
P2A: A Tool for Converting Pixels to
Animated Mobile Application User Interfaces

Siva Natarajan, Christoph Csallner
Computer Science and Engineering Department

The University of Texas at Arlington
Arlington, TX, USA

siva.natarajan@mavs.uta.edu,csallner@uta.edu

ABSTRACT
Developing mobile applications is typically a labor-intensive pro-
cess in which software engineers manually re-implement in code
screen designs, inter-screen transitions, and in-screen animations
developed by user interface and user experience experts. Other
engineering domains have used computer vision techniques to au-
tomate human perception and manual data entry tasks. The P2A
tool adopts computer vision techniques for developing animated
mobile applications. P2A infers from mobile application screen de-
signs the user interface portion of an application’s source code and
other assets that are ready to be compiled and executed on a mobile
phone. Among others, inferred mobile applications contain inter-
screen transitions and in-screen animations. In our experiments
on screenshots of 30 highly-ranked third-party Android applica-
tions, the P2A-generated application user interfaces exhibited high
pixel-to-pixel similarity with their input screenshots. P2A took an
average of 26 seconds to infer in-screen animations.

CCS CONCEPTS
•Human-centered computing→User interface programming;
Ubiquitous andmobile computing design and evaluationmeth-
ods; • Software and its engineering→ Integrated and visual
development environments; Source code generation;

KEYWORDS
Mobile software engineering, pixel-based design

ACM Reference Format:
Siva Natarajan, Christoph Csallner. 2018. P2A: A Tool for Converting Pix-
els to Animated Mobile Application User Interfaces. In MOBILESoft ’18:
MOBILESoft ’18: 5th IEEE/ACM International Conference on Mobile Software
Engineering and Systems, May 27–28, 2018, Gothenburg, Sweden. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3197231.3197249

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5712-8/18/05. . . $15.00
https://doi.org/10.1145/3197231.3197249

1 INTRODUCTION
Developing the user interface portion of a successful mobile ap-
plication currently requires mastery of several disciplines, includ-
ing graphic design and programming. A key reason is that con-
sumers have come to expect screen designs, inter-screen tran-
sitions [54], and in-screen animations that are innovative and
highly customized [38, 41]. While many non-programmers are well
equipped to design such a user interface, these people currently
have to collaborate with software engineers to deliver a working
mobile application user interface.

Figure 1: Excerpt of a typical mobile application develop-
ment process (bottom); each box is an activity; each transi-
tion arrow is annotated with artifacts; CR = change request.
Adding P2A automates the current manual step of recreat-
ing screen and animation designs in code.

Concretely, the bottom of Figure 1 shows a typical app develop-
ment process. User experience (UX) and user interface (UI) experts
go through several iterations of designing storyboards as well as
low-fidelity and high-fidelity screen designs, using a sequence of
customary tools such as paper-and-pencil and Photoshop [40]. In
addition to these designs, UX experts develop detailed descriptions
of the in-screen animations and inter-screen transitions. To capture
such descriptions, some teams use a dedicated tool such as Adobe
Flash, Flinto, FramerJS, or Invision [11, 17, 26, 38] to produce throw-
away animation prototypes. Such prototypes require emulators and
often fail to emulate animation and transition effects faithfully.

The next step is a gap in the production pipeline [22], as the
produced artifacts have to be handed to a different kind of peo-
ple, software engineers who are familiar with the target mobile
platform’s coding languages, e.g., XML and Java for Android. The
engineers then manually recreate the screen and animation designs
in code, which is cumbersome, error-prone, and expensive. Un-
welcome surprises may wait at the end of this process, as teams
discover that the native application animation and transition effects
differ from the throw-away animation prototypes.

https://doi.org/10.1145/3197231.3197249
https://doi.org/10.1145/3197231.3197249

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Siva Natarajan, Christoph Csallner

The production gap, essentially between non-programmers and
programmers, is a hard problem in practice. Programming effec-
tively has a high barrier to entry, which makes it difficult to recruit,
train, and retain non-programmers. This creates a bottleneck on the
number of programmers and artificially restricts non-programmers’
ability of producing working application user interfaces.

However the popularity of mobile devices has created a large
demand for mobile applications. For example, In the USA over 90%
of consumers over 16 years of age use amobile phone andmore than
half of the mobile phones are smartphones, mostly running Android
or iOS [48]. On these smartphones, people use mobile applications
to perform many tasks that have traditionally been performed on
desktop computers [3, 15, 25, 48]. Example tasks include reading
and writing emails, listening to music, watching movies, reading
the news, and consuming and producing social media. To date, more
than one million mobile applications have been released1. Given
their wide use, it would be beneficial to empower more people to
create larger portions of such applications.

Converting screen designs into good user interface code is hard,
as it is essentially a reverse engineering task—general principles
have to be inferred from specific instances [37]. For example, a
suitable hierarchy of user interface elements has to be inferred
from a flat set of concrete pixels. Compared to other reverse en-
gineering tasks, an unusual additional challenge is that the input,
i.e., the pixels, may originate from scanned pencil sketches with
all their imperfections [4, 39, 49]. This means that sets of pixels
have to be grouped together and recognized heuristically as images
or text. Then groups of similar images and text have to be recog-
nized heuristically as example elements of collections. And for the
user interface of innovative mobile applications, at each step the
recognized elements may diverge significantly from the platform’s
standard user interface elements.

For professional application development, one may wonder if
this reverse engineering step is artificial. That is, why are mean-
ing and source code hierarchy of screen elements not explicitly
encoded in the screen designs if these are done in digital tools such
as Photoshop? One reason is that some UX designers start with
pencil on paper, so it would be desirable to convert such drawings
directly into working user interface code. More significantly, when
UX designers create digital bitmap images (typically by drawing
them in Photoshop), the digital design tools do not capture the
hierarchy information that is needed by user interface code. More
importantly, it is not clear if UX designers and graphic artists want
to think in terms of source code hierarchies.

The most closely related work is REMAUI [37]. Similar to P2A,
REMAUI takes as input a screen design in pixel form and converts
it to suitable UI code. However REMAUI is limited to processing
one input screen bitmap per app and does not support inter-screen
transitions or in-screen animations.

This paper addresses the problem of inferring animated appli-
cation user interfaces directly from screen designs. We can use
computer vision techniques to reverse engineer UI code hierarchies
from pixels. Then we expose these reverse engineered UI view
hierarchies to the user, to enable the user to define inter-screen
transitions interactively within screen designs. Specifically, P2A

1http://www.appbrain.com/stats/number-of-android-apps

(a) Top of menu screen (b) Inferred UI hierarchy

Figure 2: Original Facebook Android app menu screen (left)
and the same screen super-imposed with P2A-inferred UI
elements (right).

first uses REMAUI to identify different visual elements, arrange
them in a hierarchy, and superimpose this hierarchy on the input
screen designs. The key insight of this paper is that from similar
UI elements on multiple input screens we can also infer in-screen
animations, even if similar UI elements differ significantly across
screens. We can then merge the involved screens into a single ani-
mated screen, and export the results as native mobile application
source code and other assets that are ready to be compiled and
executed on stock mobile phones.

In our experiments on screenshots of 30 highly-ranked third-
party Android applications, the P2A-generated application user
interfaces exhibited high pixel-to-pixel similarity with their input
screenshots. P2A took an average of 26 seconds to identify in-screen
animations. To summarize, the paper makes the following major
contributions.

• The paper introduces the first technique to automatically in-
fer from pixel-based screen designs the user interface portion
of animated applications.

• The paper evaluates this technique by implementing a pro-
totype for Android and running the prototype on 30 highly-
ranked third-party Android applications.

2 MOTIVATING EXAMPLE: FACEBOOK APP
As a concrete motivating example, consider an UI designer creating
an interactive prototype for the recent version 105.0.0.23.137 of the
Facebook Android app.

2.1 Inter-screen Transitions
Figure 2a shows the top of the Facebook Android app menu screen.
For example, tapping the text “Discover People” should trigger a
transition to another screen via a sliding animation.

State-of-the-art app animation prototyping tools such as Invision
and Flinto remain at the pixel level. They take as input pixel-based
screen designs (e.g., the Figure 2a screen) and allow the user to
interactively mark image areas of interest as “hotspots” at the pixel
level [18, 21]. For example, Figure 3 shows the Facebook menu
screen in Invision, where the user has drawn three hotspot areas
and is configuring one hotspot’s interaction behavior.

In contrast, P2A infers from the input image the code structures
the target mobile app could use to display a screen similar to the
input image. P2A visualizes such inferred UI elements and lets the
user interactively select them. For example, Figure 2b shows the
UI structure P2A inferred for the Figure 2a input image. P2A can

http://www.appbrain.com/stats/number-of-android-apps

P2A: Pixels to Animated Mobile Application User Interfaces MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden

Figure 3: An Invision user marks up the screen at the pixel
level (the large rectangles) and specifies screen transitions,
e.g., from the menu screen to the “Discover People” screen.

thus readily generate corresponding source code for the target plat-
form, complete with user-specified screen transitions. The resulting
P2A-generated animation looks like the original animation in the
Android Facebook app.

To get an idea of the overall workflow of representative state-
of-the-art tools, we conducted a small exploratory case study of
creating a basic interactive Android prototype with 10 screens
and a total of 10 corresponding inter-screen transitions. Table 1
summarizes the tools’ runtime on recent versions of Invision and
Flinto on a standard desktop computer.

Task Invision Flinto P2A
Load & preprocess screens 38 12 103
Assign inter-screen transitions 122 192 135
Generate target platform code n/a n/a 2
Total [s] 160 204 240

Table 1: Example runtime for creating a prototype with
10 inter-screen transitions. Invision and Flinto prototypes
only run in an emulator. P2A creates an Android app.

Invision and Flinto took a few seconds to load and preprocess
the input screen designs, with the bulk of the runtime going to
the user interactively defining inter-screen transitions. For both
tools this yielded a throw-away prototype that a developer then has
to manually re-create in XML and Java, which typically requires
several hours. In contrast, a P2A user required under 4 minutes
to process the images and define inter-screen transitions. Within
this time P2A also generated all source code and assets ready to be
compiled for stock Android devices.

2.2 In-screen Animations
As an example in-screen animation, consider the Facebook An-
droid app’s login screen animation from Figure 4a to 4b, where
the Facebook logo at the same time changes its color, slides up-
wards (“translation”), and expands (“scaling”). After these changes
the other elements of Figure 4b fade in together. The evaluation
contains cases in which animated screen elements differ more sig-
nificantly than the Figure 4 Facebook “f” and our prototype still
matches them and infers correct animations.

Similar to defining inter-screen transitions, the most closely re-
lated approaches take as input pixel-based screen designs, require

(a) Initial state (b) Final state

Figure 4: Facebook Android app login screen animation.

the user to define animations manually, yield emulator-based pro-
totypes, and do not produce any code for the target platform. In
contrast, P2A infers animations from the input screens and emits
native UI application code ready for compilation and execution.

Given two related input screens, P2A identifies shared elements
via perceptual hashing and determines how to transition one shared
element instance into the other. P2A removes or adds non-shared
elements after the animation end. For example, for the Figure 4a
and 4b start and end screens, P2A emits the Listing 1 Java code.
Specifically, the emitted code translates the logo upward (Lines 2 &
3 define the logo’s new location) and scales it (Lines 4 & 5 define
its new dimensions).
pu b l i c vo id onS t a r tAn ima t i on ()
{ / / . .

f = (R e l a t i v e L a y ou t . LayoutParams) v . ge tLayoutParams () ;
f . l e f tMa r g i n −= 1 1 ; / / (2)
f . topMargin −= 3 2 4 ; / / (3)
f . width =56 ; / / (4)
f . h e i gh t =58 ; / / (5)
/ / . .

}

Listing 1: Condensed excerpt of the in-screen animation
code P2A inferred from the Figure 4 input images, which
faithfully reproduces the Android Facebook app animation.

To get an overview of the overall workflow of the most closely
related approaches, we performed a small exploratory case study
creating this animation on a standard desktop computer. Specifi-
cally, creating the Facebook login animation using either Adobe
Flash or FramerJS took about 15 minutes. The resulting prototypes
require an emulator and manual translation to code for the target
platform. In contrast, P2A took under 30 seconds to automatically
detect the animation and create XML and Java code that is ready
to be compiled and produces the intended animation on a stock
Android device.

3 BACKGROUND
This section contains necessary background information on graph-
ical user interfaces, the example Android GUI framework, and per-
ceptual hashing.

3.1 Graphical User Interface (GUI)
The graphical user interface (GUI) of many modern desktop and
mobile platforms is structured as a view hierarchy [1, 33]. Such

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Siva Natarajan, Christoph Csallner

a hierarchy consists of two types of nodes, leaf nodes (images,
buttons, text, etc.) and container nodes. The root view represents
an application’s entire space on screen. The root can have many
transitive children. Each child typically occupies a rectangular sub-
region of its parent. Each view can have its own parameters such
as height, width, background color, and position.

A mobile application typically consists of several distinct screens
(e.g., a list overview screen and a list item detail screen). Each screen
has its own view hierarchy. The application transitions between
screens, typically triggered by user input. The GUI framework
receives user input via the OS from the hardware and passes them
as events to the view hierarchy node the user interacted with (e.g.,
a screen touch event to the leaf node that occupies the screen
position the user touched). A screen can be animated. An in-screen
animation may maintain or manipulate the existing view hierarchy.

To define basic GUI aspects, modern platforms provide two alter-
natives. The traditional desktop approach is construction through
regular program code [33]. The now widely recommended alterna-
tive is declarative [1, 16, 35], e.g., via XML layout definition files
in Android. Advanced GUI aspects such as inter-screen transitions
and in-screen animations are then defined programmatically, which
typically leads to a combination of code and layout declaration files.

Building an appealing user interface is hard [32, 33]. Besides
understanding user needs, standard GUI frameworks are complex
and offer many similar overlapping concepts. This challenge is
especially significant for developers new to their target platform.
While each platform provides standard documentation and sample
code, these samples often produce unappealing results.

3.2 Example: GUI Framework of Android
At a high level, an Android app is defined as a set of activities.
Each activity creates a window that typically fills the entire screen.
While Android also has smaller non-fullscreen activities such as
menus and pop-up window style dialogs, this paper focuses on
fullscreen activities, since fullscreen activities are typically more
complex with deeper view hierarchies.

Android applications typically contain more than one activity [2,
44, 53]. For example, according to an August 2012 survey of the
400 most popular non-game applications in the Google Play app
store [44], the average number of total activities per app ranged
from 1.3 (in “Software & Demos”) to 61.1 (“Finances”). A set of
widely used Android benchmark applications ranges from 2 to
50 screens (plus 2 to 20 menus and zero to 48 dialogs), defined by
53 to 1,228 classes with a total of 241 to 5,782 methods [53].

The Android standard libraries define various containers (“view
groups”) and leaf nodes (“widgets”). According to the August 2012
survey [44], the following containers were used most frequently:
LinearLayout (130 uses per application on average) places its chil-
dren in a single row or column; RelativeLayout (47) positions chil-
dren relative to itself or each other; FrameLayout (15) typically
has a single child; ScrollView (9) is a scrollable FrameLayout; and
ListView (7) lays out children as a vertical scrollable list.

The followingwidgets were usedmost frequently: TextView (141)
is read-only text; ImageView (62) is a bitmap; Button (37) is a device-
specific text button; and View (17) is a generic view. Besides the

above, the Android library documentation currently lists dozens
additional standard widgets and containers.

The following are key Android event types for interacting with
views: click is a sequence of press down, no moving, and release—
typically on a touch screen; swipe is a press down, move, release
sequence; long click is a click that exceeds a system-defined dura-
tion; and item click is a click on an item, typically in a list or other
collection. Before acting on an event, the Java method (“callback”)
defining the action must be bound (“registered”) to a view and an
event type either in XML or in Java code.

An inter-screen transition (“activity transition”) is typically trig-
gered by a user action such as a click on a certain view. Since
Android 5.0 (API Level 21) and its Material Design [19], Android
supports transition effects. Each inter-screen transition can define
how views should exit the source activity and enter the target ac-
tivity. The following are example predefined Android transition
effects: slide is a move through a window edge; explode is a move
through the window center; and fade is a change of opacity.

An in-screen animation (“transition”) may manipulate an activ-
ity’s view hierarchy and specify how views are added or removed.
During a transition, each view may also be animated (“property an-
imation”). Following are example animations: translate is a change
of on-screen position; scale is a change of dimensions; rotate is a
rotation; and alpha controls opacity.

3.3 Perceptual Hashing
Perceptual hashing takes as input an image and produces a “fin-
gerprint”, i.e., a fixed-length hash value [30, 31, 46, 55]. The key
motivation of perceptual hashing is that if two images look similar
to a human observer, then their perceptual hash values should also
be similar. This is a common goal, e.g., for finding similar media
files on the web. For example, for a given image its copyright holder
may want to find all variants online, even if they have different
watermarks or contain other small variations such as being darker,
cropped, or compressed.

At a high level, perceptual hashing algorithms perform strong
compression, drastically reducing the image size, while identifying
and encoding an input image’s essential properties. These proper-
ties are unlikely to change during image modifications that yield
variants that appear similar to a human observer.

4 OVERVIEW AND DESIGN
At a high level, the P2A workflow (Figure 5) consists of the fol-
lowing four major phases. (1) First, P2A uses REMAUI to reverse
engineer each pixel-based input screen into a corresponding UI
view hierarchy. P2A displays this hierarchy as a transparent overlay
over the input screen, e.g., as in Figure 2b. (2) Second, to specify
an inter-screen transition, the user selects a screen overlay’s UI
hierarchy element and interactively connects it with a target screen.

(3) Third, in screen pairs that may represent the start and end
state of an in-screen animation, P2A identifies matching view el-
ements and infers corresponding in-screen animations, thereby
merging two (non-animated) input screens into one (animated)
screen. (4) Finally, P2A infers UI code that produces screens similar
to the input screens, inter-screen transitions, and in-screen anima-
tions as assets and source files that are ready to be compiled and

P2A: Pixels to Animated Mobile Application User Interfaces MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden

Figure 5: Flow diagram of P2A’s four major phases. Phase
transitions are annotated with the inferred artifacts.

executed on the target mobile platform. Following are key elements
of these four phases.

4.1 Input Screens to UI View Hierarchies
P2A takes as input a set of pixel-based screen designs, where each
screen is given as a image bitmap. P2A first uses REMAUI to process
each input screen in isolation. In each input bitmap, P2A identifies
user interface elements such as images, text, containers, and lists, via
a combination of computer vision and optical character recognition
(OCR) techniques. To detect mobile app UI elements, P2A follows
the REMAUI approach [37] and combines off-the-shelf computer
vision, OCR, and domain-specific heuristics. P2A further infers a
suitable user interface hierarchy, one hierarchy per input screen
design and visualizes each inferred UI hierarchy as an overlay over
the input screen design.

At the high level, this step uses a sequence of standard computer
vision techniques for edge detection and determining bounding
boxes around groups of pixels that likely belong together from a
user perspective, i.e., Canny’s algorithm [7, 47], followed by (edge)
dilate, and contour. P2A uses domain-specific heuristics to com-
bine pixel regions that are close to each other and likely belong to
the same image or word. P2A further combines computer vision,
OCR, and heuristics to distinguish images from text. Such image
detection and OCR tasks are heuristic in nature, but the underlying
REMAUI approach has been reasonably accurate for the mobile
screen domain [37].

P2A extracts OCR-inferred text strings. P2A also identifies col-
lections, by comparing close-by view hierarchy subtrees. Finally,
P2A exposes the inferred UI element bounding boxes to the user,
by superimposing them on the input screen designs.

4.2 Adding Inter-Screen Transitions
P2A allows the users to interact with the inferred UI hierarchies
and create inter-screen transitions complete with transition effects.
Specifically, the user can select an individual inferred bounding box
and interactively connect it to a target screen.

To customize the specified inter-screen transition, the user can
select the type of event that should trigger the transition. P2A
currently supports the common event types click, long click, and
item click. To further customize an inter-screen transition, the user
can select transition effects. P2A currently supports the common
slide, fade, explode, and shared element effects.

In practice, interacting with a single UI element may trigger
different inter-screen transitions. For example, clicking and long-
clicking on a screen element may transition an app to different
screens. To support such multiple transitions per screen, P2A users
can specify a transition for each element/event pair.

(a) Initial state (b) Final state

Figure 6: Android Chrome application landing screen states.
Screen elements are similar. But since they differ in bright-
ness they differ widely according to common pixel-by-pixel
comparison metrics such as MSE.

4.3 Inferring In-screen Animations
Given a screen pair, P2A at a high level emulates how a human user
may infer in-screen animations between the two given screens,
using the following three-step process. (1) First, P2A efficiently
matches elements that are similar on both screens except for their
location, size, and color. (2) Second, P2A removes from animation
consideration elements that change very little or not at all between
the two screens. (3) Finally, P2A merges the two input screens
and creates in-screen animation code that animates the transition
from start to final animation state. Following are these steps’ key
elements.

4.3.1 Matching (Non-Text) Images Across Screens. At this point,
P2A has already broken each input screen image down into ele-
ments (via identifying bounding boxes, etc.). So conceptually we
can now iterate over the screen elements and match them with cor-
responding elements of the other screen. To compare two images,
for decades computer vision research and practice have relied heav-
ily on pixel-by-pixel comparisons, e.g., by using the Mean Squared
Error (MSE) metric [50].

However this comparison of screen elements is tricky, as a basic
pixel-by-pixel comparison will not work in many cases, e.g., for
matching an element E to a zoomed version of E, e.g., the resized
Facebook logo in the login screen animation of Figures 4a and 4b.

More significantly, another common scenario in which pixel-
by-pixel comparisons do not work well is if an input screen is
an exact copy of the other except that elements in one screen
differ in color or brightness, e.g., because they are “grayed out”.
Figure 6 is an example. Both screens share several similar elements.
However a pixel-by-pixel comparison metric would still tell us that
the elements differ widely, as the right screen hides the screen
elements behind a semi-transparent layer.

To address such problems with pixel-by-pixel comparisons, more
advanced comparison metrics have been developed such as SSIM,

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Siva Natarajan, Christoph Csallner

which take into account each pixel’s immediate surrounding pix-
els [50]. While SSIM addresses our color and brightness (e.g., Fig-
ure 6) problems and we could likely overcome the scaling (e.g.,
Figure 4) problem by scaling both images to the same size, SSIM
is still fundamentally a technique for comparing a pair of images.
Assuming we have identified e elements in one screen, f elements
in the other screen, and that during comparisons (after scaling) a
screen element has p pixels, performing pixel-by-pixel comparisons
or SSIM just on two given screens has complexity O(e ∗ f ∗ p).

To overcome the comparison quality and runtime problems, P2A
uses perceptual hashing, which is more accurate in identifying the
similarity between images under modifications such as scaling or
changes in color intensities.

Our perceptual hashing algorithm is relatively straightforward [55].
The first step is resizing the input image to a common resolution
(e.g., 32x32). On the resized image we apply the Discrete Cosine
Transformation (DCT). We then select the higher significant com-
ponents from the top-left 8x8 and discard the rest of the image.
Finally, we generate a 64-bit hash value using the reduced DCT
components (8x8).

The complexity of computing the perceptual hash of one screen
element is O(p) and for all elements of two screens O(p ∗ (e + f)).
We reduce the overall runtime complexity by upfront computing
and caching the perceptual hash of each P2A-identified element.

We then compare the resulting perceptual hashes efficiently, by
computing their Hamming distance. Recall that the Hamming dis-
tance between two strings of equal length is the number positions at
which the corresponding symbols differ. For example, the Hamming
distance between 1011101 and 1001001 is two. If two images appear
similar to a human observer, the Hamming distance between the
images perceptual hash values is small. Two identical images yield
the same perceptual hash value, which yields a Hamming distance
of zero.

In our implementation, which is similar to pHash [55], each re-
sulting hash value is a 64 bit binary. We can thus compute the Ham-
ming distance of two hash values efficiently in constant time, typi-
cally via the two hardware instructions xor and popcount (where
the latter counts the number of ones). The complexity for comput-
ing the Hamming distance between all pairs of screen elements is
thus O(e ∗ f). But since we typically only have a few dozen screen
elements (e ≪ p), the overall complexity remains O(p ∗ (e + f)).

Based on our experiments on half of the input images, P2A
uses a Hamming distance heuristic threshold of 5. Specifically, P2A
considers two screen elements similar if the Hamming distance
between their perceptual hash values is less than 5.

Image
pHash 104efec61bdd9 304ffec61bff9 1fdfff3efe47f
H-dist 0 4 24

Table 2: Perceptual hash (pHash) values of three example
images in hex and their Hamming distance from the left "f"
logo (104efec61bdd9).

(a) Initial state (b) Final state

Figure 7: Example WhatsApp Android screens.

As a concrete example, Table 2 compares the perceptual hash
values of three example P2A-inferred screen elements. Since the
two version of the Facebook logo are similar to one another, the
Hamming distance between their perceptual hashes (in binary) is 4,
less than our threshold. For the left and right images, the Hamming
distance between their perceptual hashes is 24, greater than our
threshold, as expected due to their large visual difference.

4.3.2 Matching Text & Ignoring Minimal Changes. At this point
we have already run OCR over the input images and identified
text boxes and their text content strings via a combination of com-
puter vision, OCR, and domain-specific heuristics. We thus use the
extracted text strings to efficiently match text boxes across screens.

Using the Figure 7 example, it is clear that in two screens a lot
of elements may match. Many of these may be at slightly differ-
ent positions or slightly different scales, due to differences in how
the two input screens were designed. However such small differ-
ences should typically be ignored. So the algorithm uses a small
customizable heuristic threshold of a 10-pixel position or dimension
difference (∆pos < 10) & (∆dim < 10) to prune screen elements
that have similar versions in both screens at very similar locations.

For example, the twoAndroidWhatsApp version 2.17.107 screens
of Figures 7a and 7b containmany “Yesterday” strings. Initially these
“Yesterday” text elements all match with each other, yielding many
possible animations. However using our 10-pixel heuristic we prune
elements that have a match at almost the same location in both
screens. This quickly reduces the number of matches and thus the
number of animations, leaving us only with matching elements that
are different enough to produce an animation that is clear enough
to be reliably recognized by users.

4.4 Inferred App Source Code & Assets
P2A generates the source code and asset files, compiles them, and
bundles them together into an executable file. For Android, apart
from generating compilation ready Java source code, P2A packages
the generated source code and other assets such as layout.xml,
strings.xml, and cropped screen element images into an Android
executable (.apk) file.

P2A: Pixels to Animated Mobile Application User Interfaces MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden

Developers can consume the resulting artifacts in a typical mo-
bile app development process. For example, the generated appli-
cation contains one layout file for each input screen design and
one Activity class for each input screen design. In the case of an
in-screen animation the initial and final state are part of the same
activity.
pu b l i c c l a s s MenuAct ex t end s A c t i v i t y
implements View . OnC l i c kL i s t e n e r { / ∗ . . . ∗ /
p u b l i c vo id onC l i ck (View view) {
sw i t ch (view . g e t I d ()) {
c a s e R . i d . TextView_11 :
I n t e n t in = new I n t e n t (t h i s , AmazonHomeAct . c l a s s) ;
S l i d e anim = new S l i d e () ;
getWindow () . s e t E n t e r T r a n s i t i o n (anim) ;
getWindow () . s e t E x i t T r a n s i t i o n (anim) ;
A c t i v i t yOp t i o n s aO = Ac t i v i t yOp t i o n s .

makeSceneTrans i t i onAnimat ion (t h i s , n u l l) ;
b reak ;

}
}

}

Listing 2: Code snippet (condensed) of a generated Activity
class that contains an user-defined inter-screen transition.

Listing 2 shows a part of an example generated Android Java
code snippet. Intent is the message passing mechanism in Android.
The code instantiates the user-specified slide transition effect and
the startActivity method navigates to a new screen.

5 RESEARCH QUESTIONS (RQ),
EXPECTATIONS (E), AND HYPOTHESES (H)

To evaluate P2A, we ask (a) if it is currently feasible to integrate
P2A into a standard mobile application development setup and
(b) if P2A-generated user interfaces are useful in the sense that
the generated UI is similar to the UI an expert developer would
produce. We therefore investigate the following three research
questions (RQ), expectations (E), and hypotheses (H).

• RQ1: What is P2A’s runtime for generating code for inter-
screen transitions?
– E1: Given P2A’s prototype status, we do not expect P2A’s
runtime to allow interactive use.

– H1: P2A can generate inter-screen transition code within
a few seconds.

• RQ2: What is P2A’s runtime for inferring in-screen anima-
tions?
– E1: Given the complexity of computer vision and OCR, we
do not expect P2A’s runtime to allow interactive use.

– H1: P2A can infer some in-screen animations within one
minute.

• RQ3: Does a P2A-inferred in-screen animation look visually
similar to the original animation?
– E1: Given the complex nature of some in-screen anima-
tions, we do not expect P2A to achieve perfect similarity.

– H1: P2A-inferred in-screen animations are visually similar
to subjects’ original animations.

6 EVALUATION
To explore our research questions, we have implemented a proto-
type P2A tool that generates Android applications that are ready to

be compiled and executed on stock Android devices. Among oth-
ers, the generated applications contain user-specified inter-screen
transitions and P2A-inferred in-screen animations.

While P2A could attempt to search all input screens for match-
ing elements for in-screen transitions, our current prototype fo-
cuses on inferring in-screen animations between a given animation
start-state screen and a given animation end-state screen. P2A is
implemented on top of REMAUI, and sequentially runs REMAUI
once for each input screen design. Optimizing this process (e.g., to
reuse intermediate results across input screens) is part of future
work. For the experiments we used a 2.7Ghz Intel Core i5 Mac Book
Pro with 16GB of RAM.

6.1 Subjects From Top-100 Free Android Apps
While the goal of P2A is to convert pixel-based screen designs to
application code, in this paper we do not directly evaluate P2A on
actual screen designs. The main reason is that it is hard to acquire
a large number of third-party screen designs and compare P2A’s
output with the screen designers’ intended application behavior.
For this evaluation it was easier to leverage existing applications
and use their screenshots as screen designs. In some sense this
simulates an ideal scenario in which the developers are able to
faithfully translate a UX designer’s screen designs to application
behavior.

For this evaluation we have selected our subjects from the top-
100 free apps of the Google Play store [20] in Apr 2017. From these
we removed all games from consideration, as they typically use a
different GUI paradigm such as OpenGL.

For the first experiment (RQ1) we focused on inter-screen tran-
sitions. Since not all top-100 apps contained transition effects, we
selected those applications that contained more than 5 inter-screen
transition effects. This left us with 10 applications comprising of
107 screens.

For our second experiment (RQ2 & RQ3) we focused on in-screen
animations. We went through all screens of the top-100 apps in a
depth-first manner in search of an in-screen animation. Only 30
applications contained an in-screen animation. In each app, for the
first in-screen animation we encountered, we captured a screenshot
before and after the animation. This yielded a dataset of 30 in-screen
animations comprising of 60 screenshots.

The following roughly classifies the 30 in-screen animation sub-
jects by the animation types they used for their elements. Specifi-
cally, 10 applications only used element fade-in, 2 only used trans-
lation, and 1 only used scaling. The remaining applications used a
combination of animation types, i.e., scaling and translation (6 sub-
jects), translation and fade-in (4), as well as fade-in and fade-out (3).
Other animation combinations occurred only once, e.g., Walmart
was the only one to use translation, fade-in, and scaling; Waze was
the only one to use translation, fade-in, and fade-out.

6.2 RQ1: Runtime of Inter-Screen Transitions
Figure 8 shows the runtime of our 10 RQ1 subjects for a varying
number of inter-screen transitions. Specifically, we used P2A to
specify subsets of the subjects’ transitions and measured P2A’s
corresponding runtime. As expected, tool runtime increased with
the number of inter-screen transitions.

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Siva Natarajan, Christoph Csallner

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2 4 6 8 10 12

transitions

r
u
n
t
i
m
e

[
s
]

eBay
Facebook

Yahoo!
Whatsapp
Twitter
Outlook

Google Tr.
News

Free Music
Amazon

Figure 8: Time taken for generating code vs. number of inter-
screen transitions.

(a) Free Music (b) WhatsApp

Figure 9: Example inter-screen transition anomalies.

For a given number of transitions, different applications required
different amounts of time. A key reason is P2A’s prototype nature.
As part of code generation, the prototype parses the P2A-generated
layout XML files, whose size depends on the number of inferred
screen elements. For example, the Figure 9a Free Music version
1.69 screen has more view elements than the WhatsApp version
2.16.396 screen (Figure 9b). So the P2A-generated Free Music XML
file contains more XML nodes. Consequently, it takes P2A longer
to again parse the Free Music XML.

Another artifact are the sudden spikes runtime. Similar to differ-
ences across apps, this artifact is also caused by widely differing
XML parse times due to varying numbers of screen elements.

6.3 RQ2: Runtime of In-Screen Animations
Figure 10 shows the time P2A took to infer in-screen animations
and generate Android code, broken down by P2A’s major compo-
nents. P2A’s average runtime was 26 seconds, with a maximum of
69 seconds for Zedge Android version 5.16.5.

From Figure 10 it is clear that step 1 (essentially REMAUI) con-
sumed the most time. This is not surprising, as step 1 requires
heavy-weight computer vision and OCR tasks, whereas steps 2 & 3
perform relatively light-weight perceptual hashing and matching.
Finally, code generation (step 4) is also relatively light-weight com-
pared to step 1.

As a concrete example, in our experiments we obtained the
worst results for Zedge, both in terms of runtime and in terms of
screen similarity. Figures 11a and 11b show Zedge’s start and end
screens, superimposed with P2A-identified view hierarchies. On
these screens P2A took a long time, since the screens (and especially
the end state screen) have a large number of view elements. This
affects all four steps, since they all depend on the number of view
elements.

6.4 RQ3: Screen Similarity
To measure how similar P2A-inferred animation screens are to
the input screens, we employ the (compared to MSE) relatively
new metric structural similarity (SSIM) [50, 51]. SSIM values are
in [−1; 1], values increase with similarity. An SSIM of 1 means the
input images are identical. We use the standard SSIM definition [51],
where SSIM is the average of the following local SSIM computed
for each position of a sample window sliding over both screens.

SSIM(x ,y) =
(
2µx µy + c1

) (
2σxy + c2

)(
µ2x + µ

2
y + c1

) (
σ 2
x + σ

2
y + c2

)
As usual, µa is window a’s average pixel (intensity) value, σa is

window a’s standard deviation (as a measure of its contrast), σab is
the correlation of windows a and b after removing their averages,
and each ci is a small constant.

For this experiment, we measured SSIM with the Scikit-Image
package. We compared the final state of the original screenshot
against the screenshot of the final state reached through the gener-
ated code for all 30 applications.

Figure 10 lists all SSIM results. In general the picture similarity
was roughly correlated with P2A’s runtime. The more complex
the input screen design, the more elements a screen contains, the
longer the P2A runtime, and the more opportunities for mistakes.

Returning to our “worst case” example Zedge, Figure 11c shows
the screenshot of the final state achieved through the generated
animation code. Since the application has a visually dark theme, the
identification of view elements was not accurate, resulting in low
similarity to the original application’s animation end-state screen.

As another concrete example, for the landing screen animation of
Android Chrome version 53.0.2785.135 in Figures 12a and 12b, P2A
inferred the desired in-screen animation even though one screen is
“grayed out”. For example, when comparing the clock symbols at
the bottom of the screen (and), our prototype computes the
perceptual hash value of these images. Their Hamming distance
is 4, so below our threshold, and P2A generates a corresponding
animation with a relatively high screen similarity.

7 RELATEDWORK
P2A is implemented on top of REMAUI. A key limitation of REMAUI
is that REMAUI can only map a single image to an application

P2A: Pixels to Animated Mobile Application User Interfaces MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden

 0

 10

 20

 30

 40

 50

 60

 70

F
a
c
e
b
o
o
k

H
e
a
r
t
R
a
d
i
o

H
u
l
u

M
a
r
c
o

P
o
l
o

P
a
n
d
o
r
a

W
a
l
m
a
r
t

W
h
a
t
s
a
p
p

C
h
r
o
m
e

I
n
s
t
a
g
r
a
m

S
n
a
p
c
h
a
t

F
l
a
s
h

K
i
k

L
y
f
t

M
u
s
i
c

F
r
e
e

O
f
f
e
r
u
p

P
h
o
t
o
s

P
i
n
t
e
r
e
s
t

P
l
a
y

G
a
m
e
s

S
o
u
n
d

C
l
o
u
d

S
p
o
t
i
f
y

T
w
i
t
t
e
r

U
b
e
r

W
a
z
e

Z
e
d
g
e

L
i
v
e

M
e

M
C
D

O
u
t
l
o
o
k

P
o
w
e
r

C
l
e
a
n
e
r

T
u
r
b
o
t
a
x

G
o
o
g
l
e

T
r
.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

r
u
n
t
i
m
e

[
s
]

1
-
S
S
I
M

Step 1 S. 2+3 Step 4 1-SSIM

Figure 10: Runtime and similarity for inferring in-screen animations. For both runtime and 1-SSIM, lower values are better.
Here step 1 is a REMAUI-style preprocessing pass, steps 2 & 3 match screen elements, and step 4 generates code.

(a) Original start (b) Original end (c) Generated end

Figure 11: Example on which P2A’s in-screen animation
inference performed poorly: Zedge has both a dark visual
theme and many view hierarchy elements.

consisting of a single screen. In contrast to REMAUI, P2A takes
as input multiple screen designs, allows the user to specify inter-
screen transitions, and infers from the screen designs in-screen
animations.

While modern IDEs such as Eclipse, Xcode, and Android Studio
have powerful interactive builders for graphical user interface (GUI)
code [56, 57], IDEs’ prime audience is software developers. Even for
its core audience, using such a GUI builder to re-create a complex
screen design is a complex task. For example, in an evaluation of GUI
builders on a set of small tasks, subjects using Apple’s Xcode GUI
builder introduced many bugs that later had to be corrected [57].
Subjects produced these bugs even though the study’s target layouts
were much simpler than those commonly found in third-party
mobile applications.

Despite much progress in tools for creating user interfaces that
combine the unique talents of graphic designers and program-
mers [9, 34], much conceptual user interface design work is still

(a) Initial state (b) Final state

Figure 12: In-screen animation challenge from Figure 6: An-
droid Chrome new tab screen animation.

being done by graphic designers with pencil on paper and digitally,
e.g., in Photoshop. Previous work has produced fundamentally dif-
ferent approaches to inferring user interface code, as it was based
on different assumptions.

Following are the main changed assumptions for mobile appli-
cation UI development and reverse engineering that motivate our
work. (1) First, many UX designers and graphic artists do not con-
struct their conceptual drawings using a predefined visual language
we could parse [5, 10, 28, 42]. (2) Second, while this was largely true
for desktop development, mobile application screens are not only
composed of the platform’s standard UI framework widgets [13, 14].
(3) Finally, we cannot apply runtime inspection [8, 29] as Pixel-to-
App runs early in the development cycle.

Specifically, the closest related work is MobiDev [42], which
recognizes instances of a predefined visual language of standard

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Siva Natarajan, Christoph Csallner

UI elements. For example, a crossed-out box is recognized as a text
box. But unlike Pixel-to-App, MobiDev does not integrate well with
a professional mobile application development process. It would
require UX designers and graphic artists to change the style of
their paper and pencil prototypes, for example, to replace real text
with crossed-out boxes. Such changes may reduce the utility of the
prototypes for other tasks such as eliciting feedback from project
stakeholders. In a traditional reverse engineering setting, MobiDev
cannot convert screenshots into UI code.

SILK and similar systems bridge the gap between pen-based
GUI sketching and programming of desktop-based GUIs [5, 10, 28].
Designers use a mouse or stylus to sketch directly in the tool, which
recognizes certain stroke gestures as UI elements. But these tools do
not integrate well with current professional development processes
as they do not work on paper-on-pencil scans or screenshots. These
tools also do not recognize handwritten text or arbitrary shapes.

UI reverse engineering techniques such as Prefab [13] depend on
a predefined model of UI components. The work assumes that the
pixels that make up a particular widget are typically identical across
applications. However, this is not true for a mobile application UI.
Mobile applications often have their own unique, non-standard
identity, style, and theme. For Prefab to work, all possible widget
styles and themes of millions of current and future mobile applica-
tions would need to be modeled.

PAX [8] heavily relies on the system accessibility API at program
runtime. At runtime PAX queries the accessibility API to determine
the location of text boxes. The accessibility API also gives PAX the
text contents of the text box. PAX then applies computer vision
techniques to determine the location of words in the text. If a view
does not provide accessibility, PAX falls back to a basic template
matching approach. PAX thus cannot reverse engineer the UI struc-
ture of mobile applications from their screenshots or application
design images alone.

Recent work applies the ideas of SILK and DENIM to mobile
applications [12], allowing the user to take a picture of a paper-
and-pencil prototype. The tool allows the user to place arbitrary
rectangles on the scanned image and connect them with interaction
events. This idea is also implemented by commercial applications
such as Pop for iOS. As SILK and DENIM, this approach is orthogo-
nal to Pixel-to-App.

UI reverse engineering technique used in the tool, Androider [43]
solves a problem of porting Graphical User Interface (GUI) from
one platform to another. Androider helps in porting UI from Java
Swing to Android SDK or even from Android SDK to Objective
C. Androider does not reverse engineer the input bitmaps to GUI
code but extracts information from the applications in-memory
representation using Java Reflection. Unlike Androider, P2A infers
in-screen animation from static screen designs.

Among commercial tools, conventional animation creator such
as Adobe Flash and Adobe After Effects are more of a design studio.
The Flash output is video files displaying each animation present.
Reworking these Flash animation videos for every design iteration
is very expensive. Since the output deliverable is a video, developers
cannot reuse the output deliverable in the development process.

A few start-up companies, i.e., Neonto and PencilCase, have in-
troduced commercial graphic design tools2 that produce mobile
application code. However, these design tools require graphic de-
signers to switch from the designers’ current design tools of choice
to these new tools. So adopting such a design tool requires graphic
designers to abandon the years of experience they have gathered
in operating state-of-the-art tools such as Photoshop or to switch
from a pencil on paper process to these new digital design tool.

Zeplin [24] increases the reusability of artifacts from the design
phase to the development phase. Zeplin allows importing designs
from Photoshop or Sketch and extracts the text styles designed by
the designers and generates the necessary snippet for layout.xml,
styles.xml, and colors.xml style files.

The recent development Supernova Studio [45] goes a step fur-
ther and converts designs from Sketch to native application code.
In contrast, P2A extracts the layout information and styles infor-
mation from plain bitmap images (pixels) and generates Android
code for binding the UI with data. P2A also generates all necessary
Java and XML code transitions and animations.

Frameworks such as FramerJS [23] are scripted via Javascript or
CoffeeScript. But animation scripts developed for FramerJS are not
consumable in the app development process for Android or iOS.

The gap between early prototyping and formal layout definition
also exists in the related domain of web site development. A study of
11 designers at 5 companies showed that all designers started with
sketching the layout, hierarchy, and flow of web pages with pencil
on paper and in graphical design tools such as Photoshop [36].

A similar design process has been reported for desktop applica-
tions. At Apple, user interface sketches were first created with
a fat marker (to prevent premature focus on details) and later
scanned [52]. Separate studies of hundreds of professionals involved
in UI design in various companies indicated heavy use of paper-
based sketches [6, 27]. One of the reasons was that sketching on
paper is familiar due to designers’ graphic design background.

8 FUTUREWORK
Future work includes replicating the experiments with a broader
mix of subjects, beyond the screenshots of the top-100 free Android
applications from the Google Play store. Beyond including screen-
shots of iOS applications, it would also be good to include screen
designs, both those produced with professional design tools and
scanned pencil on paper sketches.

9 CONCLUSIONS
The P2A tool adopts computer vision techniques for developing
animated mobile applications. P2A infers from mobile application
screen designs the user interface portion of an application’s source
code and other assets that are ready to be compiled and executed
on a mobile phone. Among others, inferred mobile applications
contain inter-screen transitions and in-screen animations. In our
experiments on screenshots of 30 highly-ranked third-party An-
droid applications, the P2A-generated application user interfaces
exhibited high pixel-to-pixel similarity with their input screenshots.
P2A took an average of 26 seconds to infer in-screen animations.

2Neonto Studio (www.neonto.com), PencilCase Studio (pencilcase.io)

www.neonto.com
pencilcase.io

P2A: Pixels to Animated Mobile Application User Interfaces MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden

REFERENCES
[1] Apple Inc. 2013. View programming guide for iOS. https:

//developer.apple.com/library/content/documentation/WindowsViews/
Conceptual/ViewPGiPhoneOS/Introduction/Introduction.html. (Oct. 2013).
Accessed March 2018.

[2] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration
for systematic testing of Android apps. In Proc. ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applications
(OOPSLA). ACM, 641–660.

[3] Patti Bao, Jeffrey S. Pierce, Stephen Whittaker, and Shumin Zhai. 2011. Smart
phone use by non-mobile business users. In Proc. 13th Conference on Human-
Computer Interaction with Mobile Devices and Services (Mobile HCI). ACM, 445–
454.

[4] Gary Bradski and Adrian Kaehler. 2008. Learning OpenCV: Computer Vision with
the OpenCV Library (first ed.). O’Reilly.

[5] Anabela Caetano, Neri Goulart, Manuel Fonseca, and Joaquim Jorge. 2002. JavaS-
ketchIt: Issues in sketching the look of user interfaces. In Proc. AAAI Spring
Symposium on Sketch Understanding. AAAI, 9–14.

[6] Pedro F. Campos and Nuno Jardim Nunes. 2007. Practitioner tools and workstyles
for user-interface design. IEEE Software 24, 1 (Jan. 2007), 73–80.

[7] John Canny. 1986. A computational approach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence 8, 6 (Nov. 1986), 679–698.

[8] Tsung-Hsiang Chang, Tom Yeh, and Robert C. Miller. 2011. Associating the visual
representation of user interfaces with their internal structures and metadata. In
Proc. 24th Annual ACM Symposium on User Interface Software and Technology
(UIST). ACM, 245–256.

[9] Stéphane Chatty, Stéphane Sire, Jean-Luc Vinot, Patrick Lecoanet, Alexandre
Lemort, and Christophe P. Mertz. 2004. Revisiting visual interface programming:
creating GUI tools for designers and programmers. In Proc. 17th Annual ACM
Symposium on User Interface Software and Technology (UIST). ACM, 267–276.

[10] Adrien Coyette, Suzanne Kieffer, and Jean Vanderdonckt. 2007. Multi-fidelity
prototyping of user interfaces. In Proc. 11th IFIP TC 13 International Conference
on Human-Computer Interaction (INTERACT). Springer, 150–164.

[11] Tiago Silva da Silva, Angela Martin, Frank Maurer, and Milene Selbach Silveira.
2011. User-centered design and agile methods: A systematic review. In Proc. Agile
Conference (AGILE). IEEE, 77–86.

[12] Marco de Sà, Luís Carriço, Luís Duarte, and Tiago Reis. 2008. A mixed-fidelity
prototyping tool for mobile devices. In Proc. Working Conference on Advanced
Visual Interfaces (AVI). ACM, 225–232.

[13] Morgan Dixon and James Fogarty. 2010. Prefab: Implementing advanced be-
haviors using pixel-based reverse engineering of interface structure. In Proc.
ACM SIGCHI Conference on Human Factors in Computing Systems (CHI). ACM,
1525–1534.

[14] Morgan Dixon, Daniel Leventhal, and James Fogarty. 2011. Content and hierarchy
in pixel-based methods for reverse engineering interface structure. In Proc. ACM
SIGCHI Conference on Human Factors in Computing Systems (CHI). ACM, 969–978.

[15] Leopoldina Fortunati and Sakari Taipale. 2014. The advanced use of mobile
phones in five European countries. The British Journal of Sociology 65, 2 (June
2014), 317–337.

[16] Marko Gargenta and Masumi Nakamura. 2014. Learning Android: Develop Mobile
Apps Using Java and Eclipse (second ed.). O’Reilly.

[17] ZahidHussain,Martin Lechner, HaraldMilchrahm, Sara Shahzad,Wolfgang Slany,
Martin Umgeher, Thomas Vlk, and Peter Wolkerstorfer. 2008. User interface
design for a mobile multimedia application: An iterative approach. In Proc. 1st
International Conference on Advances in Computer-Human Interaction (ACHI).
IEEE, 189–194.

[18] Flinto Inc. 2017. https://www.flinto.com/. (2017). Accessed March 2018.
[19] Google Inc. 2017. Material design for Android. https://developer.android.com/

design/material/index.html. (2017). Accessed March 2018.
[20] Google Inc. 2017. Top free in Android apps. https://play.google.com/store/apps/

collection/topsellingf ree?hl=en. (2017). Accessed March 2018.
[21] Invision Inc. 2017. https://www.invisionapp.com/. (2017). Accessed March 2018.
[22] Kony Inc. 2014. Bridging the gap: Mobile app design and development. http:

//forms.kony.com/rs/konysolutions/images/BridgingGapBrochuredec1014.pdf.
(Dec. 2014). Accessed March 2018.

[23] Motif Tools BV Inc. 2017. https://framer.com/. (2017). Accessed March 2018.
[24] Zeplin Inc. 2017. https://www.Zeplin.io/. (2017). Accessed March 2018.
[25] Amy K. Karlson, Brian Meyers, Andy Jacobs, Paul Johns, and Shaun K. Kane.

2009. Working overtime: Patterns of smartphone and PC usage in the day of an
information worker. In Proc. 7th International Conference on Pervasive Computing
(Pervasive). Springer, 398–405.

[26] Kati Kuusinen and Tommi Mikkonen. 2013. Designing user experience for mobile
apps: Long-term product owner perspective. In Proc. 20th Asia-Pacific Software
Engineering Conference (APSEC). IEEE, 535–540.

[27] James A. Landay and Brad A. Myers. 1995. Interactive sketching for the early
stages of user interface design. In Proc. ACM SIGCHI Conference on Human Factors
in Computing Systems (CHI). ACM, 43–50.

[28] James A. Landay and Brad A. Myers. 2001. Sketching interfaces: Toward more
human interface design. IEEE Computer 34, 3 (March 2001), 56–64.

[29] Xiaojun Meng, Shengdong Zhao, Yongfeng Huang, Zhongyuan Zhang, James
Eagan, and Ramanathan Subramanian. 2014. WADE: simplified GUI add-on
development for third-party software. In Proc. ACM SIGCHI Conference on Human
Factors in Computing Systems (CHI). ACM, 2221–2230.

[30] Mehmet Kivanç Mihçak and Ramarathnam Venkatesan. 2001. New iterative
geometric methods for robust perceptual image hashing. In Proc. 1st ACM Digital
Rights Management Workshop (DRM). Springer, 13–21.

[31] Vishal Monga and Brian L. Evans. 2006. Perceptual image hashing via feature
points: Performance evaluation and tradeoffs. IEEE Transactions on Image Pro-
cessing 15, 11 (Nov. 2006), 3452–3465.

[32] Brad A. Myers. 1994. Challenges of HCI design and implementation. Interactions
1, 1 (Jan. 1994), 73–83.

[33] Brad A. Myers. 2012. Graphical user interface programming. In Computer Science
Handbook (second ed.), Allen B. Tucker (Ed.). CRC Press.

[34] Brad A. Myers, Scott E. Hudson, and Randy F. Pausch. 2000. Past, present, and
future of user interface software tools. ACM Transactions on Computer-Human
Interaction (TOCHI) 7, 1 (March 2000), 3–28.

[35] Vandad Nahavandipoor. 2013. iOS 7 Programming Cookbook (first ed.). O’Reilly.
[36] MarkW. Newman and James A. Landay. 1999. Sitemaps, storyboards, and specifica-

tions: A sketch of web site design practice as manifested through artifacts. Technical
Report UCB/CSD-99-1062. EECS Department, University of California, Berkeley.

[37] Tuan A. Nguyen and Christoph Csallner. 2015. Reverse engineering mobile
application user interfaces with REMAUI. In Proc. 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 248–259.

[38] Greg Nudelman. 2013. Android Design Patterns: Interaction Design Solutions for
Developers. Wiley.

[39] R. Plamondon and S.N. Srihari. 2000. Online and off-line handwriting recognition:
A comprehensive survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence 22, 1 (Jan. 2000), 63–84.

[40] James R. Rudd, Kenneth R. Stern, and Scott Isensee. 1996. Low vs. high-fidelity
prototyping debate. Interactions 3, 1 (1996), 76–85.

[41] Seyyed Ehsan Salamati Taba, Iman Keivanloo, Ying Zou, Joanna Ng, and Tinny Ng.
2014. An Exploratory Study on the Relation between User Interface Complexity
and the Perceived Quality of Android Applications. In Proc. 14th International
Conference on Web Engineering (ICWE). Springer.

[42] Julian Seifert, Bastian Pfleging, Elba del Carmen Valderrama Bahamóndez, Martin
Hermes, Enrico Rukzio, and Albrecht Schmidt. 2011. Mobidev: A tool for creating
apps on mobile phones. In Proc. 13th Conference on Human-Computer Interaction
with Mobile Devices and Services (Mobile HCI). ACM, 109–112.

[43] Eeshan Shah and Eli Tilevich. 2011. Reverse-engineering user interfaces to
facilitate porting to and across mobile devices and platforms. In Proc. Conference
on Systems, Programming, and Applications: Software for Humanity (SPLASH)
Workshops. ACM, 255–260.

[44] Alireza Sahami Shirazi, Niels Henze, Albrecht Schmidt, Robin Goldberg, Benjamin
Schmidt, and Hansjörg Schmauder. 2013. Insights into layout patterns of mobile
user interfaces by an automatic analysis of Android apps. In Proc. ACM SIGCHI
Symposium on Engineering Interactive Computing Systems (EICS). ACM, 275–284.

[45] Supernova Studio. 2018. https://supernova.studio/. (2018). Accessed March 2018.
[46] Ashwin Swaminathan, Yinian Mao, and Min Wu. 2006. Robust and secure image

hashing. IEEE Transactions on Information Forensics and Security 1, 2 (June 2006),
215–230.

[47] Richard Szeliski. 2010. Computer Vision: Algorithms and Applications. Springer.
[48] The Nielsen Company. 2013. The Mobile Consumer: A Global Snap-

shot. http://www.nielsen.com/us/en/insights/reports/2013/mobile-consumer-
report-february-2013.html. (Feb. 2013). Accessed March 2018.

[49] Øivind Due Trier, Anil K. Jain, and Torfinn Taxt. 1996. Feature extraction methods
for character recognition—A survey. Pattern Recognition 29, 4 (April 1996), 641–
662.

[50] Zhou Wang and Alan C. Bovik. 2009. Mean squared error: Love it or leave it? A
new look at signal fidelity measures. IEEE Signal Processing Magazine 26 (Jan.
2009), 98–117. Issue 1.

[51] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. 2004. Image
quality assessment: From error visibility to structural similarity. IEEE Transactions
on Image Processing 13, 4 (April 2004), 600–612.

[52] Yin Yin Wong. 1992. Rough and ready prototypes: Lessons from graphic design.
In Proc. ACM SIGCHI Conference on Human Factors in Computing Systems (CHI),
Posters and Short Talks. ACM, 83–84.

[53] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. 2015.
Static control-flow analysis of user-driven callbacks in Android applications. In
Proc. 37th IEEE/ACM International Conference on Software Engineering (ICSE).
IEEE, 89–99.

[54] Shengqian Yang, Hailong Zhang, Haowei Wu, Yan Wang, Dacong Yan, and
Atanas Rountev. 2015. Static window transition graphs for Android. In Proc. 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 658–668.

[55] Christoph Zauner. 2010. Implementation and benchmarking of perceptual image
hash functions. Master’s thesis. Upper Austria University of Applied Sciences,

https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewPG_iPhoneOS/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewPG_iPhoneOS/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewPG_iPhoneOS/Introduction/Introduction.html
https://www.flinto.com/
https://developer.android.com/design/material/index.html
https://developer.android.com/design/material/index.html
https://play.google.com/store/apps/collection/topselling_free?hl=en
https://play.google.com/store/apps/collection/topselling_free?hl=en
https://www.invisionapp.com/
http://forms.kony.com/rs/konysolutions/images/Bridging_Gap_Brochure_dec_10_14.pdf
http://forms.kony.com/rs/konysolutions/images/Bridging_Gap_Brochure_dec_10_14.pdf
https://framer.com/
https://www.Zeplin.io/
https://supernova.studio/

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Siva Natarajan, Christoph Csallner

Hagenberg Campus.
[56] Clemens Zeidler, Christof Lutteroth, Wolfgang Stürzlinger, and Gerald Weber.

2013. The Auckland layout editor: An improved GUI layout specification process.
In Proc. 26th Annual ACM Symposium on User Interface Software and Technology
(UIST). ACM, 343–352.

[57] Clemens Zeidler, Christof Lutteroth, Wolfgang Stürzlinger, and Gerald Weber.
2013. Evaluating direct manipulation operations for constraint-based layout. In
Proc. 14th IFIP TC 13 International Conference on Human-Computer Interaction
(INTERACT). Springer, 513–529.

