
D2S2: Drag ’n’ Drop Mobile App Screen Search

Soumik Mohian
soumik.mohian@mavs.uta.edu
University of Texas at Arlington

Arlington, Texas, USA

Tony Tang
ttt9489@mavs.uta.edu

University of Texas at Arlington
Arlington, Texas, USA

Tuan Trinh
tqt5663@mavs.uta.edu

University of Texas at Arlington
Arlington, Texas, USA

Don Dang
dpd5574@mavs.uta.edu

University of Texas at Arlington
Arlington, Texas, USA

Christoph Csallner
csallner@uta.edu

University of Texas at Arlington
Arlington, Texas, USA

ABSTRACT

The lack of diverse UI element representations in publicly avail-

able datasets hinders the scalability of sketch-based interactive

mobile search. This paper introduces D2S2, a novel approach that

addresses this limitation via drag-and-dropmobile screen search, ac-

commodating visual and text-based queries. D2S2 searches 58k Rico

screens for relevant UI examples based on UI element attributes,

including type, position, shape, and text. In an evaluation with

10 novice software developers D2S2 successfully retrieves target

screens within the top-20 search results in 15/19 attempts within a

minute. The tool o�ers interactive and iterative search, updating

its search results each time the user modi�es the search query. In-

terested users can freely access D2S2 (http://pixeltoapp.com/D2S2),

build on D2S2 or replicate results via D2S2’s open-source imple-

mentation (https://github.com/toni-tang/D2S2), or watch D2S2’s

video demonstration (https://youtu.be/fdoYiw8lAn0).

CCS CONCEPTS

• Human-centered computing → Interface design prototyping; •

Software and its engineering→ Software prototyping; Search-

based software engineering.

KEYWORDS

User interface design, prototyping, information retrieval, design

examples, interactive screenshot search

ACM Reference Format:

Soumik Mohian, Tony Tang, Tuan Trinh, Don Dang, and Christoph Csallner.

2023. D2S2: Drag ’n’ Drop Mobile App Screen Search. In Proceedings of the

31st ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE ’23), December 3–9,

2023, San Francisco, CA, USA. ACM, New York, NY, USA, 5 pages. https:

//doi.org/10.1145/3611643.3613100

1 INTRODUCTION

Iterative app screen search, while an exciting area of recentwork [16,

17, 18], still faces many challenges. First, Google image search is fast,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3613100

searches many images from the open web, and supports text-based

search queries. But searching for an app screen via text queries

remains clumsy, especially when looking for screens that contain

certain UI elements in speci�c locations. Such searches result in

long text queries and produce few relevant results. Recent work

has searched the widely-used Rico dataset via a combination of

text search [18] and sketched element doodles [16, 17]. These ap-

proaches support a few UI element types via deep learning. Expand-

ing their scope would require additional specialized training data,

which must be collected and curated.

When designing mobile applications, studying real-world exam-

ples aids in gathering requirements, analyzing current trends, and

cultivating motivation to develop a compelling mobile app [9, 10].

Given the broad and rapidly expanding market for mobile apps, an

e�cient mobile app screen search tool becomes valuable.

Designers commonly use drag-and-drop tools (e.g., Figma [2]) to

create wireframes. Similarly, software developers utilize drag-and-

drop-based visual kits (e.g., the Android Layout Editor [1] or Proto-

typr [3]) for UI development. The popularity of these techniques is

growing due to their user-friendly nature, intuitive interfaces, and

since they do not require specialized technical expertise [13]. D2S2

o�ers an interactive solution via drag and drop for mobile screen

search.

D2S2 is for novice users who want help creating a complete UI

design during the early software development stages. Users can

search for mobile screens by dragging and dropping UI elements

on the canvas. The tool’s search interface includes basic features

such as undo and redo. Users can also add plain text and put text

in a text-button. As a user adds, removes, resizes, and moves UI

elements, D2S2 searches through 58k Rico [7] screens to fetch UI

examples based on UI element type, position, element shape, and

texts as shown in Figure 1. D2S2 fetches the top-20 screens and

displays them in its website’s top-pick screen search results section.

We recruited 10 software developers without prior UI/UX design

training to assess D2S2’s e�ectiveness. The participants searched

for a given target Rico screen with D2S2 until the screen appeared in

D2S2’s top-20 search results. In our experiment, D2S2 successfully

obtained 15/19 target screens within a minute and 19/19 within

four minutes. D2S2 further retrieved more relevant mobile screens

than the other closely related competitor, Google image search. In

summary, this paper makes the following major contributions.

• D2S2 is the �rst interactive drag-and-drop app screen search

tool. After each query change it updates its search results.

https://orcid.org/0000-0003-4818-1210
https://orcid.org/0009-0003-3568-3307
https://orcid.org/0009-0006-0833-8956
https://orcid.org/0009-0005-2086-3369
https://orcid.org/0000-0003-0896-6902
http://pixeltoapp.com/D2S2
https://github.com/toni-tang/D2S2
https://youtu.be/fdoYiw8lAn0
https://doi.org/10.1145/3611643.3613100
https://doi.org/10.1145/3611643.3613100
https://doi.org/10.1145/3611643.3613100


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Soumik Mohian, Tony Tang, Tuan Trinh, Don Dang, and Christoph Csallner

Figure 1: Sample D2S2 search query consisting of 3 UI elements (left); searching through 58k mobile app screens, D2S2’s top-�ve

search result screens (right) all contain the query’s UI elements at about the locations where they appear in the query screen.

• D2S2 searches 58k Android screens and is freely available

(http://pixeltoapp.com/D2S2).

• In a preliminary user study, D2S2 performed similarly as the

deep-learning based TpD (but without requiring training)

and better than Google image search.

• D2S2’s implementation (https://github.com/toni-tang/D2S2)

is available under a permissive open-source license.

2 BACKGROUND

D2S2 searches 58k mobile Android app screenshots from the Rico

dataset by Deka et al. [7]. Each screenshot has a corresponding

DOM-tree container hierarchy, where each UI element is described

by its Android class name, x/y coordinates, textual information,

and on-screen visibility. Liu et al. expanded on this dataset by

collecting 73k screen elements, categorizing them into 25 types

of UI components, and further dividing text buttons into 197 and

icon into 135 sub-classes [15]. D2S2 incorporates several common

Android UI elements identi�ed by Liu et al.

Previous studies have explored using sketches and wireframe

images to search for relevant mobile screens. However, wireframe-

based approaches such as Swire rely on complete wireframe im-

ages to identify screens with similar visual characteristics, often

not considering UI element type and text within the screen [4, 5].

Dependence on an entire wireframe image does not support the

iterative nature of the design process.

Besides Google Image Search, our closest competitors are PSDoo-

dle [16, 17] and TpD [18], which o�er an interactive and iterative

approach to searching mobile screens. PSDoodle employs a deep

neural network to identify sketched UI elements and then computes

a ranking score for Rico’s screens based on various factors, includ-

ing UI element type, position, and shape. TpD extends PSDoodle by

adding a text-based search that matches a text query with visible

text on the mobile screen and UI element descriptions. Notably,

TpD allows queries to contain text, UI element sketches, or both.

3 OVERVIEW AND DESIGN

To create a search system that is easy to use, we followed a user-

centric approach. Via the Figma [2] graphical design tool, we thus

�rst created a UI prototype (Figure 2), showed the prototype to

11 computer science undergraduate students, and collected their

feedback. By incorporating their feedback, we then iteratively en-

hanced D2S2’s user experience, mostly by re�ning D2S2’s UI. All

user feedback is in D2S2’s repository.

Figure 2: Initial D2S2 UI mock-up.

3.1 User Interface & Query Language

In D2S2, a search query consists of a set of UI elements arranged on

a canvas that models the screenshot of a mobile app. Starting with

an empty canvas, the user interactively re�nes this canvas, adding

and adjusting UI elements as they should appear on the desired

app screens. Each time the user modi�es this search query, D2S2

retrieves matching app screens that have the query’s UI elements

at about the location the user placed them on the canvas. A part of

the search is matching any texts the user added to the search query

with screens’ text contents and descriptions of their UI elements.

Figure 3 shows D2S2’s current UI. Besides moving the app bar to

the bottom, the biggest change is allowing users to search D2S2’s

library of 52 built-in UI elements by the UI element’s name and

various synonyms. Figure 4 lists these 52 UI elements in the order

D2S2’ UI presents them. The order is TpD’s UI elements �rst, then

http://pixeltoapp.com/D2S2
https://github.com/toni-tang/D2S2


D2S2: Drag ’n’ Drop Mobile App Screen Search ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

UI elements identi�ed by Liu et al., ordered by how common they

appear in Rico screens [15].

Figure 3: D2S2’s webpage: Searchable UI elements (left), can-

vas with 3 user-placed UI elements (right), app bar (bottom).

Cropped screenshot (from http://pixeltoapp.com/D2S2), not

shown: D2S2’s top-20 search result screen gallery.

Liu et al. classi�ed the UI elements of Rico’s screens into 25

categories. 11/25 categories are various container types, which

D2S2 represents via a single general container. D2S2 directly sup-

ports 11/14 of the remaining categories, plus 44/135 icon types.

Combining 3/56 of these UI elements due to their similar visual

representation with another UI element (e.g., slider vs. slider icon)

yields D2S2’s 52 UI element types plus text.

Figure 4: A user builds an app screen search query on D2S2’s

canvas by dragging and adjusting text or these 52UI elements.

The user searches (or scrolls) the UI element list, selects a UI

element and drags and drops it on the canvas. The user can interact

with the UI element, i.e., to move or resize it there. The app bar

at the bottom of the canvas allows undoing and redoing the last

element modi�cations and clearing the screen. The user can add

text either via a text-button from the UI element collection or via

the app bar’s “TEXT” feature. The latter adds a text element to the

canvas the user can manipulate like any other UI element. Clicking

on such a text element enables modifying its text content.

As in the earlier PSDoodle and TpD, UI elements may be nested,

i.e., to support UI elements grouped in a container element. D2S2

encodes the canvas’s current state as a set of 6-tuples of the form

(G,~,F,ℎ, 2, C), one tuple per UI element on the canvas. The tuple

lists an element’s left-top corner’s location in pixel-space, the UI

element’s width, height, category, and text content (for text and

text buttons). The D2S2 webpage is written in React, as it provides

client-side rendering [14] and e�ciently manages various events

such as drag-start, drag-end, and the undo/redo functionality.

3.2 D2S2’s Back-end

Figure 5 illustrates D2S2’s overall architecture, which consists of

D2S2’s webpage front-end and its AWS-hosted back-end. Each time

the user modi�es the query, D2S2 sends the updated query’s tuple

encoding via HTTP post request to AWS EC2. For the current query,

the D2S2 back-end ranks its 58k Rico screens and sends the IDs

of the top-20 ranked screens back to the front end. The front-end

then retrieves a lower-resolution version of the 20 corresponding

screen images from D2S2’s AWS S3 bucket and displays them in

the top-pick gallery. When clicking on a result screen, D2S2 fetches

and displays a higher-resolution version of the result screen.

Figure 5: D2S2’s architecture: A user drags or adjusts Figure 4

UI elements on the Figure 3 D2S2 front-end webpage (left),

which communicates with its AWS-hosted back-end (right).

To rank its 58k screens, D2S2 uses TpD’s infrastructure, which

in turn builds on PSDoodle’s. For non-text UI elements, D2S2 uses

PSDoodle’s screen scoring scheme (which TpD similarly reused).

Speci�cally, D2S2 divides a mobile app screen into 24 equally sized

tiles (6 along the width and 4 along the height) and maintains TpD’s

tile con�guration. The main change is in more than doubling TpD’s

23 UI element classes to D2S2’s 52. In the back-end, this is straight-

forward by adding one screen ID index for each of the additional

UI element classes to allow fast screen lookup.

For text elements, D2S2 reuses TpD’s pipeline [18], which pre-

processes the Rico screens’ text contents and UI element descrip-

tions (remove stop words, identify names, lemmatization, adding

synonyms via contextual analysis, and tagging text content with

on-screen location). As for text contents TpD only supports four

di�erent screen areas (top-left, top-right, bottom-left, and bottom-

right), D2S2 �rst maps the location of a text element to one of these

four TpD screen areas. As TpD, D2S2 then uses ElasticSearch with

Levenshtein edit distance one, to heuristically also match slightly

mis-typed user-provided text to screen contents.

http://pixeltoapp.com/D2S2


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Soumik Mohian, Tony Tang, Tuan Trinh, Don Dang, and Christoph Csallner

4 D2S2 USAGE

To compare with its closest competitors TpD and Google Image

Search, we enlisted 10 computer science students who did not have

formal UI/UX design training. While the participants di�er, we

recruited them using the same criteria the TpD study used. To

ensure diversity, we selected �ve individuals with and �ve without

previous mobile app development experience. All participants were

early-stage undergraduates aged 20–25. As a token of appreciation,

each participant received USD 10 compensation. Speci�cally, we

are interested in the following research questions.

RQ1 How does D2S2 compare with TpD, in terms of total time

of the interactive search, �nal queries’ UI element counts,

and �nal queries’ top-k screen retrieval accuracy?

RQ2 How does D2S2 compare with Google Image Search on a

free user query, for producing relevant top-20 search results?

For each participant, we had one video conference of about

30 minutes that started with us explaining D2S2’s objectives. We

then demonstrated the search process for an icon, dragging the

icon to the canvas, resizing and adjusting the icon’s position on

the canvas, the functionality of the undo/redo/clear-screen buttons,

and how to add text using the text and text-button features. Each

participant accessed D2S2 over the internet via a web browser on

their personal machine. We used D2S2’s standard setup as a website

hosted on an Amazon AWS EC2 general-purpose instance (t2.large),

featuring two virtual CPUs and 8GB RAM. D2S2’s repository con-

tains all experimental results.

4.1 Similar Screen Search Performance as TpD

For this second part of a participant meeting, we used the 26 ran-

domly selected Rico target screens used by TpD’s evaluation. For

each participant, we randomly selected from this pool one target

screen per search session. We instructed the participant to create

a query that would retrieve the target screen and re�ne the query

until the target screens appeared in D2S2’s top-20 results.

Table 1: Participants’ search sessions for target screens via

D2S2 (left) and free search viaD2S2 andGoogle Images (right):

t = search session’s total time; n = �nal query’s UI elements

(including texts); r = target screen’s rank for �nal query;

G/D = top-20Google/D2S2 results participant judged relevant.

Target 1 Target 2 Free 1 Free 2

t[s] n r t[s] n r G D G D

1 40 4 2 27 3 1 2 18 18 0

2 120 9 1 52 3 2 1 3 3 4

3 37 3 4 48 4 3 5 20 0 20

4 50 3 10 23 2 4 8 16 10 20

5 70 4 1 240 2 1 0 7 4 13

6 59 3 12 196 15 14 3 16 4 20

7 63 3 18 51 3 2 7 11 1 3

8 42 4 16 51 3 7 7 10 0 7

9 39 3 9 42 7 17 1 10 1 19

10 50 4 8 - - - 2 5 - -

Nine participants used D2S2 twice, and one used it once, yielding

19 D2S2 search sessions. For each such search session, we recorded

the total time, the number of UI elements and texts in the partic-

ipant’s �nal query, and the target screen’s rank in D2S2’s results

for that �nal query. D2S2’s top-k retrieval accuracy is the number

of search sessions in which D2S2 ranks the target screen in its

answer to the participant’s �nal query in the top-k. We use top-k

retrieval accuracy, as the metric is widely used to evaluate related

work [6, 8, 11] and correlates with user satisfaction [12].

Table 1 summarizes the results. Comparing with TpD’s results

is a little tricky as TpD’s participants were instructed to search

until the target screen appears in TpD’s top-10 search results or the

search exceeds 3 minutes. So TpD participants were encouraged to

spend a bit of additional time to re�ne a query. With this caveat, the

overall results for D2S2 and TpD are similar. D2S2’s top-20 screen

retrieval accuracy is 100% (19/19) vs. TpD’s 97% (29/30).

D2S2’s total search session time was at least 23 seconds, 240s

maximum, 68s average, and 50s median. This compares to a 5s

minimum, 156s maximum, average 45s, and 35s median for TpD.

Contributing to TpD shorter search sessions are TpD’s experimental

setup (which allowed participants to practice using TpD for some

10 minutes before collecting results) and D2S2 having more than

twice the number of UI elements to choose from for a search query.

We observed participants using signi�cant time browsing the UI

elements available in D2S2 and selecting the correct UI element.

4.2 More Targeted Than Google Image Search

In this �nal meeting part, we instructed each participant to for-

mulate a Google-style search query and perform a corresponding

search using both D2S2 and Google image search (an example of a

participant’s query is “mobile screen menu icon top left and search

icon top right”). We then asked the participant to rate each result in

both tools’ top-20 results as relevant or non-relevant to the query.

Participants judged 20% (77/380) of Google image search’s re-

sults as relevant and 58% (222/380) of D2S2’s result screens. D2S2’s

58% relevance here is largely in line with TpD’s 52% reported for

searches for a given target screen [18]. Given D2S2’s and TpD’s

slightly di�erent experimental setups, it is hard to draw conclu-

sions about their relative performance. For the search scenario over

58k Rico screens, both tools clearly perform better than Google

Image Search.

5 CONCLUSIONS

Current sketch-based iterative mobile screen search has limitations

in supporting many UI elements. Drag-and-drop provides a �exible

alternative. D2S2’ provides an interactive, drag-and-drop search

that displays results interactively. The tool is freely available and has

undergone user testing, demonstrating its e�ectiveness. D2S2 is a

promising solution for novice users who require assistance creating

a comprehensive UI design in the initial development phases.

ACKNOWLEDGEMENTS

Christoph Csallner has a potential research con�ict of interest

due to a �nancial interest with Microsoft and The Trade Desk.

A management plan has been created to preserve objectivity in

research in accordance with UTA policy. This material is based

upon work supported by the National Science Foundation (NSF)

under Grant No. 1911017.



D2S2: Drag ’n’ Drop Mobile App Screen Search ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

REFERENCES
[1] 2009. Android Developers. https://developer.android.com/studio/write/layout-

editor. Accessed: Aug 2023.
[2] 2019. Figma. https://www.�gma.com. Accessed: Aug 2023.
[3] 2022. Prototypr. https://prototypr.io. Accessed: Aug 2023.
[4] Sara Bunian, Kai Li, Chaima Jemmali, Casper Harteveld, Yun Fu, and Magy Seif

Seif El-Nasr. 2021. VINS: Visual Search for Mobile User Interface Design. In Proc.
CHI Conference on Human Factors in Computing Systems. 1–14.

[5] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xin Xia, Liming Zhu, John
Grundy, and Jinshui Wang. 2020. Wireframe-based UI design search through
image autoencoder. ACM Transactions on Software Engineering and Methodology
(TOSEM) 29, 3 (2020), 1–31.

[6] John Collomosse, Tu Bui, and Hailin Jin. 2019. Livesketch: Query perturbations
for guided sketch-based visual search. In Proc. IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2879–2887.

[7] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Je�rey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset for
building data-driven design applications. In Proc. 30th Annual ACM Symposium
on User Interface Software and Technology (UIST). ACM, 845–854.

[8] Sounak Dey, Pau Riba, Anjan Dutta, Josep Llados, and Yi-Zhe Song. 2019. Doodle
to search: Practical zero-shot sketch-based image retrieval. In Proc. IEEE/CVF
conference on computer vision and pattern recognition. 2179–2188.

[9] Claudia Eckert and Martin Stacey. 2000. Sources of inspiration: a language of
design. Design studies 21, 5 (2000), 523–538.

[10] Scarlett R Herring, Chia-Chen Chang, Jesse Krantzler, and Brian P Bailey. 2009.
Getting inspired! Understanding how and why examples are used in creative

design practice. In Proc. SIGCHI conference on human factors in computing systems.
87–96.

[11] Forrest Huang, John F. Canny, and Je�rey Nichols. 2019. Swire: Sketch-based
user interface retrieval. In Proc. CHI Conference on Human Factors in Computing
Systems. ACM.

[12] Scott B Hu�man and Michael Hochster. 2007. How well does result relevance pre-
dict session satisfaction?. In Proc. 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM, 567–574.

[13] Johnsymol Joy. 2018. Review on di�erent types of drag and drop mobile app de-
velopment platforms. International Journal of Computer Sciences and Engineering
6, 11 (Nov. 2018), 864–866.

[14] Mochammad Fariz Syah Lazuardy and Dyah Anggraini. 2022. Modern Front End
Web Architectures with React.Js and Next.Js. International Research Journal of
Advanced Engineering and Science 7, 1 (2022), 132–141.

[15] Thomas F Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha
Kumar. 2018. Learning design semantics for mobile apps. In Proc. 31st Annual
ACM Symposium on User Interface Software and Technology (UIST). 569–579.

[16] Soumik Mohian and Christoph Csallner. 2022. PSDoodle: Fast app screen search
via partial screen doodle. In Proc. 9th IEEE/ACM International Conference onMobile
Software Engineering and Systems. 89–99.

[17] Soumik Mohian and Christoph Csallner. 2022. PSDoodle: Searching for app
screens via interactive sketching. In Proc. 9th IEEE/ACM International Conference
on Mobile Software Engineering and Systems. 84–88.

[18] Soumik Mohian and Christoph Csallner. 2023. Searching Mobile App Screens via
Text + Doodle. arXiv:2305.06165 [cs.IR]

Received 2023-05-11; accepted 2023-07-20

https://developer.android.com/studio/write/layout-editor
https://developer.android.com/studio/write/layout-editor
https://www.figma.com
https://prototypr.io
https://arxiv.org/abs/2305.06165

	Abstract
	1 Introduction
	2 Background
	3 Overview and Design
	3.1 User Interface & Query Language
	3.2 D2S2's Back-end

	4 D2S2 usage
	4.1 Similar Screen Search Performance as TpD
	4.2 More Targeted Than Google Image Search

	5 Conclusions
	References

