
Dsc+Mock: A Test Case + Mock Class Generator
in Support of Coding Against Interfaces

Mainul Islam, Christoph Csallner
Computer Science and Engineering Department

University of Texas at Arlington
Arlington, TX 76019, USA

mainul.islam@mavs.uta.edu,csallner@uta.edu

ABSTRACT
Coding against interfaces is a powerful technique in object-
oriented programming. It decouples code and enables in-
dependent development. However, code decoupled via in-
terfaces poses additional challenges for testing and dynamic
execution, as not all pieces of code that are necessary to ex-
ecute a piece of code may be available. For example, a client
class may be coded against several interfaces. For testing,
however, no classes may be available that implement the in-
terfaces. This means that, to support testing, we need to
generate mock classes along with test cases. Current test
case generators do not fully support this kind of indepen-
dent development and testing.

In this paper, we describe a novel technique for gener-
ating test cases and mock classes for object-oriented pro-
grams that are coded against interfaces. We report on our
initial experience with an implementation of our technique
for Java. Our prototype implementation achieved higher
code coverage than related tools that do not generate mock
classes, such as Pex.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Symbolic execution, testing tools; D.2.4 [Software Engi-
neering]: Software/Program Verification—Reliability

General Terms
Algorithms, Reliability, Verification

Keywords
Mock class generation, method body generation, test case
generation, dynamic symbolic execution

1. INTRODUCTION
Testing is a classic dynamic program analysis. It is widely

used in software engineering around the world. It consists

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WODA 2010 Trento, Italy
Copyright 2010 ACM 978-1-4503-0137-4/10/07 ...$10.00.

of finding concrete input values for a piece of code, execut-
ing the code on those values, observing the execution, and
judging the results. Of these steps, the first one is particu-
larly interesting, as the remaining steps depend on it. I.e.,
in order to execute a piece of code and to perform any form
of dynamic analysis on it, we have to find suitable input val-
ues. This requirement applies to code pieces of all levels of
granularity. E.g., in order to execute a given statement in a
method body, we may need to find the one and only input
value of the method that will lead its execution to reach that
statement.

To find test inputs, several tools have been developed in
recent years, including random test case generators such as
JCrasher [2], combinations of static and dynamic analyses
such as Check ’n’ Crash [3], and dynamic symbolic (“con-
colic”) analysis systems such as Exe, Dart, and Pex [1, 4,
10]. However, existing tools have difficulties with finding
good input values for a piece of code that declares that the
type of one of its inputs is an interface. This can severely re-
strict the value of such tools, as interfaces are one of the most
powerful abstraction mechanisms in many object-oriented
programming languages, including Java and C#. Interfaces
support information hiding, separate compilation, subtype
polymorphism, and multiple inheritance. When taken to-
gether, no test case generator we are aware of supports these
important features of object-oriented programming.

In this paper, we present a novel technique for support-
ing interfaces in test case generation for object-oriented pro-
grams. Our technique observes executions of the program
under test to collect a detailed set of conditions. The con-
ditions describe the branching conditions encountered, sub-
type constraints, constraints on the type of input values, and
constraints on the values returned from calling an abstract
class or interface. Our technique encodes these constraints
and issues them to an Smt-solver. From the solution of
the constraints, our technique constructs new test cases and
program input values. The key difference to previous tech-
niques is that the generated input values may be instances
of custom mock-classes that we generate along with the test
cases and input values. A generated mock class can im-
plement several interfaces in such a way that the generated
method bodies allow our technique to cover pieces of code
that cannot be covered with existing techniques.

Specifically, this paper makes the following contributions.

• We provide simple code examples that existing test
case generation techniques fail to cover.

• We motivate that such code can be covered with cus-
tom generated classes we call mock-classes.



• We present a novel algorithm for generating custom
mock-classes.

• We describe an implementation of our technique for
Java in our new dynamic symbolic execution engine,
Dsc, and report on our initial experimental results.

We describe our examples, design, and implementation in
terms of Java programs, but the discussion equally applies
to related object-oriented languages, such as C++, C#, etc.

2. MOTIVATION AND EXAMPLES
Coding against interfaces enables us to decouple our code

from other code. This has many advantages, including sep-
arate compilation and information hiding [9]. I.e., a client
may be developed independently of code that the client will
be calling at runtime. This is accomplished by coding the
client against interfaces, thereby representing abstractly the
classes that will be called at runtime. In this way, the client
may be developed before such service classes are completed.
To support such independent development, in addition to
compiling code independently, we also want to test code in-
dependently. To test the client class, we need to find a set
of classes that implement the interfaces referred to by the
client. Oftentimes, such classes do not (yet) exist. This
means we need some test case generator to not only gener-
ate test cases but also classes that implement any interfaces
used by the client. This task is complicated by the fact that
in several cases we need classes that implement more than
one interface. This is a common requirement. Classes in
modern object-oriented languages often implement multiple
interfaces, including many classes of the standard libraries
of Java and C#.

public class C { // c l i e n t
public void f oo ( I i , int x ) {

int y = i .m1( x ) ;
i f ( i instanceof J ) {

J j = ( J ) i ;
int z = j .m2( x ) ;

}
// . .

}
// . .

}

public interface I {
public int m1( int x ) ;

}

public interface J {
public int m2( int x ) ;

}

Listing 1: C is a client of two interfaces, I and J. To
test the client, we need an implementation of both
interfaces.

For illustration, we use the simple example given in List-
ing 1, in which class C is a client of two interfaces, I and
J. Specifically, C’s foo method has a parameter i, whose de-
clared type is the I interface. The foo method uses i, by
first calling the m1 method on it and later possibly the m2
method. Those two methods, m1 and m2, are declared by
different interfaces, I and J. In order to call both methods,
we need to find an instance of I that is also an instance of
J. If there are no implementations (yet) of I or J, a test case
generator has to provide them. However, existing test case

generators we are aware of, including JCrasher, Check ’n’
Crash, and Pex [2, 3, 10], cannot do that. Instead, they
only generate an implementation of the I interface or find
the null reference.

2.1 Implementing the Right Interfaces
From the above example of Listing 1, it may seem that

generating an implementation of multiple interfaces is straight-
forward: Why not generate a class that implements all inter-
faces referred to by the code? However, this will generally
not work. Like other boolean-valued expressions, a subtype
constraint may appear nested in the path condition, for ex-
ample, within a negation. Listing 2 gives an example, in
which class K implements all interfaces referred to by the
client class C. However, plainly implementing these inter-
faces is not sufficient for covering method bar of the client.

public class C { // c l i e n t , cont inued
// . .
public void bar ( I i ) {

i f ( i==null )
return ;

i f ( ! ( i instanceof J ) )
// . .

}
}

public class K implements I , J {
// . .

}

Listing 2: Class K implements all interfaces re-
ferred to by client class C, but fails to cover the
bar method.

2.2 Generating Meaningful Method Bodies
For the two previous examples it is sufficient to gener-

ate a mock-class that implements the right interfaces. But
there are other cases for which this strategy will not suffice.
To reach a given piece of code, we may have to generate
a method body that contains a certain sequence of state-
ments. Listing 3 gives one such example. In order to cover
the entire foobar method, we have to generate a particular
implementation of the m1 method.

public class C { // c l i e n t , cont inued
// . .
public void foobar ( I i ) {

int b=5;
i f ( i .m1(b) == b+1)

// . .
}

}

Listing 3: Only certain implementations of the I.m1
method can cover the entire foobar method.

3. BACKGROUND
In this section we provide necessary background for our

mock-class generation technique, specifically, on Java refer-
ence types, their subtype relation, dynamic symbolic exe-
cution, and the dynamic symbolic execution framework in
which we implement our solution.

3.1 Sub-/Supertype Relation in Java



In Java every variable and every expression has a type that
can be determined at compile time [5]. Primitive types such
as int and boolean are distinguished from reference types.
Reference types include interfaces and classes. In this paper
we are mainly interested in reference types.

Like many languages, Java defines a binary subtype rela-
tion on reference types. For example, if a Dog type declares
that it implements or extends an Animal type, then Animal
is a direct supertype of Dog and Dog is a direct subtype
of Animal. Reflexive and transitive closure of these “direct”
relations yield the super- and subtype relations.

A class has one direct class supertype and arbitrarily many
interface supertypes. The Object class is a prominent excep-
tion, it has no direct supertype. Another special type is the
null type; it has no direct subtype but is a subtype of ev-
ery other type. An interface only has interface supertypes,
except if it does not declare any supertypes, then it has an
implicit one—the Object class.

3.2 Dsc Dynamic Symbolic Execution Engine
Symbolic execution [6] is a systematic path exploration

where numeric constraints are generated. Specifically, sym-
bolic execution replaces the concrete inputs of a program
unit (typically, a method) with symbolic values, and simu-
lates the execution of the program so that all variables hold
symbolic expressions over the input symbols, instead of val-
ues.

Dynamic symbolic execution [4, 1] is a variation of con-
ventional symbolic execution which starts exploring paths
while executing the program in test. Usually, to generate
test cases, symbolic execution is combined with a constraint
solver to solve the constraints discovered during path explo-
ration. The constraints are gathered, in parallel to symbolic
execution, from predicates in branch statements of the code
that is analyzed. A constraint solver is used then to com-
pute different variations of the inputs which directs future
program executions along all feasible paths.

Dsc is a dynamic symbolic execution engine for Java, in
which we have implemented our approach for generating
mock-classes. Dsc uses the high-performance automated
theorem prover Z3 from Microsoft Research [8], to solve con-
straints generated during symbolic execution. It is not the
only tool for dynamic symbolic execution. But Dsc is the
first and only one tool we are aware of that generates mock-
classes for dynamic symbolic execution.

4. SOLUTION DESIGN
We begin the description of our solution with a high-level

overview. Like in dynamic symbolic execution, our approach
consists of a loop. In each iteration, we try to cover a new
execution path. Following are the steps taken in each itera-
tion.

1. Execute the program on a given (or random) input
on a dynamic symbolic engine: Collect control-flow
constraints and invert one of them to obtain the path
condition for the next execution.

2. Map each encountered reference type to a non-negative
integer value.

3. Issue the new path condition to the constraint solver.

4. Encode the subtype relation of the encountered refer-
ence types and issue it to the constraint solver.

5. If path condition plus subtype constraints are not sat-
isfiable, revoke subtype relation from constraint solver.

6. Introduce mock-classes, add them to our encoding of
the subtype relation, and issue the new subtype rela-
tion to the constraint solver.

7. If the constraint is satisfiable, determine the super
types of each mock class and generate the new mock-
classes.

4.1 Subtype Relation Matrix
We encode the subtype relation of the types we discovered

along an execution path in the form of a matrix. Table 1
shows an example, the full (reflexive and transitive) subtype
relation for the types of Listing 1 plus mock class M that we
introduce to generate a test case that will cover the entire
method. MC, MI, and MJ are boolean-valued variables.
Their values will be fixed by the constraint solver as part of
the solution of our constraint system.

Object C M I J null
1 Object x
2 C x x
3 M x MC x MI MJ
4 I x x
5 J x x
0 null x x x x x x

Table 1: Example reference type encoding and sub-
type relation matrix. The first column shows our
encoding of reference types in non-negative integer
values. In the remaining columns, an x at position
[A,B] means that type A is a subtype of the type
B, an empty field that A is not a subtype of B.
For example, the x entries in the Object column
represent that each reference type is a subtype of
java.lang.Object. MC, MI, and MJ are boolean vari-
ables.

4.2 Building Constraints and Generating
Mock-Classes

Object

C I J

null

Object

C I J

M

null

Figure 1: Left: Direct subtype relation of the origi-
nal program of Listing 1. Right: A desired solution.

Figure 1 shows the direct subtype relation as a graph. For
Listing 1, following are the constraints we want to solve:

• type(i) subtypeof I

• type(i) != null type

• type(i) subtypeof J



First, we send the constraints to the constraint solver to
check if the constraints can be satisfied with the existing
types. But no existing type may satisfy this constraint sys-
tem. If this is the case, we introduce one new type—a mock-
class—for each reference variable. For the example of List-
ing 1, we introduce mock-class M. Each mock-class gets its
unique class id.

The dynamic type of the reference variable can now range
over all classes, including the mock-class. Depending on the
type-constraints, the mock-class can assume any position in
the subtype-lattice—it can have any combination of super
types that is legal according to the type rules of the pro-
gramming language. The constraint solver can decide where
in the lattice to place the mock-class. For example, M may
implement an arbitrary number of interfaces.

We model the relevant type rules of the Java language in
our constraint system. For example, in Java, a class can
only have one direct super-class. To model this type rule,
we represent the super type of the mock class with a variable
and restrict its range to the class types.

We issue the new, larger constraint system to the con-
straint solver. In this example, Z3 returns a solution that
sets both MI and MJ to true. So, we finally generate a
concrete mock-class M that implements interfaces I and J.

4.3 Generating Mock-Class Method Bodies
A mock-class typically implements an interface, which is

a group of related abstract methods (methods with empty
bodies). Determining the possible body of a method, espe-
cially the return value of the method, is an important part of
mock-class generation. Here, we are specifically interested
in methods that have a non-void return type. The value re-
turned by a method often plays a role in subsequent branch-
ing decisions of the caller. So, while generating a method
body, we focus on finding the possible return values of the
method.

1. Find a list of methods that a mock-class needs to im-
plement from the solution described in Section 4.

2. Generate empty method bodies with a default return
value (e.g., a 0 if return type is integer) for each of the
methods in the list when a new mock-class is gener-
ated.

3. In each invocation of a mock-class method introduce a
symbolic variable for the method return value.

4. Build new constraints with the new variable and issue
the constraints to the constraint solver.

5. The constraint solver will determine a possible value
for the variable in most common cases. Retrieve the
value from the solution.

6. In the next iteration, return the value given by the
constraint solver from the mock-method.

According to the above algorithm, an instance of a mock-
method returns the same value in all cases. The return
value is determined by the constraint solver. Therefore, this
approach works for simple cases in which it is adequate to
satisfy a path condition with a single value. The program
presented in Listing 3 is an example of such a case. In this
example, it is enough to return a value from method“m”that
is equal to “b+1” in order to reach the goal. But there are

cases in which a method needs to return different values in
different cases to satisfy a path condition. We are extending
our approach to handle more complex cases and describe it
briefly in Section 7.

5. IMPLEMENTATION
In this section, we describe the implementation of our al-

gorithm to generate a mock-class. First we briefly describe
how we have implemented the subtype relation matrix and
determined the type of a mock-class. Then we describe the
generation of a mock-class method.

5.1 Type Encoding
We number Java types in the order we discover them.

Each time we dynamically discover a new class or interface
during dynamic symbolic execution of a program path, we
assign a new non-negative integer value to that type. The
discovery may happen due to one of many events such as
symbolically executing a static field access.

We number classes and interfaces separately and pre-fill
our type encoding with two special Java types. I.e., we as-
sign 0 to the null type and 1 to the Object class.

5.2 Determining the Mock-Class Type
We encode the existing types by numbering them from

0,1,. . . ,N. As we have described in Section 5.1, the first two
numbers 0 and 1 represent the null type and the Object
class respectively. We use a two dimensional array “Super-
Types[0..N][0..N]” to represent the subtype relation matrix.
Here N is the number of reference types (classes and inter-
faces) in an execution path at any moment. The size of the
array can be extended while new reference variables are in-
troduced. We initialize the subtype relation matrix with the
followings:

• SuperTypes[0][0..N ]← true, to represent that the null
type is a subtype of every other type.

• SuperTypes[0..N ][1] ← true, to represent that every
type is a subtype of the Object class.

• SuperTypes[M ][M ] ← true, where 0 ≤ M ≤ N , to
represent that each type is a subtype of itself.

Then we model properties of the sub-class and sub-type
relations of a mock-class as follows:

1. When a mock-class “M1” is introduced, it must have
exactly one direct super class. To implement this we
generate a Z3 variable: “M1 Var”. Then we apply a
constraint: 1 ≤ M1 V ar ≤ N . The constraint solver
determines the value of M1 Var.

2. To implement transitive closure, we copy the “true”
values from the direct super class of “M1” in the sub-
type relation matrix.
SuperTypes[M1][1..N ] = SuperTypes[M1 V ar][1..N ].

3. Reflexive closure is implemented with:
SuperTypes[M1][M1]← true.

4. “M1” may implement an arbitrary number of inter-
faces. To implement this, if there are I1,I2,..,In in-
terfaces, we have left SuperTypes[M1][I1..In] uncon-
strained, where 1 ≤ I1..In ≤ N . The constraint solver
determines which of these interfaces need to be imple-
mented by “M1”.



When the subtype relation matrix is satisfiable by the con-
straint solver, we retrieve the super types from the solution
and generate the new mock-class accordingly.

5.3 Generating Mock-Class Methods
When we know the interfaces a mock-class needs to im-

plement, for each method in each interface we generate an
empty method body. In each method body, we return a de-
fault return value. I.e., we return a 0 (zero) if the return
type of a method is integer. So far, we have considered only
methods that return an integer. Handling other return types
is left for future work.

In each invocation of a mock-class method we introduce a
symbolic variable. To determine if the current method is a
mock-class method we simply check if the current class is a
mock-class. We can do that easily, because while generating
mock-classes we add a unique prefix to the class name. We
create a map to keep track of the new variables generated
for the different mock-methods. We also generate a unique
name for each new variable. The new symbolic variable is
then used to build the constraints. The constraint solver
determines a value for each new variable. In the next invo-
cation of a mock-method we determine the value of the sym-
bolic variable that was introduced for the current method in
the previous iteration. We can do that easily from the map
we created and with the unique names of the variables.

6. PRELIMINARY RESULTS
In this section, we report our initial experience in using

our prototype test-case and mock-class generator. We first
compare our test-case generator, Dsc, when running with
and without mock-class generation. We also compare Dsc
with its leading competitor, Pex [10]. We ran Dsc on the
motivating examples of Section 2 and on some real-world
examples that use an open source API called Java Messaging
Service, JMS. JMS allows Java applications to create, send,
receive, and read messages. We took all measurements on a
2.26GHz Core2 Duo processor machine.

6.1 Motivating Examples of Section 2
For our motivating example of Listing 1, without mock-

class generation, our dynamic symbolic execution engine
cannot reach any of the two method calls (0/2). Dsc just
generates a default input value of null, which does not reach
any of the calls. When enabling our mock-class generator,
our dynamic symbolic execution engine reaches all goals
(2/2). For our second example, we obtain similar results.
With mock-class generation enabled, we can cover the entire
method. Without mock-classes, we cannot. With or without
mock-classes, the exploration of both examples took a simi-
lar amount of time of about half a second. In summary, with
mock-classes we achieve full coverage of the simple example
programs. None of the existing dynamic symbolic execution
tools we are aware of can cover these cases.

6.2 JMS Examples
JMS provides a list of interfaces that makes it easy to write

business applications those asynchronously send and receive
business data and events. We have used the Java Message
Service (Version 1.0.2b) interfaces to write our examples.
As a preliminary experiment we have written 6 methods
which take different JMS interfaces as arguments. Our focus
in writing these methods was to define as many goals as

possible which can be reached only by using mock-classes.
On an average we have defined 5 goals per method. Then we
have applied dynamic symbolic execution with and without
mock classes to each of these methods. Table 2 lists the
number of goals reached for each of the methods with and
without mock-class generation.

Interfaces used #goals #reached #reached
from JMS w/o mock with mock

classes classes
BytesMessage 5 0 5
ConnectionMetaData 5 0 5
MapMessage 4 0 4
Message 6 0 6
MessageProducer 4 0 4
StreamMessage 4 0 4

Table 2: Each row of the table shows the results for
one of the methods we have tested. The first column
contains the JMS interfaces used in each method.

Following is one example test method called “ByteMes-
sageTest”. It takes a JMS interface “BytesMessage” as a
parameter. We have defined 5 goals in the method. When
running without mock class generation, none of these goals
is reached. When running with mock class generation, our
generated test cases reach all five.

public void ByteMessageTest ( BytesMessage bm) {
int l en = 10 ;
i f (bm. readUnsignedByte ( ) == len +1)
{ /∗ goa l 1 ∗/ }

i f (bm. readByte ( ) == len +1)
{ /∗ goa l 2 ∗/ }

i f (bm. readShort ( ) == len +1)
{ /∗ goa l 3 ∗/ }

byte [ ] b = new byte [ l en +1] ;
i f (bm. readBytes (b) == len +1)
{ /∗ goa l 4 ∗/ }

i f (bm. readBytes (b , b . l ength ) == len +1)
{ /∗ goa l 5 ∗/ }

}

6.3 Comparison with Pex
We have performed an initial comparison with the most

advanced dynamic symbolic execution engine we are aware
of, Pex. Dsc and Pex are similar in that they both use dy-
namic symbolic execution to generate test cases for object-
oriented programs. While Dsc targets Java, Pex targets .Net
programs. To compare Dsc with Pex, we translated our mo-
tivating examples of Section 2 to C# and ran them on the
latest version of Pex (version 0.91.50418.0).

For the motivating example of Listing 1, Pex generates
the same input value (the default value null) as Dsc without
mock-class generation. Pex by itself cannot reach any of
the two method calls (0/2). When it is used with their
recent extension, Moles [7], it can reach the first method
call (1/2). In comparison, Dsc with mock-class generation
reaches both calls (2/2). For the second example, we got
similar results. Pex generates input that cannot cover the
entire program, just as Dsc without mock-class generation.
In summary, with mock-class generation enabled, for the
two simple motivating examples, Dsc achieves higher code
coverage than Pex.



7. ONGOING WORK
Currently we are extending our algorithm, to handle more

complex cases, such as the example given in Listing 4.

public class C { // c l i e n t , cont inued
// . .
public void foobar ( I i , int p) {

int b=5;
i f ( i .m1(p) > b && i .m1(p+10) < b)

// goa l 5
}

}

Listing 4: Our current implementation cannot reach
goal 5

For the example in Listing 4, we cannot reach “goal 5”
if “m1” always returns the same value. In other words,
we cannot satisfy both the conditions “i.m1(p) > b” and
“i.m1(p+10) < b” with a single return value of “m1”. When
same inputs are applied, it is expected that a method will
always return the same value. But for different inputs, it is
common that a method might return different values. Both
conditions in the above program can be satisfied if we return
two different values from method “m1” for two different in-
put parameters. This is the basis of our current work to
generate mock-class methods for such more complex cases.
The main part of this algorithm is as below:

1. In each invocation of a mock-class method, introduce
one symbolic variable each for the return value and
each method parameter.

2. Build new constraints with the newly introduced vari-
ables and issue the constraints to the constraint solver.

3. The constraint solver will determine possible values for
the variables.

4. In the next iteration, generate a method body using
different combinations of the values produced by the
constraint solver.

If we apply this algorithm to the above example, two new
variables will be introduced for each invocation of method
“m1”. Also for the parameters of the method, two more
variables will be introduced. If these variables are called
“returnVar 1”, “returnVar 2”, “param 1” and “param 2” re-
spectively, then we will get the following constraints:

• p = any arbitrary integer

• b = 5

• returnVar 1 > b

• returnVar 2 < b

• param 1 = p

• param 2 = p+10

For the above constraints, the constraint solver will pos-
sibly come up with a solution such as the following:

• p = 0

• b = 5

• returnVar 1 = 6

• returnVar 2 = 4

• param 1 = 0

• param 2 = 10

We can now combine these values to generate a body of
method “m1” as shown in Listing 5 and use it in the next
iteration of the symbolic execution.

public class MockC implements I {
public int m1( int x ) {

i f ( x == 0)
return 6 ;

else i f ( x == 10)
return 4 ;

else
return 0 ;

}
}

Listing 5: A possible method body for “m1” to reach
goal 5 of the example in Listing 4.

8. CONCLUSIONS
We described a novel technique for generating test cases

and mock classes for object-oriented programs that are coded
against interfaces. We reported our initial experience with
an implementation of our technique for Java. Our prototype
implementation achieved higher code coverage than related
tools that do not generate mock classes, such as Pex.

The source code for our experiments is available at
http://cseweb.uta.edu/~mainul/mockclasses/

9. REFERENCES
[1] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and

D. R. Engler. Exe: Automatically generating inputs of
death. In Proc. 13th ACM Conference on Computer and
Communications Security (CCS), pages 322–335. ACM,
Oct. 2006.

[2] C. Csallner and Y. Smaragdakis. JCrasher: An automatic
robustness tester for Java. Software—Practice &
Experience, 34(11):1025–1050, Sept. 2004.

[3] C. Csallner and Y. Smaragdakis. Check ’n’ Crash:
Combining static checking and testing. In Proc. 27th
ACM/IEEE International Conference on Software
Engineering (ICSE), pages 422–431. ACM, May 2005.

[4] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed
automated random testing. In Proc. ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 213–223. ACM, June 2005.

[5] J. Gosling, B. Joy, G. L. Steele, and G. Bracha. The Java
Language Specification. Prentice Hall, third edition, June
2005.

[6] J. C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.

[7] Microsoft Corporation. Unit Testing with Microsoft Moles,
Mar. 2010. http://research.microsoft.com/en-
us/projects/pex/molestutorial.pdf.

[8] L. d. Moura and N. Bjørner. Z3: An efficient SMT solver.
In Proc. 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS), pages 337–340. Springer, Apr. 2008.

[9] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM,
15(12):1053–1058, Dec. 1972.

[10] N. Tillmann and J. de Halleux. Pex - white box test
generation for .Net. In Proc. 2nd International Conference
on Tests And Proofs (TAP), pages 134–153. Springer, Apr.
2008.


