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ABSTRACT
Top-k queries on large multi-attribute data sets are fundamentalop-
erations in information retrieval and ranking applications. In this
paper, we initiate research on the anytime behavior of top-k algo-
rithms. In particular, given specific top-k algorithms (TA and TA-
Sorted) we are interested in studying their progress towardiden-
tification of the correct result at any point during the algorithms’
execution. We adopt a probabilistic approach where we seek to re-
port at any point of operation of the algorithm the confidencethat
the top-k result has been identified. Such a functionality can be a
valuable asset when one is interested in reducing the runtime cost
of top-k computations. We present a thorough experimental evalu-
ation to validate our techniques using both synthetic and real data
sets.

1. INTRODUCTION
Top-k queries on large multi-attribute databases are common-

place. Such queries report thek highest ranking results based on
similarity scores of attribute values and specific score aggregation
functions. Such queries are very frequent in a multitude of applica-
tions including (a) multimedia similarity search (on images, audio,
etc.), (b) preference queries expressed on attributes of assorted data
types, (c) Internet searches on scores based on word occurrence
statistics and diverse combining functions, and (d) sensornetwork
applications over streams of sensor measurements.

Several algorithms have been introduced in literature to efficiently
perform top-k computations. Among the most successful is the TA
algorithm discovered independently by Nepal et. al., [21],Guntzer
et. al., [12] and Fagin et. al., [23]. In this algorithm each value of an
attribute can be accessed independently via an index in descending
order of its score. Such a score is computed with a specific query
condition. Numerous algorithms for performing top-k computa-
tions have been proposed [10, 8, 7, 2, 19, 16, 1, 15, 20] depending
on the model of data access, stopping conditions, etc. The majority
of such computations however can be exhaustive. The algorithms
come to a stop only when there is absolute certainty that the correct
top-k result has been identified.

An anytimealgorithm is an algorithm whose quality of results
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improves gradually as computation time increases [13]. Although
several types of such algorithms have been proposed,interruptible
anytime algorithms are highly popular and useful. An interruptible
anytime algorithm is an algorithm whose runtime is not determined
in advance but at any time during execution can be interrupted and
return a result. Moreover, interruptible algorithms have an associ-
atedperformance profilewhich returns result quality (for suitably
defined notions of quality) as a function of time (relative toexecu-
tion) for a problem instance. Such algorithms are valuable since
at any point during the execution a user can obtain feedback re-
garding the result quality at that point. If one is satisfied with the
current feedback one may bring the algorithm to a halt. Thus,such
algorithms provide a graceful trade-off between result quality and
response time.

In this paper we initiate a study ofanytime top-kalgorithms. We
study the behavior of common top-k algorithms at any point of their
execution and we reason about top-k result quality. Notice that this
notion of anytime top-k computation is significantly different from
the notion of approximate top-k algorithms previously introduced
in the literature [6, 3]. Such models aim to relax the controlpa-
rameters of the computation (e.g., distance) which are difficult to
translate into guarantees perceived by a user. The actual behavior
of such models remains largely empirical. In contrast we wish to
monitor a top-k algorithm at any point in its execution and reason
about result quality. For large data collections such an approach
can be significantly beneficial as one may decide to terminatethe
computation early if one is satisfied with the current quality of the
results. In particular we make the following contributions:

• We initiate the study of anytime top-k computations. We
present a framework, within which at any point in query exe-
cution for suitable top-k algorithms, we can compute proba-
bilistic estimates of several measures of top-k result quality.
Such measures includeconfidence of having the correct top-
k result, precision of the results assessed with respect to the
correct top-k results, rank distance between the current top-
k result and the exact result, as well as the difference between
the scores of the current top-k result and the exact result.

• We investigate the monotonic properties of these anytime
measures for various top-k algorithms such as TA and TA-
Sorted. We show that such measures are monotone for TA,
but for a single instance of a top-k computation of TA-Sorted,
these measures can be non-monotonic, though inexpectation
such measures are monotonic.

• We present algorithmic enhancements to TA and TA-Sorted
by which they can provide such anytime guarantees with
small runtime overheads during the course of their execution
over large data collections.



2. RELATED WORK
The threshold algorithm (TA) constitutes the state of the art for

top-k computations [21, 12, 23]. Several variants of the basic TA
ideas have been considered in various contexts [15, 20, 16].[1]
deals with top-k problems on web accessible data sources with lim-
ited sorted access. Nearest neighbor type of approaches have been
considered in this context as well [5, 4, 26, 14]. It is assumed that
sorted lists of the data items by each attribute are available, and
TA scans these lists (performingsorted accesses) in an interleaved
manner, and computes the items with top-k scores using monotone
score combining functions. The algorithm has to immediately com-
pute the complete score for each item encountered in these lists. In
order to do so however, it conductsrandom accessesto all relevant
lists and thus its overhead may be high depending on the applica-
tion context. For the rest of this paper we refer to this algorithm as
TA.

Several variants of this basic idea have been proposed. TA-
Sorted [23, 12] can work in environments where random accessis
not available. It maintains worst and best scores for items based on
partially computed total scores; the algorithm compares the worst
case score of thek-ranked item with the best score of all candidates
as a stopping condition. In this algorithm items are always accessed
sequentially. Since expensive random access is avoided, incertain
situations the performance may be much better than TA.

Optimization issues for TA algorithms have been consideredas
well [19, 1, 16]. The main thrust has been to reduce the numberof
random accesses when sources vary in several parameters, such as
speed, selectivity etc. Several statistical aids have beendeployed,
such as histograms and probabilistic estimators for the number of
random accesses.

Anytime algorithms have found numerous applications in AI and
planning contexts [13, 25]. The quality of results of an anytime
algorithm improves as the computation evolves. At a high level,
anytime algorithms can be categorized as being either interruptible
or contract. An interruptible algorithm does not have a set running
time and can always be interrupted at any time during execution
returning a result. The quality of the result can be determined via a
performance profile. A contract algorithm has a time deadline as a
parameter and no assumption about the results can be made before
the deadline.

Theobald et. al., [17] presented an approach for probabilistic
top-k query evaluation. This work is specifically targeted to the
TA-Sorted algorithm. The basic idea is, for a newly seen item, to
compute the probability with which it may belong to the top-k re-
sult. If that probability is below a user supplied thresholdthe item
is discarded from further consideration. This way, possibly fewer
items are considered during top-k query evaluation. Moreover, by
carefully maintaining bounds for the scores of the most promising
(as far as the top-k result is concerned) items that have been en-
countered the algorithm may probabilistically decide to terminate
earlier than the regular TA-Sorted deterministic computation. Em-
pirical evaluation presented in [17] demonstrated that thealgorithm
performs well in practice.

The work of [17] has some similarity to our work, however it is
not an anytime algorithm. It applies only to the TA-Sorted algo-
rithm, and offers guarantees only at the end of the execution, i.e.,
when the algorithm runs out of candidates. Further, since itfocuses
only on eliminating candidates that are partially seen but unlikely
to be in the final top-k result, it is not directly applicable to the TA
algorithm. Finally, the algorithm in [17] only gives a probabilistic
guarantee that a discarded/unseen tuple is not in the top-k tuples,
independently of the number of unseen tuples in the data set.Its
result does not change if we have 10 vs. 1,000,000 unseen tuples.

However, even if each of the unseen tuples has a very small proba-
bility of being in the top-k tuples, collectively there may be a large
probability that we do not have the correct top-k tuples. For e.g.
(assumek = 1), if each unseen tuple has only 1% chance of being
the top-1 tuple, and we have 1,000,000 unseen tuples, the probabil-
ity that any one of them is the true top-1 is1 − 0.991,000,000 ≈ 1.

In contrast, our work is more general in that we propose anytime
enhancements to both TA and TA-Sorted. Moreover, our methods
depend on a careful consideration of the number of unseen tuples,
which is necessary to give correct probabilistic guarantees.

Recent work [18, 24] on probabilistic ranking of data, is orthog-
onal to the work presented here. The model assumed in these works
is that of incomplete data and the probabilistic framework is based
on possible worlds semantics. In contrast we assume complete in-
formation with or without noise and we are interested in assigning
guarantees on early stopping of popular top-k algorithms.

3. FRAMEWORK

3.1 Anytime Measures
Our focus in this paper is to upgrade top-k algorithms so that they

can exhibitanytime behavior. This means that at any point during
the execution - i.e., before the algorithm has terminated - we wish to
be able to (a) reveal the current top-k results calculated thus far, and
(b) associate a “guarantee” with our current answers. For example,
we may wish to be able to giveprobabilistic guarantees, such as:
“With probability p, the current top-k tuples are likely to be the true
top-k tuples”. Providing such probabilistic guarantees is the most
critical aspect of our approach, and much of the remainder ofthis
paper is devoted to developing appropriate guarantee measures and
efficient techniques by which such measures can be calculated. Our
goal is to provide a mechanism to continuously recompute these
guarantees as more data is seen.

• Confidence:The algorithms shall be able to determine the
probability that the current top-k tuples are indeed the true
top-k tuples.

• Precision: The algorithms shall be able to calculate a (proba-
bilistic) lower bound on theprecisionof the current top-k tu-
ples - i.e., this bound on the precision will hold with a given
probability ofp (typically, p = 0.95). The precision of the
retrieved results is defined asr/k wherer is the number of
the current top-k tuples that belong to the true top-k tuples.

• Rank Distance: Likewise, the algorithms shall be able to
compute a probabilistic upper bound on therank distance
of the current top-k tuples. The rank-distance is defined as
follows. Let CurRank(t) be the rank of a tuplet in the
current top-k, and letTrueRank(t) be its rank in the entire
database when sorted by scores. Then

Rank Distance =
X

t∈CurTopk

|CurRank(t) − TrueRank(t)|

Rank Distance is related to theSpearman’s Footrulemeasure
for comparing ranked lists [9].

• Score Distance: Finally, the algorithms shall be able to com-
pute a probabilistic upper bound on the difference between
the smallest score of the true top-k tuples relative to the small-
est score of the current top-k tuples.



3.2 Knowledge of the Data Distribution
To be able to give probabilistic guarantees with our anytimean-

swers, it is critical that we assume some knowledge of the data,
such as the number of tuplesN , as well as knowledge of the distri-
butional properties of the data. Such knowledge can be obtained via
popular parametric or non-parametric techniques (i.e., histograms).
These data distribution models are assumed to be either available
(e.g., histograms of the data have been pre-computed, to be used
multiple times for different top-k queries), or can be computed
on demand (e.g., for each top-k query, fresh histograms are com-
puted). Our development of anytime top-k algorithms does not de-
pend on the particular type of distributional knowledge assumed.
For this reason, we employ a generic probabilistic model of the
data which we assume is known to us. We choose to do so in order
to keep the presentation of our techniques generic and independent
of specific forms of data distribution models.

To be more specific, let our databaseD haveN tuples overM at-
tributesA1, . . . , AM and letDom1, . . . , DomM be the respective
domains of the attributes. The probability distributionalmodel of
the data may either be specified (assuming attribute independence)
as a product of known probability density functionsgPDFi(x) as-
sociated with eachith attribute (e.g.,M single-dimensional his-
tograms), or as a joint distributional model over the space of all
possible tuplesDom1 × . . . × DomM (e.g., a multi-dimensional
histogram). Our actual databaseD may be assumed to be a specific
instance ofN tuples drawn from this distribution.

4. ANYTIME TA ALGORITHM

4.1 Preliminaries
We begin with a short description of the Threshold Algorithm

(TA): The algorithm proceeds in iterations, where in each itera-
tion, the next items in each sorted list are retrieved in parallel.
For each retrieved tuple-id, the entire tuple is retrieved using ran-
dom access and its score is computed. The algorithm maintains
a bounded buffer of sizek in which the current top-k tuples (i.e.,
among those seen) are maintained. The algorithm terminateswhen
a stopping conditionis reached, i.e., when the minimum score in
the top-k buffer (henceforth referred to askMinScore is larger
thanScore(h), whereh = [h1, · · · , hM ] is a “hypothetical” tuple
such that eachhi is the last attribute value read along the sorted
order forAi.

Consider a snapshot of TA afterd iterations for a specific database
D. Let Seend be the “prefix” of the database that has been seen
by this algorithm after thesed iterations. To be able to estimate
the anytime measures, the algorithm will have to make some distri-
butional assumptions about the remaining portion of the database
that has not yet been seen. Intuitively, the algorithm determines the
pdf of the remainder of the database byconditioningthe data dis-
tributional model (discussed in Section 3.2) with the prefixalready
seen, and then computes estimates of each of the anytime measures
based on this conditional pdf. As an example, assume that thedata
distribution ofD is defined using the distributionsgPDFi along
the ith attribute assuming independence among the attributes, and
let h1, . . . , hM be the last values seen along each attribute respec-
tively. Then theith attribute of any unseen tuplet in the remainder
of the database will be a random variablet[i] distributed according
gPDFi conditioned byt[i] ≤ hi.

Let PDF (O|O ∈ O) represents the probability density associ-
ated with objectO that belongs to a (possibly infinite) setO. Thus
if D refers to the space of all database tables withN tuples that
can be generated by the probabilistic data model discussed in Sec-

tion 3.2, thenPDF (D|D ∈ D) is the probability density associ-
ated with each specific databaseD.

Let OneMore(Seend) refer to the space of all possible valid
prefixes of databases that is defined by extendingSeend by one
more iteration. Consider any specific extension ofSeend by one
iteration, saySeend+1. We note that a pdf over this space of ex-
tensions, i.e.PDF (Seend+1 | Seend+1 ∈ OneMore(Seend)),
can be naturally defined. To carryOneMore(Seend) even fur-
ther, letD(Seend) refer to the space of all possible valid complete
databases that can be defined by extendingSeend into complete
databases, i.e., afterN − d iterations. The pdf of these databases,
PDF (D|D ∈ D(Seend)), can be naturally defined.

Let Score(t) be the score of a tuplet, defined as a linear addi-
tive function on the the individual attribute values in typical top-k
algorithms, such asScore(t) = w1t[1] + . . . wM t[M ] where the
weights are positive constants. Let thekMinScore(Seend) refers
to thekth largest score of all tuples inSeend. We can make the
following observation:

OBSERVATION 1. The minimum score of the current top-k tu-
ples increases monotonically as the algorithm progresses on any
database.

kMinScore(Seend) ≤ kMinScore(Seend+1)

Let kthScore(D) refer tokth largest true score of all tuples in a
specific databaseD. For Anytime TA letConfidence(Seend) be
defined as the probability that

kMinScore(Seend) = kthScore(D)

whereD is a random valid extension ofSeend into a complete
database drawn fromPDF (D|D ∈ D(Seend)).

THEOREM 1. For all database instances it holds that

Confidence(Seend) ≤ Confidence(Seend+1)

Proof: Since thekMinScore(Seend) is increasing in each itera-
tion, the probability of thekMinScore(Seend) being equal to the
kMinScore(D) is also always increasing.2

4.2 The Algorithm
The anytime version of TA is shown in Algorithm 1. The algo-

rithm proceeds like the standard TA, selecting attributes in a round-
robin fashion, and at each step processes the next value in the sorted
list of the selected attribute. In addition, it also maintains the infor-
mation necessary to compute probabilistic guarantees1.

For each round of the algorithm a new value< t, t[i] > is read
along the listLi corresponding to thei-th attribute, i.e., thei-th
attribute value of tuplet. When this item is read, the algorithm has
to (a) resolveScore(t) (which is the sum of the attributes oft and is
done by probing the lists using random access), (b) update the pdf
of the i-th attribute (gPDF (i)) so that it reflects the distribution
of the remaining values of that attribute, and (c) update thetop-k
buffer with thek tuples with the highest scores. At the end of each
round the statistics are updated and the confidence is computed.

1Note that unlike the standard TA algorithm our algorithm does not
have a termination condition, since the objective is to produce any-
time probabilistic guarantees. Our algorithm can be easilymodified
to terminate, for example when the probabilistic guarantees cross a
user defined threshold.



Algorithm 1 Anytime TA

1: topk = {dummy1, . . . , dummyk}, Score(dummyi) = 0
2: kMinScore = 0 // smallest score intopk buffer
3: for d = 1 to N do
4: for all listsLi(1 ≤ i ≤ M) in paralleldo
5: Let<tuple-idt, t[i] > be thed-th item inLi

6: // ComputeScore(t) using random access
7: Score(t) = 0
8: for j = 1 to M do
9: Score(t)+ = wjt[j]

10: end for
11: //Update PDFs to model the remaining values
12: Update-gPDF(gPDFi, t[i])
13: //Updatetopk buffer
14: if Score(t) > kMinScore then
15: if t 6∈ topk then
16: Letu be the tuple with the smallest score intopk
17: topk = topk − {u}
18: topk = topk ∪ {t}
19: end if
20: kMinScore = min{Score(v)| v ∈ topk}
21: end if
22: // Compute confidence
23: Confidence = ComputeConfidence()
24: end for
25: end for

4.3 Computing Anytime TA Measures
In this subsection we discuss details of how the various anytime

measures are computed in each iteration of the algorithm. For an
unseen tuplet, its score may be viewed as a random variable. Let
scorePDFt(x) be the pdf of the score oft. In order to compute
the anytime measures, we need to compute the pdf of the score
of any unseen tuple, and the pdf of themaximum scoreof all the
unseen tuples. If we assume attribute independence, then the score
of an unseen tuple is the sum ofM random variables. To compute
the pdf of this sum we compute theconvolutionof thegPDFi. If
joint-distributions are known we can also proceed to estimate the
pdf of the score. We show below how this score can be estimated
by convolution of pdfs ofM independent attributes.

DEFINITION 1. Convolution of two distributions: Assume that
f(x), g(x) are the probability density functions (pdfs) of the two
independent random variablesX, Y respectively. The pdf of the
random variableX + Y (the sum of the two random variables) is
the convolution of the two pdfs:

∗({f, g})(x) =
R x

0
f(z)g(x− z)dz

This definition can be easily extended to the sum of more than two
random variables. We also give another definition that allowus to
estimate other aggregates, such asmax andmin of random vari-
ables.

DEFINITION 2. Max-convolution of two distributions: As-
sume thatf(x), g(x) are the pdfs of two random variablesX, Y
respectively. The pdf of the random variablemax(X, Y ) (the max-
imum of the two values) is the max-convolution of the two pdfs:

∗max({f, g})(x) = f(x)
R x

0
g(z)dz + g(x)

R x

0
f(z)dz

Figure 1 shows the result of max-convolutions over two givendis-
tributions. The max-convolution definition can be easily extended
to more than two random variables.

0 20 40 60 80 100

Histogram 1
Histogram 2
Max

Figure 1: An example of the result of the max-convolution of
two distributions.

4.3.1 Computing Confidence
Let Seen (Unseen) refer to the set of tuples that have been seen

(unseen) by the algorithm thus far. Clearly|Unseen| = N −
|Seen|. To execute the function callComputeConfidence(),
we have to estimateProb(kMinScore > MaxUnseen), where
kMinScore is the minimum score in the top-k buffer, while the
random variableMaxUnseen describes the maximum score of
all the unseen tuples. The pdf ofMaxUnseen can be com-
puted by first computing the pdf of the score of oneUnseen tu-
ple. This involves the convolution of the pdfs of the attribute val-
ues: OneUnseenPDF = ∗{gPDFi|1 ≤ i ≤ M}. Then the
pdf of MaxUnseen (i.e., MaxUnseenPDF ) can be computed
by computing the max-convolution over the multi-set containing
|Unseen| copies ofOneUnseenPDF :

MaxUnseenPDF =
∗max({OneUnseenPDF, . . . , OneUnseenPDF})

As we shall later show in Lemma 4.3 the max-convolution of
identical pdfs can be efficiently computed in constant time.Once
we have computedMaxUnseenPDF , we can compute

Confidence = Prob(kMinScore > MaxUnseen)

4.3.2 Computing Other Anytime Measures
In this subsection we outline how, in addition to Confidence,the

anytime measures of Precision, Rank Distance, and Score Distance
can be computed.

In the case of Precision, we wish to determine (with a given
probability p, say 95%) the fraction of the current top-k tuples
that will belong to the true top-k tuples of the database. Let the
worst case scores of the currenttopk tuples bes1, s2, . . . , sk(=
kMinScore). Let Probi be the probability thatsi is greater than
MaxUnseen. TheseProbi’s can be computed using the same
techniques used for computing Confidence above, except thatwe
have to execute it for eachsi rather that just forkMinScore. Let i
be the largest integer such thatProbi ≥ p. The algorithm outputs
i/k as Precision. Note that this is a conservative bound on Preci-
sion because we only considerprefixesof the current top-k to be
overlapping with the true top-k, and not any subset.

In order to compute Score Distance, our task is to find a “high
probability” upper bound on the smallest score of the truetopk tu-
ples. Thus, we wish to find the smallest positive numberδ such that
Prob(kMinScore + δ > MaxUnseen) > p wherep is a given
probability, such as95%. Once we know the pdf ofMaxUnseen,
the answer to this question is straightforward.

Computing Rank Distance is more involved. The main task is to
determine, for each tupleti in the currenttopk tuples, a high prob-
ability upper bound for its true rank in the database (once wehave



these estimates, we can compute a high probability upper bound
for the Rank Distance). To determine an upper bound on the true
rank of ti, we need to compute how many tuples fromUnseen
have larger scores thanti with high probability. Further details are
omitted from this version of the paper.

4.4 Approximating PDFs Using Histograms
We presented our techniques thus far using a generic probabilis-

tic model of data. In this section we describe the practical realiza-
tion of our methodologies using a widely adopted model for ap-
proximating data distributions (i.e., pdfs), namely histograms. For
simplicity of exposition, we adopt equi-width histograms for our
discussion, however the description is applicable to any histogram
technique. We note that histograms can approximate arbitrary func-
tions and thus our use of histograms does not place any restrictions
or require any assumptions about the underlying distributions that
are being approximated.

The following lemmas detail the running time of the basic oper-
ations of the algorithm.

LEMMA 4.1. The convolution of two pdfs that are represented
by twob bucket histograms can be computed inO(b2) time.

Proof: Consider two random variables,A, B in the domain[0, 1]
with pdfs fA(x), fB(x) respectively. Assume that the two pdfs
are approximated by two histograms withb buckets,HA andHB.
Assume that the bucket boundaries are the same:HA = [0 =
A1, . . . , Ab = 1]; if not we can create two equivalent histograms
with 2b buckets and the same bucket boundaries. Consider the
Cartesian product of the two histogramsCA,B = HA ×HB where
CA,B [i, j] = HA[i]HB [j] (HA[i] is the relative count associated
with bucketi.) We can approximate the pdf ofA + B with a his-
togram with2b buckets and boundariesg0 = 0, g1 = A1, . . . , gb =
1, gb+1 = 1 + A1, . . . , g2b = 2. To compute the histogram we
have to compute the probabilityProb(gk < A + B ≤ gk+1)
for the buckets of the new histogram, which may be derived as
P

Al+Bm=gk+1
CA,B [l, m] This histogram can subsequently be

approximated by ab bucket histogram by merging neighboring
pairs of buckets. This procedure gives anO(b2) algorithm for com-
puting the convolution of the two pdfs.2

As a corollary, forn histograms, we can perform the convolu-
tions in sequence, with a final running time ofO(nb2).

LEMMA 4.2. The max-convolution of two pdfs that are repre-
sented by twob bucket histograms can be computed inO(b) time.

Proof: The trick here is to avoid the Cartesian product. As be-
fore, consider two random variablesA, B with pdfs approximated
by two histogramsHA andHB each withb buckets and the same
bucket boundaries. We approximate the pdf ofmax(A,B) with
a histogram with the same bucket boundaries. ThenProb(Ak ≤
max(A, B) < Ak+1) is equal toHA[k + 1] · (

P

i≤k
HB[i]) +

HB [k + 1] · (
P

i≤k HA[i]).
If we first compute thecumulative distributionsof HA andHB,

it is easy to see the the above probability can be computed in con-
stant time. Since the cumulative distributions can be computed in
O(b) time, the overall time for the max-convolution isO(b). 2

As a corollary, we can compute the max-convolution ofn his-
tograms inO(nb) time. Even more interestingly, as the following
lemma shows, the max-convolution ofn identical histograms can
be computed inO(b) time.

LEMMA 4.3. The max-convolution ofn identical PDFs, repre-
sented by ab bucket histogram, can be computed inO(b) time.

Proof: The proof is similar to that of Lemma 4.2, except that once
the cumulative pdf ofHA has been pre-computed, each probability
term Prob(Ak ≤ max(A,A, . . . , A) < Ak+1) reduces ton ·
HA[k+1] ·(

P

i≤k
HA[i])n−1, which can be computed in constant

time. 2

4.5 An Example

A1 A2

id,val id,val

t4:0.9 t5:0.8
t2:0.8 t4:0.7
t3:0.4 t2:0.6
t1:0.3 t1:0.3
t5:0.2 t3:0.2

Table 1: Sorted lists of a sample table with two columnsA1 and
A2, tuples t1...t5, and values for each attribute ranging from 0
to 1.

Table 1 shows the sorted lists for a dataset with 2 attributesand
5 tuples. We have a query for the top-k tuples wherek is equal to
2, and the score for a given tuplet is computed as a linear additive
function of the individual attributes.

Throughout the example, assume we use equi-width histograms
with at most 2 buckets. At the start, the buckets of the histogram
for A1 have counts(3, 2), while the buckets of the histogram for
A2 have counts(2, 3). Note that each histogram can represent the
correspondinggPDFi by normalizing to relative counts.

Assume a snapshot of the algorithm where the first items of each
list has been read, andt4 andt5 have been fully resolved and loaded
into the top-k buffer. Thust4 and t5 belong to theSeengroup.
ClearlykMinScore = Score(t5) is the lowest score in the top-k
buffer.

The remaining tuplest1, t2, and t3 are in theUnseen group.
We need to estimateOneUnseenPDF, the pdf of the score of any
Unseen tuple using thegPDFis for attributesA1 andA2. We
have to first update thegPDFis to model the remaining values for
each attribute. Consequently the buckets of the histogram for A1

will now have counts(3, 1), while the buckets of the histogram
for A2 will have counts(2, 2). We then normalize eachgPDFi

by dividing by the sum for eachgPDFi to get (3/4, 1/4) and
(1/2, 1/2) respectively. We then computeOneUnseenPDFby tak-
ing the convolution ofgPDF1 and gPDF2, resulting in counts
(3/8, 5/8). Next we need to computeMaxUnseenPDF, the pdf of
the max score of all unseen tuples. As shown in Lemma 4.3, we do
this by taking the pdf of a single unseen tupleOneUnseenPDFand
raising it to the power of the total number of unseen tuples, which
in this case is 3.

We can then compute the confidence of the current top-k buffer
by comparingMaxUnseenPDFwith the current top-k kMinScore
as described in Section 4.3.1.

4.6 Considering Multidimensional
Distributions

The pdf of the score of a tuple for a given query depends on
the joint distribution of the attributes. Many commercial systems
make the attribute value independence assumption, and keepstatis-
tics only for individual attributes. In our setting as described above,
the independence assumption is similarly assumed when we com-
pute the pdf of the score of a tuple by taking convolutions of the
histograms of the different attributes. We stress here thatthe com-
putation of the score is the only place in our framework this as-



sumption has been made. All other computations (including max-
convolutions) that take place in the computation of our any-time
measures do not make any assumptions on the distributions. Al-
though the independence assumption is commonly applied andis
well validated in practice for in a wide variety of applications, it
may produce inaccurate results in some cases (whether the confi-
dence curve using one-dimensional histogram is higher or lower
than the confidence curve using two-dimensional histogramsde-
pends on whether the independence-based approach is overlyop-
timistic or pessimistic). For such cases, joint distribution models
involving multiple attributes may be necessary.

Joint distributions can easily be applied in our framework.Sup-
pose for some tuplet we have three attributesA, B andC which
are unknown. Earlier we showed that we can compute the convo-
lution of HA, HB , andHC , but withmultidimensional histograms
we can now compute the convolution of the score pdf ofA + B
andHC , where the score pdf ofA + B may be directly computed
from HA,B, the two-dimensional histogram representing the join
distribution of attributesA andB.

As in the case of one-dimensional histograms, multidimensional
histograms are computed as a pre-processing step. Methods for
computing multidimensional histograms have been throughly re-
searched [11] [22] involving sampling and other efficient approxi-
mation techniques. In the evaluation section of this work wecon-
sider two-dimensional histograms. Since the number of possible
two-dimensional histograms is quadratic in the number of attributes,
we have to decide which pairs to take. We use the following sim-
ple heuristic: starting with the set of attributes, we find the most
correlated pair of attributes, compute a two-dimensional histogram
on these attributes, remove these two attributes, and continue with
the remaining set. This approach produces a linear number ofhis-
tograms, and, since there is no overlap of attributes between differ-
ent histograms, greatly simplifies the selection of the histograms
that have to be used to compute the convolution of a set of at-
tributes.

Recall that for one dimensional histograms (histograms cover-
ing a single attribute) every time a new item from the sorted list
is read, the corresponding bucket has to be decreased by one.In
the case of multidimensional histograms we similarly decrement
the histograms as new items are read. Suppose we have a database
with two attributesA andB, two one-dimensional equi-width his-
togramsHA, HB, as well as one10×10 equi-width 2-dimensional
histogramHA,B. If the first tuple that is completely resolved has
the values(0.3, 0.9), we decrement the buckets of the histograms
as follows:HA[3] would be decremented,HB[9] would be decre-
mented, andHA,B [3, 9] would be decremented. This same tech-
nique follows through for higher dimensional histograms and can
be performed incrementally.

5. ANYTIME TA-SORTED ALGORITHM
In this section we describe how the TA-Sorted algorithm can be

extended to compute online probabilistic guarantees. In addition
to Seen andUnseen tuples, TA-Sorted also maintains tuples in
which only some of the attributes have been seen. This is a con-
sequence of the inability of TA-Sorted to perform random access
operations. Consequently, during the operation of TA-Sorted, we
need to keep a set of tuples calledPartials that are not in the top-
k, yet cannot be eliminated because we know only a lower-bound
of their true score. The TA-Sorted algorithm must estimate the pdf
of the maximum scores of thePartials before giving any proba-
bilistic guarantee on the confidence.

Like TA, the TA-Sorted algorithm as shown in Algorithm 2 se-
lects attributes in a round-robin fashion, at each step processing

Algorithm 2 Anytime TA-Sorted

1: topk = {dummy1, . . . , dummyk}, MinScore(dummyi) =
0

2: Partials = {} // Partially seen tuples not currently intopk
3: kMinScore = 0 // smallest score intopk buffer
4: Assume for all tuplest, obs(t) = {}
5: for d = 1 to N do
6: for all sorted listsLi(1 ≤ i ≤ M) in paralleldo
7: Let<tuple-idt, t[i] > be thed-th item inLi

8: obs(t) = obs(t) ∪ {i}
9: MinScore(t) = 0

10: for j ∈ obs(t) do
11: MinScore(t)+ = wjt[j]
12: end for
13: //Update PDFs by conditioning with remaining values
14: Update-gPDF(gPDFi,t[i])
15: //Updatetopk buffer
16: if MinScore(t) > kMinScore then
17: if t 6∈ topk then
18: Letu be tuple with smallest worst case score intopk
19: Removeu from topk
20: if |obs(u)| < M then
21: Partials = Partial ∪ {u}
22: end if
23: topk = topk ∪ {t}
24: end if
25: kMinScore = min{MinScore(v)| v ∈ topk}
26: end if
27: if |obs(t)| < M andt 6∈ topk then
28: Partials = Partials ∪ {t}
29: else
30: Partials = Partials − {t}
31: end if
32: // Compute confidence
33: Confidence = ComputeConfidence()
34: end for
35: end for

the next (sorted by decreasing magnitude) value of the selected at-
tribute. The differentiating factor between Anytime TA andAny-
time TA-Sorted is the inclusion ofPartials. Let Partials be the
set of tuples that are partially seen (some but not all of the attributes
for a given tuple have been resolved), but are not in the top-k buffer.

Let < t, t[i] > be the next item read by the algorithm along
the sorted listLi corresponding to thei-th attribute, i.e., thei-th
attribute value of tuplet. When this item is read, the algorithm has
to (a) updateMinScore(t) (which is the sum of the attributes that
have seen fort) (b) update the pdf of the attributei (gPDFi), and
(c) update the top-k buffer with thek tuples with the highest lower-
bound scores. After readingt[i], t will either be fully resolved
(that is, all attributes oft have been seen and its final score found)
and put in theSeen group, or partially resolved and placed in the
Partials group.

5.1 Monotonicity for Anytime TA-Sorted
Measures in Expectation

Let kthScore(D) refer to thekth largest score of all tuples in a
specific databaseD. TheConfidence(Seend) for Anytime TA-
Sorted may be defined as the probability that

kMinScore(Seend) > (k + 1)thScore(D)

whereD is a random valid extension ofSeend into a complete



database drawn fromPDF (D|DinD(Seend)). Because of the
use of lower-bound scores, this definition of confidence is actually
even more conservative than the earlier definition of confidence in
Section 3.1.

Example: There exist a database instance where

Confidence(Seend) > Confidence(Seend+1)

Assume a database with two columnsA1 andA2, each with domain
[0.0, 1.0] and a uniform distribution model. Let the score function
beScore(t) = t[1] + t[2]. Let the database have four tuples with
tuple-idst1, . . . , t4, and assume that the task is to return the top-2
tuples.

In the first iteration, assume we encountert1 = [0.9, ?] and
t2 = [?, 0.9], along each of the sorted lists (a? implies that the cor-
responding attribute value is unresolved). After this iteration, the
top-2 buffer is loaded witht1 andt2, each with a worst case score
of 0.9. Since we have not seen the other two tuples, we assume that
each is distributed uniformly in[0.0, 0.9] × [0.0, 0.9], and hence
the probability that the current worst case score of 0.9 is larger than
the scores of both these unseen tuples is(1/2) ∗ (1/2) = 1/4.

Suppose in the next iteration the algorithm encounterst3 =
[0.8, ?] andt4 = [?, 0.8]. After this iteration, the top-2 buffer re-
mains unchanged. However, the unresolved attribute oft3 has a
probability of7/8 of having a value in the range[0.1, 0.8], which
would enablet3 to have larger score than the current worst case
score. A similar argument can be made fort4. Thus, the probabil-
ity that the current worst case score of 0.9 is larger than thescores of
both these (now partially seen) tuples decreases to(1/8)∗ (1/8) =
1/64. 2

Similar examples can be constructed to show that the other any-
time measures are non-monotonic for certain database instances.
These arguments bring to light a subtle issue. The uncertain(prob-
abilistic) nature of anytime measures should of course be obvious
to the reader - i.e., that at any point during execution, we cannot be
completely certain that we have discovered the true top-k tuples,
and therefore can only make probabilistic guarantees regarding our
anytime measures. However, what the example shows is that asthe
iterations progress, we may have to revise, and sometimeseven re-
duce, our probabilistic guarantees. We note that a similar argument
will not suffice in the case of TA, because in that algorithm a tuple
is never in a partially resolved state - it is either completely seen or
completely unseen.

However, although the anytime measures for TA-Sorted are not
monotonic for certain database instances, we can nevertheless show
that the measures are monotonicin expectationover all database
instances. We describe the result for the confidence measure. Sim-
ilar results for the other anytime measures are straightforward and
omitted due to lack of space.

LetE[Confidence(Seend+1)] be defined as the expected value
of Confidence(Seend+1), whereSeend+1 is randomly drawn
from PDF (Seend+1 | Seend+1 ∈ OneMore(Seend)).

THEOREM 2 (EXPECTEDMONOTONICITY THEOREM).

Confidence(Seend) ≤ E[Confidence(Seend+1)]

Proof: From the definition of confidence, we know that

Confidence(Seend) =
X

D∈D(Seend)

(kMinScore(Seend) =

kthScore(D)) · Prob(D|D ∈ D(Seend))

Partitioning all valid database extensionsD as follows, we get

Confidence(Seend) =
X

Seend+1∈OneMore(Seend)

(
X

D∈D(Seend+1)

(kMinScore(Seend) =

kthScore(D))

·Prob(D|D ∈ D(Seend+1)))

·Prob(Seend+1|Seend+1 ∈ OneMore(Seend))

From Theorem 1 we have

kMinScore(Seend) ≤ kMinScore(Seend+1)

for any extensionSeend+1. Thus the above reduces to:

Confidence(Seend) ≤
X

Seend+1∈OneMore(Seend)

(
X

D∈D(Seend+1)

(kMinScore(Seend+1) = kthScore(D)) ·

Prob(D|D ∈ D(Seend+1))) ·

Prob(Seend+1|Seend+1 ∈ OneMore(Seend))

Thus,

Confidence(Seend) ≤
X

Seend+1∈OneMore(Seend)

Confidence(Seend+1) ·

Prob(Seend+1|Seend+1 ∈ OneMore(Seend))

Thus,Confidence(Seend) ≤ E[Confidence(Seend+1)]. 2

5.2 Computing Anytime TA-Sorted Measures
In this subsection we discuss how the anytime measures are com-

puted in each iteration of the TA-Sorted algorithm. Our focus is on
the Confidence measure; the details of the computation of other
anytime measures are omitted due to lack of space.

5.2.1 Computing Confidence
At any instance during the execution of the algorithm, consider

the set of tuplesOthers = Partials∪Unseen. LetMaxOthers
be the random variable that denotes the maximum score of all tu-
ples inOthers. To execute the functionComputeConfidence(),
we have to estimateProb(kMinScore > MaxOthers). To
compute this probability, we need to first compute the pdf of the
random variableMaxOthers. This can be accomplished if we
compute the pdfs of two random variables,MaxPartials and
MaxUnseen and then compute the pdf of the maximum of these
two random variables.

The pdf ofMaxUnseen (i.e.,MaxUnseenPDF ) can be com-
puted as was done in TA, i.e., by raisingOneUnseenPDF to the
power of the total number of unseen tuples. To compute the pdfof
MaxPartials, we first defineScorePDFt, the distribution of the
score of a partially seen tuplet. The definition is similar to the defi-
nition of the score pdf of an unseen tuple (i.e.,OneUnseenPDF ),
except that the convolutions are taken only over the pdfs of the un-
resolved attributes oft, to which the aggregate of the resolved at-
tribute values (i.e.,MinScore(t)) is combined.



More formally, given a real numbera, letδa(x) denote the “delta
distribution” where all the probability mass is concentrated ata and
is 0 elsewhere. Then

ScorePDFt = ∗({δMinScore(t)} ∪ {gPDFi|i 6∈ obs(t)})

MaxPartialsPDF may now be defined as:

MaxPartialsPDF = ∗max({scorePDFt|t ∈ Partials})

This operation is linear in the number of partially seen tuples, and
so it can become slow for large data sets. In the following Section
5.2.2 we present an efficient implementation by clustering partially
resolved tuples. Once we have computedMaxUnseenPDF and
MaxPartialsPDF , we can computeMaxOthersPDF and use
that to compute

Confidence = Prob(kMinScore > MaxOthers)

5.2.2 Efficiently ComputingMaxPartialsPDF

The straightforward way to computeMaxPartialsPDF is to
compute the max-convolution of the score pdfs of the partially seen
tuples. This operation is linear in the number of partially seen tu-
ples, and so it may become slow for large data sets.

To improve the running time, we cluster the partially seen tu-
ples. Consider a subset of the attributes,S, and letPartialsS

be the set of tuples that have exactly theseS attributes resolved.
That is, PartialsS = {t|obs(t) = S}. Since all the tuples in
PartialsS have the same attributes unresolved, we can speed up
the computation of the max-convolution of their scores:

∗max({scorePDFt|t ∈ PartialsS}) =
∗max({∗({δMinScore(t)} ∪ {gPDFi|i 6∈ S})|t ∈ PartialsS})

Then, let us consider the worst case scores (i.e.,MinScore(t)) of
the tuplest in PartialsS, and consider an equi-widthB-bucket
histogramH with these values (whereB may be different from
the b used to denote the number of buckets in the score/attribute
histograms). LetU(t) be the upper bound of the range of the his-
togram bucket ofH thatMinScore(t) falls in. Let us replace the
worst case score of each tuple with this upper bound of the corre-
sponding histogram bucket. We have then,

∗max({scorePDFt|t ∈ PartialsS}) ≤
∗max({∗({δU(t)} ∪ {gPDFi|i 6∈ S})|t ∈ PartialsS})

Thus, any two tuples inPartials that have the same set of resolved
attributes and whose worst case scores map to the same buckethave
approximately identical score distributions. Since thereare 2M

possible subsets of attributes, and we use aB-buckets histogram for
each subset, we have essentially partitioned all tuples inPartials
into at most2MB clusters. Using Lemma 4.3 for each of these
clusters we can compute an upper bound for the pdf of their max-
imum score. We can then compute the max-convolution of the re-
sulting2MB histograms to finally computeMaxPartialsPDF .

To efficiently do this computation we have to maintain one counter
for each of the2MB histogram buckets (which are in the beginning
initialized at 0). Every time a new value is read in, one of thetuples
has one more attribute resolved. If this is a new tuple, we increment
the corresponding bucket and add this tuple to thePartials set. If
the tuple is already inPartials, one bucket will have its counter re-
duced by one. If the tuple is still not fully resolved, another bucket
will have its counter increased by one.

Using Lemmas 4.1, 4.2 and 4.3, we can state the following
lemma:

LEMMA 5.1. An upper bound forMaxPartialsPDF can be
computed inO(2M Bb2) time.

We note that the running time of this update is independent ofN ,
the total number of tuples in the database.

6. EXPERIMENTAL EVALUATION
In this section we present an experimental evaluation of ourframe-

work. The implementation of our techniques is in C++ and our
evaluations are performed on a dual AMD Opteron 280 processor
system with 8GB of memory.

We have conducted series of experiments using synthetic and
two real-world data sets varying the distribution and size.The data
sets range in size from 4,990 to 1,000,000 rows, and four to ten
attributes (we vary the number of attributes when we report on per-
formance). Our experiments focus on the comparison of the ac-
curacy of our estimated results with the expected performance of
the TA and TA-Sorted algorithms. We also generate data with Zip-
fian distributions and conduct similar sets of experiments.Due to
space constraints we do not include illustrations for comparing Zip-
fian distributed scores but we briefly discuss the highlightsof the
results.

6.1 Real World Data Sets
In our experiments we use two real-world data sets. Our first data

set is atmospheric data collected from several independentsensor
locations in Washington and Oregon by the Department of Atmo-
spheric Science at the University of Washington. The secondis the
Internet Movie Database IMDB2.

For the sensor data, 25 sensors independently obtained tempera-
ture readings on an hourly basis between June 2003 and June 2004,
for a total of 208 days. For each sensor there is a total of 4,990
readings. Each of the readings taken from a sensor were combined
with readings from other sensors which had taken a reading during
the same time period. These readings were grouped to make indi-
vidual rows based on their time-stamps. Sensor data such as the
temperature data provided can specifically benefit from our algo-
rithm due to theanytimebehavior. For our experiments we use the
readings from five to ten randomly selected sensors.

The IMDB database is composed of more than 860,000 titles
and details about each. For the IMDB data set, we extracted a list
totaling 863,049 titles. For each title, we queried the following
attributes: budget, gross income, opening weekend gross income,
and number of keywords describing the title.

We experimented with several different histogram sizes; wefound
that the accuracy did not improve much with histograms of more
than 20 buckets for our real-world experiments.

6.2 Anytime Measures
Our experimental evaluation validates our measures on real-world

and synthetic data sets. As a baseline we compare our approach
against the actual confidence, TA, and TA-Sorted algorithms.

In the case when the distribution of scores is skewed, the confi-
dence of the algorithm may stay relatively low for a large portion
of the data set. This is due to a high density of values keeping
thekMinScore andMaxOthers close for a larger portion of the
running time (i.e., there is a low-sloping increase in the confidence,
but eventually it reaches 100% confidence). In cases when thedis-
tribution of the data set contains a distinct cluster ofK or more
high scores (row-level correlation) the confidence quicklyclimbs.
For the IMDB data set, there are few large values with the ma-
jority of the scores being clustered toward the lower end of the
value range for each attribute. This is reasonable considering that
there are only a few big budget movies and of these movies an even

2http://www.imdb.org
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Figure 2: In this experiment we evaluate the confidence for varyingk
as the number of seen tuples is increased for the IMDB data set.
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Figure 4: In this experiment we compare the actual and Anytime TA confidence. The two figures show the difference in the number of items read
for various levels of confidence using the synthetic data set.

smaller subset that gross a large sum of money. This creates adata
set with a small number of high score tuples. Similarly in thecase
of the sensor data there is row-level correlation around temperature
spikes with the majority of the readings being located around the
average temperature for each sensor. As shown in figures 2 and
9, both the IMDB and sensor data sets illustrate how correlation
of attributes can quickly cause the Anytime TA algorithm to climb
to 100% confidence, this can be accounted for by the fact that the
correlation of data cause the thekMinScore and MaxOthers
groups to quickly diverge.

Accuracy: Our results show good performance for both real-world
and synthetic data sets. In figures 2 and 3 we show the confidence
and percentage of correct results in the top-k buffer during the ex-
ecution of the algorithm. These figures illustrate how our estimates
coincide with the number of correct results in the top-k buffer.

Further, in Figure 4 we show that our estimates for the confi-
dence accurately approximates the actual confidence. In order to
compare the accuracy of our estimations, we computed the actual
confidence by running the TA algorithm for 10 independent runs
(we generated 10 randomly distributed synthetic data sets and ran
the algorithm for each) building a vector for each run where each
element of the vector contains one of two values (1=”Top-k found”,
0=”Top-k not found yet”). We then computed the average over all

runs (i.e., we built a new vector that represents the element-wise av-
erage of the vector set) creating a new vector of real values where
each element of the vector represents the actual confidence for each
respective run.

We evaluate the accuracy of readings by comparing the number
of items read given a user-defined confidence using Anytime-TA
with the number of items retrieved had the actual confidence (de-
fined above) been known. We can estimate the accuracy of a read-
ing by comparing the number of items read for Anytime TA and
the actual confidence. In Figure 4 we shown the error percentage
for confidence levels of 0.80 through 0.95. Our algorithm performs
well for various levels of confidence. The results suggest that there
is little correlation between the confidence level and the accuracy of
our results. For the experiment presented in Figure 4, the number of
items read by the Anytime TA algorithm never deviates more than
16% from the number of items read for the corresponding actual
confidence.

6.3 Scalability & Performance
Efficiency: Our results show that sizable savings can be achieved
in comparison to the TA and TA-Sorted algorithms. As a baseline
we ran TA and TA-Sorted on the IMDB and sensor data sets. In
each case we computed how many tuples were read before the TA
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Figure 7: In this experiment we compare the number of tuples re-
trieved for Anytime TA with various levels of confidence using the sen-
sor data set where K=300.

or TA-Sorted stopping condition was reached. We then compared
these results with our algorithm. As shown in Figure 5 Anytime
TA provides sizable savings over TA. We achieve a saving of over
70% (1,200 tuples) for a confidence level of 99% using the IMDB
data set. Similarly, Anytime TA works well for high dimensional
(sensor) data sets. As shown in Figure 7, we achieve savings of over
50% (3,000 tuples) for a confidence level of 99% using the sensor
data set. Since TA-Sorted does not allow for random accesses, the
number of tuples read is usually much greater than TA (allowing for
greater savings). As shown in Figure 6 we compare the Anytime
TA-Sorted algorithm with TA-Sorted. In this case, for TA-Sorted
and a confidence level of 99% we achieve an even greater savings
of over 95% (14,000 tuples).

Scalability: To evaluate the overhead of our approach we ran scala-
bility experiments with a synthetic data set totaling 1,000,000 rows
and 4 attributes. We used histograms of 5 to 25 buckets to de-
scribe attribute distributions. In this set of experimentswe set
K = 1, 000, but similar results were obtained for different values.

Table 2 shows the runtime performance of the Anytime TA algo-
rithm, as well as the overhead that the technique imposes over the
TA algorithm. In the first column we report the running time ofthe
TA algorithm. In the second column we report the running timeof

our implementation of the Anytime TA algorithm. This does not
include the time that it takes to compute the anytime measures. In
other words, this includes the time it takes to run TA and the time
it takes to maintain thegPDFs for each round. Note that this time
is dependent upon the users confidence bound. The third column
shows the average time for computing the anytime measure (con-
fidence, rank distance, and so on) every time this computation is
invoked. The total running time of our algorithm is the sum ofthe
time it takes to run Anytime TA (column 2) and the time it takes
to compute the anytime measures (column 3) times the number of
times the anytime computation is invoked.

The experimental results in Table 2 suggest that the overhead
of our approach is relatively small for Anytime TA. There is little
variation in runtime between the TA and Anytime TA algorithm
(this is attributed to the fact that histograms are not utilized for
computation until a reading is taken). Varying the histogram size
between 5 and 25 buckets make little difference in effectingthe
runtime of the Anytime TA algorithm.

For the Anytime TA-Sorted algorithm as shown in Table 3 there
is a sizable difference in the running time for TA-Sorted andAny-
time TA-Sorted algorithms. This is attributed to the overhead in-
curred from the maintenance of the partially seen tuples. Inother
words, this includes the time it takes to run Anytime TA-Sorted, up-
date thegPDFs and maintain partially seen clusters for each round
as defined in Section 5.2.2. Varying the histogram size between 5
and 25 buckets make little difference in effecting the runtime of the
Anytime TA-Sorted algorithm. Overall, the overhead for thepar-
tials remains a fixed cost over Anytime TA and increases when the
size of the histograms increases, as expected.

Performance: We evaluate performance in terms of how many tu-
ples we read, and how long it takes to run the algorithm using our
implementation. We compare Anytime TA with TA. To evaluate
our approach we ran experiments using a synthetic data set totaling
100,000 rows, 4 attributes, and a uniform distribution for each at-
tribute; we use a histogram size of 20 to describe the distribution.
In this set of experiments we setK = 1000, but similar results
were obtained for different values. Proper selection of skip size
(i.e. the number of tuples sampled between readings) can greatly
affect the runtime and total number of tuples sampled. A large skip
size ensures that the number of readings is minimal. If the skip
size is too large then there is a coarsening of the confidence levels
between readings, generally causing additional tuples to be read



TA Anytime Estimation Time Histogram
TA Average Time Per Size

Readings
1.0908 1.1238 0.0001 5

1.1598 0.0004 10
1.2068 0.0009 15
1.1778 0.0014 20
1.2107 0.0020 25

Table 2: Run time performance for synthetic data set compar-
ing Anytime TA, TA and time required to take an Anytime TA
measure. Synthetic data set (1,000,000 tuples, 4 attributes, his-
tograms size 20, random distribution). Time is reported in sec-
onds.

TA-Sorted Anytime Estimation Time Histogram
TA-Sorted Average Time Per Size

Readings
2.7696 20.8258 0.0001 5

26.2369 0.0004 10
32.3550 0.0007 15
41.4386 0.0013 20
51.6661 0.0019 25

Table 3: Run time performance for synthetic data set compar-
ing Anytime TA-Sorted, TA-Sorted and time required to take an
Anytime measure. Synthetic data set (1,000,000 tuples, 4 at-
tributes, histograms size 20, random distribution). Time is re-
ported in seconds.

from the database. On the other hand, if the skip size is smallthen
fewer tuples may be sampled but the runtime will increase dueto
the inflation of reading overhead.

Table 4 offers a comparison of runtime performance for Any-
time TA and TA for several confidence levels. We have omitted
results for Anytime TA-Sorted due to space constraints. Foreach
confidence level we report both the runtime and number of tuples
sampled for each algorithm. The experimental results in Table 4
show that sizable gains can be achieved over TA for both runtime
and the number of tuples read from the database. For our experi-
ments we achieved a reduction of about 35,000 - 38,000 tuplesread
from the database and a 34% - 44% decrease in runtime over TA.
Overall, we have found that the our approach works well in a va-
riety of settings that can be further tuned using different histogram
and skip sizes.

6.4 Multidimensional Histograms
We consider the effects of joint distributions (multidimensional

histograms) by comparing the accuracy and performance of our al-
gorithm using one- and two-dimensional histograms. Like the one-
dimensionalgPDFs we have used thus far, we assume that multi-
dimensional histograms are provided as a pre-processing step. We
want to compare the accuracy of our results using various levels
of knowledge about the scores in the database. For the experi-
ments using joint distributions we assume all combinationsof two
attribute joint distributionsgPDFis are available as described in
Section 4.6.

As shown in Figure 10 we compared the performance of one-
and two-dimensional histograms for the IMDB data set. The in-
clusion of multidimensional histograms did not greatly effect the
number of tuples read from the database. We experimented with
confidence levels (85% and 95%) and in each case we compared

Confidence TA Tuples TA Anytime TA Anytime
Read Time Tuples Read TA Time

0.75 54,082 0.0650 16,000 0.0359
0.85 17,000 0.0399
0.95 19,000 0.0429

Table 4: Run time performance comparingTA andAnytime−
TA for varying confidence levels. Synthetic data set (100,000
tuples, 4 attributes, histograms size 20, random distribution,
skip size=1000). Time is reported in seconds.

the number of tuples retrieved for the Anytime TA algorithm us-
ing independent and joint distributions. In both cases the algorithm
retrieved roughly the same number of tuples.

In addition, in figures 8 and 9 we show how the inclusion of
multidimensional histograms can increase the accuracy of our al-
gorithm. This is shown in the (1D,2D Histogram) results by the
increase in slope for the confidence. This is expected since joint
distributions offer more information pertaining to the scores of the
unseen tuples. Therefore, at any given point during execution there
is less uncertainty of the remaining unseen scores in the database.
Accuracy: As shown in figures 8 and 9 as the dimensionality of the
gPDFs increases, the confidence measure for both the sensor and
the IMDB data sets become increasingly accurate as expected. For
the IMDB and sensor data sets there is a strong correlation among
the high score values. This correlation is not detected wellassum-
ing independence as illustrated in the quick rise in confidence. In
contrast, the two-dimensional histograms can better predict high
score values for unseen tuples. As shown in figures 8 and 9, the
confidence stays low until a sufficient number of high value scores
have been seen by the algorithm.

Histogram One-Dimensional Two-Dimensional
Size Histograms Histograms

5 1.1238 11.5802
10 1.1598 11.6392
15 1.2068 11.5983
20 1.1778 11.7991
25 1.2107 11.7562

Table 5: Run time performance for Anytime TA using one-
and two-dimensional histograms. Synthetic data set (1,000,000
tuples, 4 attributes, histograms size 20, random distribution).
Time is reported in seconds.

Performance: In order to evaluate the performance of multidimen-
sional histograms for Anytime TA we used a synthetic data sets
and compared the running times for one- and two-dimensionalhis-
tograms (gPDFs). Each of our results are averaged over five inde-
pendent experiments. As shown in Table 5, using multidimensional
gPDFs requires a significant overhead regardless of the size of the
histograms. This is due to the increased number of updates required
to maintain the multidimensionalgPDFs for each round.

7. CONCLUSIONS
In this paper we have presented an anytime framework for top-

k computations. Our framework can be applied on a variety of
popular top-k algorithms (TA and TA-Sorted) and enable anytime
behavior. We have discussed and analytically demonstratedsev-
eral properties of our framework regarding the behavior of several
measures of interest to anytime top-k computations. Through a de-
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Figure 8: In this experiment we compare the confidence for one- and
two-dimensional histograms using the IMDB data set where K=300.
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Figure 10: In this experiment we compare the number of tuples re-
trieved from the database using one- and two-dimensional histograms
for Anytime TA using the IMDB data set and K=100.

tailed experimental study we have demonstrated the practical utility
of our approach.
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