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Abstract Top-k queries on large multi-attribute data sets
are fundamental operations in information retrieval and rank-
ing applications. In this article, we initiate research on the
anytime behavior of top-k algorithms on exact and fuzzy
data. In particular, given specific top-k algorithms (TA and
TA-Sorted) we are interested in studying their progress
toward identification of the correct result at any point during
the algorithms’ execution. We adopt a probabilistic approach
where we seek to report at any point of operation of the algo-
rithm the confidence that the top-k result has been identified.
Such a functionality can be a valuable asset when one is inter-
ested in reducing the runtime cost of top-k computations. We
present a thorough experimental evaluation to validate our
techniques using both synthetic and real data sets.

Keywords Approximate query · Anytime · Top-k ·
Fuzzy data

1 Introduction

Top-k queries on large multi-attribute databases are com-
monplace. Such queries report the k highest ranking results
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based on similarity scores of attribute values and specific
score aggregation functions. Such queries are very frequent
in a multitude of applications including (a) multimedia
similarity search (on images, audio, etc.), (b) preference que-
ries expressed on attributes of assorted data types, (c) internet
searches on scores based on word occurrence statistics and
diverse combining functions, and (d) sensor network appli-
cations over streams of sensor measurements.

Several algorithms have been introduced in literature to
efficiently perform top-k computations. Among the most suc-
cessful is the TA algorithm discovered independently by
Fagin et al. [16], Guntzer et al. [20] and Nepal et al. [30].
In this algorithm, each value of an attribute can be accessed
independently via an index in descending order of its score.
Such a score is computed with a specific query condition.
Numerous algorithms for performing top-k computations
have been proposed [2–4,14,15,18,24,27,29] depending on
the model of data access, stopping conditions, etc. The major-
ity of such computations however can be exhaustive. The
algorithms come to a stop only when there is absolute cer-
tainty that the correct top-k result has been identified.

An anytime algorithm is an algorithm whose quality of
results improves gradually as computation time increases
[21]. Although several types of such algorithms have been
proposed, interruptible anytime algorithms are highly popu-
lar and useful. An interruptible anytime algorithm is an algo-
rithm whose runtime is not determined in advance but at any
time during execution can be interrupted and return a result.
Moreover, interruptible algorithms have an associated per-
formance profile which returns result quality (for suitably
defined notions of quality) as a function of time (relative
to execution) for a problem instance. Such algorithms are
valuable since at any point during the execution a user can
obtain feedback regarding the result quality at that point. If
one is satisfied with the current feedback one may bring the
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algorithm to a halt. Thus, such algorithms provide a graceful
trade-off between result quality and response time.

In this article, we initiate a study of anytime top-k
algorithms. We study the behavior of common top-k algo-
rithms at any point of their execution and we reason about
top-k result quality. Notice that this notion of anytime top-k
computation is significantly different from the notion of
approximate top-k algorithms previously introduced in the
literature [5,13]. Such models aim to relax the control param-
eters of the computation (e.g., distance) which are difficult
to translate into guarantees perceived by a user. The actual
behavior of such models remains largely empirical. In con-
trast, we wish to monitor a top-k algorithm at any point in its
execution and reason about result quality. For large data col-
lections such an approach can be significantly beneficial as
one may decide to terminate the computation early if one is
satisfied with the current quality of the results. In particular,
we make the following contributions:

– We initiate the study of anytime top-k computations. We
present a framework, within which at any point in query
execution for suitable top-k algorithms, we can compute
probabilistic estimates of several measures of top-k result
quality. Such measures include confidence of having the
correct top-k result, precision of the results assessed with
respect to the correct top-k results, as well as the differ-
ence between the scores of the current top-k result and
the exact result.

– We investigate the monotonic properties of these anytime
measures for various top-k algorithms such as TA and
TA-Sorted. We show that such measures are monotone
for TA, but for a single instance of a top-k computation of
TA-Sorted, these measures can be non-monotonic, though
in expectation such measures are monotonic.

– We present algorithmic enhancements to TA and
TA-Sorted by which they can provide such anytime guar-
antees with small runtime overheads during the course of
their execution over large data collections.

– We show how our algorithms can be applied to two types
of settings, namely (a) when the underlying data and sim-
ilarity scores are exact, such as those typically present in
information retrieval and (b) when the underlying data
are fuzzy, such as those commonly present in sensor data
collections [12]. To the best of our knowledge this is the
first time that top-k computations (not just anytime top-k
computations) on fuzzy data are considered. Our frame-
work can encompass both settings easily.

– We present the results of a thorough experimental evalu-
ation of our algorithms using both exact and fuzzy data,
evaluating several measures of result quality and demon-
strate the practical utility and scalability of our approach.

This article is organized as follows: Sect. 2 reviews related
work. In Sect. 3, we present our overall framework and

demonstrate several important properties of anytime top-k
computations. In Sects. 4 and 5, we present our algorithms
and methodology to enable several popular top-k algorithms
with anytime behavior. In Sect. 6, we present our algorithm
for fuzzy data sets. In Sect. 7, we presents the results of our
experimental validation of our overall methodology. We con-
clude in Sect. 8.

2 Related work

The threshold algorithm (TA) constitutes the state of the art
for top-k computations [16,17,20,30]. Several variants of
the basic TA ideas have been considered in various contexts
[4,24,29]. The article [27] deals with top-k problems on web
accessible data sources with limited sorted access. Nearest
neighbor type of approaches have been considered in this
context as well [9,10,22,35]. It is assumed that sorted lists
of the data items by each attribute are available, and TA
scans these lists (performing sorted accesses) in an inter-
leaved manner, and computes the items with top-k scores
using monotone score combining functions. The algorithm
has to immediately compute the complete score for each
item encountered in these lists. In order to do so, however,
it conducts random accesses to all relevant lists and thus
its overhead may be high depending on the application con-
text. For the rest of this article we refer to this algorithm as
TA.

Several variants of this basic idea have been proposed.
TA-Sorted [16,17,20] can work in environments where ran-
dom access is not available. It maintains worst and best scores
for items based on partially computed total scores; the algo-
rithm compares the worst case score of the k-ranked item with
the best score of all candidates as a stopping condition. In
this algorithm, items are always accessed sequentially. Since
expensive random access is avoided, in certain situations the
performance may be much better than TA.

Optimization issues for TA algorithms have been consid-
ered as well [2,4,27]. The main thrust has been to reduce
the number of random accesses when sources vary in several
parameters, such as speed, selectivity etc. Several statistical
aids have been deployed, such as histograms and probabilis-
tic estimators for the number of random accesses.

Anytime algorithms have found numerous applications in
AI and planning contexts [11,21]. The quality of results of
an anytime algorithm improves as the computation evolves.
At a high level, anytime algorithms can be categorized as
being either interruptible or contract. An interruptible algo-
rithm does not have a set running time and can always be
interrupted at any time during execution returning a result.
The quality of the result can be determined via a performance
profile. A contract algorithm has a time deadline as a param-
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eter and no assumption about the results can be made before
the deadline.

Theobald et al. [34] presented an approach for probabi-
listic top-k query evaluation. This work is specifically tar-
geted to the TA-Sorted algorithm. The basic idea is, for a
newly seen item, to compute the probability with which it
may belong to the top-k result. If that probability is below
a user supplied threshold the item is discarded from further
consideration. This way, possibly fewer items are considered
during top-k query evaluation. Moreover, by carefully main-
taining bounds for the scores of the most promising (as far as
the top-k result is concerned) items that have been encoun-
tered the algorithm may probabilistically decide to terminate
earlier than the regular TA-Sorted deterministic computation.
Empirical evaluation presented in [34] demonstrated that the
algorithm performs well in practice.

The work of [34] has some similarity to our work, how-
ever, it is not an anytime algorithm. It applies only to the
TA-Sorted algorithm, and offers guarantees only at the end of
the execution, i.e., when the algorithm runs out of candidates.
Further, since it focuses only on eliminating candidates that
are partially seen but unlikely to be in the final top-k result, it
is not directly applicable to the TA algorithm. In contrast, our
work is more general in that we propose anytime enhance-
ments to both TA and TA-Sorted.

Recent work [1,6,23,25,26,28,32,36] on probabilistic
ranking of data, is orthogonal to the work presented here.
The model assumed in these works is that of incomplete data
and the probabilistic framework is based on possible worlds
semantics. In contrast, we assume complete information with
or without noise and we are interested in assigning guarantees
on early stopping of popular top-k algorithms.

3 Framework

3.1 Anytime measures

Our focus in this article is to upgrade top-k algorithms so that
they can exhibit anytime behavior. This means that at any
point during the execution—i.e., before the algorithm has
terminated—we wish to be able to (a) reveal the current top-
k results calculated thus far, and (b) associate a “guarantee”
with our current answers. For example, we may wish to be
able to give probabilistic guarantees, such as: “With proba-
bility p, the current top-k tuples are likely to be the true top-k
tuples”. Providing such probabilistic guarantees is the most
critical aspect of our approach, and much of the remainder
of this article is devoted to developing appropriate guaran-
tee measures and efficient techniques by which such mea-
sures can be calculated. Our goal is to provide a mechanism
to continuously recompute these guarantees as more data is
seen.

– Confidence. The algorithms shall be able to determine the
probability that the current top-k tuples are indeed the true
top-k tuples.

– Precision. The algorithms shall be able to calculate a
(probabilistic) lower bound on the precision of the current
top-k tuples—i.e., this bound on the precision will hold
with a given probability of p (typically, p = 0.95). The
precision of the retrieved results is defined as r/k where
r is the number of the current top-k tuples that belong to
the true top-k tuples.

– Score distance. Finally, the algorithms shall be able to
compute a probabilistic upper bound on the difference
between the smallest score of the true top-k tuples rela-
tive to the smallest score of the current top-k tuples.

3.2 Knowledge of the data distribution

To be able to give probabilistic guarantees with our anytime
answers, it is critical that we assume some knowledge of the
data, such as the number of tuples N , as well as knowledge
of the distributional properties of the data. Such knowledge
can be obtained via popular parametric or non-parametric
techniques (i.e., histograms). These data distribution models
are assumed to be either available (e.g., histograms of the
data have been pre-computed, to be used multiple times for
different top-k queries), or can be computed on demand (e.g.,
for each top-k query, fresh histograms are computed). Our
development of anytime top-k algorithms does not depend on
the particular type of distributional knowledge assumed. For
this reason, we employ a generic probabilistic model of the
data which we assume is known to us. We choose to do so in
order to keep the presentation of our techniques generic and
independent of specific forms of data distribution models.

To be more specific, let our database D have N tuples over
M attributes A1, . . . , AM and let Dom1, . . . , DomM be the
respective domains of the attributes. The probability distri-
butional model of the data may either be specified (assuming
attribute independence) as a product of known probability
density functions g P DFi (x) associated with each i th attri-
bute (e.g., M single-dimensional histograms), or as a joint
distributional model over the space of all possible tuples
Dom1 ×· · ·× DomM (e.g., a multi-dimensional histogram).
Our actual database D may be assumed to be a specific
instance of N tuples independently drawn from this distribu-
tion.

3.3 Knowledge of error distributions for fuzzy data

As discussed in the Sect. 1, we also consider fuzzy data, such
as data collected from sensors, business and scientific data
that has not yet been cleaned, and so on. In such datasets, the
observed values of any tuple may not necessarily be the true
original values, but may have been corrupted through various
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processes. We can model such fuzzy data by assuming that
the value of the i th attribute of a tuple is t ′[i] = t[i] + e,
where t[i] is the true value modeled via a known probability
density g P DFi (x), which is then “perturbed” by an addi-
tive error e drawn from a separate known error distribution
Err P DFi over a domain [−εi ,+εi ]. As a simple example,
a uniform error distribution [−εi ,+εi ] may be associated
with the i th attribute. Another typical error model in cer-
tain applications is the Gaussian distribution [7,8,33]. The
mean values of these error distributions are usually zero, and
the variance is indicative of how uncertain we are of the
final observed data values in the database. In principle, error
models could be associated with each generated value—e.g.,
larger values may be associated with larger errors—and not
just with each attribute as we have shown in the above exam-
ple. While our methods will work for all such error models,
for the sake of simplicity of exposition we only describe
the case where error models are associated with each attri-
bute.

4 Anytime TA algorithm

4.1 Preliminaries

We begin with a short description of the threshold algorithm
(TA): the algorithm proceeds in iterations, where in each iter-
ation, the next items in each sorted list are retrieved in par-
allel. For each retrieved tuple-id, the entire tuple is retrieved
using random access and its score is computed. The algo-
rithm maintains a bounded buffer of size k in which the cur-
rent top-k tuples (i.e., among those seen) are maintained. The
algorithm terminates when a stopping condition is reached,
i.e., when the minimum score in the top-k buffer (hence-
forth referred to as k MinScore) is larger than Score(h),
where h = [h1, . . . , hM ] is a “hypothetical” tuple such that
each hi is the last attribute value read along the sorted order
for Ai .

Consider a snapshot of TA after d iterations for a specific
database D. Let Seend be the “prefix” of the database that has
been seen by this algorithm after these d iterations. To be able
to estimate the anytime measures, the algorithm will have to
make some distributional assumptions about the remaining
portion of the database that has not yet been seen. Intuitively,
the algorithm determines the pdf of the remainder of the data-
base by conditioning the data distributional model (discussed
in Sect. 3.2) with the prefix already seen, and then computes
estimates of each of the anytime measures based on this con-
ditional pdf. As an example, assume that the data distribution
of D is defined using the distributions g P DFi along the i th
attribute assuming independence among the attributes, and
let h1, . . . , hM be the last values seen along each attribute
respectively. Then the i th attribute of any unseen tuple t in

the remainder of the database will be a random variable t[i]
distributed according g P DFi conditioned by t[i] ≤ hi .

Let P DF(O|O ∈ O) represents the probability density
associated with object O that belongs to a (possibly infinite)
set O. Thus if D refers to the space of all database tables
with N tuples that can be generated by the probabilistic data
model discussed in Sect. 3.2, then P DF(D|D ∈ D) is the
probability density associated with each specific database D.

Let OneMore(Seend) refer to the space of all possible
valid prefixes of databases that is defined by extending Seend

by one more iteration. Consider any specific extension of
Seend by one iteration, say Seend+1. We note that a pdf
over this space of extensions, i.e. P DF(Seend+1 | Seend+1

∈ OneMore(Seend)), can be naturally defined. To carry
OneMore(Seend) even further, let D(Seend) refer to the
space of all possible valid complete databases that can be
defined by extending Seend into complete databases, i.e.,
after N − d iterations. The pdf of these databases, P DF
(D | D ∈ D(Seend)), can be naturally defined.

Let Score(t) be the score of a tuple t , defined as a lin-
ear additive function on the the individual attribute values
in typical top-k algorithms, such as Score(t) = w1t[1] +
. . . wM t[M] where the weights are positive constants. Let
the k MinScore(Seend) refers to the kth largest score of all
tuples in Seend . We can make the following observation:

Observation 1 The minimum score of the current top-k
tuples increases monotonically as the algorithm progresses
on any database.

k MinScore(Seend) ≤ k MinScore(Seend+1)

Let kthScore(D) refer to kth largest score of all tuples
in a specific database D. For algorithm Anytime TA let
Con f idence(Seend ) be defined as the probability that

k MinScore(Seend) = kthScore(D)

where D is a random valid extension of Seend into a com-
plete database drawn from P DF(D|D ∈ D(Seend)).

Theorem 1 For all database instances it holds that

Con f idence(Seend ) ≤ Con f idence(Seend+1)

Proof Since the k MinScore(Seend) is increasing in each
iteration, the probability of the k MinScore(Seend) being
equal to the k MinScore(D) is also always increasing. ��

4.2 The algorithm

The anytime version of TA is shown in Algorithm 1. The
algorithm proceeds like the standard TA, selecting attributes
in a round-robin fashion, and at each step processes the next
value in the sorted list of the selected attribute. In addition, it
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Algorithm 1 Anytime TA
1: topk = {dummy1, . . . , dummyk} // topk buffer
2: Score(dummyi ) = 0 // Score of tuple dummyi
3: k MinScore = 0 // smallest score in topk buffer
4: for d = 1 to N do
5: for all lists Li (1 ≤ i ≤ M) in parallel do
6: Let <tuple-id t, t[i] > be the dth item in Li
7: // Compute Score(t) using random access
8: Score(t) = 0
9: for j = 1 to M do
10: Score(t)+ = w j t[ j]
11: end for
12: //Update PDFs to model the remaining values
13: Update-gPDF(gPDFi , t[i])
14: //Update topk buffer
15: if Score(t) > k MinScore then
16: if t �∈ topk then
17: Let u be the tuple with the smallest score in topk
18: topk = topk − {u}
19: topk = topk ∪ {t}
20: end if
21: k MinScore = min{Score(v)| v ∈ topk}
22: end if
23: // Compute confidence
24: Confidence = ComputeConfidence()
25: end for
26: end for

also maintains the information necessary to compute proba-
bilistic guarantees.1

For each round of the algorithm a new value 〈t, t[i]〉 is
read along the list Li corresponding to the i th attribute, i.e.,
the i th attribute value of tuple t . When this item is read, the
algorithm has to (a) resolve Score(t) (which is the sum of the
attributes of t and is done by probing the lists using random
access), (b) update the pdf of the i th attribute (g P DFi ) so
that it reflects the distribution of the remaining values of that
attribute, and (c) update the top-k buffer with the k tuples with
the highest scores. At the end of each round the statistics are
updated and the confidence is computed.

4.3 Computing anytime TA measures

In this subsection, we discuss details of how the various any-
time measures are computed in each iteration of the algo-
rithm. For an unseen tuple t , its score may be viewed as a
random variable. Let scoreP DFt (x) be the pdf of the score
of t . In order to compute the anytime measures, we need
to compute the pdf of the score of any unseen tuple. If we
assume attribute independence, then the score of an unseen
tuple is the sum of M random variables. To compute the pdf
of this sum, we compute the convolution of the g P DFi . We

1 Note that unlike the standard TA algorithm our algorithm does not
have a termination condition, since the objective is to produce anytime
probabilistic guarantees. Our algorithm can be easily modified to termi-
nate, for example when the probabilistic guarantees cross a user defined
threshold.

show below how this score can be estimated by convolution
of pdfs of M independent attributes.

Definition 1 (Convolution of two distributions) Assume that
f (x), g(x) are the probability density functions (pdfs) of the
two independent random variables X, Y respectively. The pdf
of the random variable X + Y (the sum of the two random
variables) is the convolution of the two pdfs:

∗({ f, g})(x) =
x∫

0

f (z)g(x − z)dz

This definition can be easily extended to the sum of more
than two random variables.

Remark The attribute independence assumption is widely
used in database literature, and does help simplify our meth-
ods and make them computationally tractable, and therefore
we adopt it for the most part of this work. Of course, if attri-
butes are not assumed to be independent, then we cannot use
convolutions to compute the pdf of the score of the tuple.
However, in principle our approach extends to correlated
data, and Sect. 4.6 discusses how we can directly compute
the score pdf of a tuple from a joint distributional model of
the tuple (in this case, a multi-dimensional histogram). Nev-
ertheless, we do emphasize that obtaining accurate correlated
models of data is often very difficult in practice, and therefore
this component of our work is expected to have limited prac-
tical value, except for certain very specialized application
domains.

4.3.1 Computing confidence

Let Seen (Unseen) refer to the set of tuples that have been
seen (unseen) by the algorithm thus far. It is clear that

|Unseen| = N − |Seen|.
To execute the function call ComputeCon f idence(), we

have to estimate Prob(k MinScore > MaxUnseen), where
k MinScore is the minimum score in the top-k buffer, while
the random variable MaxUnseen describes the maximum
score of all the unseen tuples.

Recall from Sect. 3.2 that our data model assumes that the
database is an instance of tuples drawn randomly and inde-
pendently from the data distribution. Let OneUnseen be the
random variable that describes the score of any one unseen
tuple. Then we have

Prob(k MinScore > MaxUnseen)

= Prob(k MinScore > OneUnseen)|Unseen|

Let OneUnseen P DF be the pdf of OneUnseen. This
can be computed by the convolution of the pdfs of the attri-
bute values:

OneUnseen P DF = ∗{g P DFi |1 ≤ i ≤ M}.
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Note that g P DFi here is the updated pdf that reflects
the distribution of the remaining unseen tuples along the i th
attribute. Once OneUnseen P DF has been computed, the
quantity Prob(k MinScore > OneUnseen) (and hence the
quantity Prob(k MinScore > MaxUnseen) can be easily
computed.

4.3.2 Computing other anytime measures

In this subsection we outline how, in addition to Confidence,
the anytime measures of Precision and Score Distance can
be computed.

In the case of Precision, we wish to determine (with a
given probability p, say 95%) the fraction of the current top-k
tuples that will belong to the true top-k tuples of the data-
base. Let the scores of the current topk tuples be s1, s2, . . .,
sk (= k MinScore). Let Probi be the probability that si is
greater than MaxUnseen. These Probi ’s can be computed
using the same techniques used for computing Confidence
above, except that we have to execute it for each si rather
that just for k MinScore. Let i be the largest integer such
that Probi ≥ p. The algorithm outputs i/k as Precision.
Note that this is a conservative bound on Precision because
we only consider prefixes of the current top-k to be overlap-
ping with the true top-k, and not any subset.

In order to compute Score Distance, our task is to find a
“high probability” upper bound on the smallest score of the
true topk tuples. Thus, we wish to find the smallest positive
number δ such that

Prob(k MinScore + δ > MaxUnseen) > p

where p is a given probability (e.g., 95%). This can be rewrit-
ten as

Prob(k MinScore + δ > OneUnseen)|Unseen| > p

Once we have computed the pdf of OneUnseen, δ can
be computed in a variety of ways. The simplest numeri-
cal procedure is to discretize the domain of δ, try out each
discrete value and take the smallest value that satisfies the
above formula. Alternatively, one can do a binary search
along the domain of δ to obtain the smallest satisfying value.
In Sect. 4.4, we consider using histograms to approximate
probability density functions; the resulting discretization of
the domain into buckets makes these numerical procedures
especially straightforward to implement.

4.4 Approximating PDFs using histograms

We presented our techniques thus far using a generic proba-
bilistic model of data. In this section, we describe the prac-
tical realization of our methodologies using a widely adopted
model for approximating data distributions (i.e., pdfs),
namely histograms. For simplicity of exposition, we adopt

equi-width histograms for our discussion, however, the
description is applicable to any histogram technique. We
note that histograms can approximate arbitrary functions and
thus our use of histograms does not place any restrictions or
require any assumptions about the underlying distributions
that are being approximated.

The following lemmas detail the running time of the basic
convolution operation of the algorithm.

Lemma 1 The convolution of two pdfs that are represented
by two b bucket histograms can be computed in O(b2) time.

Proof Consider two random variables, A, B in the domain
[0, 1] with corresponding pdfs approximated by two histo-
grams with b buckets, HA and HB . Assume that the bucket
boundaries are the same: HA = [0 = A1, . . . , Ab = 1]; if
not we can create two equivalent histograms with 2b buck-
ets and the same bucket boundaries. Consider the Cartesian
product of the two histograms CA,B = HA × HB where
CA,B[i, j] = HA[i]HB[ j] (HA[i] is the relative count asso-
ciated with bucket i .) We can approximate the pdf of A + B
with a histogram with 2b buckets and boundaries g0 = 0,

g1 = A1, . . . , gb = 1, gb+1 = 1 + A1, . . . , g2b = 2. To
compute the histogram we have to compute the probability
Prob(gk ≤ A + B < gk+1) for the buckets of the new his-
togram, which may be derived as

∑
Al+Bm=gk+1

CA,B[l, m]
This histogram can subsequently be approximated by a b
bucket histogram by merging neighboring pairs of buckets.
This procedure gives an O(b2) algorithm for computing the
convolution of the two pdfs. ��

As a corollary, for n histograms, we can perform the con-
volutions in sequence, with a final running time of O(nb2).

4.5 An example

Table 1 shows the sorted lists for a dataset with 2 attributes
and 5 tuples. We have a query for the top-k tuples where k is
equal to 2, and the score for a given tuple t is computed as a
linear additive function of the individual attributes.

Throughout the example, assume we use equi-width histo-
grams with at most 2 buckets. At the start, the buckets of the
histogram HA1 have ranges ([0, 0.5), [0.5, 1.0]) and counts

Table 1 Sorted lists of a sample
table with two columns A1 and
A2, tuples t1, . . . , t5, and values
for each attribute ranging from 0
to 1

A1 A2

id,val id,val

t4:0.9 t5:0.8

t2:0.8 t4:0.7

t3:0.4 t2:0.6

t1:0.3 t1:0.3

t5:0.2 t3:0.2
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(3, 2) respectively, while the buckets of the histogram HA2

have ranges ([0, 0.5), [0.5, 1.0]) and counts (2, 3) respec-
tively. Note that each histogram can represent the correspond-
ing g P DFi by normalizing to relative counts.

Assume a snapshot of the algorithm where the first items of
each list has been read, and t4 and t5 have been fully resolved
and loaded into the top-k buffer. Thus t4 and t5 belong to the
Seen group. Clearly k MinScore = Score(t5) = 1.0 is the
lowest score in the top-k buffer.

The remaining tuples t1, t2, and t3 are in the Unseen group.
We need to estimate OneUnseenPDF, the pdf of the score of
any Unseen tuple using the g P DFi s for attributes A1 and
A2. We have to first update the g P DFi s to model the remain-
ing values for each attribute. Since the top value from each
list has been read, consequently the buckets of HA1 will now
have counts (3, 1), while the buckets of HA2 will have counts
(2, 2). We then normalize each histogram by dividing by the
sum for each to get relative counts (3/4, 1/4) and (1/2, 1/2)

respectively.
We then compute OneUnseenPDF by taking the convo-

lution of g P DF1 and g P DF2 as follows. We first com-
pute the Cartesian product CA1,A2 . Next, we note that the
range of the random variable OneUnseen is [0, 2], and thus
the final histogram representing OneUnseenPDF will have
two buckets with ranges ([0, 1), [1, 2]) respectively. The
count of the second bucket with range [1, 2] is Prob(1 ≤
A1 + A2 ≤ 2) which can be derived by summing up the
values of CA1,A2 [0, 1], CA1,A2 [1, 0] and CA1,A2 [1, 1], which
is (3/4)(1/2) + (1/4)(1/2) + (1/4)(1/2) = 5/8. Likewise,
the count of the first bucket with range [0, 1) is 3/8.

We can then compute the confidence of the current
top-k buffer as described in Sect. 4.3.1. We need to com-
pute Prob(k MinScore > OneUnseen)|Unseen|. In our case,
this is equal to Prob(1 > OneUnseen)3. Now Prob(1 >

OneUnseen) can be estimated to be 3/8 from OneUnseen-
PDF, and thus confidence can be estimated to be (3/8)3 =
0.053.

4.6 Considering multidimensional distributions

The pdf of the score of a tuple for a given query depends
on the joint distribution of the attributes. Many commer-
cial systems make the attribute value independence assump-
tion, and keep statistics only for individual attributes. In our
setting as described above, the independence assumption is
similarly assumed when we compute the pdf of the score
of a tuple by taking convolutions of the histograms of the
different attributes. Although the independence assumption
is commonly applied and is well validated in practice for
a wide variety of applications, it may produce inaccurate
results in some cases (whether the confidence curve using
one-dimensional histograms is higher or lower than the con-
fidence curve using two-dimensional histograms depends on

whether the independence-based approach is overly optimis-
tic or pessimistic). For such cases, joint distribution models
involving multiple attributes may be necessary.

Joint distributions can easily be applied in our framework.
Suppose for some tuple t we have three attributes A, B and C
which are unknown. Earlier we showed that we can compute
the convolution of HA, HB , and HC , but with multidimen-
sional histograms we can now compute the convolution of
the score pdf of A+ B and HC , where the score pdf of A+ B
may be directly computed from HA,B , the two-dimensional
histogram representing the join distribution of attributes A
and B.

As in the case of one-dimensional histograms, multidi-
mensional histograms are computed as a pre-processing step.
Methods for computing multidimensional histograms have
been thoroughly researched [19,31] involving sampling and
other efficient approximation techniques. In the evaluation
section of this work, we consider two-dimensional histo-
grams. Since the number of possible two-dimensional his-
tograms is quadratic in the number of attributes, we have
to decide which pairs to take. We use the following simple
heuristic: starting with the set of attributes, we find the most
correlated pair of attributes, compute a two-dimensional his-
togram on these attributes, remove these two attributes, and
continue with the remaining set. This approach produces a
linear number of histograms, and, since there is no overlap
of attributes between different histograms, greatly simplifies
the selection of the histograms that have to be used to com-
pute the convolution of a set of attributes.

Recall that for one dimensional histograms (histograms
covering a single attribute) every time a new item from the
sorted list is read, the corresponding bucket has to be decrea-
sed by one. In the case of multidimensional histograms, we
similarly decrement the histograms as new items are read.
Suppose we have a database with two attributes A and B,
two one-dimensional equi-width histograms HA, HB , as well
as one 10 × 10 equi-width 2-dimensional histogram HA,B .
If the first tuple that is completely resolved has the values
(0.3, 0.9), we decrement the buckets of the histograms as fol-
lows: HA[3] would be decremented, HB[9] would be decre-
mented, and HA,B[3, 9] would be decremented. This same
technique follows through for higher dimensional histograms
and can be performed incrementally.

5 Anytime TA-Sorted algorithm

In this section, we describe how the TA-Sorted algorithm can
be extended to compute online probabilistic guarantees. In
addition to Seen and Unseen tuples, TA-Sorted also main-
tains tuples in which only some of the attributes have been
seen. This is a consequence of the inability of TA-Sorted to
perform random access operations.
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Algorithm 2 Anytime TA-Sorted
1: topk = {dummy1, . . . , dummyk} // topk buffer
2: MinScore(dummyi ) = 0 // Sum attributes seen for dummyi
3: Partials = {} // Partially seen tuples not currently in topk
4: k MinScore = 0 // smallest score in topk buffer
5: Assume for all tuples t , obs(t) = {}
6: for d = 1 to N do
7: for all sorted lists Li (1 ≤ i ≤ M) in parallel do
8: Let <tuple-id t, t[i] > be the dth item in Li
9: obs(t) = obs(t) ∪ {i}
10: MinScore(t) = 0
11: for j ∈ obs(t) do
12: MinScore(t)+ = w j t[ j]
13: end for
14: //Update PDFs by conditioning with remaining values
15: Update-gPDF(gPDFi ,t[i])
16: //Update topk buffer
17: if MinScore(t) > k MinScore then
18: if t �∈ topk then
19: Let u be tuple with smallest worst case score in topk
20: Remove u from topk
21: if |obs(u)| < M then
22: Partials = Partial ∪ {u}
23: end if
24: topk = topk ∪ {t}
25: end if
26: k MinScore = min{MinScore(v)| v ∈ topk}
27: end if
28: if |obs(t)| < M and t �∈ topk then
29: Partials = Partials ∪ {t}
30: else
31: Partials = Partials − {t}
32: end if
33: // Compute confidence
34: Confidence = ComputeConfidence()
35: end for
36: end for

Consequently, during the operation of TA-Sorted, we need
to keep a set of tuples called Partials that are not in the
top-k, yet cannot be eliminated because we know only a
lower-bound of their true score. The TA-Sorted algorithm
must estimate the pdf of the maximum scores of the Partials
before giving any probabilistic guarantee on the confidence.

Like TA, the TA-Sorted algorithm as shown in Algorithm 2
selects attributes in a round-robin fashion, at each step pro-
cessing the next (sorted by decreasing magnitude) value of
the selected attribute. The differentiating factor between Any-
time TA and Anytime TA-Sorted is the inclusion of Partials.
Let Partials be the set of tuples that are partially seen
(some but not all of the attributes for a given tuple have been
resolved), but are not in the top-k buffer.

Let 〈t, t[i]〉 be the next item read by the algorithm along
the sorted list Li corresponding to the i th attribute, i.e., the
i th attribute value of tuple t . When this item is read, the algo-
rithm has to (a) update MinScore(t) (which is the sum of
the attributes that have seen for t) (b) update the pdf of the
attribute i (g P DFi ), and (c) update the top-k buffer with the
k tuples with the highest lower-bound scores. After reading

t[i], t will either be fully resolved (that is, all attributes of
t have been seen and its final score found) and put in the
Seen group, or partially resolved and placed in the Partials
group.

5.1 Monotonicity for anytime TA-Sorted measures in
expectation

Let kthScore(D) refer to the kth largest score of all tuples in
a specific database D. The Con f idence(Seend ) for Anytime
TA-Sorted may be defined as the probability that

k MinScore(Seend) > (k + 1)thScore(D)

where D is a random valid extension of Seend into a complete
database drawn from P DF(D|DinD(Seend)). Because of
the use of lower-bound scores, this definition of confidence
is actually even more conservative than the earlier definition
of confidence in Sect. 3.1.

Example There exist a database instance where

Con f idence(Seend ) > Con f idence(Seend+1)

Assume a database with two columns A1 and A2, each with
domain [0.0, 1.0] and a uniform distribution model. Let the
score function be Score(t) = t[1] + t[2]. Let the database
have four tuples with tuple-ids t1, . . . , t4, and assume that
the task is to return the top-2 tuples.

In the first iteration, assume we encounter t1 = [0.9, ?]
and t2 = [?, 0.9], along each of the sorted lists (a ? implies
that the corresponding attribute value is unresolved). After
this iteration, the top-2 buffer is loaded with t1 and t2, each
with a worst case score of 0.9. Since we have not seen the
other two tuples, we assume that each is distributed uniformly
in [0.0, 0.9] × [0.0, 0.9], and hence the probability that the
current worst case score of 0.9 is larger than the scores of
both these unseen tuples is (1/2) ∗ (1/2) = 1/4.

Suppose in the next iteration the algorithm encounters
t3 = [0.8, ?] and t4 = [?, 0.8]. After this iteration, the top-2
buffer remains unchanged. However, the unresolved attribute
of t3 has a probability of 7/8 of having a value in the range
[0.1, 0.8], which would enable t3 to have larger score than
the current worst case score. A similar argument can be made
for t4. Thus, the probability that the current worst case score
of 0.9 is larger than the scores of both these (now partially
seen) tuples decreases to (1/8) ∗ (1/8) = 1/64.

Similar examples can be constructed to demonstrate that
the other anytime measures are non-monotonic for certain
database instances. These arguments bring to light a subtle
issue. The uncertain (probabilistic) nature of anytime mea-
sures should of course be obvious to the reader—i.e., that
at any point during execution, we cannot be completely cer-
tain that we have discovered the true top-k tuples, and there-
fore can only make probabilistic guarantees regarding our
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anytime measures. However, what the example shows is that
as the iterations progress, we may have to revise, and some-
times even reduce, our probabilistic guarantees. We note that
a similar argument will not suffice in the case of TA, because
in that algorithm a tuple is never in a partially resolved state—
it is either completely seen or completely unseen.

However, although the anytime measures for TA-Sorted
are not monotonic for certain database instances, we can nev-
ertheless show that the measures are monotonic in expecta-
tion over all database instances. We describe the result for
the confidence measure. Similar results for the other any-
time measures are straightforward and omitted due to lack of
space.

Let E[Con f idence(Seend+1)] be defined as the expected
value of Con f idence(Seend+1), where Seend+1 is randomly
drawn from

P DF(Seend+1|Seend+1 ∈ OneMore(Seend)).

Theorem 2 (Expected Monotonicity Theorem)

Con f idence(Seend) ≤ E[Con f idence(Seend+1)]
Proof From the definition of confidence, we know that

Con f idence(Seend)

=
∑

D∈D(Seend )

(k MinScore(Seend)

= kthScore(D)) · Prob(D|D ∈ D(Seend))

Partitioning all valid database extensions D as follows,
we get

Con f idence(Seend) =
∑

Seend+1∈OneMore(Seend )

×
⎛
⎝ ∑

D∈D(Seend+1)

(k MinScore(Seend) = kthScore(D))

·Prob(D|D ∈ D(Seend+1))

⎞
⎠

Prob(Seend+1|Seend+1 ∈ OneMore(Seend))

From Theorem 1 we have

k MinScore(Seend) ≤ k MinScore(Seend+1)

for any extension Seend+1. Thus the above reduces to:

Con f idence(Seend) ≤
∑

Seend+1∈OneMore(Seend )

×
⎛
⎝ ∑

D∈D(Seend+1)

(k MinScore(Seend+1) = kthScore(D))

·Prob(D|D ∈ D(Seend+1))

⎞
⎠

·Prob(Seend+1|Seend+1 ∈ OneMore(Seend))

Thus,

Con f idence(Seend )

≤
∑

Seend+1∈OneMore(Seend )

Con f idence(Seend+1)

·Prob(Seend+1|Seend+1 ∈ OneMore(Seend))

Thus,

Con f idence(Seend ) ≤ E[Con f idence(Seend+1)].
��

5.2 Computing anytime TA-Sorted measures

In this subsection, we discuss how the anytime measures are
computed in each iteration of the TA-Sorted algorithm.

5.2.1 Computing confidence

At any instance during the execution of the algorithm, con-
sider the set of tuples Others = Partials ∪ Unseen. Let
Max Others be the random variable that denotes the maxi-
mum score of all tuples in Others. To execute the function
ComputeCon f idence(), we have to estimate

Prob(k MinScore > Max Others)

Let us define two random variables Max Partials and
MaxUnseen that denote the maximum score of all tuples in
Partials and Unseen respectively. Thus we have

Prob(k MinScore > Max Others)

= Prob(k MinScore > MaxUnseen)

·Prob(k MinScore > Max Partials)

The first factor can be written as

Prob(k MinScore > MaxUnseen)

= Prob(k MinScore > OneUnseen)|Unseen|

This can be computed using techniques similar to that
developed earlier in Sect. 4.3.1. We thus focus on the compu-
tation of the second factor. For any tuple t in Partials, since
all attributes have not been resolved, Score(t) is a random
variable. The second factor can thus be written as

Prob(k MinScore > Max Partials)

=
∏

t∈Partials

Prob(k MinScore > Score(t))

For any tuple t in Partials, let ScoreP DFt be the proba-
bility distribution of the random variable Score(t). The defi-
nition is similar to the definition of the score pdf of an unseen
tuple (i.e., OneUnseen P DF), except that the convolutions
are taken only over the pdfs of the unresolved attributes of t ,
to which the aggregate of the resolved attribute values (i.e.,
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MinScore(t)) is combined. More formally, given a real num-
ber a, let vP DFa(x) denote the “value distribution” where
all the probability mass is concentrated at value a and is 0
elsewhere.2 Then

ScoreP DFt

= ∗({vP DFMinScore(t)} ∪ {g P DFi |i �∈ obs(t)})
Once ScoreP DFt has been computed, the second fac-

tor Prob(k MinScore > Max Partials) can be computed
in a straightforward manner in time linear in the number of
partially seen tuples. Since this can become slow for large
data sets, in the following subsection we present an effi-
cient implementation that is based on clustering partially seen
tuples.

5.2.2 Efficiently computing the second factor:
Prob(k MinScore > Max Partials)

The straightforward way to compute Prob(k MinScore >

Max Partials) is to compute the score pdfs of each of the
partially seen tuples. This linear approach can be slow for
large datasets. To improve the running time, we employ a
technique of clustering the partially seen tuples.

We first describe the high-level idea. Let us assume that
Partials has been partitioned into a small number of clusters,
Partials1, Partials2,. . ., Partialsr , such that the scores of
all tuples within each partition have very similar probability
distributions. Each partition Partialsi is also associated with
an “upper-bound” distribution U pper P DFi that has the fol-
lowing properties: Let maxi be the random variable defined
as max{Score(t)|t ∈ Partialsi }, and let ui be a random
variable with distribution U pper P DFi ; then for all constant
c we have Prob(c > maxi ) ≥ Prob(c > ui ). Such an
upper-bound distribution is very useful since it can be used
to efficiently compute a lower bound for the second factor
in the confidence calculations, as shown below. Note that if
the upper-bound distribution for each partition is available,
computing the last expression takes time linear only in the
number of clusters, and not in the size of Partials.

Prob(k MinScore > Max Partials)

=
∏

t∈Partials

Prob(k MinScore > Score(t))

=
∏

1≤i≤r

∏
t∈Partialsi

Prob(k MinScore > Score(t))

≥
∏

1≤i≤r

Prob(k MinScore > ui )
|Partialsi |

We now provide the formal details of how exactly are
these partitions and their corresponding upper-bound distri-

2 The value distribution is identical to the Dirac’s delta distribution in
physics, or the impulse function in signal processing.

butions defined, computed, and maintained. We first describe
a coarse partitioning of Partials, and then describe how it
can be further refined into an even finer partitioning.

For all subsets S of the attributes, let PartialsS be the set
of tuples that have exactly these S attributes resolved. That is,
PartialsS = {t |obs(t) = S}. This way we essentially par-
tition all tuples in Partials into at most 2M clusters (where
recall that M is the total number of attributes). Then, let us
consider the worst case scores (MinScore(t)) of the tuples
t in PartialsS , and consider an equi-width B-bucket histo-
gram H with these values (where B may be different from
the b used to denote the number of buckets in the score/attri-
bute histograms). The tuples in PartialsS may be further
partitioned into B clusters, where the cluster PartialsS, j

represent all tuples t of PartialsS such that MinScore(t)
falls within the j th bucket of H . Note that Partials has
now been partitioned into at most 2M B clusters. Moreover,
any two tuples in PartialsS, j have the same set of resolved
attributes and approximately the same worst case scores.

We next define U pper P DFS, j , the upper-bound distribu-
tion for any cluster PartialsS, j . Let the bucket boundaries
of H be h0, h1, . . . , hB . We then have

U pper P DFS, j = ∗({vP DFh j } ∪ {g P DFi |i �∈ S})

Thus, using the above clusters as well as their correspond-
ing upper-bound distributions, we can efficiently compute
a lower bound to Prob(k MinScore > Max Partials) in
time proportional to the number of clusters, i.e., O(2M B).

We can efficiently maintain the clusters as well as their
upper bound distributions as follows. We maintain one
counter for each of the 2M B histogram buckets (which are in
the beginning initialized at 0). Every time a new value is read
in, one of the tuples has one more attribute resolved. If this
is a new tuple, we increment the corresponding bucket and
add this tuple to the Partials set. If the tuple is already in
Partials, one bucket will have its counter reduced by one. If
the tuple is still not fully resolved, another bucket will have
its counter increased by one.

We note that the running time of this update is independent
of N , the total number of tuples in the database.

5.2.3 Computing other anytime measures

In addition to Confidence, the anytime measures of Precision
and Score Distance can also be computed. The proposed tech-
niques are very similar to those described in Sect. 4.3.2 for the
Anytime TA algorithm, except that instead of MaxUnseen
we use Max Others, and k MinScore is the smallest worst
case score of the current topk tuples. The straightforward
details are omitted.
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6 Considering fuzzy data

In this section, we investigate how to extend our top-k results
for fuzzy data. Fuzzy data is typically associated with sen-
sors based applications—e.g., for an environment monitoring
application consider the problem of determining the top-k
time instances during a given day when the average tem-
perature reading of all sensors is the highest. As defined in
Sect. 3.3, our model for fuzzy data is that each value observed
by any algorithm is its true value plus an error, the latter mod-
eled via an error distribution. We assume that the error dis-
tributions (e.g., those associated with the sensors) are known
and is the same for all the values of a given attribute i . Thus,
if we are only given the observable attribute values of a tuple
t , we can only determine the true score of t using a prob-
ability density function. Thus the challenge is to develop
algorithms that can retrieve the true top-k tuples with some
degree of confidence.

6.1 Impact of fuzzy data on standard top-k algorithms

Before we even start considering how to extend our anytime
algorithms to handle fuzzy data, we consider two basic yet
compelling problems.

The first problem that we consider is: how can we mod-
ify standard top-k algorithms so that they terminate with a
100% confidence of having retrieved the top-k tuples? Recall
that we assume that the error along each attribute is dis-
tributed within the interval [−εi ,+εi ]. This enables us to
employ standard TA-Sorted algorithmic techniques to pos-
sibly achieve a 100% guarantee: subtract (resp. add) εi to
each attribute value of a partially resolved tuple to compute
a deterministic lower (resp. upper) bound of its score, and
terminate when the kth smallest lower bound is larger than
the upper bound of the other tuples. We note that although
such techniques may enable early termination to guarantee
that a superset of the top-k tuples have been encountered, it
still may not be possible to pinpoint which of the encountered
tuples are exactly the true top-k. Moreover, if the error distri-
bution is unbounded, such as a Gaussian distribution, then we
can never achieve 100% certainty that the true top-k tuples
have even been encountered, let alone pinpointed, unless we
complete a full scan of all lists.

The second problem that we consider is: what happens
if we simply execute the standard top-k algorithms TA and
TA-Sorted as-is on fuzzy data, without making any modifica-
tions to make them anytime algorithms? It is clear that if we
were to execute these standard algorithms, due to the fuzzi-
ness of the data, there is some chance that even after termi-
nation the true top-k tuples would not have been discovered.
However, these algorithms can be modified such that after
termination they are able to compute a terminal confidence,

i.e., a probabilistic guarantee that they have indeed computed
the true top-k tuples.

The terminal confidence of standard top-k algorithms is
exactly the same as the value of the confidence that our cor-
responding anytime algorithms (to be described in the next
subsection) would arrive at the moment they completed an
identical number of iterations into the lists. Thus, instead
of continuously computing the confidence that our anytime
algorithms for fuzzy data are required to do, all we need to
do is to defer the confidence computation till after the algo-
rithm has terminated. Overall, this will be more efficient than
the anytime algorithms, as we can avoid continuous update
computations (such as updates to the g P DFi distributions
after each iteration). However, the value of the resulting con-
fidence will be the same.

6.2 Anytime algorithms for fuzzy data

Here we describe the extensions necessary to the anytime
algorithms presented in the previous sections to work for
fuzzy data. Essentially, these algorithms must be modified
to compute the pdf of Score(t), even when all the values
of the attributes have been observed. If obs(t) is the set of
the attributes of t that have been observed, then the pdf of
the Score(t) is defined by Definition 2 (where recall that
vP DFa refers to the pdf where all the probability mass is
concentrated at value a, and Err P DFi is the error distribu-
tion of the i th attribute.

Definition 2 The pdf of Score(t) is computed as

ScoreP DFt

= ∗({vP DFt[i]|i ∈ obs(t)} ∪ {Err P DFi |i ∈ obs(t)}
∪{g P DFi |i �∈ obs(t)}) ∪ {Err P DFi |i �∈ obs(t)})

Definition 2 can then be used for estimating the probabi-
listic measures the algorithms compute online. However, to
decide which tuples should be in the top-k buffer, the algo-
rithms have to find the tuples with the highest worst case
scores. Consequently, for the computation of Definition 3,
we use the εi bound on the maximum error, and we compute
the worst score of a tuple t by replacing the observed values
t[i] with the worst case bounds t[i] − εi .

Definition 3 The worst case score is defined to be
MinScore(t) = ∑

i∈obs(t) wi (t[i] − εi ).

6.3 The algorithm

Our discussion mainly focuses on the anytime version of
TA for fuzzy data (shown as Algorithm 3); we only make
brief mentions of the anytime version of TA-Sorted when-
ever appropriate. The algorithm proceeds like Anytime TA
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Algorithm 3 Anytime TA for Fuzzy Data
1: topk = {dummy1, . . . , dummyk} // topk buffer
2: Score(dummyi ) = 0 // Score of the current tuple dummyi
3: k MinScore = 0 // smallest score in topk buffer
4: for d = 1 to N do
5: for all lists Li (1 ≤ i ≤ M) in parallel do
6: Let <tuple-id t, t[i] > be the dth item in Li
7: // Compute MinScore(t) using random access
8: MinScore(t) = 0
9: for j = 1 to M do
10: MinScore(t)+ = w j (t[ j] − ε j )

11: end for
12: //Update PDFs to model the remaining values
13: Update-gPDF(gPDFi , t[i])
14: //Update topk buffer
15: if MinScore(t) > k MinScore then
16: if t �∈ topk then
17: Let u be the tuple with the smallest score in topk
18: topk = topk − {u}
19: topk = topk ∪ {t}
20: end if
21: k MinScore = min{MinScore(v)| v ∈ topk}
22: end if
23: // Compute confidence
24: Confidence = ComputeConfidence()
25: end for
26: end for

described earlier in Algorithm 1, maintaining the information
necessary for computing probabilistic guarantees.

The main changes that we must make are: (a) in comput-
ing the worst case score of any tuple, we must subtract the
maximum error associated with each observed attribute of
the tuple, and (b) in computing the pdf of any tuple, we must
make sure that the error distributions along each attribute are
taken into consideration.

For each round of the algorithm a new value 〈t, t[i]〉 is
read along the list Li corresponding to the i th attribute. The
algorithm has to (a) resolve MinScore(t) (which is achieved
by probing the lists using random access and subtracting the
max error from each attribute value); (b) update the pdf of
the i th attribute (g P DF(i)) such that it reflects the distri-
bution of the unseen values for that attribute; and (c) update
the top-k buffer with the k tuples with the highest worst case
scores. At the end of each round the statistics are updated
and the confidence is computed. We discuss the confidence
computation next.

6.4 Computing confidence

In this subsection, we will describe how to compute the
confidence that the current top-k buffer is indeed the actual
top-k tuples in the database. To execute the function call
ComputeCon f idence() for fuzzy data, we have to estimate
Prob(k MinScore > MaxUnseen) (equivalently, Prob
(k MinScore > Max Other) in the case of TA-Sorted),
where k MinScore is the minimum worst case score in the

top-k buffer, and the random variable MaxUnseen (respec-
tively Max Other ) describes the maximum score of all
remaining tuples. To accomplish this we need to be able to
compute the pdf of any of the tuples that are not in the top-k
buffer. Unlike the case of non-fuzzy data, the computation
of this pdf requires us to first compute the distribution of the
tuple’s actual values along each attribute, and then employ
convolutions as suggested in Definition 2, including convolu-
tion of the error distributions. The rest of the steps are similar
to that used in the corresponding algorithms (both anytime
TA and anytime TA-Sorted) for non-fuzzy data.

The computation of other anytime measures such as pre-
cision and Score Distance can be accomplished using tech-
niques similar to that described in Sect. 4.3.2. We omit the
straightforward details.

7 Experimental evaluation

In this section, we present an experimental evaluation of our
framework. The implementation of our techniques is in C++
and our evaluations are performed on a dual AMD Opteron
280 processor system with 8GB of memory.

We have conducted series of experiments using synthetic
and two real-world data sets varying the distribution and size.
The data sets range in size from 4,990 to 1,000,000 rows, and
four to ten attributes (we vary the number of attributes when
we report on performance). Our experiments focus on the
comparison of the accuracy of our estimated results with the
expected performance of the TA and TA-Sorted algorithms.

We used both exact and fuzzy datasets in our evaluation.
The fuzzy data points are derived using an exact data set by
distorting each exact value with samples from Gaussian and
Uniform distributions (we evaluate our approach testing sev-
eral levels of fuzziness for both the Uniform and Gaussian
error models).

7.1 Real world data sets

In our experiments, we use two real-world data sets. Our
first data set is atmospheric data collected from several inde-
pendent sensor locations in Washington and Oregon by the
Department of Atmospheric Science at the University of
Washington. The second is the Internet Movie Database
IMDB.3

For the sensor data, 25 sensors independently obtained
temperature readings on an hourly basis between June 2003
and June 2004, for a total of 208 days. For each sensor there
is a total of 4,990 readings.

It is easy to see potential scenarios for data generated from
sensor networks utilizing top-k algorithms. One of the most

3 http://www.imdb.org.
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apparent scenarios include the ability to monitor air pollution
or other weather-related features across large geographical
areas. In our setting, top-k algorithms are utilized to answer
relevant queries about temperature levels over extended peri-
ods to locate instances of high average temperature.

Each of the readings taken from a sensor were combined
with readings from other sensors which had taken a reading
during the same time period. These readings were grouped
to make individual rows based on their time-stamps. Sensor
data such as the temperature data provided can specifically
benefit from our algorithms due to the anytime behavior. For
our experiments we use the readings from five to ten ran-
domly selected sensors.

The IMDB database is composed of more than 860,000
titles and details about each. For the IMDB data set, we
extracted a list totaling 863,049 titles.

It is difficult to quantify the performance of a movie look-
ing from only a single perspective. In our setting, we have
chosen several attributes to represent different facets of movie
performance.

For each title, we queried the following attributes: budget,
gross income, opening weekend gross income, and number
of keywords describing the title. We chose these attributes
because each offers some insight regarding the popularity
of the movie from multiple perspectives including: produc-
ers, critics, and fans. Specifically, the budget can be seen
as a valuation of the film from the producers standpoint, the
gross income and weekend gross income translates into critic
and fan popularity, and the number of keywords represent
information regarding fan popularity (i.e., popular movies
are likely to have a larger number of keywords submitted
from fans than less popular movies). This allows us to per-
form queries across a broad set of perspectives for measuring
top performing movies.

We experimented with several different histogram sizes;
we found that the accuracy did not improve much with his-
tograms of more than 20 buckets for our real-world experi-
ments.

7.2 Anytime measures

Our experimental evaluation validates our measures on real-
world and synthetic data sets. As a baseline we compare our
approach against the actual confidence, TA, and TA-Sorted
algorithms.

In the case when the distribution of scores is skewed, the
confidence of the algorithm may stay relatively low for a
large portion of the data set. This is due to a high density of
values keeping the k MinScore and Max Others close for a
larger portion of the running time (i.e., there is a low-sloping
increase in the confidence, but eventually it reaches 100%
confidence). In cases when the distribution of the data set

contains a distinct cluster of K or more high scores (row-level
correlation) the confidence quickly climbs. For the IMDB
data set, there are few large values with the majority of the
scores being clustered toward the lower end of the value range
for each attribute. This is reasonable considering that there
are only a few big budget movies and of these movies an
even smaller subset that gross a large sum of money. This
creates a data set with a small number of high score tuples.
Similarly in the case of the sensor data there is row-level cor-
relation around temperature spikes with the majority of the
readings being located around the average temperature for
each sensor. As shown in Figs. 1 and 9, both the IMDB and
sensor data sets illustrate how correlation of attributes can
quickly cause the Anytime TA algorithm to climb to 100%
confidence, this can be accounted for by the fact that the cor-
relation of data cause the the k MinScore and Max Others
groups to quickly diverge.

Accuracy: Our results show good performance for both
real-world and synthetic data sets. In Figs. 1 and 2, we show
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the confidence and percentage of correct results in the top-k
buffer during the execution of the algorithm. These figures
illustrate how our estimates coincide with the number of cor-
rect results in the top-k buffer.

Further, in Fig. 3 we show that our estimates for the con-
fidence accurately approximates the actual confidence. In
order to compare the accuracy of our estimations, we com-
puted the actual confidence by running the TA algorithm for
10 independent runs (we generated 10 randomly distributed
synthetic data sets and ran the algorithm for each) building a
vector for each run where each element of the vector contains
one of two values (1=“Top-k found”, 0=“Top-k not found
yet”). We then computed the average over all runs (i.e., we
built a new vector that represents the element-wise average
of the vector set) creating a new vector of real values where
each element of the vector represents the actual confidence
for each respective run.

We evaluate the accuracy of readings by comparing the
number of items read given a user-defined confidence using
Anytime TA with the number of items retrieved had the actual
confidence (defined above) been known. We can estimate
the accuracy of a reading by comparing the number of items
read for Anytime TA and the actual confidence. In Fig. 3,
we shown the error percentage for confidence levels of 0.80
through 0.95. Our algorithm performs well for various levels
of confidence. Notice that the Anytime algorithms can either
underestimate or overestimate the confidence (viz., in Fig. 3:
positive error = underestimate & negative error = overes-
timate). It just so happens in that particular experiment the
algorithm never underestimated.

The results suggest that there is little correlation between
the confidence level and the accuracy of our results. For the
experiment presented in Fig. 3, the number of items read by
the Anytime TA algorithm never deviates more than 16%
from the number of items read for the corresponding actual
confidence.

7.3 Run-time overhead and performance

Efficiency: Our results show that sizable savings can be
achieved in comparison to the TA and TA-Sorted algorithms.
As a baseline we ran TA and TA-Sorted on the IMDB and
sensor data sets. In each case, we computed how many tuples
were read before the TA or TA-Sorted stopping condition was
reached. We then compared these results with our algorithm.
As shown in Fig. 4 Anytime TA provides sizable savings
over TA. We achieve a saving of over 70% (1,200 tuples) for
a confidence level of 99% using the IMDB data set. Simi-
larly, Anytime TA works well for high dimensional (sensor)
data sets. As shown in Fig. 5, we achieve savings of over 50%
(3,000 tuples) for a confidence level of 99% using the sensor
data set. Since TA-Sorted does not allow for random acces-
ses, the number of tuples read is usually much greater than
TA (allowing for greater savings). As shown in Fig. 6, we
compare the Anytime TA-Sorted algorithm with TA-Sorted.
In this case, for TA-Sorted and a confidence level of 99% we
achieve an even greater savings of over 95% (14,000 tuples).

Run-time Overhead: To evaluate the overhead of our
approach we ran experiments with a synthetic data set total-
ing 1,000,000 rows and 4 attributes. We used histograms of
5–25 buckets to describe attribute distributions. In this set
of experiments, we set K = 1,000, but similar results were
obtained for different values.

Table 2 shows the run-time performance of the Anytime
TA algorithm, as well as the overhead that the technique
imposes over the TA algorithm. In the first column, we report
the running time of the TA algorithm. In the second column,
we report the running time overhead of our implementation
of the Anytime TA algorithm—i.e., the running time had
Anytime TA processed the same number of tuples as TA.

For example, if TA takes 100 s to process the necessary
tuples to compute the top-k and equivalently it takes Anytime
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TA 110 seconds to locate the top-k with 100% confidence
(i.e., read the same number of tuples as TA), then TA would
be faster. However, if we only needed the top-k with 95%
confidence then Anytime TA may terminate after only 90 s
while TA would still require the full 100 s.

Table 2 Run-time performance for synthetic data set comparing
Anytime TA, TA and time required to take an Anytime TA measure

TA Anytime TA Estimation time average Histogram size
time per readings

1.0908 1.1238 0.0001 5

1.1598 0.0004 10

1.1778 0.0009 15

1.2068 0.0014 20

1.2107 0.0020 25

Synthetic data set (1,000,000 tuples, 4 attributes, histograms size 20,
random distribution). Time is reported in seconds

Table 3 Run-time performance for synthetic data set comparing
Anytime TA-Sorted, TA-Sorted and time required to take an Anytime
measure

TA-Sorted Anytime Estimation time average Histogram size
TA-sorted time per readings

2.7696 20.8258 0.0001 5

26.2369 0.0004 10

32.3550 0.0007 15

41.4386 0.0013 20

51.6661 0.0019 25

Synthetic data set (1,000,000 tuples, 4 attributes, histograms size 20,
random distribution). Time is reported in seconds

The second column does not include the time that it takes
to compute the anytime measures. In other words, column
two only includes the time it takes to run TA and the time it
takes to maintain the gPDFs for each round. Note that this
time is dependent upon the users confidence bound. The third
column shows the average time for computing the anytime
measure (confidence, precision, and so on) every time this
computation is invoked. The total running time of our algo-
rithm is the fraction of the time it takes to run Anytime TA
(column 2) and the time it takes to compute the anytime
measures (column 3) times the number of times the anytime
computation is invoked.

The experimental results in Table 2 suggest that the over-
head of our approach is relatively small for Anytime TA.
There is little variation in run-time between the TA and Any-
time TA algorithm (this is attributed to the fact that his-
tograms are not utilized for computation until a reading is
taken). Varying the histogram size between 5 and 25 buckets
make little difference in effecting the run-time of the Anytime
TA algorithm.

For the Anytime TA-Sorted algorithm as shown in Table 3
there is a sizable difference in the running time for TA-Sorted
and Anytime TA-Sorted algorithms. This is attributed to the
overhead incurred from the maintenance of the partially seen
tuples. In other words, this includes the time it takes to run
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Table 4 Run-time performance comparing TA and Anytime TA for
varying confidence levels

Confidence TA tuples TA Anytime TA Anytime
time tuples TA time

0.85 1,992 0.1010 700 0.0386

0.90 700 0.0407

0.95 800 0.0441

IMDB data set (863,049 tuples, 4 attributes, histograms size 20, skip
size=100). Time is reported in seconds

Table 5 Run-time performance comparing TA-Sorted and Anytime
TA-Sorted for varying confidence levels

Confidence TA-S TA-S time Anytime Anytime
tuples TA-S tuples TA-S time

0.85 15,094 0.1920 200 0.0106

0.90 300 0.0128

0.95 600 0.0247

IMDB data set (863,049 tuples, 4 attributes, histograms size 20, skip
size = 100). Time is reported in seconds

Anytime TA-Sorted, update the gPDFs and maintain partially
seen clusters for each round as defined in Sect. 5.2.2. Varying
the histogram size between 5 and 25 buckets make little dif-
ference in effecting the run-time of the Anytime TA-Sorted
algorithm. Overall, the overhead for the partials remains a
fixed cost over Anytime TA and increases when the size of
the histograms increases, as expected.

Performance: We evaluate performance in terms of how
many tuples we read, and how long it takes to run the algo-
rithm using our implementation. We compare Anytime TA
with TA. To evaluate our approach we ran experiments using
the IMDB data set totaling 863,049 rows, 4 attributes; we
use a histogram size of 20 to describe the distribution. In
this set of experiments, we set K = 100, but similar results
were obtained for different values. Proper selection of skip
size (i.e. the number of tuples sampled between readings) can
greatly affect the run-time and total number of tuples sam-
pled. A large skip size ensures that the number of readings
is minimal. If the skip size is too large then there is a coars-
ening of the confidence levels between readings, generally
causing additional tuples to be read from the database. On
the other hand, if the skip size is small then fewer tuples may
be sampled but the run-time will increase due to the inflation
of reading overhead.

Tables 4 and 5 offer a comparison of run-time perfor-
mance for Anytime TA, Anytime TA-Sorted and TA for sev-
eral confidence levels. For each confidence level we report
both the run-time and number of tuples retrieved for each
algorithm. Anytime TA and Anytime TA-Sorted complete
in about the same amount of time. The experimental results
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Fig. 7 In this experiment, we compare the number of tuples retrieved
from the database using one- and two-dimensional histograms with the
actual confidence using a synthetic data set where K = 100

in Tables 4 and 5 show that sizable gains can be achieved
over TA and TA-Sorted for both run-time and the number
of tuples read from the database. However, due to the non-
monotonic properties of the Anytime TA-Sorted confidence
function, in analyzing the results it is apparent that the Any-
time TA-Sorted algorithm terminated at a local maximum.
For our experiments we achieved a reduction of approxi-
mately 1,100–1,200 tuples and over 14,000 tuples for Any-
time TA and Anytime TA-Sorted, respectively. Overall, we
have found that our approach works well in a variety of set-
tings.

7.4 Multidimensional histograms

We consider the effects of joint distributions (multidimen-
sional histograms) by comparing the accuracy and perfor-
mance of our algorithm using one- and two-dimensional
histograms. Like the one-dimensional gPDFs we have used
thus far, we assume that multidimensional histograms are
provided as a pre-processing step. We want to compare the
accuracy of our results using various levels of knowledge
about the scores in the database. For the experiments using
joint distributions we assume all combinations of two attri-
bute joint distributions g P DFi s are available as described in
Sect. 4.6.

As shown in Fig. 7, we compared the performance of one-
and two-dimensional histograms with the actual confidence.
Similar to the process described in Sect. 7.2, we computed the
actual confidence to compare the number of tuples retrieved
assuming independence versus using joint histograms.

The inclusion of multidimensional histograms did not
greatly affect the number of tuples read from the database.
We experimented with confidence levels (75, 85, and 95%)
and in each case we compared the number of tuples retrieved
for the Anytime TA algorithm using independent and joint
distributions. In each of the trials, using joint distributions
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Fig. 9 In this experiment, we compare the confidence for one- and
two-dimensional histograms using the sensor data set where K = 100

our results were consistently closer to the actual confidence
than when assuming independence.

In addition, in Figs. 8 and 9, we show how the inclusion
of multidimensional histograms can significantly effect the
performance of the algorithm. This is shown in the (1D,2D
Histogram) results by the increase in slope for the confi-
dence. This is expected since joint distributions offer more
information pertaining to the scores of the unseen tuples.
Specifically, given that multidimensional histograms contain
additional information about the underlying data, it is easy to
see that confidence remains low because the Anytime algo-
rithm knows that it is not the top-k. Further, multidimensional
histograms offer additional insight as to how close the algo-
rithm is to the actual top-k. Consider the scenario where we
have a perfect understanding of the data, this would lead to
a situation where we stay at 0% confidence as we see data,
and at the point we find the true top-k the confidence should
spike to 100%. Therefore, as we introduce multidimensional
histograms (i.e., more information) the model should look
less-and-less like a gradual transition from 0 to 100%.

Accuracy: As shown in Figs. 8 and 9 as the dimensionality
of the gPDFs increases, the confidence measure for both the

Table 6 Run-time performance for anytime TA using one- and
two-dimensional histograms

Histogram size One-dimensional Two-dimensional
histograms histograms

5 1.1238 11.5802

10 1.1598 11.6392

15 1.2068 11.5983

20 1.1778 11.7991

25 1.2107 11.7562

Synthetic data set (1,000,000 tuples, 4 attributes, histograms size 20,
random distribution). Time is reported in seconds

sensor and the IMDB data sets become increasingly accurate
as expected. For the IMDB and sensor data sets there is a
strong correlation among the high score values. This correla-
tion is not detected well assuming independence as illustrated
in the quick rise in confidence. In contrast, the two-dimen-
sional histograms can better predict high score values for
unseen tuples. As shown in Figs. 8 and 9, the confidence
stays low until a sufficient number of high value scores have
been seen by the algorithm.

Performance: In order to evaluate the performance of mul-
tidimensional histograms for Anytime TA we used a syn-
thetic data sets and compared the running times for one- and
two-dimensional histograms (gPDFs). Each of our results
are averaged over five independent experiments. As shown
in Table 6, using multidimensional gPDFs requires a signifi-
cant overhead regardless of the size of the histograms. This is
due to the increased number of updates required to maintain
the multidimensional gPDFs for each round.

7.5 Fuzzy data sets

Thus far we have demonstrated the feasibility of our approach
for exact data. We now extend our evaluation to include fuzzy
data (where values deviate from the true value according to
some error model). For our evaluation we explore two error
models, viz., Gaussian and Uniform as described earlier in
the article.

For the fuzzy experiments we evaluate our approach by
adjusting the variance (standard deviation squared) σ 2 and
error ε of the Gaussian and Uniform error models respec-
tively. The mean values of each attribute ranges between 0.0
and 10.0.

For the Gaussian error model, we evaluated our approach
using several levels of fuzziness (variance), viz.: σ 2 = 0.0,
0.1, and 0.2 (σ 2 = 0.0 is used for comparison against exact
data). Further, since Gaussian distributions are unbounded,
the portion of the Gaussian that were beyond the histogram
lower and upper bounds was truncated.
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Fig. 10 In this experiment, we illustrate Confidence for varying levels
of fuzziness as the number of tuples is increased using a synthetic data
set
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Fig. 11 In this experiment, we illustrate Confidence for varying levels
of fuzziness (ε) as the number of tuples is increased using a synthetic
data set

Similarly, for the Uniform error model, recall that the
mean value is perturbed by the error defined as ε. For this
model we evaluated our approach using several levels of fuzz-
iness, viz.: ε = 0.0, 0.1, and 0.2 (ε = 0.0 is used for com-
parison against exact data).

Next we shall evaluate the performance of our approach
for computing Confidence, Precision, and Score Distance as
described in Sect. 6.4.

Confidence: As shown in Figs. 10 and 11, the fuzziness
of the data plays a key role in how quickly the confidence
reaches 100%. As shown in Fig. 10, more than 50,000 addi-
tional tuples must be read at a fuzziness of σ 2 = 0.02 to
achieve results similar to that of exact data (σ 2 = 0.0). Sim-
ilarly for Uniform data (Fig. 11), as many as 100,000 tuples
must be read when ε = 0.2 to achieve comparable results to
that of exact data (ε = 0.0). The results suggest that fuzzi-
ness in the data can greatly affect the number of tuples that
must be read to reach some predefined Confidence.

Further, it is easy to see that as the fuzziness increases,
more tuples must be read to reach 100% Confidence. This
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Fig. 12 In this experiment, we evaluate Confidence for varying k as
the number of seen tuples is increased using a synthetic data set with a
variance σ 2 (i.e., fuzziness) of 0.1
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Fig. 13 In this experiment, we evaluate Confidence for varying k as
the number of seen tuples is increased using a synthetic data set with
an error of ε (i.e., fuzziness) of 0.1

is attributed to the fact that as the data is increasingly per-
turbed (made more fuzzy), it becomes more and more dif-
ficult for the algorithm to achieve an adequate gap between
the k MinScore and the Max Others. Further, as σ 2 and ε

increase, the tails of the error distributions increase as well.
For large values of σ 2 and ε, it is easy to see that scenarios
may occur where 100% Confidence may not be reached.

Next we evaluate Confidence testing several values of k
with a fixed fuzziness (σ 2 = 0.01 and ε = 0.01). As shown in
Figs. 12 and 13, as the size of k increases the time required
to reach 100% Confidence increases steadily as expected.
These figures illustrate how our estimates coincide with the
number of correct results in the top-k buffer.

Precision: In Figs. 14 and 15, Precision is shown to be more
pessimistic than Confidence when p = 0.95. Notice the rel-
atively sharp increase in Precision as opposed to the more
gradual increase in Confidence. This is understandable since
Precision requires a tunable parameter p. The pessimism can
be reduced by reducing p (the minimum probability that any
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Fig. 14 In this experiment, we illustrate Precision for varying levels
of fuzziness as the number of tuples is increased using a synthetic data
set
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Fig. 15 In this experiment, we illustrate Precision for varying levels
of fuzziness (ε) as the number of tuples is increased using a synthetic
data set
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Fig. 16 In this experiment, we evaluate Precision for varying k as the
number of seen tuples is increased using a synthetic data set with a
variance σ 2 (i.e., fuzziness) of 0.1

tuple in the top-k buffer is assumed to be in the actual top-k
set).

We evaluate our approach testing several values of k with
a fixed fuzziness (σ 2 = 0.01 and ε = 0.01). As shown in
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Fig. 17 In this experiment, we evaluate Precision for varying k as the
number of seen tuples is increased using a synthetic data set with an
error of ε (i.e., fuzziness) of 0.1
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Fig. 18 In this experiment, we illustrate Score Distance for varying
levels of fuzziness as the number of tuples is increased using a syn-
thetic data set

Figs. 16 and 17, as the size of k increases the time required
to reach 100% increases steadily as expected. These figures
illustrate how our estimates coincide with the number of cor-
rect results in the top-k buffer.

Score distance: For all of our experiments Score Distance
has a required confidence of 95%. As shown in Figs. 19 and
21, the score interval decreases as more tuples are seen by the
algorithm and eventually reaches an interval of 0 signifying
the top-k group has been found. The minimum score interval
is bounded by the uncertainty of the data (Figs. 18, 20).

The behavior of Score Distance is consistent for both
exact and fuzzy data (refer to Figs. 19, 21) with score dis-
tance improving quickly as the number of items encountered
increases. Interestingly, unlike Confidence and Precision as
shown above, Score Distance has a much smoother transition
as more tuples are read.

Next we evaluate Score Distance testing several values of
k with a fixed fuzziness (σ 2 = 0.01 and ε = 0.01). As shown
in Figs. 19 and 21, as the size of k increases, the number of
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Fig. 19 In this experiment, we evaluate Score Distance for varying k
as the number of seen tuples is increased using a synthetic data set with
a variance σ 2 (i.e., fuzziness) of 0.1
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Fig. 20 In this experiment, we illustrate Score Distance for varying
levels of fuzziness (ε) as the number of tuples is increased using a
synthetic data set
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Fig. 21 In this experiment, we evaluate Score Distance for varying k
as the number of seen tuples is increased using a synthetic data set with
an error of ε (i.e., fuzziness) of 0.1

tuples read to reach a Score Distance of 0 decreases steadily
as expected. In addition, it appears that the size of k makes
little difference for similar values of k such as K = 5 and
K = 25 as shown in Figs. 19 and 21. These figures illus-
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Fig. 22 In this experiment, we illustrate Confidence for varying values
of K using a synthetic data set
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Fig. 23 In this experiment, we illustrate Confidence for varying values
of K using a synthetic data set with a variance σ 2 (i.e., fuzziness) of 0.1

trate how our estimates coincide with the number of correct
results in the top-k buffer.

Varying K : In the next set of experiments, we offer a sen-
sitivity study on K —keeping all other parameters constant.
As shown in Figs. 22 and 23, as K increases the number of
tuples required to reach 100% confidence increases as well.

Notice the difference between Figs. 22 and 23: for exact
data, the slope of the confidence curves are very steep, while
for fuzzy data (shown in Fig. 23) the rate at which the con-
fidence climbs from 0 to 100% is less so. This is due to the
introduction of doubt in the data—i.e., exact data will tend
to reach 100% confidence quickly, where fuzzy data tends to
build confidence more steadily.

8 Conclusions

In this article, we have presented an anytime framework for
top-k computations on exact and fuzzy data. Our framework
can be applied on a variety of popular top-k algorithms (TA
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and TA-Sorted) to enable anytime behavior. We have dis-
cussed and analytically demonstrated several properties of
our framework regarding the behavior of several measures of
interest to anytime top-k computations. Through a detailed
experimental study we have demonstrated the practical prom-
ise of our approach for certain important classes of data sets
and applications.

There are several interesting future research directions that
can be pursued to take this work forward. Even for the real-
world scenarios where our techniques can in principle be
applied, much work needs to be done before we can claim
truly practical solutions, as many of our assumptions may be
compromised (available data distributional models are inac-
curate, scoring functions may not be linear, and so on). In
the extreme case, in many real-world applications (e.g., top-k
merging of information from hidden web sources), knowl-
edge of data distribution is often not available at all. In such
applications, it would be of interest to investigate if any sort
of anytime guarantees (even alternate weaker versions) are
at all possible.
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