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ABSTRACT

Searching through existing repositories for a specific mobile app

screen design is currently either slow or tedious. Such searches are

either limited to basic keyword searches (Google Image Search) or

require as input a complete query screen image (SWIRE). A promis-

ing alternative is interactive partial sketching, which is more struc-

tured than keyword search and faster than complete-screen queries.

PSDoodle is the first system to allow interactive search of screens

via interactive sketching. PSDoodle is built on top of a combination

of the Rico repository of some 58k Android app screens, the Google

QuickDraw dataset of icon-level doodles, and DoodleUINet, a cu-

rated corpus of some 10k app icon doodles collected from hundreds

of individuals. In our evaluation with third-party software develop-

ers, PSDoodle provided similar top-10 screen retrieval accuracy as

the state of the art from the SWIRE line of work, while cutting the

average time required about in half.
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1 INTRODUCTION

Searching through existing repositories for a specific mobile app

screen design is currently either slow or tedious. Currently such

searches are either limited to traditional keyword searches (e.g., via

Google’s image search) or require as input a complete query screen

image (i.e., via the SWIRE line of work [16, 27]) and are therefore

slow and do not support well an interactive or iterative search style.
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Having an effective and efficient search engine for mobile app

screens can benefit many key software engineering tasks, including

requirements gathering, understanding current market trends, ana-

lyzing features, providing inspiration to developers, and as a bench-

mark for evaluation [10, 14]. Given the wide-spread and increasing

use of mobile apps in a łmobile firstž world and the resources spent

on developing them [13, 18], such a screen search engine could have

a large positive impact on many software developers and users. We

are particularly focused on software developers with little to no

UI/UX/design background. These users may only have a vague

idea of the screen contents and are looking for inspiration from

professional screen designs.

Several screen repositories exist, including websites such as

Dribbble1 and Behance2. Another repository is the Rico dataset cu-

rated from Android apps at runtime [8]. Searching through this vast

collection and finding desired example screens currently requires

extensive effort via keyword-based search (e.g., for screen color,

theme, date, and location) through several websites [26]. Moreover,

novice users often fail to formulate good keyword queries and

therefore do not get the intended search results [14].

Several researchers have proposed using visual, e.g., image- or

sketch-based search methods because they are easy to use and

fast to adopt [34]. For software development sketches are a nat-

ural fit, as sketches are a common form of visual representation,

especially during early software development phases such as UI

prototyping [5, 6, 21, 25, 33].

PSDoodle is the first approach that supports interactive and iter-

ative sketch-based screen search. PSDoodle uses a digital drawing

interface with support for touchscreen devices of different reso-

lutions and provides ease of use for the mouse. Using a digital

drawing interface enables live search and user interaction. PSDoo-

dle also does not suffer from the processing delays of paper-based

approaches with their offline processing steps.

Figure 1 gives an overview of a sample PSDoodle search, starting

in row 1 with the user sketching a łhamburgerž-style menu icon in

the top left corner. Each of PSDoodle’s top-5 result screens contains

a hamburger menu icon at about the sketched location. The second

row shows the result of the user adding the doodle of a custom

image below the hamburger icon, followed by two rows adding one

more UI element doodle each.

PSDoodle employs deep learning to identify UI elements from

drawing strokes. PSDoodle fetches real-world UI examples from

the Rico [8] dataset based on UI element type, position, and ele-

ment shape. It retrieves UI screens from the first UI element query

element. PSDoodle updates the search result with the addition or

removal of a UI element in the sketch.

1https://dribbble.com/, accessed January 2022.
2https://www.behance.net/, accessed January 2022.

https://doi.org/10.1145/3524613.3527816
https://doi.org/10.1145/3524613.3527816
https://doi.org/10.1145/3524613.3527816
https://dribbble.com/
https://www.behance.net/
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Figure 1: The second app screen search one of the study participants performed on PSDoodle (after finishing a 7-minute

tutorial). Each row shows a user query sketch (1st column) after adding one more UI element, followed by PSDoodle’s top-5 (out

of 58k) search results (in order). For each of these four queries, several of the result screens contain the sketched UI elements at

about the sketched location. Drawing time contains all time from the user starting to work on the new UI element to the user

indicating the new UI element sketch is finished. In each row PSDoodle returned the top-10 (ranked) result screens within

2 seconds (which includes a roundtrip from the user’s machine to the AWS-hosted PSDoodle).

At the same time PSDoodle provides search accuracy on par with

state-of-the-art full-screen sketch approaches. We compared PS-

Doodle to state-of-the-art approaches by recruiting and observing

10 participants who used PSDoodle for the first time.We displayed a

UI screenshot from Rico and instructed the participant to draw until

the Rico screen appears in PSDoodle’s top search results. 88% of the

time PSDoodle retrieved and displayed the Rico target screen in its

top-10 search results. A user usually spent an average of 107 sec-

onds and drew an average of 5.5 elements during the process. This

compared favourably with the most closely related tool SWIRE [16],

which took 246 seconds to complete a sketch and took an average
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of 21.1 icon elements in each query drawing. To summarize, this

paper makes the following major contributions.

• PSDoodle is the first tool that provides an interactive iterative

search-by-sketch screen search. It is freely available online

at: http://pixeltoapp.com/PSDoodle/

• In our comparison with the state-of-the-art SWIRE line of

work, PSDoodle achieved similar top-10 search accuracy

while requiring less than 50% of the time.

• All of PSDoodle’s source code, processing scripts, training

data, and experimental results are available under permissive

open-source licenses [23, 24].

2 BACKGROUND

Due to their wide use, we focus on Android apps and their com-

mon UI elements. Rico contains 72k unique app screens, collected

from 9.3k Android apps from 27 app categories of the Google Play

store [8]. Rico ran (via ERICA [9]) each of these Android apps on

modified Android classes to efficiently capture both screenshots

and each screen’s runtime UI view hierarchy. Rico thereby provides

for each screenshot each UI element’s Android class name, textual

properties, x/y coordinates, and visibility.

A common challenge is understanding apps’ custom UI elements

(e.g., a clickable custom image used as an alternative implementa-

tion of a standard Android icon). To understand an UI element’s

intent beyond its Android class name, Liu et al. clustered 73k Rico

screen elements by image similarity, the similarity of an element’s

surrounding text snippets, and similar code-based patterns [22].

This yielded 25 UI component types (e.g.: checkbox, icon, image,

text, text button), 197 text button concepts (e.g.: no, login, ok), and

135 icon classes (e.g.: add, menu, share, star), with which Liu et al.

labeled all screen elements in Rico.

2.1 SWIRE: Offline Full-screen Search

Most closely related to our work is SWIRE [16]. SWIRE collected

3.8k low-fidelity full-screen Rico screen sketches from 4 experi-

enced UI designers given a pre-defined drawing convention. Specif-

ically, SWIRE instructs users to sketch each image as a crossed-out

square (square borders plus diagonals) or as a square filled with a

mountain outline. SWIRE users also represent any text with (a part

of) the same 3-word template (Lorem ipsum dolor) or by squiggly

lines. SWIRE trained a deep neural network on 1.7k Rico sketch-

screenshot pairs created by 3 designers, yielding a top-10 screen

retrieval accuracy of 61% (i.e., in 61% of cases the screenshot corre-

sponding to the fourth designer’s query sketch was one of SWIRE’s

top-10 search result screenshots).

SWIRE reflects a traditional paper-based design style. Users

sketch with pen on paper inside an Aruco marker frame [11] to

streamline subsequent de-noising, camera angle correction, and

projection correction. To change a sketch the user will likely have to

start over. Even scanning or taking a snap once plus the subsequent

processing steps requires significant time. Recent SWIRE follow-up

work reported a top-10 accuracy of 90.1% [27]. While using different

processing steps, at a high level it followed SWIRE’s paper-based

design style and thus faces similar challenges for interactive search.

2.2 Google QuickDraw & DoodleUINet

Google’s Quick, Draw! (łQuickDrawž) offers some 50M doodles of

345 everyday categories, from łaircraft carrierž to łzigzagž [12, 19].

QuickDraw doodles were sketched by anonymous website visitors,

who were only given a one-word description of the thing to sketch.

For each element category this yielded sketches performed in a

wide variety of drawing styles. Given this diverse training set,

QuickDraw achieved solid doodle recognition accuracy for a wide

range of sketching styles (e.g., earlier work reported some 70% top-1

doodle recognition accuracy [31]). Internally QuickDraw represents

each doodle as a stroke sequence. Each stroke is a drawing from

a start-touch to an end-touch event (e.g., mouse button press and

un-press), represented by a sequence of straight lines.

Figure 2: PSDoodle’s DoodleUINet icons (1 sample per class).

DoodleUINet offers some 11k crowdworker-created doodles of

16 common Android UI element categories [23]. Figure 2 visualizes

DoodleUINet’s 16 UI element categories, spanning Android built-in

element types (e.g., checkbox) and custom-designed images (e.g.,

avatar). DoodleUINet doodles are stored in QuickDraw’s format

but do not overlap with QuickDraw’s doodle categories. In contrast

to QuickDraw’s flexible doodle recognition, the current version of

DoodleUINet focuses on a single drawing style per element category

(łstylizedž), which it achieved by briefly presenting crowdworkers

a stylized target image of the element they should sketch. (For ex-

ample, in DoodleUINet a UI element to reach łsettingsž currently

always looks like a gear symbol.) Some 10k DoodleUINet sketches

are labeled łcorrectž (or similar-looking to the target image accord-

ing to manual review) and some 1k are labeled łincorrectž.

3 OVERVIEW AND DESIGN

Figure 3 gives an overview of PSDoodle’s architecture. PSDoodle

offers a drawing interface (bottom left) and recognizes a stroke

sequence as an UI element via a deep neural network trained on

DoodleUINet and QuickDraw doodles. After recognizing a new UI

element, PSDoodle looks up the top-N matching screens in its dic-

tionary of Rico screen hierarchies via PSDoodle’s similarity metric

based on UI element shape, position, and occurrence frequency.

3.1 Rico Screens & UI Element Labels

While the Rico paper mentions 72k screens, its dataset contains

66,261 screens. Given our UI element based search, PSDoodle cannot

distinguish between screens with few UI elements (e.g., between

two screens that only show a single large image). We thus exclude

a Rico screen if the entire screen consists of a single text area (2,384

screens), a single image (561), single text plus single image (502),

single webview (2,367), webview covering most of the screen area

(1,433), or has no hierarchy information (888). (While a webview

http://pixeltoapp.com/PSDoodle/
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Figure 3: PSDoodle answers user queries via an offline-

trained icon-level stroke-sequence recognizer and an offline-

created hierarchy dictionary of 58k Rico screens.

may contain an arbitrary webpage, Rico contains no information

about this webpage.) This yields 58,126 Rico screens in PSDoodle.

For 3,317 Rico screens we noticed and fixed several inaccura-

cies in Liu et al.’s labeling of UI elements as łinputž or łimagež.

Table 1 summarizes these fixes as 47 patterns. For example, we

found that if Liu et al. labeled a UI element of Android class App-

CompatCheckBox as an łinputž then that UI element really looks

like a łcheckboxž.

3.2 Query Language: Stylized + Flexible Doodles

While our long-term goal is to support every user and their pre-

ferred query styles (i.e., via an arbitrary mix of individual sketching

styles, keywords, and structured query languages), PSDoodle fo-

cuses on sketch-only screen search. Specifically, PSDoodle combines

the stylized DoodleUINet sketch style with the flexible QuickDraw

sketch style. QuickDraw has already validated that supporting both

many categories and flexible drawing styles is possible using the

QuickDraw representation and classification PSDoodle has adapted.

So migrating PSDoodle to support more UI element categories and a

flexible drawing style is mostly a matter of collecting more training

samples (and retraining PSDoodle’s neural net).

A key challenge not addressed by QuickDraw is sketching deeply

nested composite structures, which is common in app screens (e.g.,

a list of images plus text pairs in a container that is just one part

of the screen). PSDoodle supports sketching such screens via its

sequence-of-elements style. Specifically, the PSDoodle doodle clas-

sifier recognizes one UI element at a time. So once a user starts

sketching a new doodle, PSDoodle treats each stroke as belonging

to that UI element doodle, until the user indicates the UI element

sketch is done. In that style it does not matter if the user first

sketches a container or one of its (nested) UI elements, PSDoodle

recognizes each separately and treats them as separate elements,

allowing arbitrarily deeply nested container structures.

Figure 4 shows how PSDoodle presents its query language to its

users (as a łcheatsheetž). At the individual UI element level, Doo-

dleUINet [23] is a good fit for Android screen search as (according

to the number of element labels inferred by Liu et al. [22]) Doo-

dleUINet covers several of the most popular UI elements in Rico.

Specifically, 11/16 of the stylized DoodleUINet doodles look like the

corresponding UI elements grouped and labeled by Liu et al. The

Figure 4: PSDoodle’s query language, as presented to users.

other five either match SWIRE’s language (squiggly line) or appear

to be reasonable representations of common app concepts (drop-

down, left arrow, slider, and switch). In addition to DoodleUINet,

we reviewed the QuickDraw categories, looking for doodles that

could be used to cover additional UI elements. We thereby identified

7 QuickDraw classes (Figure 5 shows one sample each) that in our

subjective judgement were a good match for UI sketching.

Figure 5: PSDoodle’s QuickDraw icons (one sample per class).

Besides the relatively close doodle-to-screen similarity of sev-

eral classes (e.g., a sketched łmenuž icon looks quite similar to

an on-screen menu icon), PSDoodle follows SWIRE’s approach of

using a few placeholder elements to represent text and arbitrary

images. For text PSDoodle uses a squiggly line (as SWIRE) and for

an arbitrary image we use QuickDraw’s łjailwindowž. Furthermore,

PSDoodle uses QuickDraw’s cloud to represent a default (other-

wise not directly-supported) icon and QuickDraw’s square as a

container.

Taken together, PSDoodle thereby covers the most common UI

elements in Rico (in order) as follows (bold is from DoodleUINet,

italic from QuickDraw): Container, image, icon (a small interactive

image), text, text button, web view, input, list item, switch (a

toggle element), map view, slider, and checkbox. Rico further

sub-categorized the most popular icon types (#3 in the above list)

as back, followed by (in order)menu, cancel (close), search, plus

(add), avatar (user head-shot type image), home, share, setting,
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Container’s Android Class Element’s Android Class New Label

CheckedTextView, AppCompatCheckedTextView,

AppCompatCheckBox, CheckableImageView, Ani-

mationCheckBox, CheckableImageButton, Check-

Box, ColorableCheckBoxPreference

AppCompatCheckBox, PreferenceCheckbox, CheckboxChoice,

CheckboxTextView, CenteredCheckBox, StyledCheckBox, CheckBut-

ton, AppCompatCheckBox, CheckBox, CheckBoxMaterial

Checkbox

RangeSeekBar, SeekBar RangeSeekBar, TwoThumbSeekBar, EqSeekBar, PriceRangeSeekBar,

VideoSliceSeekBar, SliderButton

Slider

RatingBar RatingWidget, RatingSliderView, RatingView, Rating Star

SwitchCompat, Switch SwitchCompat, CustomThemeSwitchButton, BetterSwitch, La-

beledSwitch, CustomToggleSwitch, CheckSwitchButton, Custom-

Switch, MySwitch, SwitchButton, Switch

Switch

n/a CustomSearchView, SearchEditText, CustomSearchView, Search-

BoxButton

Search

Table 1: 47 patterns of fixes we have applied to łinputž and łimagež labels Liu et al. have applied to Rico UI elements on 3,317

screens. If Liu et al. labeled an element łinputž or łimagež and the element’s type is a second column Android class or its direct

container is a first column Android class, then we replace the label with the right column.

star, edit, more, refresh, forward, and play. PSDoodle further sup-

ports camera, dropdown, envelope, and left arrow.

Some popular UI elements can be treated as compound elements

that can be composed of other more basic ones. PSDoodle supports

one such case, i.e., the Android text button as łtextž inside a łsquarež.

If a squiggle is inside a square and the square has no other nested

UI elements then PSDoodle merges these two elements into a single

(compound) element.

3.3 UI Element Doodle Recognition

Figure 6: PSDoodle drawing UI, under which PSDoodle shows

its current top-N Android search result screens (omitted).

Users draw on PSDoodle’s website via mouse or touch events.

Users can undo or redo strokes and remove the last element doodle

(Figure 6 top left). Each time the user adds a stroke to the current

doodle, PSDoodle shows its current top-3 UI element predictions

(top right). A user can pick any of these three (and tap łIcon donež)

or continue editing the current UI element doodle. Once the user

taps łIcon donež, PSDoodle adds the sketched UI element to its

search query, issues the query, and updates the display of its top-N

Android search result screens.

To recognize a single UI element from strokes, we trained a deep

neural network using QuickDraw’s network architecture [31], i.e.,

a 1-D convolutional neural network (CNN) layer (48 filters, kernel

size 5) followed by a 1-D CNN layer (kernel size 5, 64 filters), a

1-D CNN layer (kernel size 3, 96 filters), 3 Bi-LSTM layers, and a

fully-connected layer.

We used DoodleUINet (some 600 doodles labeled łcorrectž for

each of the 16 classes) plus a random 600-doodle sample of each of

our 7 QuickDraw classes.We used transfer learning [32] to pre-train

the CNN layers for 23 QuickDraw classes outside our 7 QuickDraw

classes. We then split our 23 classes into training and test sam-

ples (80%/20%) and trained the network for 24,893 steps, which

yielded an accuracy of 94.5% on the test data (which is similar to

the 94.2% accuracy a recent study achieved with 7-class QuickDraw

subset [2]).

To map an input stroke to QuickDraw’s stroke-5 format [12],

PSDoodle normalizes input stroke int locations to floats. Specifically,

in the stroke-5 format [12] each user input stroke is a sequence of

points where each point is a tuple (Δ𝑥,Δ y, p1, p2, p3). Here p1 to

p3 are binary sketch states after the current vertex (touching the

canvas, raised from the canvas, done). Δ𝑥 and Δ𝑦 are integer pixel

distances we normalize to floats (maintaining, among others, the

number of vertices between input and normalized image).

3.4 Searching Screens for UI Element Doodles

After the user adds (or removes) a UI element, PSDoodle displays

Rico screens that are similar to the current (partial) user screen

sketch. PSDoodle scores each of the 58k Rico screens based on how

closely the screen matches the query doodles’ presence, position,

and shape. A key challenge is that a sketch is an abstract represen-

tation that is geometrically relatively far apart from its real-world

counterpart. A UI element doodle thus will likely not be in the exact

scale and position as it should appear on a UI screen. A similarity



MOBILESoft ’22, May 17ś24, 2022, Pittsburgh, PA, USA Soumik Mohian and Christoph Csallner

metric based on exact matching is thus likely to fail in sketch-based

screen search.

Figure 7: PSDoodle’s 3 levels of UI element search granularity.

To address the issue, PSDoodle matches doodles (as recognized

by the neural network after merging compound elements) with

screen elements at different levels of screen resolution, starting at

a fine-grained level but then backing up to more coarse-grained

matches. Specifically, PSDoodle’s fine granularity scale-1 divides

the canvas into 24 equal-sized rectangles (6 rows of 4 tiles each),

scale-2 groups these into 6 rectangles (3 rows of 2 tiles), and finally

scale-3 is a single rectangle. Figure 7 gives an overview of the

different scale levels and how moving to a higher level widens the

search area for a UI element match.

Besides PSDoodle’s 3-level matching of a UI element’s screen

location, PSDoodle also matches the number of UI elements of a

given class and takes into account how rare a UI element is within

all screens. PSDoodle thus boosts the score of a rarer UI element as

its presencemay bemore significant to the user. PSDoodle computes

the inverse document frequency (IDF) of each UI element type in

the 58k Rico screens (where a UI element type’s IDF is larger if it

appears on fewer screens).

For fast screen retrieval, PSDoodle maintains a dictionary of

Rico’s 58k (łoriginalž) screens. This dictionary maps each of PS-

Doodle’s 24 UI element types to a list of screens, where each screen

lists for each of its tiles the percentage of the tile’s area (𝐴𝑜 ) being

covered by how many (𝐶𝑜 ) instances of that UI element type. Algo-

rithm 1 summarizes PSDoodle’s screen similarity scoring as pseudo

code. The algorithm iterates through the query sketch’s UI element

doodles, one element class at a time (e.g., starting with all of the

query sketch’s squiggly line doodles taken as a group). For each

element doodle group, the algorithm looks up the Rico screens that

contain at least one instance of the doodle group’s element type

(Line 3). For each matching Rico screen, we then iterate over the

screen’s scale-1 tiles that contain the given doodle type (Line 5) .

For each such original Rico screen tile that contains the doodled

UI element type there are now three cases. First, if the original

screen tile matches a tile of the doodle group then we have a scale-1

match and compute the percentage of that tile’s area (𝐴𝑑 ) being

covered by how many (𝐶𝑑 ) doodles of that UI element type (Line 8).

Then we compute the difference in the tile’s area coverage percent-

ages between doodles and original screen elements (Line 9) and

the difference in how many doodles vs how many original screen

Algorithm 1 scores screens by how closely they match the query

doodles’ size and location; 𝑝1, 𝑝2, 𝑝3, Δ𝑤 , and 𝐶𝑤 are hyperparam-

eters; Δ𝐴 and Δ𝐶 are UI element area- and count-differences [0..1].

1: 𝑟𝑒𝑠 ← {} // Score per original screen

2: for 𝑑𝑜𝑜𝑑𝑙𝑒𝑠 in 𝑠𝑘𝑒𝑡𝑐ℎ do // Doodles of same type

3: for 𝑠𝑐𝑟𝑒𝑒𝑛 in 𝑑𝑖𝑐𝑡 [𝑐𝑙𝑎𝑠𝑠 (𝑑𝑜𝑜𝑑𝑙𝑒𝑠)] do // Screen + tiles

4: 𝑧 ← 𝑝3 // Screen’s score

5: for 𝑡𝑖𝑙𝑒 in 𝑡𝑖𝑙𝑒𝑠 (𝑠𝑐𝑟𝑒𝑒𝑛) do // Scale-1 tile

6: (𝐴𝑜 ,𝐶𝑜 ) ← 𝑒𝑙𝑒𝑚𝐴𝑟𝑒𝑎𝐴𝑛𝑑𝐶𝑜𝑢𝑛𝑡 (𝑠𝑐𝑟𝑒𝑒𝑛[𝑡𝑖𝑙𝑒])

7: if 𝑡𝑖𝑙𝑒 in 𝑡𝑖𝑙𝑒𝑠 (𝑑𝑜𝑜𝑑𝑙𝑒𝑠) then // Overlaps doodles

8: (𝐴𝑑 ,𝐶𝑑 ) ← 𝑒𝑙𝑒𝑚𝐴𝑟𝑒𝑎𝐴𝑛𝑑𝐶𝑜𝑢𝑛𝑡 (𝑑𝑜𝑜𝑑𝑙𝑒𝑠 [𝑡𝑖𝑙𝑒])

9: Δ𝐴 ← 1 − |𝐴𝑑 −𝐴𝑜 | // Tile area: doodle vs orig

10: Δ𝐶 ←𝑚𝑎𝑥 (0, 1 −𝐶𝑤 × |𝐶𝑑 −𝐶𝑜 |) // Counts

11: 𝑧 ← 𝑧 + (𝑝1 ×
𝐴𝑜

𝐶𝑜
×
𝐴𝑑

𝐶𝑑
) + (Δ𝑤×𝐴𝑑×Δ𝐴×Δ𝐶 )

12: else if 𝑡𝑖𝑙𝑒 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑡𝑖𝑙𝑒𝑠 (𝑑𝑜𝑜𝑑𝑙𝑒𝑠)) then

13: 𝑧 ← 𝑧 + (𝑝2 ×
𝐴𝑜

𝐶𝑜
)

14: end if

15: end for

16: 𝑟𝑒𝑠 [𝑠𝑐𝑟𝑒𝑒𝑛] ← 𝑟𝑒𝑠 [𝑠𝑐𝑟𝑒𝑒𝑛] + (𝑧 × 𝑖𝑑 𝑓 [𝑐𝑙𝑎𝑠𝑠 (𝑑𝑜𝑜𝑑𝑙𝑒𝑠)])

17: end for

18: end for

19: sort(𝑟𝑒𝑠) // Retrieved screens by score

elements are in that tile (Line 10). We add the resulting tile score to

its screen’s overall score (Line 11).

In the second case (Line 12), the screen tile containing a UI

element of the doodle group’s class does not overlap with any tile

of the doodle group. In this case PSDoodle backs up to its scale-

2 search and checks if this screen tile overlaps with any direct

neighbor tiles of the doodle group’s tiles. If this is the case the

screen gets a smaller score boost. Finally, if there is neither a scale-1

nor a scale-2 match, then the screen’s score remains unchanged.

3.5 Hyperparameter Optimization

Algorithm 1 mentions five hyperparameters, three for the scale

levels (𝑝1, 𝑝2, 𝑝3) plus Δ𝑤 for the weight difference and 𝐶𝑤 for

the occurrence difference. To find optimal values for these hyper-

parameters we collected 30 sketches from 5 computer science grad-

uate students.

The collected sketches represent 30 different Rico screens that

have at least two PSDoodle-supported icons. None of these screen-

shots or sketches were used for the tool evaluation. An exhaustive

search with GridSearchCV of scikit-learn [3] to get a high score and

top-rank for the target screen yielded the optimized values 𝑝1 = 39,

𝑝2 = 8, 𝑝3 = 9, Δ𝑤 = 0.4, and 𝐶𝑤 = 11.

A closer look at the hyper-parameters indicates that they give

more weights to scale-1 matches compared to the other two scales.

With 24 girds, a scale-1 match implies higher location similarity,

which we intuitively expect to yield a higher screen score.

4 EVALUATION

We evaluated PSDoodle’s recognition accuracy of partial UI element

doodles, its top-10 retrieval accuracy of partial screen sketches, and

its screen retrieval time using the following research questions.
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Table 2: Strokes per doodle in PSDoodle’s data sets (left) and its partial doodle recognition trained on 80% classifying the other

20% (the test doodles) (right): 1st stroke at which PSDoodle ranks a doodle’s correct class first (top-1) and within the top-3;

W = test doodles PSDoodle classifies wrongly at the last/all strokes; W* = after retraining from scratch adding samples that

remove the outer boundary of avatar, cancel, checkbox, plus; m = median; l = min; h = max; SD = standard deviation; cnt = count.

Category Strokes in 100% 20% 1st stroke to top-1 W [%] W* [%] 1st stroke to top-3 W [%] W* [%]

avg m l h SD cnt avg m l h SD lst all lst all avg m l h SD lst all lst all

Camera 3.5 3 1 9 1.1 143 2.3 2 1 5 0.7 6 4 13 8 1.8 2 1 5 0.8 1 1 1 1

Cloud 1.4 1 1 24 1.4 154 1.1 1 1 3 0.4 12 10 4 3 1.1 1 1 3 0.4 3 2 1 1

Envelope 2.1 2 1 9 1.1 145 1.9 2 1 9 1.1 7 6 6 6 1.3 1 1 4 0.6 0 0 0 0

House 3.5 3 1 23 2.2 135 2.1 2 1 5 0.9 11 9 1 1 2.0 2 1 10 1.1 3 2 1 1

Jail-win 5.8 5 2 20 1.7 143 3.4 3 2 8 1.1 7 6 1 1 2.9 3 1 8 1.2 2 1 1 0

Square 1.3 1 1 4 0.7 147 1.1 1 1 3 0.3 2 2 2 1 1.1 1 1 3 0.3 1 1 1 1

Star 1.4 1 1 10 1.0 148 1.1 1 1 4 0.5 1 1 1 1 1.1 1 1 2 0.3 0 0 0 0

Avatar 3.8 4 1 8 0.8 136 2.9 3 1 7 0.9 9 8 2 2 2.3 2 1 6 0.7 1 1 0 0

Back 1.1 1 1 12 0.7 122 1.0 1 1 2 0.2 3 2 5 3 1.0 1 1 2 0.1 0 0 4 3

Cancel 3.1 3 2 12 0.5 127 2.6 3 1 5 0.6 25 21 3 2 2.2 2 1 4 0.6 2 1 1 1

Checkbox 2.8 2 1 51 2.6 134 2.3 2 1 10 1.4 13 13 4 1 1.7 1 1 7 1.1 3 2 1 1

Drop-dwn 4.5 3 2 43 3.3 133 2.8 2 2 6 1.0 3 2 5 3 1.9 2 1 5 0.7 2 2 2 2

Forward 1.1 1 1 17 0.8 122 1.0 1 1 1 0.0 0 0 2 2 1.0 1 1 1 0.0 0 0 1 0

Left arrow 2.2 2 1 10 0.8 123 2.0 2 1 4 0.5 13 12 3 2 1.9 2 1 4 0.6 5 5 1 1

Menu 3.2 3 2 16 1.1 126 2.0 2 1 3 0.4 0 0 3 2 1.8 2 1 3 0.4 0 0 0 0

Play 1.7 1 1 15 1.2 127 1.4 1 1 2 0.5 5 4 9 3 1.3 1 1 3 0.5 2 1 3 1

Plus 3.1 3 2 11 0.7 120 2.2 2 1 6 0.9 8 8 12 8 1.8 2 1 4 0.8 2 2 3 3

Search 2.3 2 1 13 1.0 122 2.0 2 1 3 0.3 2 2 9 7 1.9 2 1 3 0.4 1 1 3 2

Setting 5.6 2 1 61 7.1 111 3.1 2 1 34 4.0 11 7 5 5 2.5 2 1 24 2.4 1 0 1 1

Share 7.0 7 1 23 1.1 117 3.7 3 2 13 1.3 3 1 5 3 2.8 3 2 7 0.8 1 1 1 0

Slider 2.6 3 1 19 1.0 134 1.9 2 1 4 0.8 4 4 2 2 1.6 2 1 4 0.6 1 1 1 1

Squiggle 1.3 1 1 52 2.5 144 1.1 1 1 4 0.4 3 1 0 0 1.0 1 1 4 0.3 1 1 0 0

Switch 3.1 2 1 16 1.6 137 2.3 2 1 6 1.0 6 4 6 5 1.6 1 1 5 0.8 0 0 1 1

RQ1 Can PSDoodle recognize partial UI element sketches?

RQ2 Can PSDoodle achieve similar top-10 accuracy as state-

of-the-art screen search approaches?

RQ3 At a similar accuracy level, how many UI elements did

participants sketch in PSDoodle compared to state-of-the-art

complete-screen sketch approaches?

RQ4 At a similar accuracy level, can PSDoodle retrieve screens

faster than state-of-the-art approaches?

Following the most closely related work [16, 27], we evaluated

screen search performance by measuring top-k (screen) retrieval

accuracy.We thus showed a participant a target screen to sketch and

measuredwhere in the result ranking the target screen appears. Top-

k retrieval accuracy is the most common metric for sketch-based

image retrieval tasks and correlates with user satisfaction [17].

Specifically, we evaluated screen search (in RQ2, RQ3, and RQ4)

with 30 łtargetž Rico screens, which we selected as follows. To

ensure the target Rico screens contain at least some UI elements

PSDoodle supports, we removed from Rico’s 58k screens those that

contain less than two PSDoodle-supported UI elements, yielding

50,113 screens. From these 50k we randomly picked 30 screens, of

which 26 were also in the SWIRE dataset.

We recruited 10 Computer Science students (all ages under 30).

None of the participants had any formal UI/UX design training. All

participants had heard about mobile app development principles

before the study. For diversity, we recruited 5 participants (1 female,

4 male) without plus 5 (2 female, 3 male) with some prior mobile

app development experience. Each student was compensated with

USD 10 and used PSDoodle for the first time.

For the experiment, we used PSDoodle’s regular setup as a web-

site hosted on an Amazon AWS EC2 general purpose instance

(t2.large) with two virtual CPUs and 8 GB of RAM. Each participant

interacted with PSDoodle over the internet from their personal

machine (i.e., a laptop or desktop computer). Each participant first

spent an average of 9 minutes on the PSDoodle’s interactive tutorial,

which covers PSDoodle’s visual language, how and where to draw,

how to access the cheat sheet (Figure 4), how to see the search re-

sults, and when to stop the search (http://pixeltoapp.com/toolIns/).

After the tutorial each user was instructed to sketch at least 3

screens. The PSDoodle website recorded their drawings, drawing

time, and query results. Throughout the experiments, we observed

participants’ performance via screen sharing but did not otherwise

interact with them (e.g., to coach them on how to use PSDoodle).

All records are available in the PSDoodle repository.

4.1 RQ1: Recognizing Partial Icon Doodles

Table 2 compares the number of per-doodle strokes in PSDoodle’s

data sets with the number of strokes PSDoodle takes to correctly

classify a doodle. For the latter Table 2 lists two criteria, ranking the

http://pixeltoapp.com/toolIns/
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correct class first (middle columns) and ranking the correct class

in the top-3 (right columns). In the experiments participants often

kept sketching until PSDoodle ranked the correct class top-1 but

sometimes stopped sketching after selecting the correct class from

the top-3 predictions the PSDoodle UI provides after each stroke.

For both criteria (top-1 and top-3), users can often transmit their

intent to PSDoodle with fewer than a doodle’s full set of strokes.

For example, while the average avatar doodle contains 3.8 strokes,

PSDoodle ranks avatar top-1 on average after 2.9 strokes and top-

3 after just 2.3 strokes. Several other classes have similarly large

reductions in average stroke counts.

Figure 8: Two random samples (from the 20% of doodles) from

4 categories. Below each incremental stroke is PSDoodle’s

confidence for its current top predictions. For 6 of these 8

doodles PSDoodle reached the correct prediction before the

last stroke, allowing the user to communicate their intent

without finishing the doodle.

To visualize PSDoodle performance on concrete examples, Fig-

ure 8 displays PSDoodle’s current prediction after each stroke of

8 randomly sampled drawings from 4 categories. For example, in

the fifth row PSDoodle ranks the doodle’s correct class top-1 after

only two strokes of the doodle’s six total strokes. Such an early

correct classification allows the user to quickly move on to the next

doodle, thereby saving time and receiving query results faster.

We also inspected a random sample of 35 of the 192 test set

sketches PSDoodle misclassified after the last stroke. Among these

35 samples we found four patterns, i.e., being an outlier due to

Figure 9: Test set drawings the network misclassified.

using a large number of strokes (compared to the doodle class’s

average) for 7/35 samples, using unusual strokes (such as a squiggle

during drawing using more vertices compared to the class’s vertex

average) or stroke sequence for 10/35 samples, deviation from the

class’s common shape (14/35), and resembling another category

(4/35). Figure 9 shows examples of these four categories.

4.2 RQ2: Top-10 Screen Search Accuracy

For this experiment participants were instructed to sketch with

the goal of using PSDoodle to retrieve a given Rico łtargetž screen.

We then measured how quickly this target Rico screen appeared in

PSDoodle’s top-10 search results. We asked participants to use the

tool at least 3 times, with 4 users attempting one additional sketch

each, yielding 34 screen sketches of 30 Rico screens. For these 34

sketches, 30 times the target UI screen appears in the top-10 results,

yielding a top-10 accuracy of 88.2%. (Since PSDoodle shows rows

of result screens similar to Google’s image search, top-1 accuracy

is less relevant.) PSDoodle’s top-10 accuracy is significantly higher

than SWIRE’s and remains similar to a recent SWIRE follow-up

work by Sain et. al [27], which reported 90.1% top-10 accuracy for

SWIRE sketches.

We manually checked each case where PSDoodle failed to rank

the target screen in the top-10. Figure 10 shows excerpts of two such

screens. In both the Rico hierarchy does not contain the correct

label of a user-drawn icon. Such cases could be reduced by further

improving Rico’s UI element clustering and classification. Another

case stems from human error (i.e., participant 9 in Table 3) because

the user selected the wrong doodle category from PSDoodle’s top-

3 prediction. Such human errors may become less common once

users become more experienced with using PSDoodle.

4.3 RQ3: Search With Partial-screen Sketches

In addition to recognizing partial UI element sketches, PSDoodle

also supports an iterative search style where a user refines the

search results one UI element at a time. As the SWIRE-style ap-

proaches process complete-screen sketches, this research question

quantifies the difference in UI elements a user has to draw to per-

form a successful screen search. Answering this question is made

easier by the earlier experiment yielding a similar top-10 accuracy

for PSDoodle and the most-accurate SWIRE-style approach.

In the 30 target Rico screens participants used, the average UI

element count was 21.1 with a median of 19 (low 14, high 35, and

standard deviation 5.4). SWIRE instructs users to sketch all screen

elements, so a SWIRE sketch has a similar number of UI elements.

In the participants’ 34 PSDoodle sketches of these 30 screens the
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Figure 10: PSDoodle fails to rank these two target screens

(excerpted) in its top-10 search results, due to their Rico hier-

archy having no information about an icon drawn by a user.

average UI element count was significantly lower at 5.5 with a

median of 5 (low 3, high 9, and standard deviation 1.8).

We also tested how the most-accurate SWIRE-style approach

would perform on the partial screen sketches our participants pro-

duced with PSDoodle, by training their network to the reported

90.1% top-10 and 67% top-1 accuracy for SWIRE sketches [27].

We thus converted our 34 participant sketches from QuickDraw’s

sequence-of-stroke format to SWIRE-style black/white bitmaps

(and included them in the PSDoodle repository). We removed the 8

participant sketches that used jail-window, as SWIRE uses a differ-

ent placeholder for images. For all resulting 26 query sketches, the

SWIRE follow-up failed to fetch the target screen in the top-10.

4.4 RQ4: Interactive and Fast Screen Retrieval

In our experiments we told participants to search via sketching

for 3 minutes and stop sketching if the target screen appears in

PSDoodle’s top-10 result. We recorded how long each search session

took. SWIRE reports that the sketching alone of each SWIRE sketch

of a Rico screen took an average of 246 seconds.

Table 3 lists the total time of the search and sketch session for

each of the experiment’s 34 sessions, together with the final rank

of the target Rico screen in PSDoodle’s search results. Total sketch

and search times per search session varied from 30 to 259 seconds.

While achieving similar top-10 accuracy, most of these session

times were significantly shorter than the 246 second average of

Table 3: Time (seconds) a participant (P) took to iteratively

sketch a target screen and retrieve result screens. The final

target screen ranking (r) was top-10 accurate in 88% of cases.

P Target 1 Target 2 Target 3 Target 4

t r t r t r t r

1 55 2 51 1 134 8 - -

2 86 3 259 7 206 3 - -

3 134 3 97 4 63 2 - -

4 85 5 75 1 64 5 - -

5 202 3 60 1 105 14491 - -

6 127 2 119 1 109 9 - -

7 44 2 98 1 38 10 39 1

8 168 10 248 1 103 1 73 5

9 158 31 46 61 97 31 40 3

10 30 8 138 1 147 1 158 6

SWIRE for sketching only. Most of PSDoodle’s session times were

also significantly shorter than the 180 seconds target provided to

participants.

PSDoodle is deployed in AWS and supports interactive search. In

our experiments there was less than 2s delay between the user sub-

mitting a search query (e.g., by pressing łicon donež) to the update

of the top-10 result screens on the user’s PSDoodle website. Be-

sides communication to and from AWS, the main time components

were sketch recognition (below 0.1s) as well as screen similarity

calculation and screen ranking (below 1s).

4.5 High-level Feedback from Participants

Two of our 10 participants opted out of our post-evaluation survey,

leaving us with 8 completed surveys. In one question we asked how

participants prefer to sketch. Three preferred touch to sketch on

a larger device such as an iPad, two preferred sketching on paper

and taking a picture with their phone, two wanted to use a mouse

to sketch on a non-touch device, one wanted to touch to sketch on

a smaller device such as a smartphone, and none wanted to scan

a paper-based sketch. Overall participants preferred device-based

over paper-based sketching by 3:1.

In another question we asked participants to choose from three

sketch-based search tool options. Two participants voted for an

approach that shows its search result only after finishing a complete

screen (containing all the UI elements that the screen should have

in the app). The other six participants preferred a search tool that

shows live search results (i.e., search results that update when

adding or removing a UI element). None of the participants picked

the third option, a tool that only shows its results after sketching a

partial screen containing several icons.

4.6 Relaxing PSDoodle’s Query Language

In informal but more concrete feedback, participants explained how

they sometimes struggled with the four PSDoodle’s icon classes

whose shapes include outer boundaries such as avatar’s łouter ringž.

These classes were avatar, cancel, checkbox, and plus. While some

participants preferred to sketch such icons without these outer
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boundaries, PSDoodle’s training data sets contained only few such

samples.

To address this issue, after the experiments with participants

we created additional samples from PSDoodle’s existing samples,

by identifying and removing these outer boundaries. Table 2 lists

the test doodles the version of PSDoodle used with participants

classified wrongly (W) both after the last stroke and after each

stroke. Retraining the doodle classifier after adding these samples

yielded better recognition performance (W*). The new classifier

performed worse on Camera and Search (and to a lesser degree on

Back, Dropdown, Forward, Menu, Play, Plus, Share, and Switch).

Overall recognition accuracy improved from 94.5% to 94.9%

(while keeping recognition speed the same), but is most notably

9% better for avatar (the class that study participants had the most

trouble with). Among the 186 UI elements in the participants’ 34

final screen sketches, the retrained network detected 18 UI elements

with fewer strokes (while requiring more strokes for 8 UI elements).

5 RELATED WORK

In sketch-based image retrieval (SBIR), computer vision techniques

try to find the similarity in the sketch-image pair based on their

features when a user draws an unpolished representation of the

image. Earlier studies extract hand-engineered features (edge-map,

Histogram of Oriented Gradients, Histogram of edge local orienta-

tion) [7, 15] to find the similarity between the pair. Deep Leaning

achieves state-of-the-art performance in several computer vision

applications with Convolutional Neural Network [20, 29]. The suc-

cess also draws researchers to employ deep neural networks for

SBIR [30, 35]. Deep Neural Network(DNN) uses sketch-image pair

for training two different networks(one for sketch and one for im-

age). During the training phase, DNN encodes the image-sketch

duo to low-dimensional feature vectors with a target to reduce the

distance for similar pairs and maximize for non-similar pairs. For

query, it encodes the sketch and then uses the nearest neighbor

technique to query similar examples from the dataset.

Searching design from visual input (image, sketch) recently gain-

ing attention due to the success of DNN and the creation of large-

scale datasets. SWIRE [16] uses a deep neural network model to

retrieve relevant UI examples from input sketches. VINS [4] UI

image (wireframe, high-fidelity) retrieves UI screenshots from high-

fidelity wire-frame design.

In a follow-up to SWIRE, sketching begins with a coarse-level

representation of a real-world object, followed by more fine details.

Rather than considering a sketch as a flat structure, they use the

hierarchical structure to pair it with a photo. Two nodes of the

deep neural network are fused to form the next hierarchy level

by interacting and matching features between image and sketch

pair. They calculated bounding boxes of the individual connected

components of the SWIRE drawings to identify interest regions. A

cross-modal co-attention part of the network attends to matching

interest regions in a sketch and image pair. By leveraging the hi-

erarchical traits and mutual attention between the interest region,

they achieved state-of-the-art performance in the SWIRE dataset.

Successful integration of sketch in the software development pro-

cess requires a large-scale UI dataset and utilization of the dataset

in the deep learning model. While some freehand drawings of user

interface elements are available [1, 16, 28], these sketches are avail-

able as łstaticž pixel-based images of the final sketch.

SWIRE [16] collected 3,802 offline sketches of 2,201 screens

from 23 app categories of the Google Play store. While the SWIRE

dataset is very valuable, it łonlyž contains an offline snapshot of

each final UI drawing. And drawings are not tagged with the UI

element present in them. UISketch [28] introduced the first large-

scale dataset of 17,979 hand-drawn sketches of 21 UI element cate-

gories collected from 967 participants. 69.38% of UISketch are digital

sketches. The drawings are now publicly available in raw-pixel for-

mat with no stroke information.

6 CONCLUSIONS

Searching through existing repositories for a specific mobile app

screen design is currently either slow or tedious. Such searches are

either limited to basic keyword searches (Google Image Search)

or require as input a complete query screen image (SWIRE). A

promising alternative is interactive partial sketching, which is more

structured than keyword search and faster than complete-screen

queries. PSDoodle is the first system to allow interactive search

of screens via interactive sketching. PSDoodle is built on top of

a combination of the Rico repository of some 58k Android app

screens, the Google QuickDraw dataset of icon-level doodles, and

DoodleUINet, a curated corpus of some 10k app icon doodles col-

lected from hundreds of individuals (mainly crowd-workers). In

our evaluation with third-party software developers, PSDoodle pro-

vided similar accuracy as the state of the art from the SWIRE line

of work, while cutting the average time required about in half. All

of PSDoodle’s source code, processing scripts, training data, and

experimental results are available under permissive open-source

licenses.
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