of millions of lines of code, so formal verification does not (yet)
scale to such tool chains. While compilers and other CPS tool chain
components remain mostly unverified, we continue to observe fre-
quent safety recalls in various industries [1, 55, 56]. The recalls are
attributed to hidden bugs in the deployed CPS artifacts themselves,
in spite of spending significant efforts in their design validation
and verification [5, 57].

Testing, on the other hand, is a proven approach to effectively
discover defects in complex software tool chains [34]. Especially
randomized differential testing has recently found over a thousand
bugs in popular production-grade compilers (e.g., GCC and LLVM)
that are part of CPS development tool chains [17, 25, 30, 45, 58]. The
technique eliminates the need of a test-oracle and can hammer the
system under test in the absence of a complete formal specification
of the system under test—a phenomenon we commonly observe in
commercial CPS tool chain testing [6, 24, 50]. Differential testing
seems suitable for black-box testing of the entire CPS tool chain, and
its most susceptible parts (e.g., code generators) in particular [43, 50].
CyFuzz is the first (and only) known randomized differential testing
tool for CPS data-flow languages [11].

While CyFuzz initiated the work for testing CPS tool chains,
more work is necessary to evaluate the scheme’s capabilities, e.g.,
for finding bugs in Simulink that developers care about. For instance,
a random model generator should generate tests with properties
similar to the models people typically use, since they are more likely
to get fixed by the system under test (SUT) developers. While large
repositories of publicly available programs of various procedural
and object-oriented programming languages exist [12, 22, 59], we
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are not aware of such a collection of CPS models. The existing CPS
studies rely on a handful of public [41] or proprietary [47] Simulink
models.

Among other shortcomings, the models CyFuzz generates are
small and lack many syntactic constructs. Recent studies identified
expressive test-input generation as a success-factor for compiler
validation ([30, 58]). Perhaps due to its inability to generate large
tests with rich language features, CyFuzz has not found previously
unknown bugs. Furthermore, CyFuzz essentially generates invalid
models and iteratively fixes them until the SUT can compile and
simulate them without error or exception. However, this heuristic
approach required several time-consuming iterations and did not
use Simulink specifications, which are available publicly in natural
language.

To address these shortcomings, we have conducted the first study
of a large number of public Simulink models. The size of many of
these models is larger than the average size of models used in
industry. From the collected models we obtain properties that are
useful for targeting a random Simulink model generator. Our model
collection is publicly available and may eliminate the nontrivial
overhead of artifact-collection in future studies.

Next, extending CyFuzz, we present SLFORGE, a tool for automat-
ically generating models with advanced Simulink language features.
The goal is that the SLforge-generated models are similar to the
collected public models. Improving on CyFuzz’s undirected random
model generation approach, SLforge can generate models more ef-
ficiently, by consulting available (informal) Simulink specifications.

Finally, we provide the first approach to Equivalent modulo input
(EMI) testing in CPS development tool testing [30]. SLforge creates
EMI variants from the random models it generates and uses them in
the differential testing setup. During an approximately five months
long testing time, we found and reported 12 bugs overall, Math-
Works confirmed 10 of them, of which 8 were previously unknown.
To summarize, the paper makes the following major contributions.

e To better target a random CPS model generator, we con-
duct the first large-scale study of publicly available Simulink
models. A significant portion of these models are of size and
complexity that are comparable to models used in industry.

e We identify problems in the existing CPS random model
generator CyFuzz and design solutions that directly led to
the discovery of new bugs in the Simulink tool chain.

e Finally, by comparing it with CyFuzz, we evaluate SLforge’s
efficiency and bug-finding capability.

2 BACKGROUND

This section provides necessary background information on CPS
dataflow models, the major commercial CPS tool-chain Simulink,
the state-of-the-art differential CPS tool-chain testing tool CyFuzz,
and EMI-based differential testing.

2.1 CPS Data-flow Models And Simulink

While in-depth descriptions are available elsewhere [54], the follow-
ing are the key concepts. In a CPS development tool (e.g., Simulink),
a user designs a CPS as a set of dataflow models. A model contains
blocks. A block accepts data through its input ports, typically per-
forms on the data some operation, and may pass output through
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Figure 1: Example hierarchical CPS model: Rounded rec-
tangle = model; shaded = block; oval = I/O; solid ar-
row = dataflow; dashed arrow = hierarchy.

its output ports to other blocks, along connection lines. Simulink
specifies which port (of a block) supports which data-types.

In a connection, we name the block sending output source and the
block receiving data a target. Output ports are numbered starting
with 1. Input port numbering starts with 0, where 0 denotes a special
port (e.g., the Action port of the If Action block). In addition to such
explicit connections, using From and Goto blocks, one can define
implicit (hidden) connections [40, 44].

Commercial CPS tool chains offer many libraries of built-in
blocks. Besides creating a CPS from built-in blocks, one can add cus-
tom blocks and define their functionality via custom “native” code
(e.g., in Matlab or C, using Simulink’s S-function feature). Most
blocks have user-configurable parameters.

More formally, block b € B and connection ¢ € C may be part of
model m € M. Then a flat (non-hierarchical) model is a tuple (B, C)
where m.B and m.C denote the model’s blocks and connections.
Each connection is a tuple (b, ps, bs, ps) of source block b, source
output port pg, target block b;, and target input port p;. While a
Simulink connection may have multiple targets, we break such a
multi-target connection into multiple (single-target) connection
tuples, without losing expressiveness.

For hierarchical models we list a model m? at hierarchy level i

with its n direct child models as m![mi*! mi*l . The Figure 1
2

k "7 k+n-1
example m% [m3, mg] has m} as its top-level model. mg and mg are
m% ’s child models at hierarchy level 2. The dashed arrow starting
at by indicates that in the m% model by is a placeholder for the mg
model. Block b; sends data to m%, where bg receives it. Block bg
sends data back to by in m%.

Example placeholders are the subsystem and model reference
blocks. A child model m’s semantics are influenced by m’s hierarchy-
type property Ty, which depends on m’s configuration, the presence
of specific blocks in m, and on m’s placeholder block-type.

After designing a model in Simulink, users typically compile and
simulate it. In simulation, Simulink numerically solves the model’s
mathematical relationships established by the blocks and their con-
nections and calculates various non-dead (§4.3) block’s outputs
according to user-requested sample-times and inferred context-
dependent time steps, using built-in solvers [33]. Simulink offers
different simulation modes. While in Normal mode Simulink “only”
simulates blocks, it also emits some code for blocks in Accelerator
mode, and a standalone executable in Rapid Accelerator mode.

An input port p of block b is Direct Feed-through if b’s output de-
pends on values received from p. The parent to child model relation
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is acyclic. But within a model Simulink permits feedback loops (cir-
cular data flow). During compilation Simulink may reject a model
if it fails to numerically solve feedback loops (aka algebraic loops).
Simulink also supports explicit control-flow, e.g., via If blocks. An
If (“driver”) block connects to two If Action subsystem blocks, one
for each branch, via the If Action block’s Action port.

2.2 Testing Simulink With CyFuzz

CyFuzz is the first known differential testing framework for CPS
tool chains [11]. The framework has five phases. The first three
phases create a random model and the last two phases use the
model to automatically test a SUT.

Specifically, starting from an empty model, (1) the Select Blocks
phase chooses random blocks and places them in the model. (2) The
Connect Ports phase connects the blocks’ ports arbitrarily, yielding a
model the SUT may reject, e.g., due to a type error. For example, an
output port’s data type may be incompatible with the data type of
the input port it connects to. (3) CyFuzz iteratively fixes such bugs
in the Fix Errors phase, by responding to the SUT’s error messages
with corresponding repair actions. This “feedback-driven model
generation” approach, despite being an imperfect heuristic, can fix
many such model errors.

Once the SUT can compile a randomly generated model, (4) Cy-
Fuzz’s Log Signals phase simulates the model under varying SUT
options. The key idea of differential testing is that each such simu-
lation is expected to produce the same results. This phase records
the output data (aka signals) of each block at various time-steps.
CyFuzz uses different Simulink simulation modes, partly to exercise
various code generators in the tool chain. Finally, in addition to
SUT crashes, (5) the Compare phase looks for signals that differ
between two simulation setups, which also indicate a bug.

CyFuzz categorizes its generated models into three groups: (1) Suc-
cess: models without any compile-time and runtime errors, (2) Error:
models with such errors, and (3) Timed-out: models whose simula-
tion did not complete within a configured time-out value. Although
CyFuzz pioneered the differential testing of Simulink using ran-
domly generated models, it did not find new bugs, perhaps since
the generated models are small and simple (using only four built-in
libraries and lacking advanced modeling features). Also, CyFuzz
does not use Simulink specifications and solely relies on iterative
model correction.

2.3 EMlI-based Compiler Testing

Equivalent modulo input (EMI) testing is a recent advancement in
differential testing of compilers for procedural languages [30]. Com-
plementing plain differential testing, EMI found over one hundred
bugs in GCC and LLVM [8]. The idea is to systematically mutate a
source program as long as its semantics remain equivalent under
the given input data. Engineering basic mutators is relatively easy
and the overall scheme can effectively find bugs, when combined
with a powerful random generator that can create expressive test
inputs (e.g., Csmith [58]).

In its original implementation, EMI mainly leverages Csmith,
which generates random C programs that do not take user inputs.
A given compiler in a given configuration can then be expected to
produce programs that yield the same result on all EMI-mutants of
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a given source program. The initial implementation proved very
effective and found 147 bugs in production-grade C compilers such
as GCC and LLVM.

3 PUBLIC SIMULINK MODEL COLLECTION

To understand the properties of CPS data-flow models designed by
both researchers and engineers, we conducted the first large study
of Simulink models. The largest earlier Simulink model collection
we are aware of contains some 100k blocks [16]. However, these
models are company-internal and thus not available for third-party
studies. In contrast, our collection consists of some 145k blocks,
which are all publicly available (some require a standard Simulink
license as they are shipped with Simulink).

For context, earlier work reports that at Delphi, a large indus-
trial Simulink user, an average Simulink model consists of several
hundred blocks [32]. Of the models we collected, 35 consist of more
than 1,000 blocks, which is larger than an average model at Delphi.

3.1 Model Collection and Classification

For this study, we used the Simulink configuration our organization
has licensed, which includes the base Simulink tool chain and a
large set of libraries. This configuration includes the latest Simulink
version; the project web page lists the detailed configuration [10].
However, with this configuration, we could directly compile only
just over half of the collected models, as the remaining ones required
additional libraries that were not part of our configuration [10].

3.1.1 Tutorial. This group consists of official Simulink tutorial
models from MathWorks!. We manually reviewed the models and
their descriptions in the Automotive, Aerospace, Industrial Automa-
tion, General Applications, and Modeling Features categories and
excluded what we considered toy examples. We also included here
the Simulink-provided domain-specific library we had access to,
i.e., Aerospace. An example model from this group is NASA HL-20
(1,665 blocks), which models “the airframe of a NASA HL-20 lifting
body, a low-cost complement to the Space Shuttle orbiter” [53].

3.1.2  Simple and Advanced. We collected models from both ma-
jor open source project hosting services for Simulink, GitHub and
Matlab Central. (1) We used the GitHub search page for keyword
search (“Simulink”) and file extension search (Simulink extensions
.mdl and .slx). (2) On Matlab Central? we filtered results by “con-
tent type: model” and considered only those repositories with the
highest average ratings (27 projects) or “most downloads” count in
the last 30 days (27 projects).

To distinguish toy examples from more realistic models, we
labeled the GitHub projects no user has forked or marked a favorite
as Simple and the rest as Advanced. For the Matlab Central projects,
we manually explored their descriptions and labeled those that
demonstrate some blocks’ features or are academic assignments as
Simple and the rest as Advanced.

As an example, a model from the Grid-Connected PV Array project
is “a detailed model of a 100-kW array connected to a 25-kV grid via

!https://www.mathworks.com/help/simulink/examples.html
Zhttps://www.mathworks.com/matlabcentral/fileexchange
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Table 1: Overview of collected public models: Total num-
ber of models (M); models we could readily compile with-
out extra effort (C); hierarchical models (H); total number
of blocks and connections.

Group M C H Blocks Connect.
t Tutorial 41 40 40 10,926 11,541

s Simple 156 99 136 7,187 7,121
a Advanced 167 66 165 118,632 116,608
0] Other 28 14 21 8,317 9,577

Total 391 219 362 145,062 144,847

a DC-DC boost converter” created by a senior engineer at Hydro-
Quebec Research Institute (IREQ) [42]. It has 1,320 blocks. We clas-
sified it as Advanced.

3.1.3 Other. This group consists of models we obtained from
academic papers (5 models), the academic research of colleagues
(7 models), and Google searches (16 models). An example is the
Benchmarks for Model Transformations and Conformance Checking
released by engineers at Toyota Technical Center California [27]. It
has 208 blocks.

3.2 Model Metrics

In this study, we focus on those model properties that are relevant
for constraining a random model generator to models that are
representative of realistic CPS models. Our Matlab-based tool we
used to collect the following metrics is freely available on the project
site [10]. The collected metric values are shown as box-plots with
min-max whiskers.

3.2.1  Number of Blocks and Connections. Blocks and connec-
tions are the main elements of Simulink models and are counted
widely [32, 39]. We have included the contents of masked blocks [54]
in the parent model’s count. Next, we count the total number of
blocks and connections at a particular hierarchy level up to hierar-
chy level 7.

Our connection-count metric does not include hidden connec-
tions. For connections with multiple target ports, we count the
connections’ target ports. Perhaps not surprisingly, Simple models
are smaller (and Advanced models are larger) than models of the
other groups (Figures 2a and 2b), since we manually reviewed and
classified them in this class.

3.2.2  Hierarchy Depth. Since industrial models are frequently
organized as a hierarchy, we measured how deep these hierarchies
are. We treated both subsystems and model reference blocks as adding
a hierarchy level. Most of the collected models are indeed hierar-
chical (i.e., 362/391 models). But the median maximum hierarchy
depth did not extend five across all model groups.

More surprising were the distribution of blocks and connections
across hierarchy levels (Figures 3a and 3b). These numbers were
rather similar across hierarchy levels. Overall, the number of blocks
and connections in each hierarchy level were small, as denoted by
the small median value.
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Figure 2: Collected public models: Total blocks (a), connec-
tions (b), maximum hierarchy depth (c), and requested sim-
ulation duration (d).

3.2.3 Library Participation. This metric identifies the library
each model block comes from. For example, do models mostly
consist of built-in blocks or do they instead contain mostly custom
blocks? If we cannot resolve a block’s library (i.e., due to Matlab
API limitations), we record the block’s library as other.

Figure 4 suggests that only a small portion of the blocks are
custom (“User_Defin”). Across all four groups, Ports & Subsystems
and Math Operations were the two libraries used most frequently.
SLforge thus supports these libraries (among others, see §4.1.1), and
automatic custom block generation. We also noted a high contribu-
tion from the Signal Routing library using From and Goto blocks,
which enables establishing hidden data-flow relationship (§2.1).

3.24 Requested Simulation Duration. This metric captures the
total simulation time requested by a given model (not the actual
CPU time spent in simulating it). Most of the models (except those
from the Other group) used the default simulation duration value
of 10 seconds (Figure 2d). Consequently, we ran simulations using
this default value in our experiments, and have not experimented
with other possible values yet.

4 SLFORGE

To address the shortcomings in the state-of-the-art differential
testing framework for CPS tool chains, this section describes the
design of SLforge. Figure 5 gives an overview of the SLforge’s seven
main phases.

4.1 Gathering Semi-Formal Specifications

CyFuzz heavily relies on its Fix Errors phase to repeatedly com-
pile and simulate a model and iteratively repair errors based on
the content of Simulink-provided error messages. Instead of this
time-consuming iterative process, SLforge aims at generating a
valid model in the first place, if given the language specifications.
Of course, the challenge (which motivated CyFuzz’s iterative pro-
cess) is that there exists no complete, up to date, formal Simulink
specification.

4.1.1 Design Choice. Simulink specifications are available as
informal and semi-formal descriptions of Simulink behavior, mainly
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Figure 3: Collected public models: Blocks (a) and connec-
tions (b) by hierarchy-level, grouped by model group (t, s,
a, and o).

from the various Simulink web sites. From our experiments with
CyFuzz, we hypothesized that many of the iterations in the Fix
Errors phase are due to block data-type inconsistency and fixing
algebraic loops. Besides, in our CyFuzz experiment (§5.1) the most
frequent error was block sample time inconsistency. We collected
specifications to both address these issues and to enable creating
large hierarchical models (as Simulink users prefer this modeling
choice).

So far, we have collected data-type support and block-parameter
specifications for all built-in libraries. Other language specifica-
tions (§4.2) are often block and library specific. Since collecting
the entire Simulink language specification would be overwhelming,
we collected specifications for blocks from the most-used libraries.
Concretely, SLforge supports blocks from Math Operations, Ports
and Subsystems, Discrete, Continuous, Logic and Bit Operations, Sinks
and Sources libraries. This list also covers the CyFuzz-supported
libraries and thus helps ease evaluating SLforge.

4.1.2  Collection Process. Using little engineering effort, SLforge’s
regular expression based parser parsed block data-type and param-
eter specifications for all built-in blocks. However, due to the lim-
itation of the parser and Simulink’s free-form specification style,
SLforge can only collect parts of some specification. E.g., for three
different ports of the Variable Time Delay, Discrete Filter and De-
lay blocks, the Direct Feed-through property (§2.1) is described
as “Yes, of the time delay (second) input”, “Only when the leading
numerator coefficient does not equal zero” and “Yes, when you clear
Prevent direct feedthrough” respectively [54].
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4.2 Use of Semi-Formal Specifications

Since complete and updated formal specifications for Simulink are
not publicly available, existing work relies on a subset of Simulink
operational specifications, which are manually crafted and possibly
outdated [6, 24]. Unlike these approaches, we explored collecting
specifications directly from official Simulink documentations auto-
matically, using easy-to-engineer parsers. Such parsers can auto-
matically update the collected specifications when new versions of
the SUT are released, given the structure of the specifications go
under minor or no change. From our experience with recent ver-
sions of Simulink specifications (R2015a-R2017a), the specifications
SLforge collects indeed had minor structural changes.

Although SLforge parses specifications automatically and stores
them using internal data-structure, for the aid of discussion, we
introduce a few notions in this section. Extending the notation of
§2.1, function T}, returns a block’s Simulink block-type. For example,
for each Simulink If block, Tj, returns I f. Next, the valid predicate
indicates if the Simulink type checker and runtime system accept
a given model as legitimate, i.e., when there are no compile or
run-time exceptions. Now we can express (part of) the Simulink
specification as a formula or specification rule. Given such a rule
d € A, we denote with m E § that model m satisfies (i.e., complies
with) the rule. We observe that a valid model satisfies all (collected)
specification rules (V8 € A : valid(m) — m E J).

4.2.1 Select Blocks Phase. To support built-in libraries, SLforge
uses specifications in this phase. Specifically, SLforge-generated
models satisfy the following rules by construction. For example,
using usual set cardinality notation, Eq. (1) ensures that for each If
block, the model has two IfAction subsystem blocks (one each for
the if and else branch).

2*|{b1€m.B: Tb(bl)ZIf}l

=|{by € m.B: T, (bp) = IfAction} | 9

By parsing Simulink documentation, SLforge obtains a set S of
blocks from the Sinks and Source libraries that are only valid in the
top-level model, as enforced by Eq. (2). Similarly, Eq. (3) restricts
using illegitimate blocks in non-top-level models, depending on
the hierarchy-type property of the model (§2.1), using predicate
supports. The predicate holds only when model m!’s hierarchy-
type (first argument) allows block b in m’, based on b’s block-type
(second argument).

Vbem! B:(i>1)— (Ty (b) ¢ 5) ()
Ybem'B:(i>1) — supports( Ty, (mh), Ty (b)) (3)
Vb € m.B: ((Ty, (m) € W) A stime(b) = stime(driver(m)))

V (Tp, (m) ¢ W A st(Tp (b),b)) (4)

Eq. (4) configures each block’s sample time property stime. When
used in hierarchical model m of a W-listed hierarchy-type, block
b’s sample time should match the sample time of the model’s driver
(§2.1). In all other cases, we use predicate st, which holds only when
the sample time property of block b is properly configured accord-
ing to its block-type. To enforce such rules, SLforge propagates
information from parent to child models.
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Figure 4: Collected public models: Distribution of blocks across libraries (shortened to the first 7 letters), each from left to

right: Tutorial, Simple, Advanced, and Other.
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Figure 5: Overview of SLforge’s main phases. For space, we merged CyFuzz’s last two phases into the single Comparison phase.

4.2.2  Pre-connection and Connect Ports Phases. While CyFuzz
uses a random search to connect unconnected ports and relies
on later phases to recover from illegal connections, SLforge adds
connections correctly by construction, by satisfying the following
rules.

Ve € m.C: (Ty (c.by) = IfAction) A (c.pr = 0) = (Ty (c.bs) = If)

(5)

Ve e m.C: ( Ty (c.bs) = If) — (Ty (c.bs) = If Action) A (c.pr = 0)
Al{cz emC:cybs =chbs Acag.ps =cps}t| =1

(6)

Eq. (5) and Eq. (6) together specify the control-flow from an If
block to its If Action blocks. Specifically, each If block output port
is connected to a single (Eq. (6)) If Action block Action port.

4.2.3 Analyze Model Phase. On the current model state, SLforge
now removes algebraic loops and assigns data-types. Instead of
querying a disjoint-set data structure every time SLforge connects
two blocks to detect whether connecting them will create a cycle,
we detect them later in this phase using a single graph traversal re-
move_algebraic_loops (Listing 1) on each of the child models and on
the top-level model. In contrast, CyFuzz relies on Simulink built-in
functions to fix algebraic loops; SLforge discovered a previously un-
known Simulink bug in these features (§5.3.1). Specifically, SLforge
identifies back-edges and interrupts them with Delay blocks [13].
Since this process changes m, SLforge ensures that the model re-
mains valid. For example, to ensure that the model satisfies the
rules in Eq. (5) and Eq. (6), instead of placing a Delay block between
an If and an If Action block, Listing 1 places it before the If block.

Listing 1: Removing possible algebraic loops from a model.
color(b) denotes a block’s visit-status via do_dfs method:
white=unvisited; gray and black: visited.

method remove__algebraic_ loops (m):

F = new set /* stores problematic blocks */
for each block b € m.B: set WHITE as color(b)
for each block b € m.B:
if color(b) = WHITE: do_ dfs(m, b, F)
for each block b in F:
s := get affected source block for b
get and remove affected connection between s and b
d’ := add new Delay block in m
connect from s to d’ and from d’ to b

method do__dfs(m, b, F):
set GRAY as color(b)
for each connection ¢ € m.C where c.bs = b:
if color(c.by) = WHITE: do_ dfs(m, c.b;, F)
else if color(c.b;) = GRAY:
if c.py = 0: add b in F else: add c.by in F
set BLACK as color(b)

After removing possible algebraic loops, SLforge propagates
data-type information, to eliminate data-type mismatches. While
CyFuzz compiled a model with Simulink repeatedly in the Fix Er-
rors phase to identify data-type inconsistencies between connected
blocks, SLforge fixes such errors in linear time using a single graph
traversal.

Specifically, SLforge places every block whose output data-type
is initially known (Non-Direct Feed-through and blocks from Source
library) in a set and starting from them, runs a depth-first search
on the graph-representation of the model. Data-type information is
then propagated to other blocks along the connections from blocks
with known output data types, using forward propagation. E.g.,
consider connection ¢ € m.C and say we are currently visiting block
c.bs in the depth-first search. If the data-type at c.ps is not supported
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by c.p: as per specification, we add a Data-type Conversion block
between the ports.

4.3 EMlI-testing

As recent work suggests that EMI-testing is promising for compiler
testing [30], we explored this direction for Simulink. EMI-testing
for Simulink could take many forms. For example, one could extend
a model with blocks and connections that remain dead under the
existing inputs. As another example, one could statically remove
some of the dead blocks.

In this work we infer an EMI-variant from a given randomly
generated model, by removing all blocks that are dead. We ap-
proximate the set of dead blocks statically, using Simulink’s block
reduction feature [54]. This approach differs from the original EMI
implementation ([30]) in the sense that we collect the dead-block in-
formation statically, while [30] dynamically collected code coverage
information. We chose the static approach as it required minimal
engineering effort.

In our experiments, we noted that CyFuzz connects all output
ports to certain Sink blocks. The goal was to guarantee all blocks’
participation during simulation, which allowed to use Simulink’s
Signal Logging feature to record every block’s outputs. Conse-
quently, CyFuzz-generated models do not have many statically
dead blocks. To let EMI-testing remove larger parts of the gener-
ated model, SLforge leaves random output ports unconnected.

4.4 Classification of Bugs

SLforge automatically detects Simulink crash or unresponsiveness
(which we categorize as Hang/Crash Error) and only reports if it is
reproducible using the same model. Besides crash, we discuss the
types of bugs in following two directions:

4.4.1 Compile Time vs. Runtime. SLforge discovers some bugs
during (or before) compiling the model; we categorize these as Com-
pile Time bugs. In the event of compilation error, SLforge reports a
bug if the error is not expected. For example, SLforge expects no
data-type inconsistency error when generating type-safe models.
SLforge detects some specification-mismatch bugs even before com-
piling, since we call various Simulink APIs to construct a model
before compiling it. During this process, SLforge reports a bug
when Simulink prevents it from setting a valid block parameter
(according to the specification). Lastly, SLforge detects bugs when
simulating the model — which we categorize as Runtime bugs.

4.4.2 Essential Feature. Here we discuss bugs based on the es-
sential generator/differential testing feature that helped discovering
them. We attribute Hierarchy to a bug if SLforge can reproduce the
bug only by creating hierarchical models. Next, intuitively, SLforge
attributes Specification to a bug when it identifies Simulink specifica-
tion mismatches. Finally, like CyFuzz, SLforge identifies Comparison
bugs by simulating a model varying SUT options (§2.2). As a spe-
cial case, SLforge attributes EMI to a bug if some EMI-variant of a
successfully simulated model does not compile, or results in com-
parison error when after-simulation signal data of the EMI-variant
is compared with the original model or with other EMI-variants.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

O

H 5

=] =) I -

C e 0

=}

o 0 500 1000 0 500 1000

@ (b)

Figure 6: Runtime on valid models by model size given in
blocks: (a) Average runtime of model generation; (b) Av-
erage number of required iterative fixes. Solid = SLforge;
dashed = SLforge without specification usage and analyses;
dotted = CyFuzz.

5 EVALUATION

In this section we pose and explore the following relevant research
questions.

RQ1 Can SLforge generate models systematically and effi-
ciently in contrast to CyFuzz?

RQ2 Can SLforge generate feature-rich, hierarchical models
in contrast to CyFuzz?

RQ3 Can SLforge effectively test Simulink to find bugs in the
popular development tool chain?

To answer these research questions, we implemented SLforge on
top of the open-source CyFuzz implementation. In the evaluation,
we ran SLforge on 64-bit Ubuntu 16.04 virtual machines (VM), of
4 GB RAM and 4 processor cores each. We have used two identical
host machines (Intel 174790 CPU (8 cores) at 3.60 GHz; 32 GB RAM
each). When measuring runtime and other performance metrics
(RQ1), we ran SLforge on each of the otherwise idle host machines
(one VM per host). To find bugs (RQ3) we ran up to five VMs on
each of these two hosts.

5.1 SLforge Generates Models More
Systematically and Efficiently (RQ1)

To compare SLforge’s new phases with CyFuzz in terms of efficiency
and bug-finding capabilities, we conducted three experiments, each
generating 160 models. To compare with CyFuzz, the experiments
used blocks from four of the CyFuzz-supported libraries (i.e. Sources,
Sinks, Discrete, and Constant). In the first two experiments we used
SLforge: (1) enabling specification usage and analyses in Exp.S+ and
(2) disabling them in Exp.S-, and (3) in the third experiment Exp.CF
we used CyFuzz. Across these three experiments we kept the other
generator configuration parameters constant. As time-out we chose
1,200 seconds.

We compared the average time taken to generate a valid model
(i.e., from Select Blocks to Fix Errors, inclusively). We also measured
the number of iterative model-correction steps (Num. Iter.) in the Fix
Errors phase. However this metric was not available in Exp.CF. In
each of these experiments we started with generating 100 blocks (on
average) per model, and gradually increased the average number of
blocks (by 100 in each step, using 20 models in each step), up to 800
blocks/model on average. To approximate the bug-finding capability
of these three setups, we counted the total number of unique bugs
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found in each of these experiments. Data in Both SLforge versions
had a lower average runtime than CyFuzz (Figure 6a).

As the number of blocks increases, Exp.S- needs more time than
Exp.S+ to generate Success models. When we configured CyFuzz to
generate models having 700 (or more) blocks on average, it failed
to generate any valid models.

Similarly, SLforge needs fewer iterations in the Fix Errors phase
(Figure 6b) in Exp.S+. Moreover, this value remains almost constant
in Exp.S+. However, perhaps not surprisingly, the number increases
with the number of blocks in Exp.S-. This result indicates that
SLforge generates models more systematically as it reduces the
dynamic error-correction steps significantly.

Next, we examine how the changes in SLforge affect the tool’s
bug-finding capability. The total number of unique bugs found
in Exp.S+, Exp.S- and Exp.CF are 4, 1, and 0, respectively. Exp.S+
found the same bug discovered in Exp.S-, and found 3 more bugs.
While investigating, we observed that having specifications enabled
SLforge finding those bugs, since without the specifications, SLforge
could not determine whether it should report a bug given an error
message returned by Simulink. As an example, consider compiling
a model with Simulink which results in a data-type inconsistency
error between two blocks in the model. Leveraging the data-type
support specifications of the two blocks, SLforge can report a bug
when it does not expect any data-type inconsistency between the
blocks.

Finally, a crucial step to efficiently generate large hierarchical
models is to eliminate the algebraic loops from them. Simulink also
rejects simulating some models in Accelerator mode in the presence
of algebraic loops, which prevents differential testing using those
model. As discussed before, CyFuzz depends on Simulink’s buggy
APIs to remove such loops, whereas SLforge eliminates the loops
in the Analyze Model phase.

5.2 SLforge Generates Large, Feature-rich
Models (RQ2)

In this experiment we compare various properties of the SLforge-
generated models to the models used in our study of public models
(excluding the Simple models), and to CyFuzz-generated models.
First, to compare SLforge with CyFuzz, we configured SLforge
and CyFuzz to generate models with hierarchy depth 7, as this
value is slightly larger than the median values for all model classes.
For time-out parameter we chose 800 seconds and generated 100
models using each of the tools. CyFuzz’s Success (of generating
valid models) rate dropped to 2%. We hypothesize that CyFuzz is not
capable of generating such large hierarchical models and reduced
the maximum hierarchy depth to 3. After generating 100 models in
this configuration, CyFuzz achieved a 12% Success rate. In contrast,
SLforge achieved a 90% success-rate with 7 depth.

In this experiment, SLforge generated models with an average
of 2,152 blocks (median: 1,776), an average of 2,544 connections
(median: 2,107), and an average hierarchy depth of 7 (median: 7).
Both the average and median values of these properties are larger
than (but still within the same order of magnitude as) the values we
observed in the collected public models. SLforge-generated models
are in this sense similar to the collected public models.
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Figure 7: Bug TSC-02472993: The Model block (top) refers to
the child model (bottom). Simulink fails to handle rate tran-
sition automatically, leading to a runtime failure.
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Figure 8: Bug TSC-02386732: While specified to only accept
double inputs, Simulink does not raise a type error for this
PID Controller (2DOF) accepting a uint16.
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Figure 9: Bug TSC-02614088: In spite of supporting double
data-type in its d port, block VID issued a data-type consis-
tency as it prefers integer type.

5.3 SLforge Found New Bugs in Simulink (RQ3)

To answer RQ3, SLforge continuously generated models and tested
Simulink for approximately five months. Throughout the exper-
iments, configuration options for SLforge varied and became ap-
plicable once we implemented a particular feature. In all of these
experiments we used the Normal and Accelerator simulation modes
in the comparison framework.

We have reported almost all of the SLforge-suspected bugs to
MathWorks except two cases where we had associated the bug to an
implementation error. For each of the reported cases, MathWorks
has indicated if it considers the case a bug. For this work we mark a
report as a false positive if MathWorks considers the case a non-bug.
Our rate of false-positive is low: 2/12 reports.

Table 2 summarizes all the bugs we have reported. MathWorks
has confirmed 10 of our reported issues as unique bugs, of which
8 are new bugs. Following are details of a representative subset
of the confirmed bugs, including SLforge-generated models we
manually reduced to fit the space and aid bug-reporting. Automated
test-case reduction is part of future work. These models are freely
available [10].

5.3.1 Hang/Crash Error bug. When generating large hierarchi-
cal models, we noticed that Matlab’s getAlgebraicLoops API hangs
and makes the entire tool chain unresponsive (TSC-02513701).
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Table 2: SLforge-discovered issues and confirmed Simulink bugs: TSC = Technical Support Case number from MathWorks;
St = status of bug report (NB = new bug, KB = known bug, FP = false positive); P = discovery point (C = Compile Time, R = Run-
time); F = bug type based on Essential Feature (A = Hang/Crash Error, S = Specification, C = Comparison, H = Hierarchy, E = EMI,
? = not further investigated); Ver = Latest Simulink version affected.

TSC Summary St P F Ver
02382544  Simulink Block parameter specification mismatch (Constant) NB C S 2015a
02382873 Internal rule cannot choose data-type (Add) FP C ? 2015a
02386732 Data-type support specification mismatch (PID Controller (2DOF)) NB C S 2015a
02472993  Automated rate transition failure (First-order hold) NB R S H 2017a
02476742  Block-reduction optimization does not work (Accelerator mode) NB R E/H 2017a
02513701  Simulink hangs for large models with hierarchy NB C A/H 2015a
02515280 Inconsistent result and ambiguous specification (SubSystemCount metric)y NB C S,H 2017a
02539150 Ambiguous results (selecting connection with multiple destinations) NB C S 2017a
02565622 Limited support in Accelerator mode (First-order hold) KB R CH 2015a
02568029  timer does not execute callback as expected FP R 7? 2015a
02614088 Undocumented specification (Variable Integer Delay) KB C S 2017a
02705290 Incorrect data-type inheritance (multiple blocks) NB C S 2017a
Subsystem Child Model N [ L N J @
&b &b F / elayst / @-‘
In1 Out1 In1 Gain Outt bi6 bI7 bl bi9 bi10
Top Model Top Model
K> ofin1 Moyt »{lm outt HZl [ off, e22id ]
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Sequence

Figure 10: Bug TSC-02515280: For the child model (top
right) Simulink’s Verification and Validation toolbox API
calculates inconsistent SubSystemCount values. MathWorks
ruled the API specification ambiguous, as it did not properly
define the API’s scope.
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double
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Delay Add

T
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Figure 11: Issue TSC-02382873: When using the internal rule
to detect the Add block’s output data-type, the rule fails to
choose a correct data-type for the second input port (e.g. dou-
ble) and throws a compilation error.

5.3.2  Specification bug. After incorporating Simulink specifica-
tions into various SLforge phases, SLforge started to identify bugs
caused by specification violation. For example, bug TSC-02472993
of Figure 7 manifests when Simulink fails to handle blocks oper-
ating at different sample times, leading to runtime failure which
is not expected as per specification. The bug only occurs for the
First-Order Hold block and when SLforge generates hierarchical
models. As another example, Figure 8 depicts Simulink’s PID Con-
troller (2DOF) block accepting data of type unsigned int, whereas

Figure 12: EMI bug TSC-02476742: The Top Model’s (in bot-
tom right corner) Model block is a placeholder for the child
model (top and left), where all blocks except bl11 and bl12
are dead.

the specification states that the block only accepts data of type
double (TSC-02386732).

In another case we noted that in spite of supporting type dou-
ble in port d, block Variable Integer Delay (block VID in Figure 9)
resulted in type-mismatch error. After reporting the issue, Math-
Works suggested that the port “prefers” integer types and thus
issued a type mismatch error when it was given a double type. This
specification is not publicly available. Lastly, the Figure 10 issue
(TSC-02515280) MathWorks classified as expected behavior, where
Simulink’s count of the number of Subsystems did not match our
count. However, part of Simulink’s results are inconsistent and
the specification has been found ambiguous, resulting in a new
confirmed bug.

5.3.3 Comparison bug. In issue TSC-02565622, one Simulink
instance could simulate the SLforge-generated hierarchical model
in Normal mode but returned an error in Accelerator mode, due
to inconsistent block sample rates. MathWorks confirmed this as a
known issue that does not have a public bug report.

5.34 EMI bug. Figure 12 illustrates Simulink bug TSC-02476742.
Notice how only block bl11 is connected to an Outport block bl12,
hence all remaining child blocks are dead and can be removed in
EMI-testing. While EMI-testing in Normal mode removed all dead
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child nodes, EMI-testing in Accelerator mode failed to do so, which
MathWorks classified as a Simulink bug.

6 DISCUSSION

This paper performed the first large-scale study on publicly avail-
able Simulink models, to collect and observe various properties
from them, which can be utilized to generate random models and
serve as a collection of curated artifacts. However, some of the
models are quite simple. We endeavored to classify such models
in the Simple category manually, however, our approach may be
imperfect and may suffer from human error. Opportunistically, we
found complex and large models in our study and consequently,
our collection of artifacts should be suitable for other empirical
studies.

7 RELATED WORK

Empirical studies of widely used programs date back at least to
the 1970s [29] and have gained increasing interest due to the wide
availability of open source programs [52]. For example, earlier work
computed properties from Java programs [12, 22, 59] and used the
properties to guide a random Java program generator [26].

Tempero et al. presented the qualitas corpus—a curated collection
of Java programs [52]. Although similar work has been performed
in other domains [9, 35, 51], we are not aware of related work in
the CPS domain, which differs significantly from procedural or
object-oriented languages.

Recent studies introduced measures for Simulink model mod-
ularity [15] and complexity [39], but only evaluated them on a
limited number of models. In contrast we created a larger collection
of 391 Simulink models. Similar to [52], our model collection may
serve as a corpus for Simulink-model based empirical studies.

Recent work has found many compiler bugs using differential
testing. To generate programs that are syntactically correct, many
of the test generators harness the language’s context-free grammar
and a pre-determined probability table from which the generator
chooses grammar elements [17, 25]. To generate programs that are
also well-typed, McKeeman imposes the type information directly
onto the stochastic grammar the generator uses [34].

Csmith, on the other hand, uses various analysis and runtime
checks to generate programs with no undefined behavior [58].
Other techniques generate well-typed programs using knowledge
of the type-system of the underlying language (e.g., JCrasher for
Java [14]) and using constraint-logic programming (such as the
Rust typechecker fuzzer [17]).

Whereas earlier approaches target compilers of textual languages
(including procedural, object-oriented, and functional ones), they do
not address the challenges inherent in testing CPS tool chains [11].
CyFuzz pioneered differential testing of CPS tool chains, but the
prototype for Simulink was ineffective in finding new bugs. This
work addresses CyFuzz’s limitations by incorporating informal
Simulink specifications in the random model generation process
and generating larger models with rich language features, which
led to finding new bugs.

Recent work complements randomized differential testing via
EMI-testing. For example, Le et al. hammer C language compil-
ers [30]. We harness the technique to create EMI-variants of Simulink
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models for the first time. Other work discusses the effectiveness
of randomized differential testing and EMI for OpenCL compilers
and performs a comprehensive empirical compiler testing evalua-
tion [8, 31].

Among other works, Nguyen et al. present a runtime verification
framework for CPS model analysis tools leveraging random hybrid
automata generation [37, 38]. In contrast, our generator does not
rely on model transformations [4], which may limit the efficiency
of existing work [38]. Other testing schemes target parts of the CPS
tool chain utilizing graph grammars [49, 50]. However, complete
and updated formal specifications for most commercial CPS devel-
opment tools are unavailable and such white-box testing in parts
was found undesirable [46].

Sampath et al. discuss testing CPS model-processing tools using
semantic Stateflow meta-models [46]. Unfortunately, the approach
does not scale and updated specifications are unavailable, due to
the rapid release cycles of commercial CPS tools [17, 49]. Fehér et
al. model the data-type inferencing logic of Simulink blocks for
reasoning and experimental purposes [19]. While these works focus
on a small part of the entire CPS tool chain, we differentially-test
the entire CPS tool chain harnessing the available informal (but
updated) specifications.

SLforge is loosely related to test case generators for existing
Simulink models [7, 18, 20, 21, 33, 36, 48] and verification and formal
analysis of CPS models [2, 3, 28, 32, 47, 60]. But they do not aim at
finding bugs in the Simulink tool chain.

8 CONCLUSIONS

This paper described the first large collection of public Simulink
models and used the collected models’ properties to guide random
model generation. To further guide model generation we systemat-
ically collected semi-formal Simulink specifications. In our experi-
ments on several hundred models, the resulting random Simulink
model generator SLforge was more effective and efficient than the
state-of-the-art tool CyFuzz. SLforge also found 8 new confirmed
bugs in Simulink.
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