
Reverse Engineering Object-Oriented Applications
Into High-Level Domain Models With Reoom

Tuan Anh Nguyen, Christoph Csallner
Computer Science and Engineering Department

The University of Texas at Arlington
Arlington, TX 76019, USA

Email: tanguyen@mavs.uta.edu, csallner@uta.edu

Abstract—Automatically pinpointing those classes in an object-
oriented program that implement interesting domain concepts
would be valuable for industrial software maintainers. We encode
two observations of programmer behavior in Reoom, a novel
light-weight static analysis. In a comparison with its most
closely related competitor, Womble, on third-party open source
applications, Reoom scaled to larger applications and achieved
better overall precision and recall.

I. INTRODUCTION

Having an up-to-date design document such as a UML
class diagram of an application’s domain model is rare in prac-
tice. Engineers often do not like documenting their designs [1]
and do not keep documents in sync with the code [2].

But during maintenance, engineers want to distinguish do-
main model classes (which contain important business data)
from the remaining classes (the plumbing classes). Manually
pinpointing these domain model classes is notoriously hard
and time-intensive. But having such up-to-date designs could
make maintainers more productive [3]–[5].

Pinpointing domain model classes is hard, as it may require
reasoning about a complex code base to extract high-level
information that is not obvious from the code. Further, each
analyzed program implements its own unique business logic
in its own ways (with varying naming and coding conventions,
domain terms, design pattern mix, etc.).

Parts of this task have been automated [6]–[9], the most
closely related approach is Womble [6]. But these techniques
ignore the distinction between core and plumbing classes [7],
[8] or require seeding with a true domain model class [6].

This paper describes two observations of how developers
likely express domain model properties in code, encode these
observations in Reoom, and compare Reoom with Womble on
third-party code. In these experiments, Reoom scaled to larger
applications and achieved better overall precision and recall.

II. OBSERVATIONS (O), ASSUMPTIONS, AND DESIGN

Reoom builds on two observations or heuristics, which share
the idea that a programmer tends to pick an implementation
style that documents the important domain concepts in the
code. First, if an intermediate result is a domain model
object then the program is more likely to refer to it
explicitly (O1), by assigning it to a local variable, instance
field, or method parameter. Such an explicit reference may

Classes

(2) Filter

 methods

Ranked candidate

domain model

classes

B

1

A

2

Condensed

call graph

(1) Annotate call graph

A

B

C

A

A, B

Call graph

A

A

A, B

C
C

(3) Rank

classes

Fig. 1: Reoom’s main processing steps, illustrated on a toy
program, whose methods explicitly refer to three classes.

aid debugging. Another possible motivation is that a domain
model object may be seen as more stable and therefore better
suited for an explicit reference.

Second, a domain model class is likely used together with
other domain model classes (O2), to navigate and update
the domain relations the class participates in and to provide
business functions. In contrast, a plumbing class tends to be
more specialized and focused.

Reoom looks for these observations in the call graph (i.e.,
its call chains1) and the graph that maps each method to the
classes the method refers to explicitly as the static type of local
variables, method parameters, and instance fields. In short, the
more often a class A is referenced explicitly with another class
in a call chain, the more likely A is a domain model class.

Figure 1 shows Reoom’s main processing steps. Step (1)
checks observation O1, annotating each method with the
classes the method text refers to explicitly. Figure 1 shows
a simple example call graph with 8 methods that explicitly
refer to classes A–C.

Step (2) checks observation O2. Specifically, Reoom re-
moves a method m from the call graph if m does not
appear in any call chain that explicitly refers to at least two
different classes. Reoom further removes methods that are
not connected via the call graph, as they likely represent
low-level utility methods. Reoom also removes methods that
are not called, only have a single successor, and reference

1Recall that a call chain is a (partial) path through an application’s static
call graph [10]. If a call chain is feasible it can be thought of as a snapshot
of the top N invocation frames of the application’s runtime call stack.

Subject Womble Reoom Light Reoom
∩ ∪ ∅ Locals Params Return

kLOC c d t[s] p r p r p r t[s] p r p r p r t[s] p r
jMusic 1.6.2 23.2 272 5 timeout 29 7 100 16 100 25 100 397 19 100
pdf-sam 2.2.1 8.8 156 9 270 100 11 16 100 45 14 15 13 67 23 56 17 56 158 38 89
pizza wo 1.1 18 4 1 50 25 57 100 52 31 6 36 100 100 75 40 50 30 100 100
SH 28.3 161 27 timeout 28 20 85 28 85 30 74 662 37 56

TABLE I: Reoom vs. Womble: Higher precision (p) and recall (r) values are better; SH = SweetHome3D 1.5; c = classes and
interfaces; d = domain model classes in c; t = runtime; ∅ = average precision and recall of Womble’s seeded runs.

explicitly the same classes as their successor, since such a
pattern is a simple delegation that does not add interesting
domain information. In the example, Step (2) removes six
methods from the call graph.

Reoom further removes a class from the call graph if it
does not have at least one field with corresponding methods
that read and update this field. This step checks for the
common pattern that domain model information is both read
and updated during execution.

In Step (3) Reoom extracts the classes that annotate the re-
maining call graph methods as domain model classes. Reoom
ranks these classes by how often they are referenced explicitly
in the call graph. In our example, classes A and B are most
likely domain model classes, in this order.

III. EVALUATION

The Reoom prototype is built on the static inter-procedural
Java analysis framework MoDisco [11]. Using MoDisco,
Reoom includes in its call graph all explicit method and
constructor calls that occur in the analyzed source code of
public methods and constructors.

Reoom over-approximates calls to virtual (non-private non-
static) methods by considering all overriding non-abstract
methods. Not captured are calls made via Java reflection or
calls from bytecode or native code.

Most closely related to Reoom, Womble [6] also performs
a lightweight static analysis to infer from Java code a high-
level domain model. Both Reoom and Womble aim to suppress
from the inferred model certain plumbing classes. Womble
focuses on suppressing container classes. Womble’s input is
the bytecode of at least one “root” class, which Womble uses
as a starting point to find additional domain model classes.

We ask the following three research questions. How do
Reoom and Womble compare in runtime performance (RQ1)
and precision and recall (RQ2)? What is the relative ben-
efit of the relatively expensive second step (RQ3), which
requires inter-procedural analysis?

Table I summarizes the results on four third-party Java
open-source subject applications, which range from 1.1 to
28.3 kLOC2. All experiments ran on a 16 GB RAM 2.6 GHz
Core i7 MacBook Pro running OS X 10.10.2. For pdf-sam we
relied on our domain knowledge to identify the domain model
package. The other subjects had detailed design documentation
and we took care to analyze the software version that matched
the documentation most closely.

2As counted by JavaNCSS (https://github.com/codehaus/javancss)

Pizza wo is a plain Java version of the well-documented
Pizza Shop tutorial. The jMusic documentation says “[t]he
jm.music.data package [is] the only one that you really need
to know.”3 While this package contains nine classes, the
documentation describes five of them as “[t]hese classes form
the backbone of the jMusic data structure”.

SweetHome3D’s documentation contains a UML class di-
agram with 27 of the 35 classes in the model package. The
developers describe this as: “This UML diagram should help
you understand which classes are available in the Sweet Home
3D model”.4

The runtime listed for Womble is the sum of d runs. As
Womble requires at least one seed class, we ran Womble on
each real domain model class (handing Womble one “free”
correct result). We then computed precision and recall for the
intersection (∩) and union (∪) of all classes Womble identified.
To compare Womble with Reoom, we average the precision
and recall Womble achieved over d runs (assuming the user
correctly guessed one domain model class for the seed).

In the experimental results (Table I), Reoom’s runtime was
one order of magnitude higher than Womble’s. But Womble
timed out (24h) for the two larger applications.

Overall Reoom achieved better precision and recall than
Womble. For example, while Womble timed out for Sweet-
Home3D, Reoom selected from 161 classes 41 as candidate
domain model classes. The 10 classes Reoom ranked highest
are all included in the 27 classes listed by the developer’s
domain model documentation.

To compare the impact of its two main steps, we also ran
Reoom without step (2). To explore the impact of the three
kinds of referenced types on step (1), we ran the first step
three times, each time annotating the call graph with only
one kind of directly referenced types. Table I shows these
three runs’ combined runtime. The results indicate that Reoom
Light (i.e., Reoom without step (2)) provides a good trade-
off between Womble and full Reoom. Further, locals and
parameters provided better recall than return types.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under grants No. 1117369 and 1527398.

3http://explodingart.com/jmusic/jmtutorial/x41.html
4Figure 13 on http://www.sweethome3d.com/pluginDeveloperGuide.jsp

REFERENCES

[1] R. Farenhorst, J. F. Hoorn, P. Lago, and H. van Vliet, “The lonesome
architect,” in Proc. Joint Working IEEE/IFIP Conference on Software
Architecture 2009 and European Conference on Software Architecture
(WICSA/ECSA). IEEE, Sep. 2009, pp. 61–70.

[2] A. Forward and T. C. Lethbridge, “Problems and opportunities for
model-centric versus code-centric software development: A survey of
software professionals,” in Proc. International Workshop on Models in
Software Engineering (MiSE). ACM, May 2008, pp. 27–32.

[3] B. Anda and K. Hansen, “A case study on the application of UML in
legacy development,” in Proc. 5th ACM/IEEE International Symposium
on Empirical Software Engineering (ISESE). ACM, Sep. 2006, pp.
124–133.

[4] E. Arisholm, L. C. Briand, S. E. Hove, and Y. Labiche, “The impact
of UML documentation on software maintenance: An experimental
evaluation,” IEEE Transactions on Software Engineering (TSE), vol. 32,
no. 6, pp. 365–381, Jun. 2006.

[5] W. J. Dzidek, E. Arisholm, and L. C. Briand, “A realistic empirical
evaluation of the costs and benefits of UML in software maintenance,”
IEEE Transactions on Software Engineering (TSE), vol. 34, no. 3, pp.
407–432, May 2008.

[6] D. Jackson and A. Waingold, “Lightweight extraction of object models
from bytecode,” in Proc. 21st ACM/IEEE International Conference on
Software Engineering (ICSE). ACM, May 1999, pp. 194–202.

[7] M. Keschenau, “Reverse engineering of UML specifications from Java
programs,” in Companion to the 19th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). ACM, Oct. 2004, pp. 326–327.

[8] A. Sutton and J. I. Maletic, “Recovering UML class models from C++:
A detailed explanation,” Information and Software Technology, vol. 49,
no. 3, pp. 212–229, Mar. 2007.

[9] S. Ducasse and D. Pollet, “Software architecture reconstruction: A
process-oriented taxonomy,” IEEE Transactions on Software Engineer-
ing (TSE), vol. 35, no. 4, pp. 573–591, Jul. 2009.

[10] A. Rountev, S. Kagan, and M. Gibas, “Static and dynamic analysis of
call chains in Java,” in Proc. ACM/SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA). ACM, Jul. 2004, pp. 1–11.

[11] H. Brunelière, J. Cabot, F. Jouault, and F. Madiot, “MoDisco: A generic
and extensible framework for model driven reverse engineering,” in
Proc. 25th IEEE/ACM International Conference on Automated Software

Engineering (ASE). ACM, Sep. 2010, pp. 173–174.

