
ELSEVIER Computational Geometry 7 (1997) 37-57

C o m p u t a t i o n a l
G e o m e t r y

Theory and Applications

LR-visibility in polygons

Gautam Das 1, Paul J. Heffernan, Giri Narasimhan

Mathematical Sciences Department, The University of Memphis, Memphis, TN 38152, USA

Communicated by Anna Lubiw and Jorge Urrutia; submitted 29 September 1993; accepted 13 June 1995

Abstract

We give a linear-time algorithm which, for a simple polygon P, computes all pairs of points s and t on P
that admit LR-visibility. The points s and t partition P into two subchains. We say that P is LR-visible with
respect to s and t if each point of P on the chain from s to t is visible from some point of the chain from t
to s and vice-versa.

Keywords: Polygonal visibility; Weak visibility

1. Introduction

We consider here the LR-visibility problem for simple polygons. Let P be a simple polygon rep-
resented by a simple, closed, polygonal chain. Any two points s and t on P partition P into two
subchains, which we call L and R, for left and right chains. The LR-visibility question asks whether
each point of L can see a point of R, and whether each point of R can see a point of L. If the answer
is yes, we say that P is LR-visible with respect to s and t. Fig. 1 shows a polygon that is LR-visible
with respect to some pair of points (or simply LR-visible), and Fig. 2 one that is not LR-visible with
respect to any pair of points (or not LR-visible).

We state four versions of the LR-visibility problem for a polygon P:
1. determine whether a given pair s and t admits LR-visibility;
2. determine whether there exists a pair s and t which admits LR-visibility;
3. return a pair s and t which admits LR-visibility, if indeed such a pair exists;
4. return all pairs s and t which admit LR-visibility.
Version (4) is the strongest, and an algorithm for it also solves the first three versions. In this paper
we solve to optimality the strongest version: we give a O(n)-time algorithm that computes all pairs
of points s and t that admit LR-visibility for a simple polygon P with n vertices. The output is in
the form of O(n) pairs of subchains S~ and T~, such that any pair of points s E Si and t E T~ is a

Supported in part by NSF Grant CCR-930-6822.

0925-7721/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved
SSDI 0925-7721 (95)00042-9

38 G. Das et al. / Computational Geometry 7 (1997) 37-57

S3

r l

rl

Fig. 1. An LR-visible polygon.

Fig. 2. A polygon which is not LR-visible.

valid pair s and t. Even though there may be an infinite number of LR-visible pairs, the output can
be represented in O(n) space. In Fig. 1, the output subchains ($1, T1) , . . . , ($4,T4) are shown.

The question of LR-visibility falls in the larger area of weak visibility in polygons. To say that
two sets are weakly-visible means that every point in either set is visible from some point in the
other set. A simple polygon P is weakly-visible from an edge e if e and P \ e are weakly-visible.
A weakly-visible chord c of P is one such that c and P are weakly-visible. A polygon is LR-visible
with respect to s and t if its corresponding left chain L and right chain R are weakly-visible.

One interesting class of weak visibility problems is obtained by investigating paths that one or more
guards can traverse along so that every point of a simple polygon is visible from some point on the

G. Das et al. / Computational Geometry 7 (1997) 37-57 39

paths. In this sense, for a polygon P every LR-visible pair of points (s, t) defines such a path (either
the left (or right) subchain from s to t) for one guard.

Weak-visibility has received much attention from researchers. The term was first introduced by Avis
and Toussaint [1], who gave a linear-time algorithm which determines whether a polygon is weakly-
visible from a given edge. Sack and Suri [14] gave a linear-time algorithm which for a polygon
computes all weakly-visible edges, and Chen [3] gave an optimal parallel algorithm for this problem.
Chen has also solved the problem of computing the shortest subedge (connected subset of an edge)
from which a polygon is weakly-visible [4]. Ke [11] and Doh and Chwa [7] have given O(n log n)-
time algorithms which determine whether a polygon has a weakly-visible chord, and if so construct
one; Ke's algorithm is able to return the shortest such chord. Recently, Das et al. [6] have produced
an O(n)-time algorithm which constructs all weakly-visible chords.

Heffernan [9] has given a linear-time algorithm which determines whether P is LR-visible with
respect to a pair of points s and t. An O(n log n)-time method that computes all LR-visible pairs s
and t is given by Tseng and Lee [15]. In both papers the authors are actually addressing a more
complex problem is polygonal visibility called the two-guard problem, of which LR-visibility is a
subproblem. Their results imply that before this paper, the weakest form of the LR-visibility problem,
version (1) above, has been solved to optimality, while the strongest form, version (4), had been solved
with an O(n log n) time-bound. This paper solves version (4) to optimality by presenting a O(n)-time
algorithm.

This paper is of interest not only because we present an optimal result for an intriguing problem in
polygonal visibility, but also on account of the techniques we employ, and because of the relationship
between LR-visibility and other problems in polygonal visibility, such as the two-guard problem and
the weakly-visible chord problem. LR-visibility is a subproblem of the weakly-visible chord problem,
in the sense that a chord c partitions P into two subchains which must be weakly-visible in order for c
to be a weakly-visible chord. In a recent paper [6], the authors exploit this relationship by using the
result of the present paper as a subprocedure.

A similar relationship exists for the two-guard problem. While it has many formulations, we will
state just one for the sake of illustration: a polygon P is walkable from point s to point t if one
"guard" can traverse the left chain L and the other the right chain R from s to t while always
remaining covisible. Other formulations require that the guards to move monotonically or that one
guard traverses from t to s. As for LR-visibility, different versions of each formulation exist, such
as testing a fixed pair s and t, determining if a pair s and t exists, and finding one or all pairs s
and t. LR-visibility is a subproblem of two-guard, in the sense that a polygon must be LR-visible with
respect to s and t in order to be walkable for that pair. Thus, algorithms which solve a version of the
two-guard problem must also solve a version of LR-visibility, and some examples were listed above.
Since the present paper solves the strong version of LR-visibility to optimality, it may prove to be an
important step towards producing stronger results for the two-guard problem, just as it has already for
the weakly-visible chord problem.

The paper is organized as follows. Section 2 describes the notation for the paper, as well as some
of the preprocessing that is needed by the algorithm. Section 3 introduces some properties of LR-
visible pairs of points. Section 4 contains the heart of the paper and describes how to compute all
nonredundant components, while Section 5 uses that to compute all LR-visible pairs of points. Our
conclusions are summarized in Section 6.

2. Preliminaries

Y2

We define notation for this paper. A polygonal chain in the plane is a concatenation of line segments.
The endpoints of the segments are called vertices, and the segments themselves are edges. If the
segments intersect only at the endpoints of adjacent segments, then the chain is simple, and if a
polygonal chain is closed we call it a polygon. In this paper, we deal with a simple polygon P
of n vertices, and its interior, int(P). The segment between two points x and y is denoted ~--9Y,
and int(~--ffV) = ~--ffy\{x, y}. Two points x, y E P are visible (or covisible) if ~ C P tA int(P). The
(Euclidean) distance between two points x and y is denoted dist(x, Y). We assume that the input is in
general position, which means that no three vertices are collinear, and no three lines defined by edges
intersect in a common point.

If x and y are points of P, then Pcw(x, Y) (Pccw(x, Y)) is the subchain obtained by traversing P
clockwise (counterclockwise) from x to y. The subchains Pcw(x,v) and Pccw(x,y) includes their
endpoints x and y. Subchains may also be denoted by S, or T/(which is the notation used for repre-
senting the output of the algorithm of the paper). These subchains are assumed to be counterclockwise
subchains, i.e., as we traverse from their starting points to their ending points, we would be traversing
along P in the counterclockwise direction. Their starting and ending points will also be called their
left and right endpoints, respectively.

We let d(x, y) denote the direction of a ray or line from x through y, and #'(x, (x) represent the
ray rooted at x in direction o~. Two rays with common endpoint x partition the plane into two
regions, each of which is the union of a set of rays with endpoint x. A cone is defined as the region
containing all rays encountered as we sweep counterclockwise from f'(x, Yl) to ~'(x, Y2), and is denoted
as cone(d(x, Vl), d(x, Y2)) (or c o n e (y l , x , Y2)) (see Fig. 3). We can also think of a cone as an interval
of directions. We write int(cone(yl, x, V2)) to represent cone(yl, x, y2)\{r'(x, Yl), ~'(x, Y2)}, a cone
minus its boundary directions. For a vertex x of P, let x + be the vertex adjacent to x in the clockwise
direction, and x - the vertex adjacent in the counterclockwise direction. For a point w E P which
is not a vertex, let w - and w + be the endpoints of the edge containing w, in the clockwise and
counterclockwise directions, respectively.

40 G. Das et al. / Computational Geometry 7 (1997) 37-57

X

Fig. 3. Definition of a cone.

G. Das et al. / Computational Geometry 7 (1997) 37-57

Fig. 4. A clockwise component.

41

The ray shot from a point z E P in direction ~ consists of "shooting" a "bullet" from z in
direction o~ which travels until it hits a point of P. Formally, for a ray ~'(z, o~) rooted at z, where
o~ E int(cone(x +, x, x -)) , the hit point of this ray shot is the point of (P \{x}) N ~'(x, ~) closest to x.
We will sometimes denote a ray shot by writing its corresponding ray. Note that the ray shot ~'(x, o~)
is defined only if a E int(cone(x +, x, x -)) .

Each reflex vertex defines two special ray shots as follows. We let r'cw(v) = Y(v, d (v - , v)) represent
the clockwise ray shot from v. If v ~ is the hit point of the clockwise ray shot, then the subchain
Pew(v, v') is the clockwise component of v (see Fig. 4). Counterclockwise ray shots and components
are defined in the same way. A component is redundant if it is a superset of another component.

We say that a set of points x l , . . . ,xk on P appear in counterclockwise order if, starting at xl, a
counterclockwise traversal of P encounters the points in the order given. A counterclockwise order is
not unique because of the starting point; e.g., the following orders are equivalent: (1) x, y, z; (2) y, z, x;
(3) z , x , y .

The shortest path between two vertices w and v of P, denoted SP(w, v), is the (Euclidean) minimum-
distance curve with endpoints w and v lying entirely in P tO int(P). Shortest paths are unique. This
means that two shortest paths cannot cross twice, since this would imply distinct shortest paths between
a pair of points. The path SP(w, v) is always a polygonal chain, whose interior vertices are also vertices
of P. This can be seen by a local analysis: if one of the above two conditions is violated, some small
amount of local improvement is possible. By a similar argument, we have the following.

L e m m a 1. If w and v are vertices of P, and SP(w,v) is the shortest path directed from w to v, then
any vertex of SP(w, v) \{w, v} that lies on Pcw(w,v) is a left turn, while a vertex of SP(w, v) on

Pccw(w, v) is a right turn.

We write FE(w, v) to denote thefirst edge of SP(w, v); that is, the edge of SP(w, v) incident to w.
The direction of this edge away from w is denoted dFE(w, v). The parent of w is the vertex of SP(w, v)
adjacent to w; in other words, it is the other endpoint of FE(w, v). The following is a simplification
of a lemma established in [9].

42 G. Das et al. / Computational Geometry 7 (1997) 37-57

Y

x - x +

cone(riFE(x, y), d(x, x-)) cone(d(z, x+), dFE(z, y))

Fig. 5. Proof of Lemma 2.

Lemma 2. Given points x and y of P, and a direction a E int(cone(x +, x, x -)), the ray shot 7V(x, a)
hits Pccw(x, Y) if a E int(cone(d(x, x+), dFE(x, y))). Also, if a E int(cone(dFE(x, y), d(x, x -)))
then it hits Pcw (x, y).

Proof. By a slight modification of the proof of [9, Lemma 3] (see Fig. 5). []

We define an order query as follows. Given distinct vertices x and y of P and given a direction
a E int(cone(x +, x, x -)) . Let x' denote the hit point of the ray shot ?'(x, a). An order query answers
whether x ~ lies on Pccw(x, y) or Pcw(x, y). In other words, it tells whether the three points obey the
counterclockwise order x, :J, y or x, y, x ~. If we perform an order query with a reflex vertex x and
with either the clockwise or counterclockwise ray shot from x, then x ~ is not a vertex by the general
position assumption. Thus, if y is also a vertex, the order query has only one correct response.

To answer order queries efficiently, our algorithm uses shortest path information. The shortest path
tree from a vertex v of P, denoted SPT(v), is the union of all shortest paths SP(v, w), for w a
vertex of P. For a simple polygon P, the shortest path tree from a vertex v can be constructed in
O(n) time [8]. In [9], a method is described which for a vertex v allows one to return FE(w, v) and
dFE(w, v) for any point w E P in O(1) time, after O(n) preprocessing time (note that w E P is not
necessarily a vertex). As a subprocedure this method constructs SPT(v) by using the algorithm of [8].

Being able to return dFE(w, v) for any point w E P in constant time after linear-time preprocessing
means (by Lemma 2) that one can perform order queries from a vertex v in constant time. When this
happens, we say that "a polygon P is preprocessed for order queries from vertex v".

A similar result holds even for subpolygons of P. Let x and y be points of P such that ~ is
a chord, and let P~ = Pccw(x, y) t_J ~-ffy. For two points v and w in P~, the shortest path between
them in Pt is the same as their shortest path in P. Consequently, if for a given vertex v E Pt we
perform the preprocessing step of [9], then we can perform constant-time order queries within P (not
merely Pt) for v and ray shots from a point w E Pccw(x, y). The preprocessing time is proportional

G. Das et aL / Computational Geometry 7 (1997) 37-57 43

to the number of vertices of P ' , which is the number of vertices on Pccw(x, y). When this happens,
we say that "the subpolygon P~ is preprocessed for order queries from v." We summarize below.

Lemma 3. Given a subpolygon P' of P (which may or may not equal P), and a vertex v o f P~. I f P'
is preprocessed for order queries from v, then for any point w of P~ and direction (~ such that the ray
shot ~'(w, t~) is defined in P', one can determine in O(1) time whether the ray shot hits Pcw(w, v) or
Pccw(w, v). The preprocessing of P' can be achieved in time linear in the number of vertices of P'.

In the remainder of the paper, when we say that P' has been preprocessed for order queries from v,
we mean that the preprocessing necessary to apply Lemma 3 has been performed.

3. Properties

In this section we describe some of the properties of LR-visible pairs of points.
As noted in [10], the family of cQmponents completely determines LR-visibility of P, since a pair

of points s and t admits LR-visibility if and only if each component of P contains either s or t. The
definition of redundant gives the following.

Lemma 4. A polygon P is LR-visible with respect to s and t if and only if each nonredundant
component of P contains either s or t.

We now state a simple consequence of the above lemma.

L e m m a 5. A polygon P with three disjoint components is not LR-visible.

Proof. Given a pair of points s and t, if a polygon has three disjoint components, then one of the
components necessarily contains neither s nor t. By Lemma 4, the polygon cannot be LR-visible. []

Lemmas 4 and 5 explain why the polygon in Fig. 1 is LR-visible, while the polygon in Fig. 2 is not
LR-visible. In the latter, any point s on a subchain Si is LR-visible to any point t on the corresponding
subchain Ti. We now describe Si and T~ more rigorously. The endpoints of nonredundant components
partition P into a collection of intervals that we call basis intervals, and denote S 1 , . . . , S/c, ordered
counterclockwise. Note that components include their endpoints. Thus a basic interval may or may not
contain either of its endpoints. A nondegenerate basic interval would contain its left (right) endpoint
if and only if it is the left (right) endpoint of a component. A reflex vertex defines a degenerate basic
interval consisting of a single point. By Lemma 4, all points of a basic interval form LR-visible pairs
with the same collection of partners. Thus, we denote as Ti the set of points such that (x, y) is an
LR-visible pair for all x C Si and y E T/. In Fig. l, the LR-visible partners of S l , . . . , $4 have been
shown, because the remaining basic intervals do not provide any new LR-visibility information.

Lemma 6. Ti is a connected set; that is, it is either P, the empty set, or a non-empty subinterval
of P composed of the union of adjacent basic intervals.

Proof. By Lemma 4, T~ is either the entire polygon P, the empty set, or the union of basic intervals.
In the last case, suppose the basic intervals are not adjacent. Them there exist points w, x, y and z in

44 G. Das et al. / Computational Geometry 7 (1997) 37-57

counterclockwise order, where w, y E Ti and x, z ~ Ti. Let 7) be the set of nonredundant components
that do not intersect Si. Since w and y are in Ti they intersect every component of :D; thus each
component of 7) intersects at least one of x and z. If x (z) were to intersect all components of :D then
x (z) would be in Ti, so there must be at least one component of 7) which does not contain x (and
thus contains z) and another which does not contain z (and thus contains x). These two components
cover P (their union is P), so at least one of them intersects Si, a contradiction. []

Lemma 7. If, f o r a basic interval Si, we have Si f3 Ti # O, then Ti = P.

Proof. Take a point x E Si N Ti. The pair (x, x) is LR-visible, which by Lemma 4 implies that x
intersects all components, which implies that for any y E P we have that x and y together intersect
all components and thus form an LR-visible pair. []

As the basic intervals S 1 , . . . , Sk are ordered counterclockwise on P, it can be shown also that
the sets of starting and ending points of T l , . . . , Tk are also respectively ordered counterclockwise.
In fact, as one moves counterclockwise from Si to Si+l, one either leaves or enters a nonredundant
component, which may result in either the starting or ending endpoint of Ti moving counterclockwise
in order to form Ti+l.

4. Nonredundant components

We discuss here our method for constructing all nonredundant components of a polygon P. The main
tool is a procedure which produces a superset of all nonredundant clockwise components. A symmetric
procedure does the same for counterclockwise components. From these two sets the nonredundant
components in sorted order can be extracted, as we will now show.

Suppose we have a set of clockwise components which contains all the nonredundant ones. As we
traverse P in clockwise order, we encounter a beginning point and an ending point of each component.
Since the beginning points are vertices of P , they can be sorted in linear time. Suppose we traverse P
twice counterclockwise. Each time we encounter a beginning point, we compare the ending point
of the component to the ending point of the previous component; if the current component contains
the previous component, then the current component is redundant and therefore is deleted from the
list of components. We must traverse P twice since one of the first components considered may
be redundant with respect to one of the last ones. After an analogous procedure is performed for
counterclockwise components, we have two lists of components, each in sorted order, which can be
merged and pruned of redundant components in linear time to obtain a sorted list of all nonredundant
components.

Constructing the components with standard ray shooting techniques would yield a time bound of
O(n logn) , since each shot requires O(logn) time [5]. By strategically choosing not to construct
certain redundant components, our algorithm is able to perform faster.

Throughout this section we employ the following notation: if v is a reflex vertex of P then v ~ is
the other endpoint of the clockwise component rooted at v. Thus Pcw(v, v ~) is a clockwise compo-
nent. We now give the procedure which constructs a superset of the nonredundant clockwise compo-
nents.

G. Das et al. / Computational Geometry 7 (1997) 37-57 45

4.1. Constructing all nonredundant clockwise components

The outline of the procedure is as follows. We fix a vertex x0 of P , and initialize a set Szo +- 0 which
will contain clockwise components. We traverse P once counterclockwise from x0 with a pointer a.
Whenever a encounters a reflex vertex, we possibly compute a ~ and add the clockwise component
Pcw(a,a') to Sx,,. The component Pcw(a,a') is not added to Sxo only if Pcw(a,a') is redundant
with respect to the component most recently added to Szo. Thus, at termination Szo is a superset of
all nonredundant clockwise components.

At any moment of execution the procedure has a fixed vertex x, initially set to xo, where P has
been preprocessed for order queries from x. In addition to the pointer a used to find reflex vertices,
the procedure maintains a pointer b which is used to find the clockwise hit points of the reflex vertices.

There is one caveat to the above description: the procedure may terminate early. However, we will
show that early termination occurs only if P has three pairwise disjoint clockwise components, and we
know from Lemma 5 that a polygon with three pairwise disjoint components has no LR-visible pairs.
The possibility of early terminat ionarises out of the need to maintain an invariant, namely that the
points x, a, b occur in counterclockwise order. If a encounters a reflex vertex with a / E Pccw(x , a),
then attempting to set b equal to a I will. violate the invariant. This requires that we "restart" the
procedure by setting x and b equal to a, and continuing the traversal with a using this new value of x.
(The original value x0 is stored, for if a reaches x0 all clockwise ray shots have been examined and
the procedure is complete.) Later we will show that if we are asked to "restart" a third time, then P
has no LR-visible pairs (Corollary 1), which permits us to halt. The variable COUNT in the procedure
keeps track of the number of restarts.

We now give the pseudocode.
1. Choose a vertex xo; set COUNT +- 0 and S'~ o +- 0.
2. Set x +- xo.
3. Compute SPT(x); set a, b +-- x.
4. (b ---- a)

Traverse P counterclockwise with a = b until a encounters a reflex vertex or a encounters x0; if
a encounters x0 then RETURN Szo.

5. (a is a reflex vertex)
Test whether a ~ E Pccw(x , a); if so, set x +-- a and COUNT +- COUNT +1, and if COUNT = 3
then RETURN "early termination: there exist three pairwise disjoint components" else go to (3).

6. (a / E Pccw(a , x), so we look for a ')
Set closest(a) +-- ~ .

7. Traverse P counterclockwise with b until b lies on r'cw(a); test whether b = a~; if not then set
closest(a) +-- min{closest(a), dist(a, b)} and goto (7).

8. (b = a')
Add Pcw(a , b) to Sx0; set B, z ~- a and yl, z t +-- b.

9. Construct SPTpy (y').
10. (b C a a n d b - = z ')

Traverse counterclockwise with a until a encounters a reflex vertex or a encounters yl.
11. If a = z ~ = y~ then goto (4).
12. If a = z ~ ¢ yl then set y 4- z and y~ ~-- z ~ and goto (9).

46 G. Das et aL / Computational Geometry 7 (1997) 37-57

13. (a is a reflex vertex)
Test whether a ~ E Pccw(x, a); if so, set x +-- a and COUNT +-- COUNT +1, and if COUNT = 3
then RETURN "early termination: there exist three pairwise disjoint components" else goto (3).

14. (a ' E Pccw(a ,x))
Test whether a' E Pccw(a, Y'); if so then goto (10).

15. (a 'e Pccw(y',x))
If y = z (i.e., y' = z') then goto (18).

16. (test whether a' C Pccw(Y', z'))
If z(a) E SP(z ' , ' r) \{7} then goto (10).

17. Traverse SP(z', y~) forwards with T until reaching T(a); if the direction of Ycw(a) is to the right
of d(a, then goto (10).

18. (a' E Pccw(z ' , x), so we look for a ~)
Set closest(a) +- ~ .

19. Traverse counterclockwise with b until b lies on r'cw(a); test whether b = a~; if not then set
closest(a) +-- min{closest(a), dist(a, b)} and goto (19).

20. (b = a')
Add Pcw(a, b) to Szo; construct SP(b, y') (if z' = y' this is done directly and if z ~ ¢ y~ this is
done by first constructing SP(b, z ~) and merging it with SP(z ~, y~)); set z +-- a and z ~, r +-- b;
goto (10).

21. Output Sz~,.

4.2. Description

In this subsection we give an intuitive description of the above pseudocode procedure.
The procedure maintains a point x which we can think of as an anchor. Under a value of x, the

pointers a and b are initialized to x, and they traverse counterclockwise about P . The invariant that
x, a and b are in counterclockwise order is maintained. In order to verify the invariant as the values
of a and b change, it is necessary that P be preprocessed for order queries from x.

Occasionally it will be no longer possible to maintain the invariant under the current value of x,
because the pointer b is about to traverse past x. In this event the procedure "restarts" itself by
updating the value of x to a. In the pseudocode, this occurs when step 5 or step 13 goes to step 3.
The variable COUNT, initialized to zero, counts the number of "restarts." Since Corollary 1 (given
below) shows that the third restart indicates that P has no LR-visible pairs, the procedure terminates
with this conclusion if COUNT reaches the value three (steps 5 and 13).

We now describe the behavior of the procedure under a fixed value of x. We will refer to several
tests and procedures which are described in the following subsection.

Initially a and b are equal to x. The base operation is a counterclockwise traversal of P with a. At
any moment the points x, a, b are in counterclockwise order, but the point b may or may not equal a.
At times b will not be equal to a because it has traversed counterclockwise on its own in order to find
a hit point a ~ (steps 7 and 19). If b = a then while a traverses we maintain b = a (step 4). When a is
a reflex vertex, the counterclockwise order a, b, a' is obeyed, where b may or may not equal a'.

If a encounters x0 then all reflex vertices have been considered, thus the procedure returns Szo and
is complete (step 4).

G. Das et al. / Computational Geometry 7 (1997) 37-57

z'

Fig. 6. SP(z',y').

47

Suppose a reaches a reflex vertex and b = a (step 5). The fact that b = a implies that a has not yet
reached a reflex vertex under this value of x, or a has traversed past the hit point z t of the most recently
constructed component. First we test in O(1) time by an order query whether a t E Pccw(x , a), and if
so we must "restart" by setting x +-- a; if this is the third restart we halt and declare that there are no
LR-visible pairs, otherwise we proceed with this new value of x (we go to step 3). If a t E Pccw(a , x)
we continue as follows. We find a t (in steps 6 and 7) by traversing counterclockwise with b until b
encounters a t, and we add the component Pcw(a,a') to Szo. The value closest(a), initialized to c¢
in step 6, is the distance from a of the closest point b E ~cw(a) considered so far as a candidate
for a t in step 7; we have dist(b, a) = closest(a) if b = a' , and the method which tests whether b = a '
(Lemma 9 below) requires closest(a). We set y, z +- a and y' , z' ¢-- a ' (step 8), and preprocess the
subpolygon

Py = Pccw(Y, Y') U yy'

for order queries from yt (step 9).
Suppose a reaches a reflex vertex and b # a (step 13). The fact that b # a implies that a has not

yet reached the hit point z t of the most recently constructed component, and that b = z t. As shown in
Fig. 6, the following invariant holds: a lies on Pccw(y, yt) where Py has been preprocessed for order
queries from yt, the component Pcw(z, z t) is the one most recently added to Szo, the counterclockwise
order x, y, z, a, yt, z t holds, and SP(z t, yt) has been constructed (we may or may not have y = z). We
first test whether a t E Pccw(x , a), and if so we "restart" as described above. If a t E Pccw(a, x) we
test whether a t E Pccw(a, yt) (step 14; we use an order query within Py), and if the answer is no we
test whether a t E Pccw(Y t, z t) (steps 15-17). Efficiently testing whether a t E Pccw(Y t, z t) requires
use of SP(z t, yt) and several tangent points T and T(a); the use of these points will be explained
in the next subsection. I f the answers to any of the tests in steps 14-17 turn out to be yes, i.e.,
a' E Pccw(a,Y') or a t E Pccw(Yt, Z ') then Pcw(a,a') is redundant with respect to Pcw(z , z ') , so
we do not compute a t (we go to step 10). If we determine that a t E P¢cw(z t, x), then we compute
a t by traversing counterclockwise with b from z t until reaching a t, and we add Pcw(a , a t) to Szo
(steps 18-20; again, closest(a) assists in the test of determining whether b = at). We set z +-- a and

48 G. Das et al. / Computational Geometry 7 (1997) 37-57

z ~ +-- a ~ and update SP(z ~, y~) (step 20); the manner in which SP(z t, y~) is updated is described in the
next subsection.

Suppose a reaches y~. If y = z (step 11) then y~ = z ~, so a is about to traverse past z~; thus a
continues its traversal with b = a (i.e., go to step (4)). If y ¢ z (step 12) then we set y +-- z and
y~ +-- z ~ and preprocess Pv for order queries from y~ (the shortest path SP(z t, y~) becomes the single
point z ~ = y~).

4.3. The tests

Several subprocedures are referred to in the pseudocode. These are testing whether a ~ E Pccw (Y~, z ~)
(step 16), and being able to determine whether a point b = a ~. We will soon describe how to perform
these tests efficiently. We will also show that early termination occurs only if there are no LR-visible
pairs. First we show that being able to perform the above tests yields a correct algorithm.

If the procedure does not terminate early, then the pointer a makes one complete traversal of P,
so every reflex vertex is considered. If a' E Pccw(x, a) then the component Pcw(a, a') is added to
Sx0 after x is reset to a (steps 5 and 13), and in several cases b is used to find a ~. The component
Pcw(a, a') is not added to Sxo only if a ~ E Pccw(a, z'), but in this event Pcw(a, a ~) is redundant with
respect to Pcw(z, z~). Thus, at termination Szo contains all nonredundant clockwise components. If
the procedure terminates early then, by Corollary 1 below, P has no LR-visible pairs.

We now discuss performance of the tests. Steps 15-17 test whether a ~ E Pccw(Y ~, z~). If yP = z t
then we know that a ~ E Pccw(z~,x) and thus go to step 18. If y~ ¢ z ~ then we must test whether
a' E Pccw(Y ~, z'). To do this we use SP(z ~, y~).

In step 16, the tangent from a to SP(z~,y ~) is constructed in order to determine whether a ~ E
Pccw(Y ~, z'). (In this discussion, a tangent segment from a to SP(z ~, y~) is not necessarily a chord
in P.) The point of tangency is denoted r. In general, we let T(X) represent the tangent point on
SP(z', y') from x for a point x E Pccw(z, y') (thus T(Z) = Z~).

First let us discuss the structure of the path SP(z ~, y~). The segments yy~ and zz ~ are chords of P,
and they intersect in a point w in int(P) (see Fig. 6). The closed chain P ' = Pccw(Y', z') tO z 'w tO wy'
is a simple polygon and a subpolygon of P. Thus the shortest path from z ~ to yt within this subpolygon
is the same as within P, and it consists only of left turns (by Lemma 1).

To determine whether a' E Pccw(Y', z'), we compare d(a- ,a) , the direction of f'cw(a), with
d(a,r(a)), the direction of the tangent segment from a to SP(z', y') (refer to Fig. 7). We know
that d(a- ,a) E int(cone(d(a,a+),d(a,a-))). We also know that the chain SP(z ' ,y ') lies entirely
in cone(d(a, a+), d(a, r(a))). Furthermore, in order for a', the hit point of ¢cw(a), to lie outside of
Pccw(z, z'), there must be a point of ¢cw(a) A zz' which is closer to a than is a ~ (since the ray shot
must cross the chord zz'). If d(a- ,a) E int(cone(d(a, r (a)) ,d(a ,a-))) then ¢cw(a) does not intersect
SP(z', yt) and therefore cannot hit Pccw(Y', z'). If d(a- , a) C cone(d(a +, a), d(a, T(a))) then the ray
shot ¢cw(a) will hit a point of SP(z', y') (and consequently Pccw(y' , z')) before it can reach the
chord zz ~. Therefore knowledge of r(a) is sufficient to determine whether a t E Pccw(Y ~, z~).

To assist in finding 7-(a), we use a pointer 7- which traverses SP(z t, y~) forwards (i.e., from z ~
to y'), and is initialized to z'. Recall that r(x) represents the tangent point on SP(z', y') from x.
Given a vertex a and an initial vertex 7- on SP(z ~, yP), we can determine whether 7-(a) equals 7-,
lies on SP(z', T)\{7-}, or lies on SP(7-, y ') \{ r} , by comparing the direction of ~-~ with those of the
edges of SP(z', y') adjacent to 7. If we know that r(a) E SP(T, y'), we can find r(a) by traversing

G. Das et al. / Computational Geometry 7 (1997) 37-57 49

Z t

I t+

e(d(It, It+), d(a, r(a)))

~o~<dC~,,Ca)),d(,,,,,-))

1~1 t t ZtX Fig. 7. Determining whether a ~ E ccw~y,).

SP(z', y') forwards with r ; the required time will be linear in the size of SP(T, r(a)). We show below
(Lemma 8) that if we enter step 16 and r(a) E SP(Z ' ,T) \{T} then a t E Pccw(Y', z'), implying
that Pew(a, a t) is a redundant component and hence can be ignored. Thus, in the procedure, 7- only
traverses forwards on SP(z t, yt), never backwards. For a new value of a, we first determine whether
r(a) lies on SP(z', r) \{ ' r} (step 16); if not we search for "r(a) by continuing the forward traversal of
SP(z', V') with r until T = r(a).

Lemma 8. If, upon entering step 16, we have r(a) E SP(z t, r) \ (' r} , then a t E Pccw(Y t, z').

Proof. Refer to Fig. 8. Upon entering step 16, the current value of r is the point of tangency -r(c)
obtained for a previous reflex vertex c; it is possible that c = z, and c must follow z, i.e., we have
the counterclockwise order x, z, c. Earlier in the procedure, the pointer a was set to the vertex c, and
the values of x and y have not changed since that time. This is true because the value of r is reset
whenever y is updated. We claim that d E Pccw(Y', zt). If c = z then this is true because c t = z'.
If c # z then r(c) was computed in step 17 only because it was previously determined (in steps 13
and 14) that c t ~ Pccw(x, c) and c t ~ Pccw(c, yt), and if c t had been on Pccw(z t, x) then z would
have been updated to c. Thus c t C Pccw(Y t, z'). Actually, we can see that c t E Pccw(Y', T(C)).

Let e be the hit point of the ray shot from T(C) in direction d(T(e), c) (e may or may not equal c).
Because zz t is a chord, we have e E Pccw(z, zt). We know that e ~ Pccw(___y t, z t) by the way e is
defined. We have that e ~ Pccw(c, y ') \{c} because d E Pccw(y, T(e)) and cc t is a chord, so no point
of PCCW(C, c t) can intersect the segment cr(c). Thus e E Pccw(z, c).

The chord er(c) partitions P into two subpolygons P1 = Pccw(e , r (c)) U er(c) and 1'2 =
Pew(e, r (c)) U eT(C), where a E P1 and Pccw(z t, x) C P2. A ray shot in P from a point w of P1
cannot hit a point of P2 unless w lies to the right of the directed line ~(e, T(C)). But a lies to the left
of/ '(e, r (c)) , since r(a) E SP(z t, r)k{T}. Therefore, a t E P1.

G. Das et al. / Computational Geometry 7 (1997) 37-57 50

Fig. 8. Proof of Lemma 8.

Since we know that a' E Pccw(yt, x), and Pccw(yt, z') C P1 while Pccw(z ' , x) C P2, we have
a' e Pccw(v' ,z ') . D

The construction of the shortest path SP(z', y~) is performed in step 20. The path SP(b, y') is
constructed, and then z t is updated to equal b. There are two cases, y~ = z ~ and y~ # z ~. If yt = z ~,
then SP(b, y') is constructed directly as follows. The segments yy~ and ab are chords, which intersect
at a point w. Then P ' = Pccw(Y ~, b) t_J bw t_J wy' is a subpolygon of P , and a shortest path within P '
is also a shortest path in P. Thus we construct SP(b, y') within P' in time proportional to the size of
Pccw (Y', b), by [8].

If y~ # z ~ then it is unacceptable to construct SP(b, y~) as above because the vertices of the chain
Pccw(y ' , z ~) were previously charged with the cost of constructing SP(z',y~). Instead we do the
following. Construct SP(b, z') directly within the subpolygon

P1 = PCCW(Z', b) U bwl U WlZ',

where Wl = zz ~ Nab. We note that

P2 = Pccw(Y', b) U bw2 U w2 z!

is a subpolygon of P, where w2 = yy~ Nab. Thus SP(b, y~) consists of the union of two subportions of
SP(b, z') and SP(z', y') with a single bridge (see Fig. 9). Merging two convex chains in this manner
can be performed in time proportional to the number of vertices on either chain below the bridge [13,
pp. 89-90]. The total time spent constructing shortest paths is O(n), since each vertex of P is charged
at most once with constructing a shortest path directly, and each vertex is below a bridge at most once
during the process of merging.

Total traversal time with T is also O(n). The pointer T always traverses forward on SP(z ~, y~). When
SP(z', y') is merged with SP(b, z') to form a new shortest path, the portion SP(z', T) which has been

G. Das et al. /Computational Geometry 7 (1997) 37-57 51

2 I

b ~'

i / J l . - . ~ o
' --.e" tO2

x °0 , " " ' - .

Fig. 9. Merging SP(b, z') with SP(z', 11') to get SP(b, !1').

already traversed will be under the bridge; this can be seen by noting that ab is a chord and 7- = 7-(a)
is the tangent point from a to SP(z ~, y~) (see Fig. 9).

In steps 7 and 19 we test whether the current value of b equals a ~. We use the following lemma to
show that these tests can be performed.

L e m m a 9. Given points z, ainit, a, binit and b, where (1) the points are in counterclockwise order,
(2) ainit and binit are covisible, (3) the ray shot from a in direction d(a, b) is defined and does not
hit Pccw(a, b)\{b}, (4) b is the point of e(a,d(a, b)) n Pccw(binit, b) which is closest to a, (5) P is
preprocessed for order queries from z. Then we can determine in O(1) time whether a and b are
visible.

P r o o f . Let a' and b" denote the hit points of the shots ~'(a, d(a, b)) and ~'(b, d(b, a)). We are trying to
determine whether b = a', or, equivalently, whether a = U ~. We can determine whether a ~ E Pccw(a, z)
and whether b ~ E Pccw(z , b) by order queries. Unless the answer to both queries is yes, a and b cannot
be visible (recall that the points obey the counterclockwise order z, a, b).

Suppose a ~ E Pccw(a , z) and b" E Pccw(z,b) . By condition (3) of the given, we have a' E
Pccw(b, z). Assume a' ~ b. Let a" be the point of ~'(b, d(b, a)) M Pccw(b, z)\{b} closest to b. Since
U ~ E Pccw(x, b) and b faces a, there is a point of Pccw(z , b) which intersects int(ba~). No point
of Pccw(a:, a) can intersect int(ba ~) because of the chord aa ~, and no point of Pccw(aini t , binit) can
intersect int(ba '~) because of the chord ainit binit. Also, no point of Pccw(binitb) can intersect int(ba")
because of condition (4) of the given. This is a contradiction, which implies that a ~ = b. Thus a and b
are visible if and only if a ~ E Pccw(a, z) and b ~ E Pccw(z, b), a condition which can be checked in
O(1) time by order queries. [3

Our method of finding a' requires that whenever a is a reflex vertex and a' E Pccw(a, z), the
points a, b, a ~, z are in counterclockwise order; this ensures that by traversing counterclockwise, the
pointer b will encounter a ~ before z. This invariant holds because initially b -- a, and every time b

52 G. Das et aL / Computational Geometry 7 (1997) 37-57

encounters a point on f 'cw(a) we test whether b = a ~. We need only to show that the conditions of
the above lemma are satisfied whenever we test b = a ~.

We can check if b is the point of rVcw(a) N Pccw(a , b) closest to a by keeping the value closest(a);
if b is not closest then b ~ a ~. To analyze the other conditions, we realize that there are two cases,
corresponding to steps 7 and 19 of the pseudocode. In step 7, a is initially equal to b, so ainit -- a = binit,
implying conditions (1) and (2). In step 19, b is initially equal to z ~, where a ~ E P c c w (z ~, x). Thus
conditions (1) and (2) are satisfied as we set ainit -- z and binit = z I- In either step, we know inductively
that a ~ ~ Pccw(binit, b)\{b}. Consequently the conditions of Lemma 9 are satisfied, and in steps 7
and 19 we can test in O(1) time whether b = a'.

We stated earlier that if the procedure terminates because the value of x is changed for a third time
then P has no LR-visible pairs. We show this now.

L e m m a 10. If the value of x is reset three times, then P has three pairwise disjoint clockwise com-

ponents.

Proof. Let xi be the value of x after x has been updated i times. When x is updated, it is set equal
to the current value of a, which is necessarily a reflex vertex. For i >/ 1, we let ai = xi. Since x is
updated whenever a ' E Pccw(x , a), we have the following counterclockwise order of points: xo, a~l,

(see Fig. 10). Since a does not traverse past x0, the clockwise components a l ~ X l , a 2, a 2 ~ x2~ . . .

Pcw(a i , a~) are pairwise disjoint. The lemma follows from the fact that a new component Pcw(a i , a~)
exists for each instance of the value of x being reset. []

Coro l l a ry 1. If the value of x is reset three times, then P has no LR-visible pairs.

Proof . By Lemmas 10 and 5. []

We have shown that the procedure correctly generates all nonredundant clockwise components.
We now discuss the time-complexity. Since x can be reset at most twice, it suffices to show the

a¢o

Fig. 10. Proof of Lemma 10.

G. Das et al. / Computational Geometry 7 (1997) 37-57 53

work performed under a fixed value of x is O(n). The pointers a and b each make a single traversal
around P, and all operations are constant time. Preprocessing P for order queries from x is O(n).

The total time required to preprocess Py for order queries for y', over all Pu, is O(n). For a given
value of y, Pu can be preprocessed in time proportional to the number of vertices on P¢cw(Y, Y').
A vertex v can lie on P¢cw(Y, Y') for two different values of y only if y is about to be updated
to equal z in step 12 where v E Pccw(z, y,). However, in this scenario there are no reflex vertices
on Pccw(z, y') which generate nonredundant clockwise components, so v lies on P¢cw(Y, y') for at
most two values of y. Thus the total time required to preprocess all subpolygons Py for order queries
is O(n).

We have established the following.

Theorem 1. The procedure in this section constructs a superset of the set of nonredundant clockwise
components of a simple polygon P in O(n) time.

5. Computing all LR-visible pairs

In the previous section we showed an algorithm that outputs a sorted list of all nonredundant
components of a simple polygon P in time linear in the number of vertices of P. In this section
we show how to compute all LR-visible pairs of points in linear time given a sorted list of the
nonredundant components of P.

5.1. The 2-cut problem

Given a list of nonredundant components, Tseng and Lee [15] showed how to compute all the LR-
visible pairs of vertices by reducing the problem (in linear time) to the 2-cut circular arcs problem. The
2-cut circular arcs problem is defined as follows: given a unit circle/C, and a sorted list S of circular
arcs (or circular intervals), determine a 2-cuttable pair of points (s, t), i.e., determine a pair of points
(s, t) such that every circular arc of S contains either s or t. Tseng and Lee presented an O(n log n)-
time algorithm to solve the 2-cut circular arcs problem as well as the problem of computing all
2-cuttable pairs of points [15]. We show that given a sorted list of nonredundant components, simpler
data structures can be used to implement Tseng and Lee's algorithm to run in O(n) time.

Tseng and Lee's reduction to the 2-cut circular arcs problem is as follows. Given a polygon P,
and the set of its nonredundant components S, perform the following mapping: map the P to a unit
circle /C; map every component into an arc (circular interval) on the circle such that the relative
ordering of the endpoints of the nonredundant components on P remains the same as that of the
endpoints of the circular intervals on /C. As a result, the problem of finding a pair of points (s, t)
such that every nonredundant component of P intersects either s or t now reduces to the problem of
finding a 2-cuttable pair of points (s, t) on the unit circle/C. Similarly, the problem of finding all pairs
of points (s, t) such that every nonredundant component of P intersects either s or t now reduces to
the problem of finding all 2-cuttable pairs of points (s, t) on the unit circle/C.

Since every vertex of the polygon can generate at most 2 components--one clockwise and one
counterclockwise--a polygon P with n vertices can only have at most 2n components, and, conse-

54 G. Das et al. / Computational Geometry 7 (1997) 37-57

quently, at most 4n (actually, 3n) endpoints of nonredundant components. Thus the mapping mentioned
above can be performed in O(n) time.

We assume that each interval is described by its endpoints. Its clockwise endpoint will be called its
left endpoint, while its counterclockwise endpoint will be referred to as its right endpoint. Therefore
when one traverses from the left endpoint to the right endpoint in the counterclockwise direction, one
is traversing along the circular interval. Lowercase letters near the beginning of the alphabet such as
al, a~, bl, b~, c, d, e, f , etc., will be used to denote circular intervals. Lowercase letters near the
end of the alphabet such as s, t, u, v, w, x, y, z, etc., will be used to denote points on/C or on P.
Uppercase letters as in Pi, P ' , will be used to denote sets of intervals. For a circular interval a, we
use left[a] and right[a] to denote its left and right endpoints, respectively. We use the notation/C(u)
to denote the circular interval consisting of the entire circle/C starting from u and ending at u.

5.2. Computing all 2-cuttable pairs

Tseng and Lee [15] proposed an algorithm to compute all 2-cuttable pairs of points and showed how
to implement it in O(n log n) time. Even though there are an infinite number of these pairs of points,
they show how this can be implemented by outputting a linear number of pairs of circular intervals.
We present here a linear-time implementation of their algorithm. For the sake of completeness and
to describe our implementation more clearly we reproduce the algorithm for computing all 2-cuttable
pairs from [15]. While the algorithm reproduced here is the same as in [15], there are minor changes
in the notation to maintain consistency with the rest of this paper.

Their algorithm consists of two steps. The goal of step (1) is determine if there exists a 2-cuttable
pair by computing two minimal intervals bl and b2 on/C such that for any 2-c.uttable pair, one cut
must be in bl while the other must be in b2. The goal of step (2) is to compute all 2-cuttable pairs on
the pair of intervals (hi, b2) by performing a simultaneous sweep of the two intervals.

Tseng and Lee describe an O(n logm)- t ime implementation of step (1) of the algorithm and an
O(n)-time implementation of step (2) of the algorithm. Following the algorithm we show how step (1)
can be implemented in linear time.

Algorithm
PROCEDURE ALL_2-CUTTABLE_PAIRS (S, U).
Input: Sorted list of intervals S.
Output: U = {(ei, fi), 1 ~< i <~ k [(ei, fi) is a 2-cuttable pair of intervals, and every 2-cuttable pair

of points is contained in at least 1 such pair, and k = O(n)}.

(1) [Find bl, b2 and/='3]
(a) Find two disjoint intervals al and a2;

if no such two intervals then
Let d be any interval and let x = left M and y = right[d];
Let z be the left endpoint of the first interval not containing x clockwise from y,

or let z be x if that left endpoint does not exist;
bl +-/C(x); b2 ~ / C (y) ; P3 ~ S - {d}; Go to (2);

else
bl +-- al; b2 +-- a2; PI +- {al}; P2 +-- {a2};
Divide the intervals in S - {al, a2} into four subsets:

G. Das et al. / Computational Geometry 7 (1997) 37-57 55

P~ : intervals that intersect neither bl nor bz,
P~ : intervals that intersect bl but not bE,
P~ : intervals that intersect bE but not bl,
P~ : intervals that intersect both bl and bE;

(b) while P~ U P~ U P~ :~ 0 do
if P~ ~ 0 then Report there is no 2-cuttable pair for S and Stop;
else

b' 1 +- bl fq (Na~P(a); b~ +-- b2 N (NaeP~ a);
if either b~ or b~ is empty then Report there is no 2-cuttable pair for S and Stop;
else

bx +-- b~; bE +-- b~; PI +--/='1 UPS; P2 +-- P2 U P~;
Divide the intervals in P~ into four subsets P~', P(', P~', P~' similar to above;
P; +- P;'; P(+- P~'; P~ +- P~'; P~ ~ P~';

(c) P3 +- P~; x +- left[hi]; y +- left[bE]; z +- y;
(2) [Find all 2-cuttable pairs of intervals (ei, fi) in (bl, b2)]

i+--1;u+---x;
Scan bl counterclockwise from x to right[b1]:
while not reaching right[b1] do
(a) if right[a] is reached for some interval a then

Output (ei, fi) --= ((u, right[a]), (z, z')), where z' is the right endpoint of the first interval
not containing u scanned counterclockwise from z, or z ~ is z if that right endpoint
does not exist;

if a does not contain z then
z +- left[a];
if z ¢ fi then (u ,z) +--NEXT(u,z) ; else u +--right[a];

else u +- right[a];
i + - - i+ 1;

(b) else if left[a] is reached for some interval a then
Output (ei, f i) = ((u, left[a]), (z, right[a]));
u +- left[a]; i +-- i + 1;

Output (ei, f i) = ((u, right[bl]), (g, right[b2]));

Implementation
Tseng and Lee [15] mention how step (la) can be implemented in linear time. However, to help

implement step (lb) in linear time we exploit the crucial point that the input to this algorithm is a
sorted list of proper circular intervals arising out of a list of sorted nonredundant components output by
the algorithm of Section 4. Consequently, in step (la), when we divide the intervals in S - {al, a2} into
the four sets of intervals P~, P~, P~ and P~, the first three sets, namely, P~, P~ and P~ (the last set P~ is
implemented differently as described below) are represented as a doubly-linked list of intervals sorted
according to their (right and left) endpoints with pointers maintained to the first and last item in each
list. Note that since the intervals in P~ intersect both bl and bE, they must be intervals that have one
endpoint in bl and the other endpoint in b2. The set P~ is represented as two doubly-linked lists of
sorted intervals (call them P~I and P~2)" The list P31 (P~2) consists of intervals in P~ with their left

56 G. Das et al. / Computational Geometry 7 (1997) 37-57

endpoints in bl (b2) with the first item being the interval with its left endpoint immediately following
(in the clockwise sense) the left[b1] (right[b2]).

Now consider one iteration from step (lb). At any instant, let the leftmost and rightmost intervals
" Since these are the first and last items in the linked list P~, the step b' 1 +-- in P~ be atl and a 1 .

bl (3 (["laeP; a) can be performed in O(1) time by simply taking the intersection of the three intervals

' a]' and bl Similarly the step b' 2 +-- b2 f-) (NaeP~ a) can also be performed in O(1) time. a I ,
To divide the intervals in P~ into the four subsets in step (lb), we scan both the lists P~l and P~2

from the start as well as from the tail end. The candidates for P~' can be found at the front (back) end
of P~l (P~2), while the candidates for Pi' can only be found at the tail (front) end of the list P~2 (P ~ l)
So the idea is to scan P~I from the front (back) end and to move an interval to the list P~I (P.~2) if
the interval satisfies the condition that it intersects bl (b2) and not b 2 (bl). If an interval that intersects
both bl and b2 is encountered the scan is stopped from that end. If an interval that intersects neither
is encountered the entire algorithm is terminated. The remaining intervals are made part of P~' (which
is also implemented as two doubly-linked lists) and are not scanned during that iteration. Summing
over all the iterations, step (lb) takes O(n) time.

We also assume that P3 is implemented as a sorted list of endpoints of intervals. In step (lc) to
implement the statement P3 +- P~, we assume that the lists P~l and P~2 are merged and a sorted
list of endpoints of the intervals in the two lists are obtained. Implementing P3 as a sorted list of
endpoints will enable an efficient implementation of the scanning of the endpoints in bl in step (2).
The rest of step (2) can be implemented in O(n) time as described by Tseng and Lee [15]. It should
also be pointed out that NEXT(x, y) (used in step (2)) is defined in [15] as the first 2-cuttable pair
of points (z', y') reached by moving z and/or y counterclockwise on/C. However, the definition is
used in a more limited situation. It is assumed that (w, y) is a 2-cuttable pair of points, and after a
counterclockwise motion of w, the pair (x, y) is reached, which is not 2-cuttable. Now NEXT(x, y)
is computed by moving y counterclockwise until a 2-cuttable pair (x, y') is reached.

5.3. Outputting all LR-visible pairs

The procedure ALL_2-CU'Iq'ABLE_PAIRS produces a set of pairs of circular intervals such that
any pair of points taken one each from a pair of intervals forms a 2-cuttable pair of points. Because of
the way step (2) of the procedure works, it is clear that each ei, such that 1 ~< i ~< k and (ei, f i) E U,
is disjoint. Every pair of 2-cuttable points is contained in at least one pair of intervals (el, fi). What
remains is to map the circular intervals back to polygon chains of the polygon P. Since the algorithm
produces O(n) pairs of intervals, this reverse mapping can also be performed in O(n) time. What
results is a set of pairs of polygonal chains U' = (Si, Ti), 1 ~< i ~< k, such that the polygon P is
LR-visible with respect to any pair of points taken one each from a pair of polygonal chains from U'.
Based on our earlier discussions, the resulting polygonal pairs of polygonal chains contain all pairs of
points with respect to which the polygon P is LR-visible.

Thus, putting all the pieces together gives us the following theorem.

Theorem 2. There exists a linear-time algorithm to output a set of pairs of polygonal chains containing
all pairs of LR-visible points for a given polygon P.

G. Das et al. / Computational Geometry 7 (1997) 37-57 57

6. Conclusions

In this paper, we have presented an optimal linear-time algorithm for solving the most general
version of the LR-visibility problem for simple polygons, namely, the problem of finding all pairs
of points with respect to which a simple polygon is LR-visible. The basic technique used is that of
sweeping the polygon a constant number of times to find nonredundant components, after which the
LR-visible pairs are produced by sweeping the nonredundant components.

What is interesting is that this technique was also used by the authors to solve the most general
version of the weakly visible chords problem, namely, the problem of finding all weakly visible chords
of a simple polygon [6].

The LR-visibility problem is also closely related to the 2-guards problem and its variants. It would
be interesting to see whether these techniques are useful in solving any of those problems to optimality.

References

[1] D. Avis and G.T. Toussaint, An optimal algorithm for determining the visibility of a polygon from an edge,
IEEE Trans. Comput. 30 (1981) 910-914.

[2] B. Chazelle, Triangulating a simple polygon in linear time, Discrete Comput. Geom. 6 (1991) 485-524.
[3] D.Z. Chen, An optimal parallel algorithm for detecting weak visibility of a simple polygon, in: Proc. 8th

ACM Symp. Comput. Geom. (1992) 63-72; to appear in Internat. J. Comput. Geom. Appl.
[4] D.Z. Chen, Optimally computing the shortest weakly visible subedge of a simple polygon, Tech. Report

No. 92-028, Dept. of Computer Sciences, Purdue University, May 1992.
[5] B. Chazelle and L. Guibas, Visibility and intersection problems in plane geometry, Discrete Comput. Geom.

4 (1989) 551-581.
[6] G. Das, P.J. Heffernan and G. Narasimhan, Finding all weakly-visible chords of a polygon in linear time,

Manuscript (1993).
[7] J. Doh and K. Chwa, An algorithm for determining internal line visibility of a simple polygon, J. Algorithms

14 (1993) 139-168.
[8] L. Guibas, J. Hershberger, D. Leven, M. Sharir and R. Tarjan, Linear time algorithms for visibility and

shortest path problems inside triangulated simple polygons, Algorithmica 2 (1987) 209-233.
[9] P.J. Heffernan, An optimal algorithm for the two-guard problem, in: Proc. 9th ACM Symp. Comput. Geom.

(1993) 348-358; to appear in Internat. J. Comput. Geom. Appl.
[10] C. Icking and R. Klein, The two guards problem, Internat. J. Comput. Geom. Appl. 2 (1992) 257-285.
[11] Y. Ke, Detecting the weak visibility of a simple polygon and related problems, Tech. Report, The Johns

Hopkins University (1987).
[12] D.T. Lee and EP. Preparata, An optimal algorithm for finding the kernel of a polygon, J. Assoc. Comput.

Mach. 26 (1979) 415-421.
[13] EP. Preparata and S.J. Hong, Convex hulls of finite sets of points in two and three dimensions, CACM 20

(1977) 87-93.
[14] J.-R. Sack and S. Suri, An optimal algorithm for detecting weak visibility, IEEE Trans. Comput. 39 (1990)

1213-1219.
[15] L.H. Tseng and D.T. Lee, Two-guard walkability of simple polygons, Manuscript (1993).

