
DynaCet: Building Dynamic Faceted Search
Systems over Databases

Senjuti Basu Roy#, Haidong Wang#, Ullas Nambiar∗, Gautam Das# and Mukesh Mohania∗

#Dept of Computer Sci. and Engg., University of Texas at Arlington. Arlington, TX, USA.
{roy,haidong.wang,gdas}@cse.uta.edu
∗IBM India Research Lab. New Delhi, India.

{ubnambiar,mkmukesh}@in.ibm.com

Abstract— Extracting information and insights from large
databases is a time-consuming activity and has received con-
siderable research attention recently. In this demo, we present
DynaCet - a domain independent system that provides effective
minimum-effort based dynamic faceted search solutions over
enterprise databases. At every step, Dynacet suggests facets
depending on the user response in the previous step. Facets
are selected based on their ability to rapidly drill down to the
most promising tuples, as well as on the ability of the user to
provide desired values for them. The benefits provided include
faster access to information stored in databases while taking into
consideration the variance in user knowledge and preferences.

I. I NTRODUCTION

Facilitating effective search for data records within vastdata
warehouses is one of the primary challenges in recent years.
For example, the warehouse of a large financial institution
such as a bank contains information about its customers, their
accounts and transactions and so on. Data is usually orga-
nized into multiple tables in such cases, each with numerous
attributes (facets). These databases are used by enterprise users
having diverse needs and expertise. For example, a data analyst
might look for insights into customer behavior and hence
needs to browse through a large subset of the database, while
a customer service representative may only need to extract few
tuples to answer a customer query. In either case, users have
to formulate queries to get the required information. Of course
if the relevant tuple is uniquely identifiable by an identifier,
this problem is trivial. But in most real applications the user
only has partial information about the tuple (e.g., perhapsthe
values of a few of its attributes) and thus it is necessary to
enable an effective search procedure.

In recent years, faceted search [1] has received considerable
research attention as an alternative to traditional querying
mechanisms (SQL for database and keyword search for IR
systems). One of primary reason is its ability to let a user
iteratively define the intended query by adding or removing
constraints (facet bindings) while browsing the data. This
considerably reduces the burden on the user, as she needs
not create the perfect query upfront - often a problem most
users face when querying over third-party data sources whose
underlying data distribution is hidden from the user. In partic-
ular, faceted interfaces are now available in many e-commerce

web sites such as Amazon.com1 and Ebay2, over bibliographic
databases like DBLP3 and for browsing document collections4.
However, current solutions for faceted search require prede-
fined taxonomies over the facets. This makes the solutions
too time consuming to deploy as one must first develop a
universally acceptable taxonomy. In addition, they work pri-
marily for small number of facets, typically in the range of 15-
205. This problem becomes particularly difficult in enterprise
databases where each database can have hundreds of attributes
(facets). Current faceted search solutions become ineffective
in such cases as they need to have a built-in taxonomy and
also do not easily support large number of facets. In fact,
during evaluations, we found static faceted search interface to
be inefficient and cumbersome for exploring databases with
large facet sizes such as the Yahoo Auto database6 which has
large number of attributes.

In this demo, we presentDynaCet[2]- a middleware system
that sits between the user and the database and dynamically
suggests facets for drilling down into the database. The facet
suggestion model is driven by our intent to provide aminimum-
effort database exploration solution for enterprise users. We
focus on a simple but intuitive metric for measuring effort:
the expected number of queries that the user has to answer in
order to reach the tuples of interest.
The DynaCet Approach: The faceted search techniques de-
veloped by DynaCet will present the user with a set of queries
after every refinement step - where each query consists of an
attribute name and to which the user responds with a value
from its domain. Our solution assumes a one-to-one mapping
between attributes in the database and facets displayed to the
user. Ideally, the refinement process terminates when a unique
tuple has been isolated. We will elaborate our solution using
the example below.
Example: Consider a user searching for a movie in a
MovieDB(Name, Year, Genre, Director, Actor, Color, Lan-
guage). The user may be interested in seeing a specific movie,
but may only know a few of the attributes (such as an “action”

1http://www.amazon.com/
2http://www.ebay.com/
3http://www.l3s.de/growbag/demonstrators.php
4http://flamenco.berkeley.edu/demos.html
5http://www.miskatonic.org/library/facet-web-howto.html
6http://autos.yahoo.com/

movie by “Bruce Willis”); thus a search is necessary to narrow
down the choices.2

A very simple faceted search interface is one where the user
is prompted an attribute (e.g., Actor), to which she responds
with a desired value (e.g., “Bruce Willis”), after which the
next appropriate attribute (e.g., Genre) is suggested to which
she responds with a desired value (e.g., “Action”), and so on.
Thus thefirst challengeis to judiciously select the facets to
be suggested, so that the user reaches the desired tuple(s) with
minimum effort. The task then is to develop a faceted search
solution that minimizes the average number of facets shown.
Variants of this problem have been considered in the contextof
interactive question-answering systems [3]. We adopt a simple
approximation algorithm from [3] based on constructing a
decision tree with minimum average height (construction of
an optimal decision tree is shown to be NP-complete). Each
node of the tree represents an attribute, and each edge leading
out of the tree is labeled with a value from the attribute’s
domain.

However, current solutions (such as [3]) for building one
such tree assumes that a user is able to answer questions
on any attribute equally well. This is inapplicable in many
situations; for example, a movie might be best disambiguated
by specifying its Cinematographer, but in most instances the
user is unlikely to know the right value to bind this attribute.
Hence, thesecond challengewe have to deal with is the
problem of uncertainty in user knowledge in the facet selection
process. In particular, the uncertainty over an attribute refers
to the probability of the user being able to provide a desired
value for that attribute. We solve this challenge by extending
the decision tree model [3] to account for such attribute
uncertainties.

Our solution also works when the underlying data source
provides aranked list of tuples. This is a novel problem
area in faceted search and makes DynaCet the first solution
for this problem. We view the ranking as imposing askew
over the user preferences for the selected tuples, and thus
DynaCet would select the facet that directs the user towardsthe
most preferred tuples as efficiently as possible. This introduces
further complications since these tuple preferences (or ranks)
may change as the faceted search progresses.

An additional challenge is raised by the fact that the facet
generation process must have real-time response. This happens
when the user begins by asking an SQL or keyword query and
then wishes to switch to a faceted interface for browsing the
result. Dynacet provides scalable implementations of all the
algorithms that uses principles of the Rainforest [4] framework
to avoid multiple scans over the database for building scalable
decision trees.

II. T HE DYNACET SYSTEM

The architecture of DynaCet and the flow of information
through the system is illustrated in Figure 1. The front-end
of the system is a web-based user interface which enables
user to build queries and provides navigational access intothe
database. The back-end consists of two components, theFacet
Componentand theRanking Component. DynaCet is domain

independent and requires read-only access to the underlying
database, thus making it implementable over any database
system.

Fig. 1. Architecture of DynaCet

We have implemented our algorithms by leveraging the
scalable decision tree framework Rainforest [4]. TheFacet
Generationmodule supports two modes of exploration over
the facets -Browse OnlyandSearch and Browse. In theBrowse
Only mode, a typical browsing session begins by showing
suggested facets to the user. A user simply needs to select
one of the facet values in order to move on to the next step in
browsing. In this mode, the entire database is to be explored,
hence the facet generation module uses pre-computed decision
trees. However, for theSearch and Browsemode, a more
dynamic scenario is investigated. Here, a user can typically
begin her search session by specifying one or more of her
preferences in the form of a query. Next, the resultant tuple
set is retrieved by DynaCet and faceted search is enabled on
that set. Hence, in this case, decision trees are constructed
online over search results. Essentially, we build a partialtree
with a few “look ahead” nodes and then stay in sync with
the user while she is exploring the partially constructed tree.
Each of these two above mentioned mode can also work in
conjunction with a Ranking component, where the Ranking
module imposes askew over the user preferences for the
selected tuples. Different problem variants of DynaCet are
discussed in more detail in [2].

A. Dynamic Single-Facet Generation

Essentially, a minimum-effort driven dynamic faceted
search solution will involve building a decision tree that
identifies each tuple unambiguously by testing the attribute
values. Each node of the decision tree represents an attribute,
and each edge leading out of the node is labeled with a value

from the attribute’s domain as shown in Figure 2(b) (a toy
movie database example).

(a) A small movies database (b) An optimal decision tree
Fig. 2. A Small Movie Database and an Optimal Decision Tree

The intuition behind constructing such a decision tree is to
make the attribute that disambiguates the maximum number
of pairs of tuples as the root of the tree, where an attributeAl

is said to disambiguate a pair of tuplesti, tj if ti[l] 6= tj [l].
Picking the attributeAl as the root node partitions the database
D into disjoint tuple setsDx1

, Dx2
, . . . , Dx|Doml|

, where each
Dxq

is the set of tuples that share the same attribute valuexq

of Al andDoml is the domain7 of Al. Using this intuition, we
seek to select as root attributeAl that minimizes the function

Ambiguous(Al, D) =
∑

1≤q≤|Doml|

|Dxq
|(|Dxq

|−1)/2 (1)

This process is recursively repeated for all setsDxq
, until each

set reduces to a single tuple. We incorporate the uncertainty
in user knowledge by assuming that users can respond to
a question by either (a) providing the correct value for an
attribute, or (b) with a “don’t know”. In either case, the system
responds by suggesting a fresh attribute (facet). Detailed
solution approaches of DynaCet can be found at [2].

B. Suggesting Multiple Facets

The solution above presents users with a single new facet
at each step. To improve search effectiveness, it may be
preferable to present the user with multiple facets at each step.
m-Facets Selection:DynaCet can suggest a set ofm-Facets
at every step wherem is defined by the user. However, a user
is restricted to select only one of them facets for further
refinement. The motivation behind such model is to reduce
the probability that a user will follow “don’t know” links.
Specifically, given the set ofm attributesA′′ at the root, the
probability that a user will be unable to answer any of them
questions is

∏

Al∈A′′(1− pl), wherepl is the probability that
the user is able to provide the value forAl. This cumulative
value is smaller than the “don’t know” likelihood for each
attribute. Hence, we expect the navigation to be more efficient
here.
Fixed m-Facets Interface: In certain applications, users
would prefer to be presented with a single static interface,in
which a reasonably large number of attributes are shown, and
the user assigns values to as many of the presented attributes
as she can. If the space available on the interface is restricted

7We assume only categorical attributes; thus numeric attributes are required
to be discretized in a pre-processing step.

such that onlym attributes can be shown (wherem is less
than the total number of attributes), the task is then to select
the best set ofm attributes such that the expected number
of tuples that can be disambiguated via this interface can be
maximized. Our Fixedm-Facets interface is designed towards
achieving this goal.

C. Supporting Skew introduced by Ranked Answers

We also explore whether faceted search procedures can
work in conjunction withranking functions. This is a novel
problem area, and to the best of our knowledge, has not
been investigated before. Given a queryQ, a ranking function
typically assigns relevance scoresS(Q, t) to all selected tuples
t, and a ranked-retrieval system will score and return only the
top-k tuples.

In our approaches, we make one assumption: that the
scores are normalized so that they are (a) positive, and (b)
∑

t selected by Q S(Q, t) = 1. In other words, the ranking
function can be imagined as inducing a non-uniform “proba-
bility distribution” over the selected tuples, such thatS(Q, t)
represents the probability that tuplet is preferred by the user.

We propose solutions to this problem by developing a
greedy heuristic that is motivated by our facet selection ap-
proaches presented earlier. Since the problem is NP-hard even
without a ranking function, this problem too is intractable.
Assume that we are at a particular nodev of the decision
tree. Let Q be the current query at that node. ThusQ is
the initial query at the root, concatenated (i.e., AND’ed) with
all conditions along the path from the root tov. Let D be
the set of tuples of the database that satisfyQ. In this case,
for any attributeAl, functionAmbiguous(Al, D) needs to be
modified as follows:

Ambiguous(Al, D) =
∑

xq∈Doml

∑

ti,tj∈Dxq ,i<j

S(Q, ti) × S(Q, tj)

 (2)

The quantity
∑

t∈Dxq
S(Q, t) is the cumulative scores of all

tuples in Dxq
and intuitively represents the probability that

when the user is at the root, she will prefer any of the tuples
in Dxq

.
Extensions to selecting multiple facets at each step are

similar.

III. D EMONSTRATION

In this demonstration we will showcase DynaCet’s do-
main independent approach for efficiently generating dynamic
faceted search interfaces over databases. Figure 3 shows three
views of a faceted search interface developed over the IMDB8

database. We will give an end-to-end demonstration of the
DynaCet system’s ability to generate minimum-effort faceted
search solutions that supportSingle Facet,m-Facets and
Fixedm-Facetssuggestion algorithms. We will use IMDB and
Yahoo Auto dataset for this demonstration.In DynaCet, our

8http://www.imdb.com

Fig. 3. Screen shot of DynaCet GUI

local copy of IMDB database (nearly20 attributes) and Yahoo
Auto dataset (more than40 attributes) can be queried by the
user. The upper right half of Figure 3 shows the parameter
setting interface of DynaCet through which users will be able
to provide their choices. In general, the demonstration will
focus upon two broad aspects of search -Browse Onlyand
Search and Browse.
Browse Only Mode: In this model, the user does not initiate
the search with a query - rather DynaSet will recommend
facet(s) for her. Consequently, a user is shownm different
facets, to which she responds by selecting a value from one
of the facet domain (or a ”don’t know”). Depending upon the
user response, the next set of facets are dynamically suggested
and the process repeats. The lower half of Figure 3 shows the
interface from a typical browsing session over IMDB using
DynaCet.

This model takes the advantage of a pre-computed decision
tree and thus results in good response time. We will also
provide a comparative evaluation of our proposed solutions
with some existing attribute selection techniques in the demon-
stration. The user will be allowed to choose them-Facets or
the Fixedm-Facets algorithm in this mode.
Search and Browse Mode:In this mode the user will be able
to start the exploration phase by providing a query through
the form interface. The upper left part of Figure 3 shows
the interface for querying. The query form shows only a few
attributes from among the total set of attributes. A larger
set can be seen by going toAdvanced Search. In the figure,
the user has asked for movies with Language=“English” and

Color=“Color” which then results in only three dynamically
generated facets being shown to the user.
Faceted Search in Conjunction with Ranking Function:
The user will have an option of choosing an appropriate
ranking function from the list of available ranking functions
(provided as a drop-down list). A comparative cost evaluation
between our proposed solution and a prior attribute ordering
method [5] will also be shown.

IV. SUMMARY

In this demonstration, we present DynaCet - a domain inde-
pendent system that provides effective minimum-effort based
dynamic faceted search solutions over enterprise databases.
DynaCet’s contributions include - (1) an efficient approachfor
generating facets for minimum-effort navigation over enter-
prise databases and (2) extensions that use uncertainty models
over attributes as well as skew in tuple preference introduced
by ranked-retrieval models.

REFERENCES

[1] E.Stoica, M.Hearst, and M.Richardson, “Automating creation of hierar-
chical faceted metadata structures,” inNAACL-HLT, 2007.

[2] S. Roy, H. Wang, G.Das, U.Nambiar, and M.K.Mohania, “Minimum-
effort driven dynamic faceted search in structured databases,” in CIKM,
2008.

[3] V.T.Chakravarthy, V.Pandit, S.Roy, P.Awasthi, and M.Mohania, “Decision
trees for entity identification: Approximation algorithmsand hardness
results,” inPODS, 2007.

[4] J.Gehrke, R.Ramakrishnan, and V.Ganti, “Rainforest - aframework for
fast decision tree construction of large datasets,” inDMKD, 2000.

[5] G.Das, V.Hristidis, N.Kapoor, and S.Sudarshan, “Ordering the atributes
of query results,” inSIGMOD, 2006.

