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may be used to replace P . This is a very loose de�nition, and the exact requirements whichQ should satisfy of course depends upon particular optimization criteria and the geometricproperties of P . For example, there have been many results describing and analyzing var-ious approximation schemes for polyhedra (e.g., see [1, 2, 3, 4, 11, 13, 14, 25, 27]). Theseschemes �nd applications in robotics and motion planning, solid modeling, surface approx-imations, and computational geography. We are in particular concerned with the combina-torial simplicity of the approximate object, e.g., it should not have too many faces. Sincethe resultant polyhedron is simpler to describe, algorithms that manipulate these objectsrun much faster than they would with the more-complex object. In addition, there hasbeen considerable work in machine learning directed at the design of small linear decisiontrees to represent a multi-category point set (e.g., see [5, 6, 8, 21, 29, 32, 33, 34, 35, 36]).In this paper we formally establish that several natural problems on convex polyhedraare provably di�cult, including several problems involving the approximation and illumi-nation of convex polyhedra. Interestingly, a key ingredient in our proofs is a linear-timemethod for realizing any 3-connected planar triangulation as a convex polyhedron usinga polynomial number of bits.We describe this realization method in the section that follows. In the subsequentsection we establish the NP-completeness of the problem of �nding the minimum numberof vertex lamps needed to illuminate a convex polyhedron, which is a problem studied byGr�unbaum and O'Rourke and featured in O'Rourke's book on \art gallery" theorems [30],where they show that, for a convex polyhedron P with f faces in IR3, b(2f�4)=2c verticesare sometimes necessary and always su�cient to see the exterior of P . In Section 4, weshow that �nding an optimal decision tree in IR3 is NP-complete, which refutes a commonbelief that this form of machine learning should be tractable for small-dimensional con-cepts. We conclude in Section 5, noting that our method for realizing 3-connected planartriangulations in linear time with a polynomial number of bits �xes a \gap" in a proof byDas and Joseph [11, 13] that the problem of �nding a minimum-facet convex polyhedronlying between two polyhedra in IR3 is NP-complete,2 Realizing 3-Connected Triangulations as Polyhe-draIn this section we show how to realize a 3-connected planar triangulation as a convexpolyhedron in linear time. Our algorithm constructs a polyhedron that can be representedusing a polynomial number of bits in the rational-RAM model.Theorem 2.1 Given a n-vertex 3-connected planar triangulation G = (V;E), one canrealize G as a convex polyhedron P with a bit complexity that is polynomial in n. Therunning time is O(n) in the rational-RAM model.Before we prove this theorem we present the following graph-theoretic lemma, whichhas been proven in various forms (e.g., see [16, 24]).2



Lemma 2.2 Given a n-vertex planar graph G = (V;E), one can compute in linear timean independent set with at least n=18 vertices such that each vertex has degree � 8.The above lemma is crucial to our algorithm. Essentially it states that for planargraphs, \large" independent sets with \small" degrees can be computed quickly. We nowpresent the proof of Theorem 2.1.The overall idea of our algorithm is as follows. We compute a large independent setof G, and \compress" each vertex in this set with one of its neighbors along a commonincident edge. We show that one can always choose a neighbor so that this results in asmaller planar triangulation that is still 3-connected; hence, we can recursively constructan equivalent polyhedron P 0 for the compressed graph G0. To construct P , we then\expand" the previously compressed edges appropriately so that convexity is maintained.Although this approach seems fairly straightforward, implementing it in O(n) time is notso easy.Since we compress a constant fraction of the vertices in each level, there are O(logn)levels of recursion. Our algorithm ensures that at each level the number of bits requiredto represent each added vertex is within a constant multiple of the number of bits requiredto represent a vertex of the previous level. Thus, the total bit complexity of representingP is polynomial in n.We now give more details of our algorithm. Let the exterior face of the input tri-angulation contain the vertices u, v and w. At every level of the recursion, along withother properties, we will also ensure that u, v and w are on the xy-plane (u = (0; 0; 0),v = (2; 0; 0) and w = (1; 2; 0)), and the remaining vertices are above this plane, but strictlywithin the vertical \tube" whose horizontal cross section is congruent to the triangle uvw.Case 1 (n = 4): Let the four vertices be u, v, w and t. In this case we construct atetrahedron by positioning u at (0; 0; 0), v at (2; 0; 0), w at (1; 2; 0)), and t at (1; 1; 1),which completes the construction.Case 2 (n > 4): Using the method of Lemma 2.2, we compute a large independent setI of G. Let I1 = I n fu; v; wg, so that I1 contains only interior vertices. Then, we repeatthe following for each vertex s in I1. Let s be incident to the vertices s1; s2; : : : sl, wherel � 8. We choose one of the vertices sj and compress the edge (s; sj), removing anyparallel edges this produces. We cannot choose just any vertex, however, for compressings with some sj's may violate 3-connectivity of the resulting planar graph. Consider theface f = s1s2 : : : sl that would result if we were to remove the edges incident to s, andmark the edges (s1; s2); (s2; s3); : : : ; (sl; s1) as peripheral edges. The vertex sj is selected asfollows. If there are no edges connecting two non-adjacent vertices of f , then any vertexof f may be selected, say s1. If, on the other hand, there are indeed such \exterior" edges,then there has to be an edge (si; sk) such that the closed region de�ned by (si; sk) andthe boundary of f does not further contain such exterior edges. Consider the relevantboundary of f between si and sk. It has to contain at least one intermediate vertex, andwe select this to be sj. 3



Let the resultant graph after all the edge compressions are performed be G0. Werecursively construct an equivalent polyhedron P 0 for this graph. We know that thevertices of P 0 other than u, v and w are strictly con�ned within a vertical tube with crosssection congruent to uvw.Recall that some edges of P 0 have been marked as peripheral. We compute for eachperipheral edge e a plane p(e) as follows. If e 2 f(u; v); (v; w); (w; u)g, then p(e) is thevertical plane tangential to P 0 at e. Otherwise, p(e) is the plane tangential to P 0 at esupporting the face that is exterior to f and incident upon e. Let s0 be some vertex of P 0created by the compression of some s and sj in G, and let f be the cycle of edges markedas peripheral by this compression. For each edge e 2 f , consider the half-space de�ned byp(e) that includes P 0. The intersection of these halfspaces de�nes a \pyramid" � over f .We wish to expand s0 into sj and s, so that the point1 sj remains at s0, and s is selectedinside �. Moreover, we wish the convex hull of this expanded set of vertices to correspondto the graph structure of P . Let sk and sl be the vertices of P that are incident uponthe two triangular faces f1 and f2 containing the edge sjs on their respective boundaries.Of course, f1 and f2 do not exist in P 0, for they were compressed to single edges s0skand s0sl when we compressed sj and s. Let g(k) and h(k) (resp., g(l) and h(l)) denotethe triangular faces of P 0 incident to the edge s0sk (resp., the edge s0sl) in P 0, with theconvention that g(k) and g(l) be the faces that are to remain incident to sj, and h(k)and h(l) be the faces that are to become incident to s, after we expand s0 back to sj ands. Moreover, de�ne halfspaces 1 and 2 bounded by planes containing g(k) and g(l),respectively, and oriented to contain P 0. Likewise, de�ne halfspaces �1 and �2 bounded byplanes containing h(k) and h(l), respectively, and oriented away from P 0. Let �0 denotethe (common) intersection of the pyramid � with 1, 2, �1, and �2. Since P 0 is strictlyconvex, �0 is non-empty. This is vital, for �0 exactly characterizes the set of all legalplacements for s if we choose to keep sj at s0.We can �nd s strictly inside �0 so that its resulting bit complexity (using rationalarithmetic) is at most a constant factor larger than the bit complexity needed to representeach vertex of f . This is due to the fact that each edge on the boundary of �0 can berepresented in rational arithmetic with a bit complexity that is at most a constant factorlarger than the bit complexity needed to represent each vertex of f . Performing thisedge expansion for each s0 that resulted from an edge compression, then, completes theconstruction.2.1 Implementing the compression algorithmIn this subsection we show how to implement a single recursive level in our edge-contractionalgorithm in O(n) time. Since the size of the graph decreases by a constant-factor witheach recursive level, this will establish that the total running time of our drawing algo-rithm is O(n).1We ask the readers indulgence into this abuse of notation so that s (resp., sj) can denote a vertex inG and its corresponding point on P . 4



The important step in our procedure is identifying, for a particular node s in ourindependent set I1, an adjacent node sj such that the edge (s; sj) can be compressedwithout violating 3-connectivity. The crucial condition for this to be possible is that sand sj cannot already be members of a separating triangle, for then merging them wouldcreate a separating pair (and the graph would no longer be 3-connected). As observedabove, the set of adjacencies for s de�ne a face f , whose edges we call the peripheraledges. Since the graph is triangulated, the crucial condition for s to to be mergeablewith sj is equivalent to the condition that sj cannot be adjacent to another vertex off through a non-peripheral edge (i.e., an edge external to f). We say that such anadjacency disquali�es the merge of s and sj. It is not immediately clear, however, how wecan e�ciently test this condition for each candidate sj around f during the compressionstep for s, since some of these sj's may have a large number of adjacencies in the graph.Our implementation is to break this computation into a batch component, which weperform in advance for all the s's in our independent set, and an on-line component,which we perform for each s in turn as we perform our edge compressions. Our batchcomputation is as follows:1. We identify, for each s in I1, and each vertex sj adjacent to s, all the candidateadjacencies that would disqualify our being able to merge s and sj. There ared(s)(d(s) � 2) = O(1) such adjacencies for each s in I1, where d(s) denotes thedegree of s; hence, the total number of all such candidate adjacencies is O(n).We label each such candidate adjacency between sj and some si on f as (si; sj; s)meaning \adjacency (si; sj) would disqualify the merging of sj and s."2. We then radix sort into a list L all the labels computed in the previous step togetherwith all the existing adjacencies in G, lexicographically. This takes O(n) time (e.g.,see Cormen et al. [10]).3. For any match of a real adjacency (si; sj) with a candidate disqualifying adjacency(si; sj; s) we mark the edge (sj; s) as \disquali�ed." We remove all the (si; sj) and(si; sj; s) labels from the sorted list L for each such match. This step also takesO(n) time.4. Finally, we group together in one list Li;j each sublist of the sorted list L thatidentify the same candidate disqualifying adjacency (si; sj) (for several di�erent s'sin our independent set). We store a pointer to the list Li;j in the records of each sin I1 that contributes an element to Li;j. The total number of such �elds is O(1)for any such s and the total space needed for all the Li;j's is clearly O(n).The meaning for each list Li;j is that this is a disqualifying adjacency that currently doesnot exist in G, but may exist at some point during the compression phase. Thus, for thecompression computation for a node s in I1, we choose an edge (sj; s) that is not marked\disquali�ed" and compress it. For each new adjacency (si; sj) this creates, we consult5



the list Li;j (if it exists), and for each (si; sj; s0) label in Li;j (with s0 6= s) we mark theedge (sj; s0) as \disquali�ed." We then discard the list Li;j.We have already argued why there will always be some edge incident upon s that is notmarked \disquali�ed;" hence, the above computation can always proceed to the next s inI1. The total time needed is O(n) for the preprocessing step, and then an additional O(n)time during the compression step (for once an Li;j list is consulted it is then discarded).Therefore, we can complete a recursive step in our 3-d drawing algorithm in O(n) time,as claimed.Since we can perform each level in the recursion in O(n) time, by Lemma 2.2, thisresults in a linear-time algorithm for drawing G as a convex polyhedron. Moreover, thefact that there are only O(logn) levels in this recursion implies that our method producesa polyhedron that can be represented using a polynomial number of bits (using rationalarithmetic).3 Polytope IlluminationIn this section we prove that polyhedron illumination is NP-complete. We begin byshowing that the well-known vertex cover problem2 remains NP-complete even for 3-connected planar graphs, and show how this can be used to further extend the NP-completeness of vertex covering to convex polyhedra in IR3. This extends the previousresults of Garey and Johnson [18] and Garey, Johnson, and Stockmeyer [19], which showedthat the vertex cover problem remains NP-complete for planar graphs with degree at mostthree.3.1 Vertex Cover for 3-connected planar graphsOur reduction is actually a chain of reductions, starting from the (standard) vertex coverproblem. So, let G = (V;E) and k be the graph and integer parameter de�ning an instanceof the vertex cover problem. Without loss of generality, we can assume that jV j � 4. Webegin our chain of transformations by augmenting G by adding three new vertices v1, v2,and v3 that we de�ne to be adjacent to all the vertices in G. Clearly, the resulting graphG0 is 3-connected.Claim 3.1 G has a vertex cover of size k < n if and only if G0 has a vertex cover of sizek + 3.Proof: The \only if" direction is trivial. So, suppose G0 has a vertex cover of size k+3.Since jV j � 4, we must include each vi we added to create G0, for if any such vi's is notincluded, then each vertex in the original G would have to be included in the cover, whichwould contradict our assumption for k. Therefore, G has a vertex cover of size k.2Recall that this is the problem where one is given a graph G = (V;E) and an integer k > 0 and askedif there exists a subset V 0 � V of size k such that, for each edge (v; w) 2 E, v 2 V 0 or w 2 V 0.6



w

v v’

w’Figure 1: The cross-over gadget.
w’

w

v’

v

Figure 2: The way the cross-over gadget replaces an edge crossing.Thus, the vertex cover problem remains NP-complete for 3-connected graphs. So,let us now use G and k to together denote an instance of vertex cover with G being3-connected. We will reduce this version of vertex cover to the version of the problemwhere the graph is 3-connected and planar. Our reduction is an adaptation of the proofof Garey et al. [19], who give a reduction from general graphs to planar graphs that doesnot preserve 3-connectivity. We begin by drawing G in the plane so as to have c = O(n2)edge crossings (e.g., using a simple straight-line strategy). We replace each edge crossingby the \gadget" illustrated in Figure 1 as illustrated in Figure 2. Performing all thesereplacements results in a 3-connected planar graph G0.Claim 3.2 G has a vertex cover of size k if and only if G0 has a vertex cover of size16c+ k.Proof: A close inspection of the gadget we use to replace each edge crossing showsthat the edges of the gadget can be covered with 16 nodes only if we include at most onemember of fv; v0g and at most one member of fw;w0g. Thus, if there is a vertex coverof size k in G, we can create a vertex cover of size 16c + k by including the 16 nodes ineach crossover gadget so as to also cover each of the edges joining crossover gadgets (andoriginal vertices of G). Suppose, conversely, that G0 has a vertex cover of size 16c+ k. Aswe have already observed, each cross-over gadget can be covered with 16 nodes only if atmost 16 nodes only if we include at most one member of fv; v0g and at most one memberof fw;w0g. That is, covering each gadget with 16 nodes establishes a \parity" along any7



Figure 3: The stellation of a face.chain of gadgets derived from a single edge in G. Thus, by a counting argument, whichis similar to one given by Garey et al. [19], we can conclude that G must have a vertexcover of size k.Therefore, the vertex cover problem remains NP-complete for 3-connected planargraphs. We can further restrict our graphs, however, and the problem still remains NP-complete.3.2 Polytope Vertex CoverGiven an embedded 3-connected planar graph G, de�ne the stellation of a face f in G asthe insertion of a vertex in the interior of f that we then make adjacent to each vertexon f . Moreover, if f is a triangle, then we also allow any of edges of f to be subsequentlyremoved, so long as we still preserve the 3-connectivity of G. (See Figure 3.) De�ne astellation of the entire graph G to be the result of performing a collection of independent,non-interfering face stellations on a subset of the faces of G. Further de�ne the t-stellationof G to be the result of performing t consecutive stellations on G.An interesting property of stellations is that they have a natural analogue with respectto convex polyhedra. In particular, if a 3-connected planar graph G is represented asa convex polyhedron in IR3, then the stellation of a face f of G can be accomplishedgeometrically by introducing a point p \above" f so that the convex full of p unionedwith P results in the updated graph G0. Indeed, the proof of Steinitz's theorem (e.g.,see [20]), showing that a graph can be drawn as a convex polyhedron in IR3 if and onlyif it is 3-connected and planar, is essentially equivalent to showing that any 3-connectedplanar graph (or polyhedron) can be constructed from a planar embedding of K4 (ortetrahedron) in a series of O(n3) stellations, inverse stellations, or their duals. We showthat the vertex cover problem remains NP-complete for c-stellations of 3-connected 3-regular planar graphs, for any constant c � 4.We have shown, in Section 2, that any 3-connected planar triangulation can be drawn8



Figure 4: The stellations forming the subgraph of G0 associated with a face in G.as a convex polyhedron in IR3 using a polynomial number of bits. By a simple dualityargument, this immediately implies that any 3-connected 3-regular planar graph can alsobe drawn as a convex polyhedron in IR3 using a polynomial number of bits. Since per-forming a stellation of a convex polyhedron in IR3 will increase the bit complexity of itsrepresentation by at most a constant factor, this also implies that the c-stellations of a3-connected 3-regular planar graph can be drawn as a convex polyhedron in IR3 using apolynomial number of bits if c is a constant. Thus, by showing that vertex cover remainsNP-complete for c-stellations of 3-connected 3-regular planar graphs we will establish theNP-completeness of the Polytope Vertex Cover problem, where we are given a convexpolyhedron P and an integer k and asked if there is a subset V of the vertices on P suchthat each edge on P has at least one end in V .Our reduction will be from the vertex cover problem for 3-connected planar graphs.So, let G be a 3-connected planar graph and let k be a given integer parameter. Ourreduction is a modi�cation of an argument of Garey and Johnson [18], who showed thatvertex cover remains NP-complete for planar graphs with degree at most 3. For eachvertex v in G, we replace v by a cycle Cv of size d(v), where d(v) denotes the degree of v,so that each vertex on Cv retains exactly one adjacency of v. The graph that results fromthis transformation will be a 3-connected 3-regular graph. We stellate each face de�nedby the interior of a Cv by introducing a new vertex v0 in its interior. We furthermorestellate each triangle T incident on v0 so as to eliminate all the edges of T . (See Figure 4.)The resulting graph, G0, is a c-stellation of a 3-connected 3-regular graph (the last stepcan be accomplished by �rst stellating the odd-numbered triangles around v0 and thendoing the even-numbered ones, with possibly one more to do after that if the number oftriangles is odd).Claim 3.3 G = (V;E) has a vertex cover of size k if and only if G0 has a vertex coverof size k + 2jEj.Proof: Suppose G has a vertex cover of size k. For any v in G in this cover, we can putin a cover for G0 all the vertices in the cycle Cv we created for v, together with the interiorvertex v0 (these vertices are shown in black in Figure 4). If v is not in the cover for G, thenwe can cover the subgraph of G0 associated with v by using the vertices introduced in the9



stellation of each triangle incident on v0 (these vertices are shown in white in Figure 4).The set of all such vertices will clearly form a cover of G0. We use d(v) + 1 vertices foreach vertex v in the cover for G and d(v) vertices for each vertex v not in the cover, whered(v) denotes the degree of v; hence, the total size of this cover is k+Pv2G d(v) = k+2jEj.Conversely, suppose G0 has a vertex cover of size k + 2jEj. The subgraph in G0determined by a vertex v in G can be covered with d(v) vertices (using the nodes coloredwhite in Figure 4), and d(v) nodes are necessary. To cover an edge of G0 outside of sucha subgraph (i.e., an edge corresponding to an edge of G), however, requires that we use avertex from some Cv (i.e., a black vertex). But if such a vertex is included in a cover forthe subgraph of G0 corresponding to a vertex v, then covering this subgraph now requiresd(v) + 1 vertices. But we can cover such a subgraph using d(v) + 1 vertices using onlythe vertices of Cv and the new vertex v0 (the black vertices). We can thus de�ne a coverof G by including each vertex v whose corresponding subgraph in G has at least d(v) + 1vertices and this cover will have size at most k in G.As we mentioned above, given the result of Section 2 regarding drawing 3-connected 3-regular planar graphs as convex polyhedra, Claim 3.3 immediately applies to the PolytopeVertex Cover problem.Theorem 3.4 The Polytope Vertex Cover problem is NP-complete.3.3 Polytope Lamp CoverWe are now ready to prove our result regarding lamp placement on convex polyhedra.Speci�cally, in this problem we are given a convex polyhedron P in IR3 and an integer kand asked if there are k vertices on P such that each point on the boundary of P can beconnected to a vertex in this set by a line segment that does not intersect the interior ofP . Intuitively, the vertices in this set are \lamps" that illuminate the entire boundary ofP . We show that deciding if a given k number of vertices su�ce for P is NP-complete.Our proof is based upon a reduction from Polytope Vertex Cover.So, suppose we are given a polyhedron Q and an integer k such that we would like toknow if there is a k-node vertex cover on Q. Our reduction is to form a c-stellation of Q,where, for each face f on Q, we form a vertex F in its interior and form triangles with thenodes on f . We then perform two more stellations, so as to form for each triangle 4abFincident on F , three consecutive triangles 4axF , 4xyF , and ybF . Call this transformedpolyhedron, P . (See Figure 5.)Claim 3.5 Q has a vertex cover of size k if and only if P has a lamp cover of size k+F ,where F is the number of faces on Q.Proof: Suppose Q has a vertex cover of size k. We can form a lamp cover for Pby including each vertex in the cover for Q together with each vertex F created in thestellation of a face f of Q. This lamp cover will have size k + F .10
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FFigure 5: An example stellation used in forming P .Conversely, suppose P has a lamp cover of size k + F . Consider the subgraph in Passociated with any face f from Q. If F is not included in a lamp cover, then illuminatingthis portion of P requires at least d3e=2e vertices, where e � 3 is the number of edgeson f . But, by including F in a lamp, we can illuminate this portion of P using just onevertex! The only other faces that are not illuminated are faces that correspond to edgesof Q (that no stellation vertex F can see). Since we can assume without loss of generalitythat the lamp cover for P includes each stellation vertex F , we can further assume thateach other vertex in the lamp cover is also a vertex in Q (for if this were not the case, wecan substitute such a vertex (labeled x or y above) with a vertex that is also in Q andilluminate more faces of P ). Thus, taking the vertices in the lamp cover for P that arealso vertices in Q forms a vertex cover for Q of size k.This immediately implies the following:Theorem 3.6 The Polytope Lamp Cover problem is NP-complete.Proof: The line of reasoning above establishes that this problem is NP-hard. A simpleargument establishes the membership of this problem in NP; hence, the problem is NP-complete.4 Optimizing Decision TreesThe next geometric optimization problem we consider is that of de�ning an e�cientdecision tree that can be used as a discriminator for a given set to multi-category pointsin IR3 (indeed, we de�ne the problem for two categories: \red" and \blue"). It is wellknown, for example, that constructing a best decision tree in general settings [22, 23] orin arbitrary dimensions [7, 26] is NP-complete, but in the context of �xed-dimensionaldecision-tree approximations, however, each of these NP-completeness proofs fail. Indeed,each of their respective optimization problems are polynomial-time solvable in a �xed-dimensional setting. Thus, some may have been tempted to believe that global decisiontree optimization might actually be tractable in �xed dimensions. Nevertheless, we canshow the following: 11



Theorem 4.1 Given a set S of n points in IR3, divided into two concept classes \red"and \blue," deciding if is there a linear decision tree T with at most k nodes that separatesthe red points from the blue points is NP-complete.Proof: First, let us observe that this problem is in NP. This is because each candidatesplit in a linear decision tree is determined by 3 points, hence, there are �(n3) candidatesplits. We can therefore guess k splits and a tree structure with one of these splits at eachnode, and we can then test that this decision tree separates all the red and blue points.To prove the problem NP-hard we reduce Polytope Vertex-Cover to it. For thesake of simplicity, let us allow as input point sets where red points and blue points can\overlap". A complete classi�cation of such a pair of points must therefore have a splitthat passes through this common location in space. (This restriction can be relaxed byforcing such pairs to be separated by an \in�nitesimal" amount �.) Our reduction is basedupon judiciously placing such pairs of points on the edges of Q, the Poincar�e dual to P ,i.e., Q is a convex polyhedron whose 1-skeleton is the graph-theoretic planar dual to the1-skeleton of P . Thus, a face cover in Q corresponds immediately to a vertex cover in P .We place two red-blue pairs along each edge of Q so that the only way four such pairscan be co-planar is if they all lie on the same face of Q. Let S denote this set of red andblue points. Note that, since Q is a convex polyhedron, each face of Q contains at leastsix pairs of points in S. This construction can all be done in polynomial time.We claim there is a k-node decision tree for S if and only if there is a k-face face-coverfor Q. First, note that if there is a k-face face-cover for Q, then there must be k planesthat collectively contain all the pairs in S; hence, there is a k-node decision tree for S. Forthe more di�cult direction, suppose there is no k-face face-cover for Q; that is, any facecover requires more than k faces. This implies that any decision tree restricted to splitscontaining faces of P must have more than k nodes. Note, however, that each such splitcontains at least six pairs of points in S whereas any other type of split contains at mostthree pairs of points in S. Therefore, since each pair of points in S must be contained insome split, there must be more then k nodes in any decision tree that completely separatesthe pairs in S.5 ConclusionWe have examined several geometric optimization problems in IR3 and shown them to beNP-complete or NP-hard. A key technique in each of our proofs is a linear-time methodfor realizing c-stellations of 3-connected 3-regular or triangulated planar graphs as convexpolyhedra in IR3 using only a polynomial number of bits. An interesting open problemis whether it is possible to produce such representations of arbitrary 3-connected planargraphs in linear time.Incidentally, another well-known instance of a geometric optimization problem forpolyhedra, which we did not consider is polyhedral separability, which has been the subjectof extensive research, e.g., see [1, 9, 15, 17, 26, 28, 27, 31]. For example, a heavily-studied12
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