
Optimized Stratified Sampling for
Approximate Query Processing

SURAJIT CHAUDHURI

Microsoft Research

GAUTAM DAS

University of Texas at Arlington

and

VIVEK NARASAYYA

Microsoft Research

The ability to approximately answer aggregation queries accurately and efficiently is of great
benefit for decision support and data mining tools. In contrast to previous sampling-based studies,
we treat the problem as an optimization problem where, given a workload of queries, we select a
stratified random sample of the original data such that the error in answering the workload queries
using the sample is minimized. A key novelty of our approach is that we can tailor the choice of
samples to be robust, even for workloads that are “similar” but not necessarily identical to the given
workload. Finally, our techniques recognize the importance of taking into account the variance in
the data distribution in a principled manner. We show how our solution can be implemented on
a database system, and present results of extensive experiments on Microsoft SQL Server that
demonstrate the superior quality of our method compared to previous work.

Categories and Subject Descriptors: H2 [Information Systems]: Database Management

General Terms: Algorithms, Design, Experimentation, Performance

Additional Key Words and Phrases: Random sampling, approximation, query processing

ACM Reference Format:
Chaudhuri, S., Das, G., and Narasayya, V. 2007. Optimized stratified sampling for approxi-
mate query processing. ACM Trans. Datab. Syst. 32, 2, Article 9 (June 2007), 50 pages. DOI =
10.1145/1242524.1242526 http://doi.acm.org/10.1145/1242524.1242526

Part of this work was done while G. Das was a researcher at Microsoft Research. A conference
version of this article titled “A robust, optimization-based approach for approximate answering of
aggregate queries” appeared in SIGMOD 2001.
Authors’ address: S. Chaudhuri, V. Narasayya, Microsoft Research, One Microsoft Way, Redmond
WA 98052; email: {surajitc, viveknar}@microsoft.com; G. Das, Department of Computer Science and
Engineering, The University of Texas at Arlington, Arlington TX 76019; email: gdas@cse.uta.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 0362-5915/2007/06-ART9 $5.00 DOI 10.1145/1242524.1242526 http://doi.acm.org/
10.1145/1242524.1242526

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

2 • S. Chaudhuri et al.

1. INTRODUCTION

In recent years, decision support applications, such as online analytical pro-
cessing (OLAP) and data mining, for analyzing large databases have become
popular. A common characteristic of these applications is that they execute
aggregation queries on large databases, which can often be expensive and
resource-intensive. Therefore, the ability to obtain approximate answers to such
queries accurately and efficiently can greatly benefit the scalability of these
applications. There have been several previous efforts to address this problem,
ranging from using small random samples of the data, to other forms of data
reduction techniques. In this article, we exclusively focus on the approach of
using precomputed samples of data to answer queries.

A seemingly simple and efficient technique for approximate query process-
ing is to use a precomputed uniform random sample for answering queries.
However, uniform random sampling has two well-known disadvantages. First,
avoiding large errors on an arbitrary query, especially for queries with relatively
low selectivity, is virtually impossible. This is because the uniform sample may
not adequately represent all the data tuples that are selected by the query. Sec-
ond, uniform random sampling ignores variance in the data distribution of the
aggregated column(s). As the following example shows, ignoring data variance
can lead to poor quality of answers for aggregate functions such as SUM:

Example 1. Consider a relation R containing two columns 〈ProductId,
Revenue〉 and four records {〈1, 10〉, 〈2, 10〉, 〈3, 10〉, 〈4, 1000〉}. Assume that
we are allowed to use a sample S of two records from R to answer the query Q:
SELECT SUM(Revenue) FROM R. We answer a query by running it against
S and scaling the result by a factor of two (since we are using a 50% sample).
Consider a sample S1 = {〈1, 10〉, 〈3, 10〉}. The estimated answer for Q using
S1 is 40, which is a severe underestimate of the actual answer (1,030). Now
consider another sample S2 = {〈1, 10〉, 〈4, 1000〉}. The estimated answer for Q
using S2 is 2,020, which is a significant overestimate. Thus, large variance in
the aggregate column can lead to large relative errors.

Previous studies have proposed using the workload to guide the process of
selecting samples to minimize the effects of the first problem of low selectiv-
ity so as [Acharya et al. 2000; Ganti et al. 2000]. The hope is that by picking
a sample which is tuned to the given workload, we can ensure acceptable er-
ror, at least for queries in the workload. The problem of large data variance
has been addressed in Chaudhuri et al [2001], who proposed that records with
outlier values (i.e., values that significantly deviate from the mean) be orga-
nized in a separate outlier index, and a uniform random sample be constructed
out of the remaining data. However, despite recognizing the importance of the
preceding two problems with uniform random sampling, previous studies suffer
from several significant drawbacks. First, although the proposed solutions have
intuitive appeal, the lack of a rigorous problem formulation leads to subopti-
mal solutions that are difficult to evaluate theoretically. Second, the solutions
address each problem orthogonally, that is, they do not attempt to develop a
unifying approach framework to solve both problems together. Third, they do

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 3

Table I. Type of SQL Queries Answerable by STRAT

Selection Arbitrary (single block) selection conditions
Join Star queries with foreign key joins (see Section 5.3)
Group By yes
Aggregation COUNT, SUM, AVG

not attempt to formally deal with uncertainty in the expected workload, namely,
when incoming queries are “similar,” but not identical, to queries in the given
workload.

In contrast to most previous sampling-based studies, in this article, we pro-
pose a more principled approach by formulating the problem of precomputing
a sample as an optimization problem, whose goal is to pick a sample that mini-
mizes the error for the given workload. In fact, we introduce a generalized model
of the workload, which we refer to as a lifted workload, that makes it possible
to tune the choice of sample so that approximate query processing using the
sample is effective, not only for workloads identical to the given workload, but
also for the lifted workload model, namely, for workloads that are “similar” to
the given workload in the sense that the queries select regions of the data which
overlap significantly with the data accessed by queries in the given workload.
We formulate selection of the sample for such a workload as a stratified sam-
pling problem with the goal of minimizing error in the estimation of aggregates.
Our formulation makes the problem amenable to exploiting known techniques
in stratified sampling and optimization.

As a consequence, we have developed a robust algorithm, called STRAT, for
the problem of approximate query processing of queries with selections, foreign-
key joins, and GROUP BY and aggregation operators such as COUNT, SUM,
and AVG. Table I summarizes the types of queries that our approximate query
answering system can answer.

We have implemented our solutions on Microsoft SQL Server 2000, address-
ing the pragmatic issues central to an effective solution that can be deployed in
a commercial DBMS. The benefits of our systematic approach are amply demon-
strated, not only by theoretical results, but also experimentally on synthetic as
well as a deployed enterprise data warehouse in our organization.

We present some details of our proposed architecture for approximate query
processing, summarized in Figure 1. The inputs are a database and a work-
load W. For simplicity, we present the case where the database is a single
relation R. As with previous sampling-based studies, we have taken the ap-
proach of exploiting the available workload to find samples that work well for
queries in the given workload. A workload W is specified as a set of pairs of
queries and their corresponding weights: namely, W = {〈Q1, w1〉, . . . 〈Qq , wq〉},
where weight wi indicates the importance of query Qi in the workload. With-
out loss of generality, we can assume that the weights are normalized, that
is, �iwi = 1. In practice, such a workload may be obtained using profiling
tools available on most modern DBMSs for logging queries that execute on the
server.

There are two components in our architecture: (1) an offline component for
selecting a sample of records from relation R, and (2) an online component

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

4 • S. Chaudhuri et al.

Fig. 1. Architecture for approximate query processing.

that (a) rewrites an incoming query to use the sample (if appropriate) so as to
answer the query approximately and (b) reports the answer with an estimate
of the error in the answer.

Consider the offline component “Build Samples”. We assume that a predes-
ignated amount of storage space is available for selecting samples from the
database. The algorithm STRAT samples records using a randomization tech-
nique based on a generalized model of the workload. The latter case is a signif-
icant contribution of this article, since it is unrealistic to assume that incoming
queries in the future will be identical to queries present in the given workload.
We present a method for automatically “lifting” a given workload, we compute a
probability distribution pW of incoming queries, where pW(Q) is the probability
that the next incoming query is Q—the subscript indicates that the distribu-
tion depends on W. Effectively, pW(Q) represents a generalized model of the
workload. Our algorithm then selects (using stratified sampling techniques) a
sample that is resilient enough for such a lifted workload. Furthermore, this
sample is optimal in that it minimizes the expected error of answering queries
in the (lifted) workload.

In the online component, an incoming query is rewritten to run against the
samples, instead of the base relation. For a multirelation query, in addition to
the samples, we may also reference other base relations to answer the query.
As in previous work [Acharya et al. 2000; Chaudhuri et al. 2001; Ganti et al.
2000], we assume that each record in the sample also contains an additional
column, known as the ScaleFactor, with each record. The value of the aggre-
gate column of each record in the sample is first scaled up by multiplying with
the ScaleFactor, and then aggregated. In addition to the approximate answer,
we can also report the variance (or even a confidence interval) for the approxi-
mate answer. The online component is based on standard query rewriting tech-
niques developed in previous works [Acharya et al. 2000; Chaudhuri et al. 2001;

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 5

Ganti et al. 2000], and thus we do not focus on it much in this article, the novelty
of this work is in the first component.

The rest of this article is organized as follows. We present preliminary con-
cepts from classical sampling theory in Section 2. We describe a model for lift-
ing a given workload in Section 3. We present our main algorithm STRAT in
Section 4. We describe extensions to STRAT for a broader class of queries in
Section 5. We discuss sample maintenance issues in the presence of updates
in Section 6. We discuss related work in Section 7, including a detailed anal-
ysis of the suboptimality of previous sampling-based approaches. We describe
our experimental results in Section 8, and conclude in Section 9. The proofs of
several technical lemmas are presented in an appendix.

2. PRELIMINARIES

In this section, we first present error metrics by which the quality of an ap-
proximate query processing system can be measured. We then present a brief
overview of classical sampling theory that is used in designing our approximate
query processing system.

2.1 Error Metrics for Approximate Query Answering

Consider an SQL query Q with a COUNT or SUM aggregate. Suppose the cor-
rect answer for a query Q is y , while the approximate answer is y ′. We focus on
relative error instead of absolute error, since the former is usually a fairer mea-
sure across queries. Relative error is defined as E(Q) = | y − y ′|/ y (however,
for the sake of brevity, we henceforth omit the word “relative” in all references
to error metrics). The squared error is defined as SE(Q) = ((y − y ′)/ yi)2. Now,
consider a GROUP BY query Q that induces g groups in the data. Suppose the
correct answer for the ith group is yi, while the approximate answer is y ′

i. The
squared error in answering the query is SE(Q) = 1/g

∑
i((yi − y ′

i)/ yi)2. This
error measure for a GROUP BY query has also been considered by Acharya
et al. [2000] and Chaudhuri et al. [2001]. In other words, a GROUP BY query
can be treated as g SELECT queries, each of weight 1/g . Given a probabil-
ity distribution of queries pW, the mean squared error for the distribution is
defined as MSE(pW) = ∑

Q pW (Q)SE(Q), where pW (Q) is the probability of
query Q. The root mean squared error, also known as the L2 error, is defined
as RMSE(pW) = √

MSE(pW). Other error metrics are possible, for example,
using the L1 metric (defined as the expected relative error over all queries) or
L∞ metric (defined as the maximum relative error over all queries). In this
work, although we optimize for the MSE due to its long tradition in statistics,
we found that these solutions also do very well for the L1 metric. Since most
previous work in this area report the L1 metric, our experimental comparisons
also report the L1 metric.

2.2 Classical Sampling Techniques

Many approaches to answering approximate answering of aggregation queries
(including some of our own techniques presented later in this article) are
based on executing the query against a random sample of the database. The

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

6 • S. Chaudhuri et al.

techniques primarily differ in the way the random sample is precomputed, and
most are adaptations of well-known techniques from classical sampling the-
ory. We now review some of these classical sampling techniques. Much of these
results are available in any basic book on sampling theory, such as Cochran
[1977] and Lohr [1999]. Sampling techniques have traditionally been applied
to estimate aggregates of a single given population (such as the average per
capita income of a country). The reason that sampling is used is because the
population is usually too large to allow exact aggregate computation.

2.2.1 Uniform Sampling. Consider a large population, namely, a set of real
numbers R = {y1,. . . ,yn}. Let the average be y , the sum be Y, and the variance be
S2. Suppose we uniformly sample k numbers with replacement. Let the mean
of the sample be μ.

LEMMA 1 (UNIFORM SAMPLING). (a) μ is an unbiased estimator for y, namely,
E[μ] = y; (b) μ · n is an unbiased estimator for Y, namely, E[μ · n] = Y ; (c) the
variance (or standard error) in estimating y is E[(μ − y)2] = S2/k; (d) the
variance in estimating Y is E[(μ·n−Y)2] = n2S2/k; and (e) the relative squared
error in estimating Y is E[((μ · n − Y)/Y)2] = n2S2/Y 2k.

The preceding squared error formulas assume that n is much larger than k
(more accurate formulas that are sensitive to the finiteness of n are also known).
As can be seen, the squared errors of the estimates depend directly on variance
in the data, and inversely on the number of samples. Also, the formulas are
different if we perform random sampling without replacement (which is often
the case in practical sampling systems such as ours); however, when n is much
larger than k, these differences are negligible.

2.2.2 Stratified Sampling. We can often do better than uniform sampling
by exploiting available (partial) knowledge of the population. For example, in-
formation on last year’s per capita income distribution may be available, and
can be assumed highly correlated with this year’s income distribution. We can
identify regions of high variance in last year’s data, and design a sampling strat-
egy where we sample more from such regions. Such a scheme can be a highly
accurate estimator for the current population. One such strategy is known as
stratified sampling. Here, the current population is partitioned into r strata,
with the j th stratum R j containing nj numbers that have sum Y j and variance
S2

j . Suppose we uniformly sample k1, . . . , kr numbers from each of the R1,. . . ,
Rr strata, respectively. Let the means of the respective samples be μ1 . . . μr .
Define μ = ∑

j n j μ j /n.

LEMMA 2 (STRATIFIED SAMPLING). (a) μ is an unbiased estimator for y, namely,
E[μ] = y; (b) μ · n is an unbiased estimator for Y, namely, E[μ · n] = Y ; (c) the
variance in estimating y is E[(μ − y)2] = 1/n2 ∑

j n2
j S2

j /k j ; (d) the variance in
estimating Y is E[(μ · n− Y)2] = ∑

j n2
j S2

j /k j ; and (e) the relative squared error
in estimating Y is E[((μ · n − Y)/Y)2] = 1/Y 2 ∑

j n2
j S2

j /k j .

As with uniform sampling, the error formulas here assume that each nj

is much larger than the corresponding k j . Stratified sampling can be better

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 7

than uniform sampling because different strata can be designed to reduce the
variance. The issues in stratified sampling are: how to select r (the number of
strata), how to partition the population into r strata, and how to allocate a total
of k samples over all strata so as to minimize the error. If perfect information
about the population is available, then the more strata, the better (only limited
by the fact that k samples have to be distributed among r strata). Answer-
ing these questions requires the availability of (partial) information about the
current population.

LEMMA 3 (NEYMAN ALLOCATION). Given a population R = { y1, . . . , yn}, k and
r, the optimal way to form r strata and allocate k samples among all strata is to
first sort R and select strata boundaries so that

∑
j n j S j is minimized, and then,

for the jth strata, to set the number of samples k j as k j = k(nj S j /
∑

j n j S j).

Given r, the aforementioned lemma shows how the population should be
stratified so as to minimize error. However, the lemma does not answer the
question of how to select r. If we have complete knowledge of the current pop-
ulation, it is easy to see that the more strata, the better. However, we usually
have only partial knowledge of the population (e.g., we may have last year’s
population distribution, which does not fully correlate with this year’s popula-
tion), so stratified sampling starts getting inaccurate beyond r = 6 [Cochran
1977]. An efficient procedure described in Cochran [1977] to approximate the
optimal stratification is as follows: If a density distribution of the population is
available (say f (y)), compute the cumulative of the function

√
f (y) and choose

the strata boundaries such that they make equal intervals on this cumulative
scale.

2.2.3 Multivariate Stratified Sampling. Now, suppose the population R =
{ y1,. . . , yn} is a set of m-dimensional vectors, that is, each yi = [yi,1, yi,2,
. . . , yi,m]. Suppose that we want to estimate the means along each dimension.
Given k and r, we wish to form r strata and allocate k samples among all
strata such that the sum of squared errors along each dimension is minimized.
This multivariate generalization of the Neyman allocation has been tackled in
several works, such as Bethel [1998] and Cochran [1977]. In our application we
encounter a variation of this problem, which we solve using a simple clustering-
based heuristic (see Section 5.1).

2.2.4 Weighted Sampling. Weighted sampling can be viewed as an approx-
imation of stratified sampling. Each number in the entire population has to be
examined in order to select the sample. Assume that we are given a parameter
k, and that each yt in the population has been assigned a weight wt (indicating
its importance). Each yt is selected to be included in the sample with probabil-
ity k(wt/

∑
u wu). When weights are the same, this reduces to an approximation

of uniform sampling.

2.2.5 Error Estimations and Confidence Intervals. Often, when sampling
techniques are used to estimate the mean of a population, it is desirable to out-
put an estimate of the error (or variance) in the answer, in addition to the sample
mean. However, if we examine the formulas for the error, such as Lemma 1(c),

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

8 • S. Chaudhuri et al.

we notice that they require knowledge of the variance of the whole population,
which may not be known. Nevertheless, a good estimate of the error can be ob-
tained by replacing population variance with sample variance in the formulas;
the latter is, of course, computable from the sample. For large sample sizes, it
is well-known (by the Central Limit theorem) that the distribution of the sam-
ple mean approaches the normal distribution. This fact allows us to leverage
properties of normal distributions so as to also output confidence intervals for
the sample mean for example, we may be able to say that the population mean
is within [μ − ε, μ + ε] with high probability.

In the rest of this article, we omit further discussion of error estimates and
confidence intervals, but remark that our techniques for approximate query
processing can be extended in a straightforward manner to output error esti-
mates and/or confidence intervals, in addition to approximate answers of ag-
gregation queries. As a final point, we note that the previous theory assumes
that a fresh random sample is drawn to answer every query. However, the ma-
jority of approximate query processing systems (including ours) assume the
construction of a precomputed sample that is repeatedly reused for multiple
queries. This poses potential problems when a stream consists of queries that
are correlated and the same sample is used to answer them. In practical terms,
a sample can become “stale,” and the effects of obtaining an inferior sample
(due to bad luck of the draw) will extend over many queries. Even within the
same GROUP BY query, different groups are highly correlated—for example,
groups have to be disjoint from one another—thus, estimating the errors for dif-
ferent groups in the same query using the same sample is not as simple as de-
scribed earlier. Correcting for such situations will require the adoption of tech-
niques of simultaneous statistical inference [Miller 1981]. However, we leave
such efforts for future work; in this article (as discussed in the next section) we
only assume that the incoming queries are independently drawn from a fixed
distribution.

3. LIFTING WORKLOAD TO QUERY DISTRIBUTIONS

As mentioned earlier, we would like our approximate query processing scheme
to not only perform well for incoming queries that exactly match one of the
queries in the given workload, but also to be resilient to the situation when an
incoming query is “similar” (but not identical) to queries in the workload. In
this section we tackle one aspect of the problem, that is, defining this notion of
similarity. More formally, we show how, given W, we can define a lifted work-
load pW, namely, a probability distribution of incoming queries. Intuitively, for
any query Q′ (not necessarily in W), pW(Q′) should be related to the amount
of similarity (or dissimilarity) of Q′ to the workload: high if Q′ is similar to
queries in the workload, and low otherwise. In Sections 4 and 5, we show how
to leverage such a probability distribution in our approximate query processing
solution.

Our notion of similarity between queries is not concerned with the syntac-
tic similarity of query expressions. Rather, we say that two queries Q′ and Q
are similar if the records selected by Q′ and Q have significant overlap. We

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 9

Fig. 2.

focus on the case of single-table selection queries with aggregation containing
either the SUM or COUNT aggregate (this intuition is refined for GROUP
BY and join queries in Section 5). Let us consider the simplest case when
the workload W consists of exactly one query Q on relation R. Let RQ be the
records selected by Q. Our objective is to define the distribution p{Q} (i.e., for
pW, where W = {〈Q,1.0〉}). Since for the purposes of lifting, we are only con-
cerned with the set of records selected by a query and not the query itself,
we make a change in notation for convenience: instead of mapping queries to
probabilities, p{Q} maps subsets of R to probabilities.1 For all R′ ⊆ R, p{Q}(R′)
denotes the probability of occurrence of any query that selects exactly the set of
records R′.

For the moment, assume that two parameters δ and γ have been specified
such that 0 ≤ γ , δ ≤ 1. Informally, these parameters define the degree to which
the workload “influences” the query distribution. More formally, for any given
record inside (respectively, outside) RQ, the parameter δ (respectively, γ) repre-
sents the probability that an incoming query will select this record.

Given these two parameters, we can now derive p{Q}(R′) for any R′ ⊆ R (i.e.,
the probability of occurrence of any query that exactly selects R′). Figure 2
shows a Venn diagram of R, RQ, and R′, where n1, n2, n3, and n4 are the counts
of records in the regions indicated. Eq. (1) shows the derivation of p{Q}(R′).
Note that when n2 or n4 are large (i.e., the overlap is large), p{Q}(R′) is high
(i.e., queries that select RQ are likely to occur), whereas when n1 or n3 are large
(i.e., the overlap is small), p{Q}(R′) is low (i.e., queries that select RQ are unlikely
to occur). Once p{Q} has been defined, pW can be easily derived, as shown in
Eq. (2).

p{Q}(R ′) = δn2 (1 − δ)n1γ n3 (1 − γ)n4 (1)

pW (R ′) =
q∑

i=1

wi p{Qi}(R
′) (2)

Let us now discuss the problem of setting the parameters δ and γ . As mentioned
earlier, the parameters define the degree to which the workload W influences
the query distribution pW. Table II elaborates on this issue by analyzing the
effects of different boundary settings of these parameters.

In general, γ and δ will fall somewhere in between, and using the preceding
scenarios as guidelines, it may be possible for skilled database administrators
to analyze their workload patterns, and manually set the parameters to those

1This notation makes it convenient to give a single probability to the (infinite) set of queries only
syntactically differing in their WHERE clauses, yet selecting the same R′. Note that the domain of
p{Q} is finite, namely, the power set of R.

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

10 • S. Chaudhuri et al.

Table II. Interpretation of Different Boundary Settings of Parameters δ and γ

Boundary Settings Interpretation
δ = 1 and γ = 0 incoming queries are identical to workload queries
δ = 1 and γ > 0 incoming queries are supersets of workload queries
δ < 1 and γ = 0 incoming queries are subsets of workload queries
0 ≤ γ = δ ≤ 1 incoming queries (with expected selectivity δ (= γ))

are uncorrelated with the workload queries

values that best model their workloads. However, we also present a simple au-
tomated approach for parameter setting. The basic idea is to split the available
workload into two sets: the training workload and the test workload. The pa-
rameters are selected using a two-dimensional grid search approach (based on
Valliant [1997]) such that the lifted training workload (under these settings)
most closely fits the test workload. Essentially, we divide the two-dimensional
space 0 ≤ δ, γ ≤ 1 into a grid in which each dimension is divided into a fixed
number of intervals. For each point (δ, γ) in the grid, we compute a sample for
the training set and estimate the error for the test set. We pick that grid point
with the lowest error for the test set as our setting for δ and γ . This grid search
approach is effective and scalable with data size for low-dimensional optimiza-
tion problems such as ours, since we can obtain samples for multiple grid points
in one scan of the relation, and our experiments (Section 8) indicate that the
approach is promising. We are also investigating alternative approaches, such
as randomized search and gradient descent.

The preceding represents a simple first attempt at lifting workloads in a
rigorous manner. Other methods for lifting a workload need to be studied in the
future, and in fact, the problem of lifting a workload is really orthogonal to the
problem of approximate query processing, and we expect it to find applications
in other areas.

In the next few sections, we develop an approximate query processing scheme
called STRAT, which will attempt to minimize the MSE of the lifted workload,
that is, for pW.

4. THE STRAT ALGORITHM

In this section, we present a formulation of the approximate query process-
ing problem and our stratified sampling-based solution, STRAT. For simplicity,
we discuss the case where the database consists of a single relation R. The
formulation can be extended for multitable queries (see Section 5).

4.1 Problem Formulation

Problem: AQP
Input: R, pW (a probability distribution function specified by W), and k
Output: A sample of k records, (with the appropriate additional column(s)) such
that the MSE(pW) is minimized

In the aforementioned formulation, pW is any probability distribution function
derived from the given workload W. For example, the lifting model presented
in Section 3 can be used to obtain pW.

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 11

Before we give the formal details of STRAT, we give some intuition to justify
the rationale for stratified sampling.

4.2 Rationale for Stratified Sampling

As discussed in Section 2, stratified sampling is a well-known generalization of
uniform sampling, where a population is partitioned into multiple strata and
samples are selected uniformly from each stratum, with “important” strata
contributing relatively more samples.

Consider the following selection query with aggregation on relation R, de-
fined in Example 1 in the Introduction: Q1 = SELECT COUNT(∗) FROM R
WHERE ProductId IN (3,4). Recall that R is the relation {〈1, 10〉, 〈2, 10〉, 〈3,
10〉, 〈4, 1000〉}. We define the population of a query Q (denoted by POPQ) on a
relation R as a set of size |R| that contains the value of the aggregated column
selected by Q, or 0 if the record is not selected. By this definition, POPQ1 =
{0, 0, 1, 1}. Observe that POPQ1 has a mix of 1’s and 0’s and thus a nonzero
variance. Thus, a uniform sampling of POPQ1 would be a poor choice for this
problem, since it would incur nonzero error. However, if we partition R into two
strata {〈1, 10〉, 〈2, 10〉} and {〈3, 10〉, 〈4, 1000〉}, we effectively partition POPQ1
into the two strata {0, 0} and {1, 1}. Each stratum now has zero variance, and a
stratified sampling strategy that selects at least one sample from each stratum
will estimate Q1 with zero error.

Note however, that this particular stratification may not work well for a
different COUNT query whose population has a different distribution of 1’s and
0’s. For example, consider a query Q2 = SELECT COUNT(∗) FROM R WHERE
ProductId IN (1,2,3). Here, POPQ2 = {1, 1, 1, 0} and is different from POPQ1. As
can be seen by this example, each query defines its own population of the same
relation R, and therefore the challenge is to adapt stratified sampling so that it
works well for all queries. An effective scheme will need to stratify the relation
such that the expected variance over all queries in each stratum is small, and
allocate more samples to strata with larger expected variances.

For SUM queries, stratification is also governed by the additional problem of
variance in the aggregate column. For example, consider query Q3 = SELECT
SUM(Revenue) FROM R WHERE ProductID IN (1,4). Here, POPQ3 = {10, 0, 0,
1000} and therefore has large variance.

Thus, in general, a stratified sampling scheme partitions R into r strata
containing n1, . . . , nr records (where �nj = n), with k1, . . . , kr records uni-
formly sampled from each stratum (where �k j = k). As mentioned in the In-
troduction, the scheme also associates a ScaleFactor with each record in the
sample. Queries are answered by executing them on the sample, instead of
R. For a COUNT query, the ScaleFactor entries of the selected records are
summed, while for a SUM(y) query, the expression y∗ ScaleFactor is summed.
If we also wish to return an error guarantee with each query, then instead of
ScaleFactor, we have to keep track of every nj and k j individually for each
stratum.

We now formally present STRAT for queries containing the COUNT aggre-
gate, and in Section 4.4, we describe the extensions necessary to deal with the

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

12 • S. Chaudhuri et al.

Fig. 3. Fundamental regions.

more challenging SUM aggregate (further extensions to STRAT to handle joins
and GROUP BY are deferred to Section 5).

4.3 Solution for COUNT Aggregate

Our solution consists of three steps. The first step, which we refer to as strati-
fication, is determining: (a) how many strata r to partition relation R into, and
(b) the records from R that belong to each stratum. At the end of this step,
we have r strata R1, . . . Rr containing n1, . . . nr records such that �nj = n.
The second step, called allocation, determines how to divide k (the number of
records available for the sample) into integers k1, . . . , kr across the r strata
such that �k j = k. The third step, referred to as the sampling step, uniformly
samples k j records from stratum R j to form the final sample of k records. The
sample so created is then used at runtime to approximately answer queries.
The heart of the algorithm is in the first two steps, which are designed to
minimize errors in approximately answering queries in the lifted workload
(pW). The third step is straightforward, and can be accomplished with one
scan of relation R using reservoir sampling techniques [Fan et al. 1962; Vitter
1985].

4.3.1 Stratification. It may appear that the problem of stratification of R
for a given workload W of COUNT queries is intractable, since when r is not
known, there are an exponential number of ways to stratify R. To alleviate this
problem, we introduce the concept of fundamental regions. For a given relation
R and workload W, consider partitioning the records in R into a minimum
number of regions F = {R1, R2, . . . , Rr} such that for any region R j , each query
in W selects either all records in R j or none. These regions are the fundamental
regions of R induced by W. For example, consider a relation R (with aggregate
column C) containing nine records (with C values 10, 20, . . . , 90), as shown in
Figure 3. Let W consist of two queries: Q1 (which selects records with C values
between 10 and 50) and Q2 (which selects records with C values between 40 and
70). These two queries induce a partition of R into four fundamental regions,
labeled R1,. . . , R4.

The concept of finest partitioning into groups in Acharya et al. [2000] is
similar to the concept of fundamental regions. In general, the total number of
fundamental regions r depends on R and W and is upper-bounded by min(2|W|,
n), where n is the number of records in R. The algorithmic and implementa-
tion details of how to identify fundamental regions efficiently are discussed in
Section 4.5.

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 13

Under a large population assumption (i.e., when n, the number of records
in R, is large), the following lemma says that it is enough to partition R into
fundamental regions and to treat each region as a stratum.

LEMMA 4. Consider a relation R with n records and a workload W of COUNT
queries. In the limit when n tends to infinity, the fundamental regions F =
{R1, R2, . . . , Rr} represent an optimal stratification.

The proof of this lemma (as well as some of the other more involved lemmas
to follow in this section) has been deferred to the Appendix.

4.3.2 Allocation. Once the stratification has been done, the key remaining
challenge is how to allocate the k records across the r fundamental regions
(strata). Our main idea is to treat this problem as an optimization problem
whose goal is to minimize the error over queries in pW. Observe that this is
a significant point of departure compared to most previous work in this area,
where this allocation step is done in an intuitive, but informal manner. We
assume that k1,. . . , kr , are unknown variables such that �k j = k. We leverage
the following two results to express MSE(pW) as a function of these variables
and then select values for these variables that minimize MSE(pW). First, using
Eq. (2) from Section 3, it is easy to see that MSE(pW) can be expressed as
a weighted sum of the MSE of each query in the workload (as stated by the
following lemma).

LEMMA 5. MSE(pW) =
q∑

i=1
wiMSE(p{Qi}).

Next, for any Q ∈ W, we express MSE(p{Q}) as a function of the k j ’s. Although
obtaining a concise yet exact expression for this function is more difficult, un-
der the large population assumption, the following lemma (one of the princi-
pal results of this article) shows how to obtain a succinct approximation for
MSE(p{Q}). In our experiments, we have found that this formula for MSE(p{Q})
has yielded excellent approximations for realistic values of n.

LEMMA 6. For a COUNT query Q in W, let

ApproxMSE(p{Q}) =

∑
R j ⊆RQ

n2
j

k j
δ(1 − δ) + ∑

R j ⊆R\RQ

n2
j

k j
γ (1 − γ)

(∑
R j ⊆RQ

δnj + ∑
R j ⊆R\RQ

γ nj

)2
.

Then lim
n→∞

MSE(p{Q})
ApproxMSE(p{Q})

= 1.

OUTLINE OF PROOF. We provide an outline of the proof for the case where we as-
sume each nj is large—the proof for the more general case where we assume only
n to be large appears in the Appendix. Let Q′ be a query randomly drawn from
the distribution p{Q}. The number of records selected by Q′ in each fundamental
region follows a binomial distribution. Since each nj is large, an overwhelm-
ing number of queries from the distribution p{Q} will select approximately

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

14 • S. Chaudhuri et al.

δ · nj (respectively, γ · nj) records from R j , where R j is a fundamental region
inside (respectively, outside) RQ. Thus, MSE(p{Q}) can be approximated as the
MSE of all such queries, since the contribution from the other queries is negli-
gible. Consider the jth term in the left summation of the numerator. This repre-
sents the expected squared error in estimating the count of (RQ′∩R j). Similarly,
the right summation in the numerator represents the expected squared error
in estimating the count of (RQ′∩(R\RQ)). Thus, the numerator represents the
expected squared error in estimating the count of RQ ′ . Dividing by the denomi-
nator represents the expected relative squared error in estimating the count of
RQ ′ . �

Now that we have an approximate formula for MSE(p{Q}), we can also define
an approximate formula forMSE(pW). Analogous to the formula in Lemma 5, let
ApproxMSE(pW) = ∑q

i=1 wi ApproxM SE(p{Qi}). Using Lemma 6, it is easy to
see that limn→∞ MSE(pW)

ApproxM SE(pW) = 1. Moreover, the following corollary to Lemma 6
shows that we can express ApproxMSE(pW) as a function of the variables
k1,. . . , kr .

COROLLARY 1. Let α j ,Q =
∑

R j ⊆RQ
n2

j δ(1−δ)+∑
R j ⊆R\RQ

n2
j γ (1−γ)

(
∑

R j ⊆RQ
δnj +

∑
R j ⊆R\RQ

γ nj)2 and α j =∑q
i=1 wiα j ,Qi . Then ApproxMSE(pW) = ∑

1≤ j≤r α j /k j .

PROOF. Since ApproxMSE(P{Q}) = ∑
1≤ j≤r α j ,Q/k j (Lemma 6), summing

this over all queries in the workload yields the corollary.

Intuitively, α j captures the “importance” of a region; it is positively correlated
with nj , as well as the frequency of queries in the workload that accesses R j .
Once we have approximately expressed MSE(pW) as a function of the unknown
k j ’s, we are ready to minimize it.

LEMMA 7.
∑

1≤ j≤r α j /k j is minimized under the constraint
∑

1≤ j≤r k j = k
by setting k j = k

(√
α j /

∑
1≤i≤r

√
αi

)
.

The proof of Lemma 7 has been deferred to the Appendix. Note that Lemma 7
provides us with a closed-form and computationally inexpensive solution to the
allocation problem, since α j depends only on δ, γ and the number of records
in each fundamental region. Since an admissible solution in our case requires
that each k j is an integer, we round each k j to the nearest integer. For now,
we assume that STRAT completes its allocation by dividing kinto k1,. . . , kr

according to Lemma 7.

4.4 Solution for SUM Aggregate

We now highlight the extensions to the aforementioned solution required for
queries containing only the SUM aggregate. The key difference arises due to
the fact that for SUM, we also need to take into account the variance of the
data in the aggregated column (see Example 1 in Section 1). The first effort
to deal with variance in data for approximate query processing was the outlier
indexing technique presented in Chaudhuri et al. [2001]. We use a more general
and principled approach that adapts techniques from statistics for dealing with

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 15

large variance. We note that both the stratification and allocation steps for the
SUM are sufficiently different from COUNT, and need to be revisited.

Before we get into the details of our solution for SUM, we discuss an interest-
ing scenario in which our solution (and in fact, most sampling-based solutions)
will fail to work. Consider a relation R that has a mix of positive and negative
numbers, and furthermore suppose that a subset R′ exists whose SUM is close
to zero (i.e., negative cancel positive values), but whose variance is large. Even
though a query Q′ that selects R′ may have a small probability of occurrence in
the lifted distribution, if not answered exactly, its relative error can become in-
finite. Most sampling methods cannot handle such queries, which consequently
need to be recognized and processed separately.2

As we shall show, this problem does not arise if the values in R are all strictly
positive or strictly negative. The solution that we present is optimized only for
such databases, and in principle, can fail for certain kinds of queries on more
general databases. However, we note that in our experiments, our solution has
worked consistently well for all kinds of databases.

4.4.1 Stratification. If we use the same stratification as in the COUNT
case, namely, strata = fundamental regions, we may get poor solutions for SUM,
since each stratum now may have large internal variance in the values of the
aggregate column. Therefore, we use a bucketing technique where we further
divide fundamental regions with large variance into a set of finer regions, each
of which has significantly lower internal variance. We then treat these finer
regions as strata.

For the step of further dividing a fundamental region, we borrow from statis-
tics literature an approximation algorithm for the optimal Neyman allocation
technique (see Lemma 3 in Section 2) for dividing a given population into a
number of (say h) strata such that each stratum has significantly lower inter-
nal variance. If a density distribution of the population is available (say f (y)),
this algorithm computes the cumulative of the function

√
f (y) and chooses

the strata boundaries so that they make equal intervals on this cumulative
scale.

We use this algorithm to divide each fundamental region into h strata, thus
generating a total of h∗r finer fundamental regions which become our strata. In
our implementation, we build a histogram for each fundamental region which
approximates the density distribution, after which the stratification into h
strata is easily accomplished. This can be done by a single scan of R. We use an
equi-width histogram in the preceding step, although other kinds of histograms
are also possible. A further refinement of this approach would be to divide each
fundamental region R j into h j regions, where h j depends on the variance of
R j —the greater the variance, the larger the h j . However, for simplicity, we set
the same value h for all regions (h is set to six, as suggested in Cochran [1977]),
which gave good results in our experiments.

2An alternative hybrid error metric can alleviate this problem, where the error of a query is the
defined as the absolute error when the query aggregate is below a certain threshold, and as the
relative error when the aggregate is above this threshold. Deriving optimal sampling strategies for
such hybrid error metrics is left for future work.

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

16 • S. Chaudhuri et al.

Let y j be the average of aggregate column values of all records in the new
stratum R j . For the remainder of this section, we make the following simpli-
fying assumption. Since the variance of the values within any stratum R j is
small (due to stratification), we assume that each value within the stratum
can be approximated as y j . Thus R may be viewed as being partitioned into
h∗r strata, where each stratum R j has nj records, each with the same aggre-
gate column value y j . Although clearly an approximation, such a view of R
makes the subsequent mathematical analysis considerably simpler (and at the
same time, does not sacrifice much of the accuracy of the approximate query
answering procedure).

4.4.2 Allocation. The structure of the allocation step is similar to COUNT,
that is, it is expressed as an optimization problem with h∗r unknowns k1. . . kh∗r .
However, there is a key difference: Unlike COUNT, here, the specific values of
the aggregate column y j in each region influence MSE(p{Q}). The following
lemma shows how to express MSE(p{Q}) as a function of the k j ’s (the lemma
assumes that the aggregate column values of R are either all positive or all
negative).

LEMMA 8. For a SUM query Q in W, let

ApproxMSE(p{Q}) =

∑
R j ⊆RQ

n2
j

k j
y2

j δ(1 − δ) + ∑
R j ⊆R\RQ

n2
j

k j
y2

j γ (1 − γ)

(∑
R j ⊆RQ

δnj y j + ∑
R j ⊆R\RQ

γ nj y j

)2
.

Then lim
n→∞

MSE(p{Q})
ApproxMSE(p{Q})

= 1.

The proof has been deferred to the Appendix. As with COUNT, we can de-
fine ApproxMSE(pW) for SUM which is functionally of the form

∑
1≤ j≤r α j /k j ,

although the exact value of α j is different from COUNT (each α j depends on
the same parameters n1, . . . nh∗r , δ, and γ , and additionally on the numbers y1,
y2, . . . , yh∗r). We can therefore use the same procedure for minimization as in
Lemma 7.

4.5 Implementation Issues: Identifying Fundamental Regions

During the offline process of building a sample, we use a technique that we refer
to as tagging to identify the fundamental regions in relation R for a workload W
consisting of selection queries. Tagging (logically) associates with each record
t ∈ R an additional column called TagColumn (of type varchar) that contains
the list of queries in W which reference t. In our implementation, rather than
adding TagColumn to R, we separate this column out into a different relation
R′ for two reasons. First, from a pragmatic standpoint, users do not want to
change the schema of their database if it can be avoided. Second, we found that
it is significantly faster (3–5x, in our experiments) to update the TagColumn
in a separate relation R′. Records in R′ have a one-to-one correspondence with

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 17

Fig. 4. Algorithm STRAT.

records in R. This is done by including the key column(s) of R in R′. When a
query Q ∈ W is executed, for each record in R required to answer Q, we append
the query-id of Q to TagColumn of the corresponding record in R′. When R′ is
sorted by TagColumn, records belonging to the same fundamental region ap-
pear together. We experimentally evaluate the overhead of tagging in Section 8.
We note that the techniques reported in Ganti et al. [2000] can be used to fur-
ther reduce the cost of tagging records. Also, for selection-only queries, we can
also use a bit vector representation for TagColumn (instead of varchar), where
the number of bits is equal to the number of queries in the workload. In this
representation, bit i is set if query Qi requires this record to answer the query.
However, this representation is not possible for queries with GROUP BY, since
the tag also needs to encode the group. Finally, the following efficient method
which requires only a single scan of R is also possible for single-table queries.
We tag each record with all queries in the workload that select it. We can check
if a query Q selects the record by applying the conditions in the WHERE clause
in Q.

4.6 Putting it All Together

Figure 4 summarizes the key steps in STRAT and analyzes their complex-
ity. The tagging step (Step 1) is I/O-bound and dominates the running time of
STRAT in practice (see Section 8); its running time is dependent on the number
of queries in the workload. Steps 2 and 3 identify the fundamental regions in the
relation for the given workload W and can be accomplished in time O(n log n),
where n is the size of the relation. Thus, Steps 1–3 constitute the stratifica-
tion step of STRAT. Steps 4 and 5 constitute the allocation step, which is CPU
bound and runs in time O(q.h.u), where q is the number of queries in W, and u
is the number of fundamental regions. Finally, Step 6 is the sampling step that
actually generates the sample(s) from the source relations, and can be done in
one scan of each source relation.

5. EXTENSIONS FOR MORE GENERAL WORKLOADS

In this section, we consider the further extensions to STRAT necessary to han-
dle more general types of queries that may appear in the workload.

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

18 • S. Chaudhuri et al.

5.1 Extensions for a Heterogeneous Mix of Queries

Let us consider a workload that contains a mix of COUNT and SUM(y) queries.
The lifting model (see Section 3) can be extended for such workloads easily. We
need to make sure that each term MSE(p{Q}) is set-up appropriately to reflect
the type of query Q in the workload, since, as explained before, the analyses
for COUNT and SUM differ. Once these expressions are set-up, minimizing the
resulting MSE(pW) is straightforward.

Now consider a mix of queries such as SUM(x), SUM(y), SUM(x∗ y+z), etc.
(where x, y , z are different columns from the same relation). We cannot directly
apply the technique described in Section 4.4.1 for further stratifying each fun-
damental region so as to reduce variance because this technique works only for
one-dimensional data. In other words, if we stratify with the objective of reduc-
ing the variance of x, the resulting stratification may not reduce the variance of
y . What we need is a solution to the multivariate stratified sampling problem
(see Section 2). Although several works in the statistical literature have devel-
oped algorithms for this problem, for our purposes, we found that the following
simple (yet efficient) heuristic is adequate.

First, treat each expression (such as x∗ y+z) that appears in a query in the
workload as a new (derived) column x ′. Thus, our workload is reduced to queries
of the form SUM(x), where x is either one of the original columns or a derived
column. Let X = {x1, x2, . . . , xm′ } be the set of (original or derived) columns that
appear in the workload. We associate a weight wi with each column xi (where
wi is the sum of weights of all queries that aggregate on xi). Essentially, the
weight defines the importance of the column.

Next, we stratify each fundamental region into h strata by using a sim-
ple variant of the h-means clustering algorithm [Mitchell 1997]. This algo-
rithm takes as inputs n multidimensional points and a parameter h, and
produces h clusters such that the sum of squared distances of each point
from its cluster center is minimized (actually, the h-means algorithm only
produces a local optima). In our application we treat each record as an m′-
dimensional point, and the output clusters are the strata. Our implementation
differs from the classical h-means algorithm in the following ways. We use a
“skewed” notion of distance, that is, the (squared) distance between two points
t1 = (x1,1, x1,2, . . . , x1,m′) and t2 = (x2,1, x2,2, . . . , x2,m′) is defined as

∑
1≤i≤m′

wi(x1,i − x2,i)
2.

Thus, the more important dimensions play a more dominant role in the dis-
tance. The intuition is that by minimizing the sum of such squared distances
between points and their cluster centers, we will be able to significantly reduce
the sum of the variance along all dimensions for all strata. Since the number
of dimensions m′ can become potentially large, we adopt a simple dimension-
ality reduction technique, where we discard all but a few of the most impor-
tant columns. As part of our ongoing work, we are exploring other alternative
dimensionality reduction techniques that take into account the correlations
between columns.

The other complication is that the h-means algorithm may perform a large
number of iterations over the dataset before it converges to a local optimum.

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 19

We avoid this problem by first selecting a small uniform sample of the records
in each fundamental region, then running the h-means algorithm for a small
constant number of iterations on this sample, and finally, assigning each record
of the fundamental region to its closest cluster center, found in Step (b).

We can also extend our techniques described in Section 4 to handle cases
when the workload consists of single-table selection queries with aggregation,
but where each query can potentially reference a different relation. Although it
may appear that we first need to partition the available memory for the sample
across the tables and then pick samples from each table, our techniques are
general enough to solve this problem in one step (as in Section 4 for single-table
queries). In other words, once the relations have been tagged to get the entire
set of fundamental regions across all relations, we can set up MSE(pW) similar
to the single-table case and minimize it. The fact that the space requirement
for each record of various relations is different must be taken into consideration
in the allocation step.

5.2 GROUP BY Queries

We first show how workloads containing GROUP BY queries can be lifted (see
Section 3 for how a workload containing pure selection queries can be lifted).
Consider a GROUP BY query Q with weight w in the workload. Let Q par-
tition R into g groups: G1 . . . Gg . Within each group G j , let S j be the set
of records selected. We adopt the following simple lifting model: Replace Q
in the workload with g separate selection queries (each of weight w/g) that
select S1, . . . , Sg , respectively, and use the techniques in Section 3 for lift-
ing the resultant workload. Once we know how to lift a workload contain-
ing GROUP BY queries, adapting our algorithm for handling such a work-
load is straightforward. The tagging step treats each GROUP BY query Q
as a collection of g selection queries with aggregation, and tags the records
with the group that they belong to. During the tagging process, for GROUP
BY columns of integer data types, we append a double 〈c, v〉 in addition to
the query-id, where c is the column-id of the GROUP BY column and v is the
value of this column in record t. For noninteger data types, we treat the value
of the GROUP BY column as a string and use a string hashing function to
generate an integer value. As described in Section 4.5, when R′ is sorted on
TagColumn, all records belonging to the same fundamental region appear to-
gether.

5.3 JOIN Queries

Our algorithm can be naturally extended to a broad class of queries involving
foreign-key joins over multiple relations. Let us say that a relation is a fact
relation in the schema if it references (i.e., contains the foreign keys of) one or
more reference relations, but is not referenced by any other relation. A relation
is a dimension relation if it is does not contain foreign keys of any other relation.
Thus, a relation that is neither a fact relation nor a dimension relation must
be referenced by one or more relations and must contain foreign keys of one
or more relations. We define star query to be a query that: (a) is over the join

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

20 • S. Chaudhuri et al.

of exactly one source relation and a set of dimension relations, each of which
is referenced by the source relation; (b) has GROUP BY and aggregation over
a column of the source relation; and (c) may have selections on source and/or
dimension relations. Star queries are widely used in the context of decision
support queries. In this section, we discuss how the technique that we have
proposed in this article can be extended for star queries in a straightforward
manner. Our approach to handling star queries is as follows. We intend to obtain
a sample only over the source relation. When a query is posed, we can then use
the sample over the source relation to join the dimension relations in their
entirety with the sample to compute the aggregate (with appropriate use of
ScaleFactor). This method is reasonable because typically, the source relation
is a large fact relation (where sampling helps), while the other relations are
smaller dimension relations.

Let us now consider how to pick a sample over the source relation. First, note
that our model for lifting (see Section 3) will be based on subsets of the source
relations selected in the workload, much like selection queries with aggrega-
tion. However, note that a record tin the source relation is deemed useful for
a query Q in the workload only if t contributes to at least one answer record
of Q, that is, t must successfully join with other dimension relations and sat-
isfy all the selection conditions in the query, as well. For example, consider a
query Q: “SELECT Sum(Sales) FROM Sales S, Product P WHERE S.ProductId
= P.ProductId AND P.ProductType = ‘Clothes’ AND S.Month = ‘Jan”. In this
query, Sales is the fact relation and Product is the dimension relation. During
the tagging step of Sales for query Q, we only tag the records from Sales that
join with Product and satisfy both the selection conditions in Q. The tagging
step itself is no different from the technique used for single-relation queries,
described in Section 4.5. For a workload that consists of star queries over multi-
ple source relations, the technique described in Section 5.1 for selection queries
over multiple relations is used.

We note that an alternative approach is to compute join synopses, as in
Acharya et al. [1999], which results in reduced runtime cost at the expense of
increased storage requirements due to additional columns from the join. Once
again, the allocation of k between different synopses can be done by setting-up
MSE(pW) and minimizing it.

We conclude this discussion by pointing out the types of join queries where
our approach either will not work, or needs to be investigated further before it
can be made to work. Our approach will not work for joins involving two large
relations that each need to be sampled, even if the join is a foreign key join.
This is because it is known that joining the uniform random samples of two
relations does not result in a uniform random sample of the joined relation,
even for foreign-key joins (see Chaudhuri et al. [1999]).

5.4 Extensions for Other Aggregates

In principle, a sample created using any algorithm (including STRAT) can be
used to answer a query containing any aggregate function. However, since the
samples chosen by STRAT are optimized for workloads involving COUNT and

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 21

SUM queries, there may be more errors for queries that involve other aggre-
gates. Observe that a query Q involving AVG(y) can be estimated at runtime as
SUM(y)/COUNT. Optimizing for workloads that contain AVG queries is there-
fore more difficult, since MSE(p{Q}) is more complicated to compute. In view of
this difficulty, in our implementation, we used a simple heuristic of treating an
AVG query (with weight w) as a pair of SUM and COUNT queries (each with
weight w/2).

6. SAMPLE MAINTENANCE

Approximate query processing is most relevant for decision support applica-
tions running on a data warehouse—where, unlike an OLTP environment, the
collected data is mainly historical and consequently, relatively static. Neverthe-
less, preprocessing a stratified sample “from scratch” every time the database
has changed significantly can pose unacceptable overheads. In this section we
discuss techniques for efficiently maintaining the stratified sample in the pres-
ence of updates to the database. Two types of updates are of concern to us:
(a) insert/delete of data records, and (b) insert/delete of queries in the work-
load. Our focus is mainly on the first type of update.

6.1 Insert/Deletes of Data Records

Recall that the process of producing a stratified sample of a table R from scratch
involves two tasks: (a) the process of tagging the database to discover funda-
mental regions, and (b) the process of allocating samples from the respective
regions. Assume that at a previous point in time, the database table R has al-
ready been processed and a stratified sample created, but that since then, a
set of new records R′ have been collected (|R′| � |R|) that need to be inserted
into R. We discuss deletions of data records later. We also assume that the
workload is unchanged; handling a changing workload is discussed in the next
subsection.

The basic idea is to continuously maintain, for each fundamental region,
a reasonably large uniform random sample of fixed size (say K j), called the
backing sample of the region. Maintaining such a backing sample of a fixed
size under the presence of data updates can be done using the techniques of
Gibbons et al. [1997] based on reservoir sampling techniques [Fan et al. 1962;
Vitter 1985], as well as techniques developed in Jermaine et al. [2004] in case
the backing sample is too large to be memory-resident. Essentially, we simply
have to tag the new records in R′ to determine the regions to which they belong,
and update each affected region’s backing sample.

Next, the new allocations of the stratified samples from each region have to
be determined. Note that this is necessary since the number of records nj of
some of fundamental regions have increased due to the addition of the new data,
thus affecting the allocation formulas. Let k j be the number of new allocated
samples for region R j . The new k j may be either higher or lower than the old
k j , but the hope is that it is always smaller than K j . Once the new allocations
have been determined, the next task is to draw k j random records from the
backing sample of R j . If the backing sample is kept in random order, this can

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

22 • S. Chaudhuri et al.

be efficiently done by simply copying the first k j records. And in the rare case
that the backing sample is smaller than the allocated samples (i.e., k j > K j), we
copy the entire backing sample to the stratified sample, thereby compromising
the optimality of the original STRAT approach.

To avoid this latter situation, each K j should be selected with some care.
A simple strategy (that yielded good results in our experiments) is to let each
K j be a fixed generous fraction of the original size of the fundamental region
(e.g., 5% or 10%). Another strategy is to perform the first few reallocations from
scratch, and then assign each K j to be a small multiple (e.g., twice) of the
largest k j found thus far.

To analyze our approach, notice that the cost of tagging is purely incremental,
as we only have to tag the new records that are inserted into the database.
As mentioned earlier, the cost of maintaining the backing sample table per
fundamental region can be efficiently done using the technologies developed
in Gibbons et al. [1997] and Jermaine et al. [2004]. The cost of computing the
reallocations is dependent on both the number of fundamental regions and
on the queries of the workload, but independent of the database size. Finally,
drawing k j samples from each backing sample is a trivial operation. Thus, the
total time taken is dependent on R′ and the total size of all backing samples,
but independent of the database size, n. For example, if each backing sample
K j is approximately 5% of each nj , then we have approximately a twenty-fold
speedup in the cost of updating the stratified sample as compared to computing
the stratified sample from scratch.

We note that the backing sample solution can handle deletes, as backing
samples can be maintained in the presence of deletes [Gibbons et al. 1997].
Finally, we note that (unlike computing stratified samples from scratch) in
our incremental solution, the backing samples have to be maintained in ad-
dition to the stratified sample, leading to extra disk usage. However, since
disk space is a (relatively) inexpensive resource, this situation is not unduly
disadvantageous.

6.2 Insert/Deletes of Queries in Workload

The stratified sample has been designed to be resilient to variations in the query
workload (this is the main idea behind the “lifting” concept discussed in Sec-
tion 3). However, in the case where the workload has significantly changed,
for example, when very different analysis and reporting queries are intro-
duced into the workload, the stratified sample needs to be updated. Detect-
ing such significant changes in query patterns is usually the task of the
database administrator, although as future work, we are looking into ways
in which such changes can be detected automatically, for example, if we see
a sudden increase in the error of approximations when compared to that of
uniform random sampling. In such case, we can drop the current stratified
sample and reconstruct a fresh stratified sample from scratch using the new
workload.

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 23

7. RELATED WORK

Approximate query processing (AQP) for decision support in relational
databases has been the subject of extensive recent research; see tutorials by
Das [2003] and Garofalakis et al. [2001] on this topic. Most research has focused
on AQP systems that make use of concise data structures, called synopses, built
from the database. The synopse techniques can be divided into two broad cat-
egories: nonsampling-based, and sampling-based. Sophisticated nonsampling-
based synopses such as wavelets [Chakrabarti 2000; Vitter and Wang 1999;
Vitter et al. 1998], histograms [Ioannidis and Poosala 1999; Poosala and Ganti
1999], kernels [Gunopulos et al. 2000], probabilistic graph models [Getoor et
al. 2001], and models for large sparse binary data [Pavlov et al. 2003] have
been proposed as useful tools for AQP. In fact, histograms have a long tradition
of use in selectivity estimation within query optimizers. However, these ap-
proaches are mainly suitable for all-numeric datasets. Furthermore, they seem
to be limited to working only for queries with restricted selection conditions,
typically a conjunction of range conditions over individual attributes. As noted
in Vitter and Wang [1999], a general problem with histogram-based approaches
is that they incur high storage overhead and construction cost as the dimen-
sionality of the data increases. In Vitter and Wang [1999] and Vitter [1998],
the authors argued for the effectiveness of wavelets for handling aggregations
over (high-dimensional) OLAP cubes. More recently, Chakrabarti et al. [2002]
showed how SQL operators can be applied directly on wavelet coefficients to ef-
ficiently produce approximate answers. However, the main disadvantage of all
these nonsampling-based approaches is that, while they are of great theoreti-
cal interest, their practical impact is limited due to the extensive modifications
necessary to query processors and query optimizers in order to make use of
them.

Partly for the aforementioned reason, sampling-based systems have in re-
cent years been the most heavily studied type of AQP system. Sampling-based
systems have the advantage that they can be implemented as a thin layer of
middleware which rewrites queries to run against sample tables, which them-
selves can be viewed as ordinary relations in a standard, off-the-shelf database
server. Thus, with sampling-based approaches, the changes required to the
database server are minimal. Secondly, the class of queries that can be solved
by sampling-based approaches is much larger, for example, arbitrary selection
conditions are allowed in the queries.

Sampling-based approaches may themselves be classified into two broad cat-
egories: on-the-fly samples and precomputed samples. Hellerstein et al. [1997]
describe online aggregation techniques of the latter category, in which approxi-
mate answers for queries are produced during early stages of query processing
and gradually refined until all the data has been processed. The online aggre-
gation approach has some compelling advantages: It does not require prepro-
cessing of the data; it allows progressive refinement of approximate answers
until the user is satisfied or the exact answer is supplied, and it can provide
confidence intervals that indicate the uncertainty present in the answer. How-
ever, there are two important systems considerations that represent practical

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

24 • S. Chaudhuri et al.

obstacles to the integration of online aggregation into conventional database
systems. First, stored relations are frequently clustered by some attribute, so
accessing tuples in a random order, as required for online aggregation, re-
quires (slow) random disk accesses. Second, online aggregation necessitates
significant changes to the query processor and user interface of a database
system.

Due to the difficulty of purely online approaches to AQP, most research has fo-
cused on systems that make use of samples built by preprocessing the database.
The AQUA project at Bell Labs [Acharya et al. 2000; 1999] developed a precom-
puted sampling-based system for approximate query answering. Techniques
used in AQUA included join synopses [Acharya et al. 2000], which allow approx-
imate answers to be provided for certain types of join queries, and congressional
sampling [Acharya et al. 1999], which produces a stratified sample intended to
minimize approximation error over a large set of GROUP BY queries. The prob-
lem of sampling-based approximate answers for join queries was also addressed
in Chaudhuri et al. [1999]. This includes several strong negative results show-
ing that many join queries are infeasible to approximate using sampling-based
approaches.

Besides congressional sampling, several other nonuniform sampling tech-
niques have been proposed that outperform uniform random sampling for cer-
tain types of queries. Workload information was used in Ganti et al. [2000]
to construct “self-tuning” weighted samples that adapt to the query workload.
Chaudhuri et al. [2001] propose a technique called outlier indexing for improv-
ing sampling-based approximations for aggregate queries when the attribute
being aggregated has a skewed distribution. In Jermaine [2003], an approach
called approximate preaggregation is presented, which is based on combining
precomputed samples with a small set of statistics of the data to improve accu-
racy, mainly for SUM queries, over data with large numeric variance. However,
this approach seems only to work for queries with specific types of selection
conditions, similar to histogram-based approaches. The technique of dynamic
sampling is proposed in Babcock et al. [2003], and attempts to strive a middle
ground between online and precomputed samples: A large family of differently
weighted random samples are computed during the preprocessing phase, and
then for each query that arrives during the runtime phase, an appropriate small
subset of the samples is selected which can be combined to give an accurate ap-
proximate answer to the query.

Some of the most studied methods for addressing the long runtimes of data
analysis queries are not approximation methods. Rather, techniques such as
OLAP query processing and materialized view methods have been designed
to more efficiently produce exact answers to analysis queries. Examples of this
class of technique include constructing views of data cubes [Gray et al. 1997] and
building indexes which are targeted at analysis queries [Agrawal et al. 2000;
Chaudhuri et al. 2000; Chaudhuri and Narasayya 1998]. View matching and
query containment have been well-studied; see Goldstein and Larson [2001]
Chaudhuri et al. [1995], Halevy [2001], and the references therein. Likewise,
the task of precomputing an optimal set of materialization of views in physical
database design has been a widely studied problem in recent years [Agrawal

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 25

et al. 2004; 2000]. These physical data design techniques typically make
use of significant preprocessing time and space, but they are often quite ef-
fective at speeding-up specific queries. However, since it is prohibitively ex-
pensive to build indexes or materialized views that are sufficient to cover
all possible queries, such techniques are of limited value for answering ad
hoc analysis queries, or even queries that bear resemblance to, but are not
the same as, a previously encountered query. Inevitably, there will be cer-
tain unanticipated queries that “fall through the cracks” and are not aided by
physical design, particularly in exploratory data mining and decision support
applications.

Finally, we note that approximate query processing problems have been
studied in areas beyond aggregation queries for decision support in relational
databases. For example, AQP problems have cropped up in other domains, such
as data stream processing (e.g., see Koudas and Srivastava [2003], Garofalakis
[2005], and Greenwald and Khanna [2001]). However, the emphasis in these
applications is quite different from our application of analytical querying of
a data warehouse: Their focus is on maintaining aggregates for fixed queries
and streaming data using space-efficient techniques. AQP problems have also
been considered in sensor networks [Kempe et al. 2003], and in XML databases
[Polyzotis et al. 2004]. However, a detailed discussion of these efforts is beyond
the scope of this article.

In the rest of this section, we focus in more detail on three sampling-based ap-
proaches, namely, congressional sampling [Acharya et al. 2000], outlier index-
ing [Chaudhuri et al. 2001] and weighted sampling [Ganti et al. 2000], since all
three are purely based on precomputed samples and hence most closely related
to our approach. We make a careful comparison of these techniques against our
own approach, from both theoretical and conceptual points of view. In Section 8,
we also provide an extensive experimental comparison of these methods with
our solutions.

7.1 Comparison Against Weighted Sampling

The approach in Ganti et al. [2000] (and also a part of Chaudhuri et al. [2001])
is based on a seemingly intuitive idea of weighted sampling. Each record in
the relation R to be sampled is tagged with a frequency, namely, the number
of queries in the workload such that the record must be selected to answer the
query. Once the tagging is done, an expected number of k records is selected in
the sample, where the probability of selecting a record t with frequency ft is
k(ft/

∑
u fu). Thus, records that are accessed more frequently have a greater

chance of being included inside the sample. However, this method preferentially
allocates more records to “larger” queries, that is, queries with higher selectiv-
ity. To see this, consider a set of q queries {Q1, . . . Qq} in the workload such that
a few queries reference large portions and most queries reference very small
portions of the database. Then, by the weighted sampling scheme described
previously most records in the sample will come from large portions. Therefore,
the approximate answers for larger queries will be much more accurate than
for the smaller ones. A better strategy is to pick the same number of records

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

26 • S. Chaudhuri et al.

for each query and thereby answer all queries with the same accuracy. Another
shortcoming of the weighted sampling approach (and in fact, of all approaches
prior to our article) is that it assumes a fixed workload, that is, the technique
does not cope with uncertainty in the expected workload. Furthermore, Ganti
et al. [2000] do not address the issue of variance of data in the aggregate col-
umn. However, a novelty of the paper is that it tackles the issue of maintaining
and continuously refreshing a sample of records of R after a new query has been
processed.

7.2 Comparison Against Outlier Indexing

Chaudhuri et at. [2001] attempted to address the problem of internal variance
of data in the aggregate column. The basic idea is that outliers of the data
(i.e., the records that contribute to high variance in the aggregate column) are
collected into a separate index, while the remaining data is sampled using a
weighted sampling technique. Queries are answered by running them against
both the outlier index as well as the weighted sample, and an estimated an-
swer is composed out of both results. This method too is easily seen to result
in a suboptimal solution, since the concept of an outlier index + a (weighted)
sample can be viewed as a special type of our approach using stratified sam-
pling, where the outliers form their own stratum that is sampled in its entirety.
Moreover, the approach is only designed for fixed workloads and does not take
into account uncertainties in the expected workload. The idea of separately
handling outliers has also appeared in the context of applying exploratory data
analysis methods on data cubes [Barbará and Sullivan 1997; Barbará and Wu
1999].

7.3 Comparison Against Congressional Sampling

The congressional sampling paper [Acharya et al. 2000] has the most princi-
pled approach of the three papers. The authors advocate a stratified sampling
strategy, called congress that tries to simultaneously satisfy a set of GROUP
BY queries. Some key concepts of our article (e.g., the concept of fundamental
regions) have been influenced by this. However, their approach is still ad hoc in
the sense that even though they try to reduce the error, their scheme does not
minimize the error for any of the well-known error metrics. We illustrate this
through the following example.

Consider two GROUP BY-COUNT queries Q1 and Q2 over a relation. Let
Q1 define only one group, g1 (i.e., the entire relation R), while Q2 defines two
groups: a large group g21 with n21 records (where n21 ≈ n) and a very small
group g22 with the remaining n22 = n − n21 records. As Acharya et al. [2000]
assume, let the expected query distribution be such that each GROUP BY query
is equally likely (but the selection conditions may vary, under the assumption
that for each query, the per-group selectivity is the same for all groups). Let k
(k > 0) be the number of records to be selected in the sample. Assume a large
population, namely, that even n22 is large compared to k. Congress divides R
into two strata R1 and R2 (essentially identical to g21 and g22, respectively). It

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 27

Table III. STRAT versus Other Sampling-Based Approaches

AQP Leverages Models Lifted Handles Data Handles Optimizes
Technique Workload? Workload? Variance? Group By? Error?
Outlier Indexing yes no yes no no
Weighted Sampling yes no no no no
Congress yes no no yes no
STRAT yes yes yes yes yes

allocates k samples between the two as follows:

k1 = k

(
max

(
k, k

2

)
max

(
k, k

2

) + max
(
0, k

2

)
)

= k
(

2
3

)
, k2 = k

(
max

(
0, k

2

)
max

(
k, k

2

) + max
(
0, k

2

)
)

= k
(

1
3

)

While this allocation has seemingly intuitive appeal, as we now show, it does
not minimize any of the well-known error metrics for the expected query dis-
tribution (such as MSE or L1).

7.3.1 Minimizing MSE. For example, suppose we wanted to minimize the
MSE of the expected query distribution. Let k1 and k2 be the (unknown) allo-
cation of samples in the two strata R1 and R2. The MSE of queries like Q1 is
proportional to 1/k1. The MSE of queries like Q2 is proportional to 1

2

(1
k1

+ 1
k2

)
.

Thus the overall MSE is proportional to 1
2

(1
k1

+ 1
2

(1
k1

+ 1
k2

))
, which is equal to

3
4k1

+ 1
4k2

. Using simple differentiation techniques (as in the proof of Lemma 4),

the overall MSE is minimized if k1 = k
(√

3√
3+1

)
, k2 = k

(1√
3+1

)
. Clearly, these

values are not the same as those allocated by congress.

7.3.2 Minimizing L1. Instead of MSE, suppose we wanted to minimize
the L1 error of the expected query distribution. The L1 error of queries
like Q1 is proportional to 1√

k1
, while the L1 error of queries like Q2 is

proportional to 1
2

(1√
k1

+ 1√
k2

)
. Thus the overall L1 error is proportional to

1
2

(1√
k1

+ 1
2

(1√
k1

+ 1√
k2

)) = 3
4
√

k1
+ 1

4
√

k2
. Using simple differentiation techniques,

the overall L1 error is minimized if k1 = k
(
3

2
3 /(3

2
3 + 1)

)
and k2 = k/3

2
3 +1. Once

again, these values are not the same as those allocated by congress.
In summary, Table III summarizes the main differences between STRAT and

competing sampling-based approximate query answering systems.

8. EXPERIMENTAL RESULTS

We have implemented STRAT on Microsoft SQL Server 2000 and conducted
experiments to evaluate its effectiveness. We compared their quality and per-
formance with the following previous work: (a) uniform random sampling
(USAMP); (b) weighted sampling (WSAMP) [Ganti et al. 2000; Chaudhuri et
al. 2001]; (c) outlier indexing combined with weighted sampling (OTLIDX)
[Chaudhuri et al. 2001]; and (d) congressional sampling (CONG) [Acharya et al.
2000]. We also performed simulation experiments to verify the accuracy of the

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

28 • S. Chaudhuri et al.

formulas established in Lemmas 6 and 8. We describe the implementation of
the previous work, our experimental setup, and the results of the experiments,
and then draw conclusions.

8.1 Implementation of Previous Approaches

We briefly describe our implementation of previous works (the key implemen-
tation aspects of STRAT have already been discussed). For uniform sampling
(USAMP), each record is accepted with probability equal to the sampling frac-
tion. We generate a uniform random sample in one scan of the relation R using
the reservoir sampling technique [Fan et al. 1962; Vitter 1985]. For weighted
sampling (WSAMP) [Ganti et al. 2000; Chaudhuri et al. 2001] the probability
of accepting a record is proportional to the frequency with which the record
is selected by queries in the workload. We calculate this frequency for each
record using the tagging technique described in Section 4.5. The key difference
is that rather than keeping track of the list of queries which select the record,
we only need a single counter (an integer) for the TagColumn to keep track of
the frequency. For the outlier indexing method (OTLIDX), we implemented the
technique described in Chaudhuri et al. [2001]. Their paper does not address
the following issue: For a given sample size, how many records of the sample
do we allocate to the outlier index, and how many to the weighted sample? To
give OTLIDX the best possible choice of alternative settings, we tried different
strategies for partitioning the sample for different databases and workloads:
25% for outliers-75% for weighted sample, 50%-50% and 75%-25%. We use the
50%-50% strategy, since it performed well for most workloads. We also imple-
mented the congress algorithm (CONG) described in Acharya et al. [2000]. The
algorithm takes as input a set G of GROUP BY columns and builds a sample
for answering queries on any subsets of G (including ø). For each subset of G,
it determines the best allocation for each of the finest groups in the relation.
The final allocation for a group is proportional to the maximum allocation for
this group over all subsets of G. Since the algorithm for congress that takes into
account selections in the workload is not publicly available, in our experiments,
we only evaluate congress for workloads consisting of pure GROUP BY queries
(i.e., no selections).

8.2 Experimental Setup

8.2.1 Hardware/OS. All experiments were run on a machine with an x86
550 MHz processor with 256MB RAM and an internal 18GB hard drive running
Microsoft Windows 2000.

8.2.2 Databases. We used the popular TPC-R benchmark for our exper-
iments (see TPC benchmark specifications at www.tpc.org). One of the re-
quirements of the benchmark, however, is that the data be generated from
a uniform distribution. Since we were interested in comparing the alternatives
across different data distributions, we used the publicly available program (see
Chaudhuri and Narasayya [2006]) for generating TPC-R databases with
differing data skew. For our experiments, we generated 100MB as well as 1GB

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 29

TPC-R databases, and varied the Zipfian parameter z over values 1, 1.5, 2,
2.5, and 3 (see Zipf [1949]). The fact table (lineitem) of the 100MB (respec-
tively 1GB) database had 600,000 (respectively 6,000,000) rows. We report a
few relevant characteristics of the data in the aggregation column used. The
ratio of maximum to the minimum value in the aggregation column was var-
ied between approximately 9,000 and 250,000 for different databases (e.g., for
z = 2, for one of the 100MB database, the aggregation column had an average
value of 26,857.2861 and standard deviation of 11,958.6707). Also, there is no
correlation between values in the aggregation column (picked from the Zipfian
distribution) and their frequency in the data.

8.2.3 Workloads. We generated several workloads over the TPC-R schema
using an automatic query generation program. The program has the following
features that can be turned on: (i) aggregations on the fact table (lineitem); (ii)
foreign-key joins between the fact table and a dimension table (part or supplier);
(iii) grouping; and (iv) selection. We experimented with three classes of work-
loads containing aggregation: (a) W-SEL (selections, foreign-key joins). (b) W-
GB (GROUP BY, foreign-key joins); and (c) W-SEL-GB (selections, GROUP BY,
foreign-key joins). Thus, for example, W-SEL-GB-100 indicates a workload from
the W-SEL-GB class containing 100 queries. The selection conditions were on
the following columns: l shipdate, l orderkey, l tax, l discount, p partkey, p size,
p retailprice, s acctbal, and s suppkey. To enable a comparison against Acharya
et al. [2000], we used the three grouping columns l shipdate, l returnflag, and
l linestatus. The aggregate column was l extendedprice, and the aggregation
expressions used were COUNT and SUM. For each workload, we used the first
half of the workload as the training set used to determine the sample, and the
second half as the test set. We controlled the degree of similarity between the
training and test sets using the following two parameters: (a) the set of columns
on which conditions are allowed in the training and test sets, and (b) for each
column on which a selection is defined, control the range of the selection con-
dition.

8.2.4 Parameters. We varied the following parameters in our experiments:
(a) the skew of the data z; (b) the sampling fraction f was varied between 0.1%–
10%; and (c) workload size was varied between 25–800 queries. All numbers
reported are the average over multiple runs.

8.2.5 Error Metric. As with previous work, we mainly report the average
relative error over all queries in the workload, namely, L1 metric. We have
found in our experiments that similar trends also hold for the RMSE (L2) error
metric.

8.3 Results

8.3.1 Quality versus Sampling Fraction. We compare the quality (errors)
of the various techniques for COUNT and SUM aggregates as the sampling
fraction is varied, while keeping the workload (W-SEL-GB-100) and data skew
(z = 2) fixed. We report results for 100MB databases–similar trends were also

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

30 • S. Chaudhuri et al.

Fig. 5. COUNT aggregate-test set.

Fig. 6. SUM aggregate—test set.

observed for 1GB databases. As we see from Figures 5 and 6, for the test set (for
COUNT and SUM aggregates, respectively), the errors for STRAT are relatively
low, even with as little as 1% sampling, whereas errors with other methods
(USAMP, WSAMP, OTLIDX) are significantly higher. The key point to note
for the SUM aggregate is that STRAT is able to achieve better quality than
OTLIDX by taking into account the variance in data values in a more principled
way (note that in Figures 5 and 6 we express the sample sizes both in absolute
counts as fractions of the 600,000 records 100MB fact table. To avoid clutter,
some of the later charts only have the sampling fraction displayed).

Next, we compare the quality of various alternatives for the training set it-
self. We see the effectiveness of our stratification algorithm from Figures 7 (for
the COUNT aggregate) and 8 (for the SUM aggregate), where STRAT gives

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 31

Fig. 7. COUNT aggregate—training set.

Fig. 8. SUM aggregate—training set.

errors close to 0 once the sample size exceeds the number of fundamental
regions.

For comparisons with CONG, we consider workloads with only GROUP BY
queries (i.e., no selection). Figure 9 (test set) shows that for the COUNT ag-
gregate, STRAT performs best among all methods. We note that CONG also
does significantly better than other methods. The reason STRAT is more accu-
rate than CONG is that, despite attempting to account for all groups, CONG
still allocates too many records to large groups and not enough for small groups,
whereas STRAT is able to balance the allocations better. For GROUP BY queries
with the SUM aggregate, we see from Figure 10 (test set) that once again,
STRAT performs best among all methods. However, OTLIDX appears to per-
form better than CONG, since unlike STRAT and OTLIDX, CONG does not
take into account the data variance when allocating samples.

8.3.2 Quality versus Overlap Between Training Set and Test Set. We vary
the degree of overlap of minimum and maximum values of the range from
which selection conditions are generated. The degree of overlap is an informal

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

32 • S. Chaudhuri et al.

Fig. 9. GROUP BY-only workload. COUNT aggregate—test set.

Fig. 10. GROUP BY-only workload. SUM aggregate—test set.

measure of correlation. For example, a degree of overlap of 0% (negative corre-
lation) implies that for each column in a selection condition, the range of values
from which selection conditions can be chosen for the test and training sets for
each column are disjoint, whereas 100% overlap (positive correlation) implies
that the ranges are the same. From Figure 11, we see that for small overlap, as
expected, STRAT (δ = 0.90, γ = 0.01) gives higher errors than other methods.
However, for moderate to large overlaps, STRAT is significantly better. All re-
ported results are for 100MB databases; similar trends were also observed for
1GB databases.

8.3.3 Automatically Determining the Lifting Parameters δ and γ . For
a given workload W-SEL-GB-100 and sampling fraction of 1% (for 100MB
databases), Figure 12 shows how the error for the test set varies with δ and
γ (see Section 4). We see that the error varies gradually, which indicates that
our grid search approach is promising.

8.3.4 Quality versus Data Skew. In this experiment, we compared the
quality of different methods as the skew of the data (z) is varied between 1
and 3, keeping the workload (W-SEL-GB-100) and sampling fraction (1%) fixed,
for the SUM aggregate. We find (see Figure 13) that for moderately to highly
skewed data (z > 1), STRAT gives significantly lower errors than other methods

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 33

Fig. 11. Varying overlap between training set and test set.

Fig. 12. Error vs. lifting parameters for test set.

(by about 20%). For low-skew data (z = 1), the other methods are comparable
to STRAT.

8.3.5 Comparison of Time for Building Samples. We compare the time to
build the sample for WSAMP, OTLIDX, and STRAT for three different work-
loads of 100 queries each. Figure 14 (for 100MB database, data skew z = 2)
shows that the additional time relative to WSAMP taken by STRAT to tag the
database (Section 4.5) for the given workload is small. The difference between
the tagging for WSAMP and STRAT is that in STRAT, we additionally need
to record the query-id information (and for GROUP BY queries, the group in-
formation). Finally, for a 1% sample, we report that the time to actually pick
the sample after tagging was 15, 70, and 36 seconds, respectively, for WSAMP,
STRAT, and OTLIDX for the W-SEL-GB-100 workload. Thus, the total time to

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

34 • S. Chaudhuri et al.

Fig. 13. Variation in data skew: SUM aggregate.

Fig. 14. Comparison of runtime to build sample.

build a sample is dominated by the time taken to tag the relation for the given
workload.

Additional experiments on preprocessing larger IGB databases are described
in Section 8.3.8.

8.3.6 Comparison on a Real Dataset. We compare the quality of various
approaches on a real data warehouse within our organization, which is used to
track sales of products. We used δ = 0.90 and γ = 0.01 for STRAT. We used a
portion of the database of approximately 0.84 million rows; training and test
sets of 25 real queries used by the application each. These queries typically
contained three to six GROUP BY columns and two to five selection conditions
per query. Figures 15 and 16 show (respectively, for the test set and training
set) that STRAT performs consistently better than other methods for this real
dataset.

8.3.7 Results for L2 Metric. We present results using the L2 metric (RMSE)
of our experiments on 100MB databases for the W-SEL-GB-100 workload on
the test set for both the COUNT (Figure 17) and SUM aggregates (Figure 18).
For corresponding numbers with the L1 metric, please see Figures 6 and 7,
respectively. As we see from the figures, the results have similar trends as

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 35

Fig. 15. Error vs. sampling fraction (test set).

Fig. 16. Error vs. sampling fraction (training set).

Fig. 17. L2 error for COUNT aggregate.

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

36 • S. Chaudhuri et al.

Fig. 18. L2 error for SUM aggregate.

Fig. 19. L1 error when allocating from uniform backing samples (COUNT).

those reported with the L1 metric. The only difference is that the errors are
relatively smaller (for all methods) using L2.

8.3.8 Results for Sample Maintenance Experiments. We carried out exper-
iments to determine the effectiveness of our sample maintenance algorithms
in the presence of data updates. Since the maintenance of a uniform random
sample in the presence of data updates is a well-studied technique (see Gibbons
et al. [1997] and Jermaine et al. [2004]), our focus in these experiments was
to investigate the accuracy loss that resulted from preparing stratified sam-
ples from incrementally maintained backing samples of fundamental regions,
rather than preparing stratified samples from scratch.

Our experiments tested a straightforward approach, where the backing sam-
ple size was a fixed percentage of the size of each fundamental region. For these
experiments, we used a larger database than for the previous experiments,
namely, a 1GB TPC-H database (where the lineitem table contained 6,000,000
records) with a skew of z = 2, and the W-SEL-GB-50 workload. Figure 19 shows
the loss in accuracy for COUNT queries when, instead of computing stratified

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 37

Fig. 20. L1 error when allocating from uniform backing samples (SUM).

Fig. 21. Cost of tagging uniform backing samples.

samples from scratch, we draw the stratified sample from backing samples of
size 5%, 10%, 15%, and 20%, respectively. As can be seen, for sampling frac-
tions of 0.1% or less (which is reasonable for 1GB databases), the backing sam-
ple approaches provide accuracies that are comparable to the original STRAT
algorithm. Figure 20 shows similar results for SUM queries.

Moreover, as Figure 21 shows, this comparable accuracy comes at a much
faster maintenance cost; the cost of tagging and allocating the stratified sample
from backing samples is much more efficient than recomputing the stratified
sample from scratch. Investigating more sophisticated strategies—for exam-
ple, selecting the backing sample size K j for each region more judiciously, as
described in Section 6—is left for future work.

8.3.9 Verifying Accuracy of Lemmas 6 and 8. Although most of the afore-
mentioned experiments indirectly establish that the formulas derived for Ap-
proxMSE in Lemmas 6 and 8 are accurate (by demonstrating that the resultant
errors using STRAT are smaller compared to competing approximate query
processing schemes), we also ran separate simulation experiments to directly

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

38 • S. Chaudhuri et al.

Fig. 22. Approximate MSE vs. estimated MSE for COUNT aggregate.

verify these formulas. We generated a table R with n records (i.e., n varied from
one hundred thousand to ten million), and with a measure column that was
generated according to a Zipfian distribution (z = 2). This table was arbitrarily
partitioned into r strata (in our experiments, r was set to 100, and the sizes
of the strata, nj , were distributed according to a Zipfian distribution z = 2). A
“master query” Q designated to be a subset of the strata (the selectivity of Q
varied from 0.1% to 10%). Thus, RQ was the set of strata that belonged to the
master query, and R\RQ was the set of remaining strata. Note that the query
Q is simply defined as a set of strata (or equivalently, as a set of records), and
not an SQL statement.

For this experiment, we tried different values of δ and γ , but report results
for only a specific pair of values (0.9 and 0.05, respectively). We generated a
workload WQ of 100 queries, where each query Qi in the workload was generated
by scanning all records of R, tossing a coin with bias δ (respectively, γ) if the
record was inside (respectively, outside) Q, and retaining the record if the coin
came up heads.

Next, for each query Qi in WQ, we prepared a stratified sample of R as fol-
lows. For each stratum (or fundamental region) R j , we allocated a value k j (for
our experiments k j varied between 0.1% and 10%). Then, we drew k j sample
records from each stratum using reservoir sampling. Note that this stratified
sample is not necessarily optimal, however, this was not an issue, since the
main objective of this experiment was to verify that the formulas in Lemmas 6
and 8 are accurate.

We then “approximately answered” Qi by joining its records with the sample
records, and appropriately scaling and aggregating those records that survived
the join. We then computed the relative squared error of answering this query,
and estimated the mean squared error by averaging over the entire workload.
This estimated mean squared error was compared against the approximate
mean squared error derived in Lemmas 6 and 8.

Our experiments showed that the estimated mean squared error compared
very well with the approximate mean squared error as derived in Lemma 6 for
the COUNT aggregate. As Figure 22 shows (for a table with 1,000,000 rows

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 39

Fig. 23. Approximate MSE vs. estimated MSE for SUM aggregate.

Fig. 24. ApproxMSE vs. estimated MSE for COUNT aggregate as database size increases.

and a master query with selectivity 1%), both errors decreased as the overall
sampling fraction for the database increased, which was as expected. Simi-
lar behavior was also observed for the formula in Lemma 8, namely, for the
SUM aggregate. Moreover, the approximations improved as the overall sam-
pling fraction increased. This can be seen in Figure 23, which shows (for the
SUM aggregate) that the ratio of ApproxMSE/EstMSE approaches 1 with in-
creasing sampling fraction.

We also observed that these approximations improved for larger database
tables when the overall sample size was kept as a constant (i.e., when n is
increased while k is kept a constant). Figure 24 shows how approximation
improves as the database table R gets larger, with k being fixed at 10,000
sample records (master query selectivity 1%).

9. CONCLUSIONS

In this article, we present a comprehensive solution to the problem of pick-
ing precomputed samples for approximately answering aggregate queries

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

40 • S. Chaudhuri et al.

and show how it can be implemented in a commercial database system.
Through a novel technique for lifting a workload, our solution can be tuned
to work well, even for workloads that are similar (but not identical to) the
given workload. Our solution is robust, since it also handles the problems of
data variance, heterogeneous mixes of queries, GROUP BY, and foreign-key
joins.

As future work, we would like to generalize our algorithms to a more complete
subset of SQL, such as for workloads containing joins other than foreign-key
joins, as well as nested subqueries. It would also be interesting to design ap-
proximate query answering systems that are a hybrid mix of sampling- and
nonsampling-based approaches, especially since data statistics such as his-
tograms are often available for free within a database system. Finally, dynamic
sample selection [Babcock et al. 2003] is an exciting new area in approximate
query processing that attempts to bridge the gap between the two extremes of
online and offline sampling, and it would be interesting to see whether princi-
pled approaches based on workload analysis can play a significant role in such
efforts.

APPENDIX: PROOFS OF MATHEMATICAL RESULTS

In this appendix, we provide the missing proofs of some of the mathematical re-
sults stated earlier. We first review the well-known concept of Chernoff bounds
from probability theory. We then prove Lemma 6, followed by Lemmas 4, 7, and
8, in that order.

Binomial Distributions and Chernoff Bounds

Consider a coin with bias β (i.e., when tossed, the probability of head is β). Let
m be the number of heads that occur when the coin is tossed independently n
times. If we view m as a random variable, its probability distribution is the well-
known (e.g., see Motwani and Raghavan [1995]) binomial distribution p(m) =
(n
m)βm(1 − β)n− m. The expected value of m is E[m] = βn. The variance of m

is E[(m − βn)2] = β(1 − β)n. As n gets large, it is known that the probability
distribution gets tightly concentrated around its mean. This is quantified by
the following Chernoff bound (where c is a constant):

∀ε ∈ [
0, 1

]
, p

((
1 − ε

)
βn < m <

(
1 + ε

)
βn

)
� 1 − 2e−cε2βn

See Motwani and Raghavan [1995] for discussion of Chernoff bounds.
PROOF OF LEMMA 6. We assume that δ, γ , r, k1, k2, . . . , kr are all constants,

while n, n1, n2, . . . , nr may vary. Q will always represent a fixed COUNT query
from the workload, whereas Q′ will always represent an incoming query drawn
randomly from the distribution p{Q}. The sets RQ ⊆ R and R′ ⊆ R will represent
the sets of records selected by Q and Q′, respectively. Recall from Section 3
that the distribution p{Q} actually maps subsets of R to probabilities. Thus, in
the rest of the proof, we will sometimes view a query simply as the subsets of
records it selects (e.g., Q′ and R′ may be used interchangeably).

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 41

Since we view queries as subsets of records, we see that MSE(p{Q}) is the
expected value of SE(R′) for a subset R′ randomly drawn from the distribution
p{Q} (recall the exact definitions of squared error and mean squared error from
Section 2). In other words,

MSE (p{Q}) =
∑

R ′⊆R

p{Q}(R ′) · SE(R ′) (3)

Our task is to expand and simplify the RHS of Eq. (3) and show that it is
approximately equal to ApproxMSE(p{Q}).

We first partition the set of all 2n subsets of R into a (large) number of groups,
as follows. Consider r integers m1, m2, . . . , mr , such that 0 ≤ m j ≤ nj . These
integers define a group

G(m1, m2, . . . , mr) = {R ′|m j = ∣∣R ′ ∩ R j
∣∣ , 1 ≤ j ≤ r}.

In other words, G(m1, m2, . . . , mr) contains all subsets of R that select exactly
m1 records from R1, m2 records from R2, and so on. Clearly, the number of groups
is

∏
1≤ j≤r

(
nj + 1

)
. We can also derive the size of each group (i.e., the number

of subsets in each group):

∣∣G(m1, m2, . . . , mr)
∣∣ =

∏
1≤ j≤r

(
nj

m j

)
(4)

Consider a subset R′ that belongs to any given group, say G(m1, m2, . . . , mr).
We show that the squared error SE(R′) may be derived as follows.

SE(R ′) =
∑

1≤ j≤r

n2
j

k j

m j

n j

(
1 − m j

nj

)/(∑
1≤ j≤r

m j

)2

Consider the j th term in the numerator. This represents the expected
squared error in estimating the count of (R′ ∩ Rj), namely, in estimating the
sum of the portion of POPQ ’ that corresponds to R j (see Section 4.1 for a defi-
nition of POPQ ′). This portion of POPQ ′ may be viewed as a population of size
nj , with m j as 1’s and nj − m j as 0’s. It is easy to derive the variance of such a
population to be m j

nj
(1 − m j

nj
). Since each region has k j samples allocated to it, we

can use Lemma 2 from Section 2 to show that the entire numerator represents
the squared error in estimating the count of R′. The denominator represents
the expected count of R′. Thus the ratio represents the relative squared error
in estimating the count of R′.

Our task is to show that the expected value of SE(R′) approaches
ApproxMSE(p{Q}) in the limit when n tends to infinity. Note that SE(R′) equals
ApproxMSE(p{Q}) if we replace each m j by δ*nj or γ *nj , depending on whether
Rj is inside or outside RQ . It is easy to see that SE(R′) is the same for each
subset R′ in the group G(m1, m2, . . . , mr). Let us denote this as SE(m1, m2, . . . ,
mr).

SE(m1, m2, . . . , mr) =
∑

1≤ j≤r

n2
j

k j

m j

n j

(
1 − m j

nj

)/(∑
1≤ j≤r

m j

)2

(5)

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

42 • S. Chaudhuri et al.

Our next task is to expand p{Q}(R′) for any given subset R′ of group G(m1,
m2, . . . , mr). Using Eq. (1) in Section 3, we can derive p{Q}(R′) as follows.

p{Q}(R ′) = δ

(∑
R j ⊆RQ

m j

)
(1 − δ)

(∑
R j ⊆RQ

nj −m j

)
γ

(∑
R j ⊆R\RQ

m j

)
(1 − γ)

(∑
R j ⊆R\RQ

nj −m j

)
(6)

Note that p{Q}(R′) is the same for each subset R′ in the group G(m1, m2,
. . . , mr). Let p(m1, m2, . . . , mr) denote the probability that a randomly drawn
subset R′ belongs to G(m1, m2, . . . , mr). Using Eq. (4) and (6), it is easy to see
that p(m1, m2, . . . , mr) =
[∏

1≤ j≤r

(
nj

m j

)] ⎡
⎢⎣δ

(∑
R j ⊆RQ

m j

)
(1 − δ)

(∑
R j ⊆RQ

nj −m j

)
γ

(∑
R j ⊆R\RQ

m j

)
(1 − γ)

(∑
R j ⊆R\RQ

nj −m j

)⎤
⎥⎦

By rearranging factors, we get p(m1, m2, . . . , mr) =[∏
R j ⊆RQ

(
nj

m j

)
δm j (1 − δ)nj −m j

] [∏
R j ⊆R\RQ

(
nj

m j

)
γ m j (1 − γ)nj −m j

]
(7)

Observe that in the preceding equation, the fundamental regions inside RQ

are treated differently from those outside RQ . In the interest of uniformity, we
adopt the following notation. Let each fundamental region R j be associated
with a parameter β j such that if R j is inside RQ , then β j = δ and if R j is
outside RQ , then β j = γ . Eq. (7) may then be rewritten as

p(m1, m2, . . . , mr) =
∏

1≤ j≤r

(
nj

m j

)
β

m j

j (1 − β j)nj −m j (8)

The RHS is the probability that a random subset R′ will select exactly m j

records from R j . Let us denote this as p(m j). If we view m j as a random variable,
p(m j) is a binomial distribution with a mean of β*nj . Thus p(m1, m2,. . . ,mr) is
simply a product of different binomial distributions:

p(m1, m2, . . . , mr) =
∏

1≤ j≤r

p(m j)

Let C be the Cartesian product
{
0..n1

} × {
0..n2

} × . . . × {
0..nr

}
. Eq. (3) may

be rewritten as

MSE(p{Q}) =
∑

[m1,m2,...,mr]∈C

p (m1, m2, . . . , mr) ∗ SE (m1, m2, . . . , mr)

Using Eqs. (5) and (8), we get MSE(p{Q}) =

∑
[m1,m2,...,mr]∈C

[∏
1≤ j≤r

(
nj

m j

)
β

m j

j (1 − β j)nj −m j

]
⎡
⎢⎢⎢⎢⎢⎣

∑
1≤ j≤r

n2
j

k j

m j

n j

(
1 − m j

nj

)
(∑

1≤ j≤r
m j

)2

⎤
⎥⎥⎥⎥⎥⎦ .

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 43

Let us label a fundamental region R j as small if 0 < nj <
√

n, and large
otherwise (i.e., if

√
n≤ nj ≤ n). For each large fundamental region R j , define

quantity ε j = ln nj
/√nj . Let C1 ⊆ C be the Cartesian product, defined as

{l1..u1} × {l2..u2} × . . . × {lr ..ur}, where if R j is small, then l j = 0 and u j = nj ,
and if R j is large, then l j = (1 – ε j)β j n j and u j = (1 + ε j)β j n j . Let C2 be the
set of vectors defined as C – C1.

Define MSE1 and MSE2 as follows:

MSE1 =
∑

[m1,m2,...,mr]∈C1

p (m1, m2, . . . , mr) ∗ SE (m1, m2, . . . , mr)

MSE2 =
∑

[m1,m2,...,mr]∈C2

p (m1, m2, . . . , mr) ∗ SE (m1, m2, . . . , mr) (9)

Clearly, we have MSE(p{Q}) = MSE1 +MSE2. We shall first show that in the
limit when n tends to infinity, MSE2 goes to 0. If we examine Eq. (5), we can
derive a crude (but simple) upper bound for SE(m1, m2, . . . , mr) as:∑

1≤ j≤r
n2

j

k j

m j

n j

(
1 − m j

nj

)
(∑

1≤ j≤r m j

)2
≤

∑
1≤ j≤r

n2
j

k j

m j

n j

(
1 − m j

nj

)
∑

1≤ j≤r m2
j

≤
∑

1≤ j≤r n j m j∑
1≤ j≤r m2

j

≤
∑

1≤ j≤r nm j∑
1≤ j≤r m2

j

≤
∑

1≤ j≤r nm j∑
1≤ j≤r m j

≤ n

Thus we get MSE2 ≤ ∑
[m1,m2,...,mr]∈C2

p (m1, m2, . . . , mr) ∗ n =

= ∑
[m1,m2,...,mr]∈C2

[∏
1≤ j≤r

(
nj

m j

)
β

m j

j (1 − β j)nj −m j

]
∗ n

=
[

1 − ∑
[m1,m2,...,mr]∈C1

[∏
1≤ j≤r

(
nj

m j

)
β

m j

j (1 − β j)nj −m j

]]
∗ n

=
[

1 − ∏
1≤ j≤r

∑
l j <m j <u j

(
nj

m j

)
β

m j

j (1 − β j)nj −m j

]
∗ n

Using Chernoff bounds, the proceeding is

≤
[

1 − ∏
l arg eR j

(
1 − 2e−cε2

j β j n j

)]
∗ n =

[
1 − ∏

l arg eR j

(
1 − 2e−cβ j ln2 nj

)]
∗ n

≤
[
1 −

(
1 − 2e−c min{δ,γ } ln2 √

n
)r]

∗ n =
[
1 −

(
1 − 2e−0.25c min{δ,γ } ln2 n

)r]
∗ n

=
2

⎛
⎝ r

1

⎞
⎠n

e0.25c min{δ,γ } ln2 n
−

22

⎛
⎝ r

2

⎞
⎠n

e2(0.25c)min{δ,γ } ln2 n
+ · · ·

+ (−1
) j+1

2 j

⎛
⎝ r

j

⎞
⎠n

e j (0.25c) min{δ,γ } ln2 n
+ · · · + (−1

)r+1
2r

⎛
⎝ r

r

⎞
⎠n

er(0.25c)min{δ,γ } ln2 n

It is quite easy to show that as n tends to infinity, each of the previous terms
goes to zero. To see this, consider the j th term. If we take the natural log of the

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

44 • S. Chaudhuri et al.

numerator, we get an expression that is linear in ln(n), whereas if we take the
natural log of the denominator, we get an expression that is quadratic in ln(n).
Thus we conclude that

lim
n→∞ MSE2 = 0. (10)

Next, we turn our attention to MSE1. We shall show that when n tends to
infinity, the

ratio
MSE1

ApproxMSE
(
p{Q}

) → 1.

Recall the definition of ApproxMSE(p{Q}) from the statement of the lemma.
Using β j instead of δ and γ , we can rewrite this as follows.

ApproxMSE(p{Q}) =
∑

1≤ j≤r

n2
j

k j
β j

(
1 − β j

)/(∑
1≤ j≤r

β j n j

)2

(11)

Using Eqs. (5), (9), and (11), we get lim
n→∞

MSE1
ApproxM SE(p{Q})

=
∑

[m1,m2,...,mr]∈C1

p (m1, m2, . . . , mr)

⎡
⎢⎢⎣

∑
1≤ j≤r

n2
j

k j

m j

n j

(
1 − m j

nj

)
∑

1≤ j≤r

n2
j

k j
β j

(
1 − β j

)
⎤
⎥⎥⎦

⎡
⎢⎣

∑
1≤ j≤r

β j n j∑
1≤ j≤r

m j

⎤
⎥⎦

2

.

We first show that we only need be concerned with large fundamental regions.
Dividing each factor in the numerator and denominator by n2, we get

=
∑

[m1,m2,...,mr]∈C1

p (m1, m2, . . . , mr)

⎡
⎢⎢⎣

∑
1≤ j≤r

(nj

n

)2 1
k j

m j

n j

(
1 − m j

nj

)
∑

1≤ j≤r

(nj

n

)2 1
k j

β j
(
1 − β j

)
⎤
⎥⎥⎦

⎡
⎢⎣

∑
1≤ j≤r

β j
(nj

n

)
∑

1≤ j≤r

(m j

n

)
⎤
⎥⎦

2

.

For small fundamental regions R j , we know that in the limit when n tends
to infinity, both nj /n and m j /n tend to zero. Thus in the limit the previous
expression reduces to

=
∑

[m1,m2,...,mr]∈C1

p (m1, m2, . . . , mr)

⎡
⎢⎢⎣

∑
l arg eR j

(nj

n

)2 1
k j

m j

n j

(
1 − m j

nj

)
∑

l arg eR j

(nj

n

)2 1
k j

β j
(
1 − β j

)
⎤
⎥⎥⎦
⎡
⎢⎣

∑
l arg eR j

β j
(nj

n

)
∑

l arg eR j

(m j

n

)
⎤
⎥⎦

2

.

Multiplying each factor in the numerator and denominator by n2, we get
back

=
∑

[m1,m2,...,mr]∈C1

p (m1, m2, . . . , mr)

⎡
⎢⎢⎣

∑
l arg eR j

n2
j

k j

m j

n j

(
1 − m j

nj

)
∑

l arg eR j

n2
j

k j
β j

(
1 − β j

)
⎤
⎥⎥⎦

⎡
⎢⎣

∑
l arg eR j

β j n j∑
l arg eR j

m j

⎤
⎥⎦

2

.

(12)

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 45

We know that for each large fundamental region, (1– ε j)β j n j ≤ m j ≤
(1+ ε j)β j n j . We first calculate an upper bound for the limit. The RHS of Eq. (12)
can be upper-bounded as

≤ ∑
[m1,m2,...,mr]∈C1

p (m1, m2, . . . , mr)

⎡
⎢⎣

∑
l arg eR j

n2
j

k j
(1+ε j)β j n j

n j

(
1− (1−ε j)β j n j

n j

)
∑

l arg eR j

n2
j

k j
β j (1−β j)

⎤
⎥⎦
[∑

l arg eR j
β j n j∑

l arg eR j
(1−ε j)β j n j

]2

≤

⎡
⎢⎣

∑
l arg eR j

n2
j

k j (1+ε j)β j (1−(1−ε j)β j)
∑

l arg eR j

n2
j

k j
β j (1−β j)

⎤
⎥⎦

[∑
l arg eR j

β j n j∑
l arg eR j

(1−ε j)β j n j

]2

.

(13)

For each large R j , it is easy to see that lim
n→∞ ε j = lim

n→∞
ln nj√nj

= lim
nj →∞

ln nj√nj
= 0.

Thus, in the limit, the j th terms in the numerator will approach the corre-
sponding j th terms in the denominator of Eq. (13). Thus we have

lim
n→∞

MSE1

ApproxMSE(p{Q})
≤ 1. (14)

We next calculate a lower bound for RHS of Eq. (14). The RHS can be lower-
bounded as

�
∑

[m1,m2,...,mr]∈C1

p (m1, m2, . . . , mr)

⎡
⎢⎣

∑
l arg eR j

n2
j

k j
(1−ε j)β j n j

n j

(
1− (1+ε j)β j n j

n j

)
∑

l arg eR j

n2
j

k j
β j (1−β j)

⎤
⎥⎦

[∑
l arg eR j

β j n j∑
l arg eR j

(1+ε j)β j n j

]2

�
∏

l arg eR j

(
1 − 2e−cβ j ln2 nj

) ⎡
⎢⎢⎣

∑
l arg eR j

n2
j

k j

(
1 − ε j

)
β j

(
1 − (

1 + ε j
)
β j

)
∑

l arg eR j

n2
j

k j
β j

(
1 − β j

)
⎤
⎥⎥⎦

⎡
⎢⎣

∑
l arg eR j

β j n j∑
l arg eR j

(
1 + ε j

)
β j n j

⎤
⎥⎦

2

. (15)

For each large fundamental region, we note that

lim
n→∞

(
1 − 2e−cβ j ln2 nj

)
= 1 − lim

nj →∞ 2e−cβ j ln2 nj = 1 − 0 = 1.

As for the remaining portion of Eq. (15), in the limit, the j th terms in the
numerator will approach the corresponding j th terms in the denominator of
Eq. (15). Eq. (15) thus reduces to

lim
n→∞

MSE2

ApproxMSE(p{Q})
� 1. (16)

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

46 • S. Chaudhuri et al.

Combining Eqs. (10), (14), and (16), we have

lim
n→∞

MSE(p{Q})
ApproxMSE(p{Q})

= 1.

This concludes the proof of Lemma 6.

PROOF OF LEMMA 4. Recall that the stratification F = {R1, R2, . . . , Rr} is de-
fined as the set of fundamental regions. Suppose the optimal stratification was
actually a different stratification, G = {G1, G2. . . Gs}. Consider the stratifica-
tion H = {H1, H2,Hu} = {R j ∩Gi | 1 ≤ j ≤ r, 1 ≤ i ≤ s}. Since stratifying an
optimal stratification any further does not reduce the MSE, H also represents
an optimal stratification.

We first describe the simple case where the workload consists of a single
query Q. Let us use the notation MSEE (p{Q}) to denote MSE(p{Q}) for a strat-
ification E. We shall show that the minimum value of MSEH (p{Q}) is asymp-
totically the same as that of MSEF (p{Q}). MSEH (p{Q}) can be asymptotically
calculated according to Lemma 6 (even though Lemma 6 was proven for the
stratification F, it can be extended for any stratification that represents a fur-
ther stratification of F, such as H). Let h1, h2, . . . , hu be the optimal allocation
of the k samples in the strata H1, H2,, Hu, respectively. By Lemma 6, we
get

lim
n→∞ MSEH (p{Q}) =

∑
Hj ∈H

|Hj |2

h j
β j

(
1 − β j

)
(∑

Hj ∈H
β j

∣∣Hj
∣∣)2

.

In minimizing MSEH (p{Q}), we can ignore the denominator. This is equiva-

lent to minimizing the expression
∑

Hj ∈H
|Hj |2

β j (1−β j)
h j

.
Using techniques similar to those in Lemma 7 (to be proved next), we see

that this gets minimized when each h j = k(
|Hj |

√
β j (1−β j)∑

Hi∈H |Hi |
√

βi (1−βi)
). Plugging these

values back into MSEH (p{Q}), we see that the minimum value of MSEH (p{Q})
is asymptotically equal to

min MSEH (pQ) =

(∑
Hj ∈H

∣∣Hj
∣∣ √β j

(
1 − β j

))2

k

(∑
Hj ∈H

β j
∣∣Hj

∣∣)2
.

Now let us consider the stratification F. Let k1, k2, . . . , krbe the optimal
allocation of the k samples in the fundamental regions R1, R2, . . . , Rr , respec-
tively. Similar to before, we see that MSEF (p{Q}) gets minimized when each

k j = k(
nj

√
β j (1−β j)∑

Ri∈F n j

√
βi (1−βi)

). Plugging these values back, we can similarly derive the

minimum value of MSEF (p{Q}) to be asymptotically equal to
(
∑

R j ∈F n j

√
β j (1−β j))2

k(
∑

R j ∈F β j n j)2 .

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 47

We observe the following points. Since H represents a further stratification
of F, each stratum of F wholly contains a set of strata of H. Furthermore, the
βj associated with any stratum Rj of F is the same for each stratum of H that
is contained within Rj. We thus get

min MSEF (pQ) =

(∑
R j ∈F

n j

√
β j (1−β j)

)2

k

(∑
R j ∈F

β j n j

)2 =

(∑
R j ∈F

(∑
Hi∈R j

|Hi |
)√

β j (1−β j)
)2

k

(∑
R j ∈F

(∑
Hi∈R j

|Hi |
)

β j

)2

=

(∑
Hj ∈H

|Hj |√β j (1−β j)
)2

k

(∑
Hj ∈H

β j |Hj |
)2 = min MSEH (pQ)

The preceding arguments can be extended to the case when the workload
contains more than one query. This concludes the proof of Lemma 4.

PROOF OF LEMMA 7. We first eliminate one of the variables, say kr , by replac-
ing it with k – (k1+ · · · +kr–1). If we partially differentiate

∑
1≤ j≤r

α j

k j
by k1,. . . ,

kr–1, respectively and set each derivative to zero, this results in r – 1 equations,
where the jth equation is α j

k2
j

= αr
(k−∑

1≤ j≤r−1)k j
Taking square roots and simplifying

further, we see that the optimal value of k j is proportional to√
α j . The lemma

then follows. We note that the proof is along similar lines to other well-known
methods for minimizing functions of the form

∑
1≤ j≤r

α j

k j
that arise in different

contexts (e.g., Acharya et al. [1999] and Cochran [1977]).

PROOF OF LEMMA 8. As in the earlier proof of Lemma 6, we assume that δ, γ ,
r, k1, k2, . . . , kr are all constants, while n, n1, n2, . . . , nr may vary. Q will always
represent a fixed query from the workload, whereas Q′ will always represent
an incoming query drawn randomly from the distribution p{Q}. Also recall that
we view R as being partitioned into h*r strata, where each stratum R j has nj

records, each with the same aggregate column value y j (which is positive). Since
the proof is very similar to that of Lemma 6, we only highlight the important
differences. Our notation will be similar to that used in Lemma 7. The equation
corresponding to Eq. (5) may be easily derived as

SE(m1, m2, . . . , mh∗r) =

∑
1≤ j≤h∗r

n2
j y2

j

k j

m j

n j

(
1 − m j

nj

)
(∑

1≤ j≤h∗r
m j y j

)2
. (17)

As before, let us define MSE1 and MSE2 such that MSE(p{Q}) = MSE1 +
MSE2. We shall first show that in the limit when n tends to infinity, MSE2 goes
to zero. If we examine Eq. (17), we can derive a crude (but simple) upper bound

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

48 • S. Chaudhuri et al.

for SE(m1, m2, . . . , mh∗r) as follows:

SE(m1, m2, . . . , mh∗r) =
∑

1≤ j≤h∗r

n2
j y2

j
k j

m j
n j

(
1− m j

n j

)
(∑

1≤ j≤h∗r
m j y j

)2 ≤
∑

1≤ j≤h∗r
n j m j y2

j∑
1≤ j≤h∗r

m2
j y2

j

≤
∑

1≤ j≤h∗r
nm j y2

j∑
1≤ j≤h∗r

m2
j y2

j
≤

∑
1≤ j≤h∗r

nm j y2
j∑

1≤ j≤h∗r
m j y2

j
≤ n

Important: Note that in the aforementioned derivation (especially in the
denominator of the first simplification), it is critical that all the y j ’s are of the
same sign (i.e., either all positive or all negative). If this were not the case, it may
be possible that the positive and negative y j ’s may cancel each other, leading
to very small denominators, and consequently very large squared errors.

The rest of the arguments are very similar to Lemma 6. Intuitively, as in
Lemma 6, the samples allocated from each stratum are in charge of estimating
a count of the rows selected from this stratum—the only difference that the
count is weighted by a factor of y j . We omit the straightforward details, but
mention that it can be shown that when n tends to infinity, both MSE2 → 0
and MSE1

ApproxMSE(p{Q})
→ 1 . Thus we have

lim
n→∞

MSE(p{Q})
ApproxMSE(p{Q})

= 1.

This concludes the proof of Lemma 8.

ACKNOWLEDGMENTS

We are grateful to Muhammed Z. Miah for helping with some of the experi-
ments.

REFERENCES

ACHARYA, S., GIBBONS, P. B., AND POOSALA, V. 2000. Congressional samples for approximate an-
swering of group-by queries. In Proceedings of the ACM SIGMOD International Conference on
Management of Data.

ACHARYA, S., GIBBONS, P. B., POOSALA, V., AND RAMASWAMY, S. 1999. Join synopses for approximate
query answering. In Proceedings of the ACM SIGMOD International Conference on Management
of Data.

AGRAWAL, S., CHAUDHURI, C., AND NARASAYYA, V. 2000. Automated selection of materialized views
and indexes in SQL databases. In Proceedings of the International Conference on Very Large
Databases. 496–505.

AGRAWAL, S., NARASAYYA, V., AND YANG, B. 2004. Integrating vertical and horizontal partitioning
into automated physical database design. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. 359–370.

BABCOCK, B., CHAUDHURI, C., AND DAS, G. 2003. Dynamic sample selection for approximate query
processing. In Proceedings of the ACM SIGMOD International Conference on Management of
Data. 539–550.

BARBARÁ, D. AND SULLIVAN, M. 1997. Quasi-Cubes: Exploiting approximations in multidimensional
databases. SIGMOD Rec. 26, 3.

BARBARÁ, D. AND WU., X. 1999. Using approximations to scale exploratory data analysis in dat-
acubes. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining.

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

Optimized Stratified Sampling for Approximate Query Processing • 49

BETHEL, J. 1989. Sample allocation in multivariate surveys. Surv. Methodol. 15, 47–57.
CAUSEY, B. D. 1983. Computational aspects of optimal allocation in multivariate stratified sam-

pling. SIAM J. Sci. Statist. Comput. 4, 2.
CHAKRABARTI, K., GAROFALAKIS, M., RASTOGI, R., AND SHIM, K. 2000. Approximate query processing

using wavelets. In Proceedings of the International Conference on Very Large Databases.
CHAUDHURI, S., DAS, G., DATAR, M., MOTWANI, R., AND NARASAYYA, V. 2001. Overcoming limitations

of sampling for aggregation queries. In Proceedings of the IEEE International Conference on Data
Engineering.

CHAUDHURI, S., DAS, G., AND NARASAYYA, V. 2001. A robust, optimization-based approach for ap-
proximate answering of aggregation queries. In Proceedings of the ACM SIGMOD International
Conference on Management of Data.

CHAUDHURI, S., KRISHNAMURTHY, R., POTAMIANOS, S., AND SHIM, S. 1995. Optimizing queries
with materialized views. In Proceedings of the IEEE International Conference on Data
Engineering.

CHAUDHURI, S., MOTWANI, R., AND NARASAYYA, V. 1999. Random sampling over joins. In Proceedings
of the ACM SIGMOD International Conference on Management of Data.

CHAUDHURI, S. AND NARASAYYA, V. 2006. Program for TPC-D data generation with skew.
http://research.microsoft.com/dmx/

CHAUDHURI, S. AND NARASAYYA, V. 1997. An efficient, cost-driven index selection tool for Microsoft
SQL server. In Proceedings of the International Conference on Very Large Databases.

CHAUDHURI, S. AND NARASAYYA, V. 1998. AutoAdmin what-if index analysis utility. In Proceedings
of the ACM SIGMOD International Conference on Management of Data.

CHROMY, J. W. 1987. Design optimization with multiple objectives. In Proceedings of the Survey
Research Section, American Statistical Association.

COCHRAN, W. G. 1977. Sampling Techniques, 3rd ed. John Wiley, New York.
DAS, G. 2003. Survey of approximate query processing techniques. Tutorial at the International

Conference on Scientific and Statistical Database Management.
FAN, C. T., MULLER, M. E., AND REZUCHA, I. 1962. Development of sampling plans by using sequen-

tial (item by item) selection techniques and digital computers. J. Amer. Statis. Assoc. 57, 298,
387–402.

GANTI, V., LEE M. L., AND RAMAKRISHNAN, R. 2000. ICICLES: Self-Tuning samples for approximate
query answering. In Proceedings of the International Conference on Very Large Databases.

GAROFALAKIS, M. N. AND GIBBONS, P. B. 2001. Approximate query processing: Taming the terabytes.
Tutorial at the International Conference on Very Large Databases.

GAROFALAKIS, M., GANGULY, S., KUMAR, A., AND RASTOGI, R. 2005. Join-Distinct aggregate estimation
over update streams. In Proceedings of the International Conference on the Principles of Database
Systems.

GETOOR, L., TASKAR, B., AND KOLLER, D. 2001. Selectivity estimation using probabilistic model. In
Proceedings of the SIGMOD International Conference on Management of Data.

GIBBONS, P. B., MATIAS, Y., AND POOSALA, V. 1997. Fast incremental maintenance of approx-
imate histograms. In Proceedings of the 23rd International Conference on Very Large Data
Bases.

GOLDSTEIN, J. AND LARSON, P. 2001. Optimizing queries using materialized views: A practical,
scalable solution. In Proceedings of the SIGMOD International Conference on Management of
Data.

GRAY, J., CHAUDHURI, S., BOSWORTH, A., LAYMAN, A., REICHART, D., VENKATRAO, M., PELLOW, F., AND

PIRAHESH, H. 1997. Data cube: A relational aggregation operator generalizing group-by, cross-
tab, and sub-totals. J. Data Mining Knowl. Discov. 1, 1, 29–53.

GREENWALD, M. AND KHANNA, S. 2001. Space-Efficient online computation of quantile summaries.
In Proceedings of the ACM SIGMOD International Conference on Management of Data.

GUNOPULOS, D., KOLLIOS, G., TSOTRAS, V. J., AND DOMENICONI, C. 2000. Approximating multi-
dimensional aggregate range queries over real attributes. In Proceedings of the ACM SIGMOD
International Conference on Management of Data.

HALEVY, A. 2001. Answering queries using views: A survey. VLDB J.
HELLERSTEIN, J., HAAS, P., AND WANG, H. 1997. Online aggregation. In Proceedings of the ACM

SIGMOD International Conference on Management of Data.

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

50 • S. Chaudhuri et al.

HOCHBAUM, D. 1997. Approximation Algorithms for NP-Hard Problems. PWS Publishing.
IOANNIDIS, Y. AND POOSALA, V. 1999. Histogram based approximations of set-valued query answers.

In Proceedings of the International Conference on Very Large Databases.
JERMAINE, C. 2003. Robust estimation with sampling and approximate pre-aggregation. In Pro-

ceedings of the International Conference on Very Large Databases. 886–897.
JERMAINE, C., POL, A., AND ARUMUGAM, S. 2004. Online maintenance of very large random samples.

In Proceedings of the ACM SIGMOD International Conference on Management of Data.
KEMPE D., DOBRA, A., AND GEHRKE, J. 2003. Gossip-Based computation of aggregate information.

In Proceedings of IEEE Foundations of Computer Science. 482–491.
KOUDAS, N. AND SRIVASTAVA, D. 2003. Data stream query processing: A tutorial. Tutorial at the

International Conference on Very Large Databases.
LOHR, S. 1999. Sampling: Design and Analysis. Duxbury Press.
MILLER, R. G., JR. 1981. Simultaneous Statis. Inference. Springer Series in Statistics. Springer

Verlag.
MITCHELL, T. 1997. Machine Learning. McGraw-Hill, New York.
MOTWANI, R. AND RAGHAVAN, P. 1995. Randomized Algorithms. Cambridge University Press, New

York.
OLKEN, F. 1993. Random sampling from databases. Ph.D. dissertation, Computer Science, UC

Berkeley.
PAVLOV, D., MANNILA, H, AND SMYTH, P. 2003. Beyond independence: Probabilistic methods for

query approximation on binary transaction data. IEEE Trans. Knowl. Data Eng. 15, 6, 1409–
1421.

POLYZOTIS, N., GAROFALAKIS, M. N., AND IOANNIDIS, Y. 2004. Approximate XML query answers. In
Proceedings of the SIGMOD International Conference on Management of Data.

POOSALA, V. AND GANTI, V. 1999. Fast approximate answers to aggregate queries on a data cube. In
Proceedings of the International Conference on Scientific and Statistical Database Management.

THISTED, R. A. 1988. Elements of Statis. Comput. Chapman and Hall, London.
TRANSACTION PROCESSING PERFORMANCE COUNCIL. 2007. TPC benchmark R: Decision Support. Re-

vision 1.1.0. http//www.tpc.org.
VALLIANT, R. AND GENTLE, J. 1997. An application of mathematical programming to a sample

allocation problem. Comput. Statis. Data Anal. 25, 337–360.
VITTER, J. 1985. Random sampling with a reservoir. ACM Trans. Math. Softw. 11, 1.
VITTER, J. AND WANG, M. 1999. Approximate computation of multidimensional aggregates of

sparse data using wavelet. In Proceedings of the ACM SIGMOD International Conference on
Management of Data.

VITTER, J., WANG, M., AND IYER, B. 1998. Data cube approximation and histogram via wavelets.
In Proceedings of the International Conference on Information and Knowledge Management.

ZIPF, G. E. 1949. Human Behavior and the Principle of Least Effort. Addison-Wesley.

Received May 2005; revised May 2006; accepted November 2006

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 9, Publication date: June 2007.

