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ABSTRACT

User interface development typically starts with freehand sketch-
ing, with pen on paper, which creates a big gap in the software
development process. Recent advances in deep neural networks that
have been trained on large sketch stroke sequence collections have
enabled online sketch detection that supports many sketch element
classes at high classification accuracy. This paper leverages the re-
cent Google Quick, Draw! dataset of 50M sketch stroke sequences
to pre-train a recurrent neural network and retrains it with sketch
stroke sequences we collected via Amazon Mechanical Turk. The re-
sulting Doodle2App website offers a paper substitute, i.e., a drawing
interface with interactive UI preview and can convert sketches to a
compilable single-page Android application. On 712 sketch samples
Doodle2App achieved higher accuracy than the state-of-the-art
tool Teleport. A video demo is at https://youtu.be/P4sbOpKTNEY
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1 INTRODUCTION

User interface development of many apps starts with freehand
sketching, typically with pen on paper [3, 4, 12, 17, 23]. Integrating
such freehand sketching more tightly into the software development
process is a long-standing research challenge. The long-term goal
is to directly convert designers’ freehand on-paper sketching to
ready-to-compile app code. As a step toward this goal, in this paper
we replace pen and paper with mouse or touchpad.
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While much progress has been made toward our sub-goal of
supporting computer-based sketching (e.g., with a mouse), exist-
ing approaches such as SILK and Teleport are still limited [8, 13].
Some only support a few sketch primitives (e.g., ellipse, rectangle,
straight line, and squiggly line) and thus support few user-app in-
teraction styles [2, 5, 6, 12, 13, 21]. The others have low recognition
accuracy [8].

Tightly integrating freehand user interface (UI) sketching would
bridge a significant gap in today’s software development process.
Specifically, after iterating on paper-based prototypes, UI designers
today have to manually recreate prototypes in “high fidelity” tools
such as Photoshop or in an IDE, which is laborious and costly
(even with GUI builders). This gap also decouples UI designers from
the code their team eventually produces, which often leads to UI
designs that are hard to implement in programming constructs.

Integrating freehand UI sketching is hard if we aim to main-
tain paper’s well-known benefits, e.g., as documented in a study of
87 CHI attendees who had experience creating or testing UI proto-
types [4]. To create UI prototypes the top used tools (72/87) were
art supplies (i.e., paper), because they make it both quick and easy
to create and use prototypes and because they promote creativity.
For usability studies, the top tool was also art supplies, because they
facilitate discussion, allow quick changes, and yield good feedback.

The common limitation of existing computer-based freehand
sketching approaches is their reliance on traditional image classifi-
cation techniques, which do not scale to many sketch primitives or
have low accuracy. Computer vision has seen tremendous progress
over the last years, especially in deep neural networks that have
been trained on large sample collections.

The first key insight is that in image classification generally,
having more training samples that are correctly labeled (e.g., “this
is a rectangle”) enables both distinguishing between more image
classes (e.g., rectangle vs. ellipse) and doing so more accurately.
This is true even if the target image classes have little overlap
in features with the training samples. The second insight is that
humans create a sketch as a sequence of strokes (e.g., with their pen
or computer mouse) and to sketch a given object many designers
produce a similar stroke sequence (e.g., a rectangle as a single
counter-clockwise stroke starting from left-top). So recognizing a
stroke sequence is easier than recognizing a final sketch.

At the core of our approach is Google’s Quick, Draw! (“Quick-
Draw”) collection of over 50M labeled sketches of 345 categories,
from “aircraft carrier” to “zigzag”, each given as a stroke sequence [9].
While this sample collection is crucial for high accuracy, it only con-
tains 4 classes we considered relevant for UI design. We, therefore,
collected some 12k sketches of 16 UI specific classes via Amazon
Mechanical Turk. While the resulting Doodle2App tool is just an
early prototype, it already supports several times more classes of
graphical primitives than the earlier work on SILK, while being
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Figure 1: Drawing interface and generated Android app.

more accurate than the current state of the art tool Teleport (94% vs.
17%). At the same time, by adding to the 12k UI element sketch col-
lection, the Doodle2App approach promises to scale well to more
than 20 UI element classes, as its architecture is very similar to
QuickDraw, which already supports over 300 categories at high
accuracy.

The Doodle2App tool is currently web-based and provides a
canvas for sketching via touchscreen or mouse (Figure 1). The user
creates one sketch (or “doodle”) of a Ul element at a time (e.g., a
container, text, menu button, forward button, etc.), Doodle2App
classifies the element via its recurrent neural network, and corre-
spondingly updates an HTML-based preview of the resulting Ul
This gives the designer immediate feedback on the UI construction
process. At any time the designer can tell Doodle2App to export
the current Ul as source code that is ready to compile and run as
a single-page app on stock Android devices. To summarize, this
paper makes the following major contributions.

o This paper provides the first accurate conversion of freehand
UI sketches that have a substantial variety of UI elements.

o To evaluate the approach, the paper implements the novel
Doodle2App tool and compares it to the state-of-the-art
sketch to code conversion tool Teleport.

o The tool is freely available at http://pixeltoapp.com/doodle/.

2 BACKGROUND

This section contains necessary background information on sketch
recognition, the state-of-the-art Ul sketch to code conversion tool
Teleport, and recurrent neural networks (RNNs).

An offline approach processes a finished sketch (e.g., as RE-
MAUI [18] or Teleport [8]). In contrast, an online approach pro-
cesses a sketch’s strokes in the order they are drawn (e.g., as
SILK [13]). Offline recognition provides additional use cases (e.g.,
historical sketches), whereas online recognition has access to more
information and thus promises higher accuracy.

Existing approaches also differ in the most basic (aka “atomic” or
“primitive”) graphical elements they recognize. For example, SILK
recognizes four atomic elements (ellipse, rectangle, straight line,
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and squiggly line). Some approaches then recognize certain atomic
element combinations as a compound element (e.g., SILK considers a
small box in a long rectangle a slider). While a compound element is
still a single Ul element, some approaches also support nesting, e.g.,
a primitive rectangle may contain two other primitives, which are
then considered three Ul elements, a container with two children.

2.1 Sketch to Code with Teleport

The most closely related approach is Teleport’s vision API v2 [8].
It supports 21 classes of hand-drawn UI element sketches. Doo-
dle2App’s atomic Ul element classes (Figure 2) overlap with Tele-
port’s in the sense that the respective example sketches on the
Teleport website look like our samples. This overlap is squiggle
(text), square (which Doodle2App treats as a container, Teleport as
a text area or container), checkbox, switch (toggle), star (rating),
dropdown, and slider.

Teleport works offline. To adjust for users’ varying light condi-
tions, background noise, camera alignment, and paper skew and
rotation, Teleport employs a sophisticated computer vision pipeline.
It then classifies elements with a convolutional neural network
(CNN). The Teleport website reports an experiment that yielded
85% accuracy, but describes this number as “optimistic”.

2.2 Recurrent Neural Networks (RNN’s)

State-of-the-art approaches for image recognition typically use deep
learning and especially convolutional neural networks (CNNs) [11].
CNN assumes that training data is of fixed dimension and indepen-
dent from each other. For online sketch detection this is a problem,
as sketch strokes are ordered and vary in their edge counts. Recur-
rent neural networks (RNNs) support both of these sketch proper-
ties [15]. Doodle2App builds on QuickDraw’s network architecture
to leverage its recent sketch recognition success [9]. QuickDraw
uses bi-directional RNNs [20], which use both stroke sequences
and reverse stroke sequences.

3 UIELEMENTS & SKETCH SAMPLES

Doodle2App currently focuses on Android. The Rico dataset [7]
assembled 66k unique Android app screens from 9.3k apps from
27 app categories of the Google Play app store. Rico also captured
the runtime UI hierarchy of each screen and clustered all screens’
elements by visual similarity. The Rico clusters thus do not only rep-
resent the base Android elements but also Ul elements of third-party
apps. We calculate the occurrence of each Rico-inferred element
cluster by parsing all screen hierarchies. According to Rico, the
most common Android UI element type was container, followed
by (in order) image, icon (a small interactive image), text, text
button, web view, input, list item, switch (a toggle element), map
view, slider, and checkbox. Rico further breaks down the most
common icon (#3 in the above list) types as back, followed by menu
(the hamburger), cancel (close), search (loupe), plus (add), avatar
(user image), home (house), share, settings (gear), star, edit, more,
refresh, and forward.

To demonstrate the flexibility of the approach, Doodle2App sup-
ports several of these top UI elements (i.e., the boldfaced ones
above), mostly as graphical primitives (Figure 2). Besides primi-
tives, Doodle2App also supports an example compound element:
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Figure 2: The 20 graphical primitives Doodle2App currently
recognizes. Samples for 4 classes (right) are from QuickDraw,
the rest (left) is from Mechanical Turk.

A squiggle (text) that fills most of a rectangle is a text button. Fi-
nally, Doodle2App supports nested elements, i.e., a rectangle is a
container that can contain several other elements.

Combining Doodle2App with optical character recognition for
text detection is future work, e.g., by adding an OCR engine. As a
work-around, Doodle2App currently treats a squiggly line as text.
Further work-arounds deal with detecting arbitrary images and
treating an avatar image as an arbitrary image.

The QuickDraw dataset [9] contains 345 sketch categories (from
“aircraft carrier” to “zigzag”), with some 100k samples each, drawn
by anonymous users [10]. QuickDraw stores each sketch as a se-
quence of strokes. Each stroke is a sequence of straight lines, given
by their x/y endpoint coordinates.

To collect sketches for the 16 remaining categories from Figure 2
we built a website similar to Sketchy [19]. To encourage users to
draw from memory, our website shows a Ul element repeatedly
for one second before blacking it out for 5 seconds. We recruited
participants via Amazon Mechanical Turk (with IRB approval) and
asked each participant to produce 15 sketches of graphical primi-
tives. We thereby collected 11,500 drawings. After manual review,
each of our 16 categories contained some 600 sketches.

4 OVERVIEW AND DESIGN

Doodle2App currently side-steps the complications of capturing
designers’ paper-based freehand sketching activities. Instead, a
designer directly sketches on Doodle2App’s website via mouse or
touchscreen (Figure 1 left). Since a Ul element can consist of several
strokes, the designer draws one Ul element at a time and indicates
the end of one Ul element by pressing the “z” key or double-tapping
the canvas. To give the designer immediate feedback, the website
also shows an interactive HTML-based preview.

Doodle2App currently supports 21 Ul element types, the 20
primitives from Figure 2 plus the compound text button. On a
double-tap, Doodle2App passes the collected strokes to its custom
RNN-based UI element classifier, resolves overlap and nesting, and
updates its HTML preview. At any time the designer can export
the current UI state to a compilable Android app.

4.1 RNN-based UI Element Sketch Classifier

Since deep learning works best when training samples are equally
distributed over the classes, we only used a small subset of the
samples from our four QuickDraw classes, i.e., some 600 (instead of
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the full 100k). We selected these 2.4k samples by manually reviewing
the first samples from QuickDraw, rejecting clear outliers.

Since deep learning has millions of parameters and works best
with larger training sets [14], we used transfer learning [22] to
benefit from a network that has been pre-trained on more samples.
Specifically, we randomly picked 20 QuickDraw classes outside
our 4 QuickDraw classes, split their 2M samples into training and
test (80/20), normalized and converted them into TensorFlow’s
binary storage format tfrecords [1], trained the existing QuickDraw
network architecture [9] on the training set, and initially achieved
94% accuracy on the test set.

Since our application has 20 classes (vs. 345 in QuickDraw) we
changed the network architecture, to pick up additional subtleties
in the training set and thus improve accuracy. The resulting ar-
chitecture consists of a convolutional neural network (CNN) layer
(with filter size 5, kernel size 48), followed by a CNN layer (5, 64),
another CNN layer (3, 96), 8 Bi-RNN layers (as opposed to 5 in
QuickDraw), and a fully-connected layer. We trained this network
for 155,138 steps with a batch size of 8. Overall, adding 3 bidirec-
tional RNN (Bi-RNN) layers to QuickDraw’s 5 existing Bi-RNN
layers increased accuracy to 98%.

We further trained this pre-trained network with 80% of our 12k
sample set for 32,500 steps with a batch size of 8. Our complete
sample set is available both at the stroke sequence level and as
visualizations. This yielded 96.1% accuracy on our test dataset of
2.4k samples [16].

4.2 Generating UI Code

After classifying a new Ul element, Doodle2App deals with overlap
and nesting. If the element overlaps with a rectangle (container),
then Doodle2App moves it either inside or outside the container,
depending on the overlap. If the new element is a squiggle (text) and
takes more than half of the container, Doodle2App considers it a text
button, otherwise it becomes a nested element. If the new element
overlaps with a non-container element, Doodle2App disregards the
element if the overlap is greater 50%, otherwise it moves the new
element outside the area of the existing element.

The nesting relation defines the app screen’s UI hierarchy. Doo-
dle2App creates a compilable single-page Android app, complete
with the Ul hierarchy’s layout code and resource files for style and
images. Doodle2App rescales element positions into default An-
droid screen resolution. Figure 1 (right) shows an example generated
Android app. In both preview and app the buttons and checkbox
are clickable, dropdowns have sample items, and sliders and toggles
show state change on click. Both preview and generated app use a
basic interactive graphical representation of the detected elements.
Inferring custom element styles is future work.

5 PRELIMINARY MICRO EVALUATION

To gauge the potential of Doodle2App, we performed an initial eval-
uation at the micro-benchmark level, i.e., at the level of recognizing
and converting individual atomic Ul elements. We consider this a
necessary first step, as without good micro-level performance it
is unlikely the technique will do well in the more complex whole-
screen or whole-app setting. We thus evaluate Doodle2App in terms
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of runtime and precision, and compare it with the most closely re-
lated competitor, Teleport, using the following research questions.

RQ1 What is Doodle2App’s runtime to classify a UI element
sketch and convert it to Android code?

RQ2 How does Doodle2App compare with the state-of-the-art
tool Teleport in terms of classification accuracy?

We trained our classifier with an 8 GB RAM Nvidia GeForce
GTX 1080 GPU on a local 16 GB RAM 64-bit Windows 10 machine
with a 3.4 GHz Intel i7-6700 CPU. We first trained our network for
some 62 hours on the 20 random QuickDraw categories for 155,138
steps. Then we continued training the network on our dataset for
32,500 steps, for another 18 hours, for a total of some 80 hours.

5.1 RQ1: Fast Classification & Conversion

For a preliminary exploration of Doodle2App’s runtime we sketched
and processed some 20 atomic Ul elements, both locally on a 16 GB
RAM 64-bit Windows 10 machine with a 2.20 GHz Intel i7-8750H
CPU and on an AMD64 Ubuntu 16.04.5 Amazon EC2 t2.micro in-
stance. The average runtime to process and classify a Ul element
sketch was 26 ms (locally) and 20 ms (EC2). These times include
neither transmission delays between user and EC2 nor the time it
took to update Doodle2App’s interactive HTML preview.

After detecting a UI element drawn on the interface, the average
runtime to convert it to an Android app was 526 ms (locally) and
94 ms (EC2). While the faster EC2 runtime seems surprising, code
generation involves copying and instantiating a template Android
folder and Windows 10 is known! for slower file copying.

5.2 RQ2: More Accurate Than Teleport

To compare Doodle2App with Teleport, we used our test samples
of the 7 classes that overlap with Teleport (i.e., squiggle, square,
checkbox, switch, star, dropdown, and slider), yielding 712 samples.
We converted each of these samples from a QuickDraw stroke
sequence to an image and passed the image to Teleport’s vision API.
The average response time (between request and response) was
some 313 ms, which was likely dominated by internet transmission
delays between us and the Teleport server.

Out of the 712 test samples Teleport classified correctly 124
(17.4%). To put this low value into the context of the 85% accuracy
given on Teleport’s website, the same website also calls out prob-
lems with recognizing sliders and ratings (stars) due to the Teleport
designers using fewer training samples on these two classes com-
pared with their other classes. On the same set of 712 samples
Doodle2App achieved an accuracy of 93.9%.

6 CONCLUSIONS

User interface development typically starts with freehand sketching,
with pen on paper, which creates a big gap in the software develop-
ment process. Recent advances in deep neural networks that have
been trained on large sketch stroke sequence sample collections
have enabled online sketch detection that supports many sketch
element classes at high classification accuracy. This paper lever-
aged the recent Google Quick, Draw! dataset of 50M sketch stroke

!https://superuser.com/questions/1124472/why-is-linux-30x-faster-than-windows-
10-in-copying-files, accessed March 2020.
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sequences to pre-train a recurrent neural network and retrained it
with sketch stroke sequences we collected via Amazon Mechanical
Turk. The resulting Doodle2App website offers a drawing interface
and an interactive Ul preview and can convert sketches to a com-
pilable Android application. On 712 sketch samples Doodle2App
achieved higher accuracy than the state-of-the-art tool Teleport.
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