
STAR: A System for Tuple and Attribute Ranking of Query Answers

Nishant Kapoor
nkapoor@cise.ufl.edu

Gautam Das
gdas@cse.uta.edu

Vagelis Hristidis ∗

vagelis@cis.fiu.edu
S. Sudarshan

sudarsha@cse.iitb.ac.in

Gerhard Weikum
weikum@mpi-sb.mpg.de

Abstract

In recent years there has been a great deal of interest in
developing effective techniques for ad-hoc search and re-
trieval in structured repositories such as relational data-
bases - e.g., searching online databases of homes, used
cars, and electronic goods. In many of these applications,
the user often experiences “information overload”, which
occurs when the system responds to an under-specified user
query by returning an overwhelming number of tuples, each
displayed with a huge number of features (or attributes). We
have developed a search and retrieval system that tackles
this information overload problem from two angles. First,
we show how to automatically rank and display the top-n
most relevant tuples. Second, our system offers techniques
for ordering the attributes of the returned tuples in decreas-
ing order of “usefulness” and selects only a few of the most
useful attributes to display.

1 Introduction

An increasing number of internet sites allow users to
search a large inventory of objects (e.g., cars, homes, cam-
eras) through a query interface. The user query is typically
translated to a SQL query, which by nature is boolean; it
either selects or rejects a database tuple. The SQL retrieval
model is often inadequate for such exploratory search appli-
cations, and the user often experiences “information over-
load”, which occurs when the system responds to an under-
specified user query by returning an overwhelming number
of tuples, each displayed with a huge number of features
(or attributes). To illustrate these scenarios better, we use
the following running example throughout the paper:

Example 1: Consider an inventory database of an auto
dealer, which contains a single table T with N rows and M
attributes where each tuple represents a car for sale. The ta-
ble has numerous attributes that describe details of the car,
such as Price, Make, Model, Age, Zipcode, Mileage, En-
gineSize, NumCylinders, AccidentHistory, SecuritySystem,
AirConditioning, and so on.

∗Partly supported by NSF grant IIS-0534530.

Current database query languages such as SQL follow
the Boolean retrieval model, i.e., tuples that exactly satisfy
the selection conditions laid out in the query are returned -
no more and no less. While extremely useful for the expert
user, this retrieval model is inadequate for ad-hoc retrieval
by exploratory users who cannot articulate the perfect query
for their needs - either their queries are very specific, result-
ing in no (or too few) answers, or are very broad, resulting
in too many answers. In the example above, a simple con-
junctive query such as “Select * from T where Model=sedan
and Price ≤ 16000 and Mileage ≤ 20000” may overwhelm
the user with too many result tuples.

In addition to too many result tuples, another source
of information overload is the number of features (or at-
tributes) of the result tuples that are returned. The num-
ber of attributes in typical automotive and home databases
ranges from 25 to a hundred or more, as can be easily ver-
ified from cars or homes sales web sites. With such a large
number of attributes, it is usually not possible to display
all attributes of the answers to a query. Tabular displays
of answers on web sites therefore typically display only a
few attributes that are considered to be most “useful” to the
user. However, the decision on what attributes to display
is usually made manually, and fixed for all users, regard-
less of what attributes are likely to be useful to a particular
user. Consequently, the answer tuples to a query may get
displayed with a fixed set of attributes that do not reveal
important relevant details, leading to a less-than-satisfying
experience for the user.

We have developed STAR, a Web-based search and re-
trieval system that offers solutions to both the above prob-
lems. To address the limitations of the Boolean retrieval
model for such queries, our system ranks the database query
results as well as orders the attributes of the results. In par-
ticular, it computes a score of a tuple which represents the
degree to which the tuple is “relevant” for the query, and
return a few tuples with the best scores (e.g., top-n tuples
where n is a small number such as 10 or 100) to the user.
In addition, the system assigns a score to each attribute and
displays only a few of the attributes with the best scores
(e.g., top-m attributes, where m is a small number such



(a) Query page (b) Query Output
Figure 1. Sample Query in STAR

as m ≤ 15). The ability to return only the most relevant
tuples (and their most relevant attributes) enables the user
to more effectively interact with the system. Furthermore,
from a user interface design point of view, instead of having
to display a long and wide table of results, we only need to
display a much more compact result table.

Our system offers a variety of options for tuple ranking
and attribute ordering1 in order to better suit the profile of
the user. We employ two tuple ranking methods to compute
the top-n result tuples: (a) A simple Similarity-based rank-
ing function which computes a (weighted) additive score
between the query and each tuple, and (b) A Probabilis-
tic Information Retrieval-based ranking (PIR-based) rank-
ing function [1]. PIR-based ranking “extends” the origi-
nal query by drawing on available knowledge of previous
user preferences for the unspecified attribute values We also
adopt the attribute ordering techniques developed in Das et
al. [2], where given a query and a tuple ranking function
for query results, the task is to return the top-m most useful
attributes of the answer tuples. In our system an attribute is
considered useful if it plays an influential role in the com-
putation of the top-n ranked answer tuples of a query. This
notion of attribute usefulness is quite broad, and several
interesting variants are developed, each variant conveying
different types of information. The developed variants (dis-
cussed in more detail in [2]) are: Score-Based, Rank-Based,
Relative Rank-Based, Split-Pane and Per-Tuple.

Demo Overview Our Web-based system
STAR, shown in Figure 1 and available at
http://dbxlab.uta.edu/STAR, enables users
to query a homes and a cars database, both downloaded
from the Internet. The user can specify conditions on
attributes such as square footage, number of bedrooms,

1Note that we use the term “rank” for tuples and “order” for attributes
to avoid confusion.

Query Processing

Workload 

Data 

Define/Extract 
Ranking Function

Processing System

Pre-Processing

Intermediate Knowledge 
Representation Layer

Customize 
Ranking Function 
(optional)

Submit 
Ranking 
Query

Domain 
Expert

Pipelined Tuple 
Ranking Module

Attribute Ordering 
Module

Top-n Tuples
Top-m Attributes

Figure 2. Architecture of the STAR System

etc., for the homes database, or mileage, year etc., for the
cars database. The user can also select one of the available
tuple ranking methods as well as one of the attribute
ordering methods. At the results page the user can select
any result to view its complete details.

System Architecture The backend of the STAR system
has been developed in C# and the front-end in ASP, while
the data is stored in Microsoft SQL Server 2000. The whole
system including the database system and the Web Server
run on a Pentium 4 2.8GHz system with 1GB of RAM. Fig-
ure 2 shows the architecture of the system.

References

[1] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic rank-
ing of database query results. In VLDB, 2004.

[2] G. Das, V. Hristidis, N. Kapoor, and S. Sudarshan. Ordering the at-
tributes of query results. In SIGMOD, 2006.


