
Planar Spanners and Approximate Shortest
Path Queries among Obstacles in the Plane

Srinivasa Arikati 1., Danny Z. Chen 2.*, L. Paul Chew 3. '~, Gautam Das 1.,
Michiel Staid 47, and Christos D. Zaroliagis 5~

1 Math Sciences Dept, The University of Memphis, Memphis, TN 38152, USA
2 Dept of Computer Sc. and Eng, Univ. of Notre Dame, Notre Dame, IN 46556, USA

3 Dept of Computer Sc, Upson Hall, Cornell University, Ithaca, NY 14853, USA
4 Dept of Computer Sc, King's College London, Strand, London WC2R 2LS, UK

Max-Planck-Institut fiir Informatik, Im Stadtwald, 66123 Saarbr/icken, Germany

A b s t r a c t . We consider the problem of finding an obstacle-avoiding path
between two points s and t in the plane, amidst a set of disjoint polyg-
onal obstacles with a total of n vertices. The length of this path should
be within a small constant factor c of the length of the shortest possible
obstacle-avoiding s-t path measured in the Lv-metric. Such an approxi-
mate shortest path is called a c-short path, or a short path with stretch
]actor c. The goal is to preprocess the obstacle-scattered plane by creat-
ing an efficient data structure that enables fast reporting of a c-short path
(or its length). In this paper, we give a family of algorithms for the above
problem that achieve an interesting trade-off between the stretch factor,
the query time and the preprocessing bounds. Our main results are al-
gorithms that achieve logarithmic length query time, after subquadratic
time and space preprocessing.

1 Introduct ion

Given a set of disjoint polygonal obstacles with a total of n vertices in the plane,
the (geometric) shortest paths problem is that of finding a path between two
points s and t (henceforth shortest s-t path) in the plane that does not intersect
the interior of any obstacle, and that has the minimum length measured in the

* E-mail: {arikatis, dasg}@nextl.msci.memphis.edu. Part of this work was done
while the authors were with the Max-Planck-Institut f'tir Informatik in Saarbr/icken,
Germany. Gautam Das was partially supported by NSF Grant CCR-9306822.

** The research of this author was supported in part by the National Science Foundation
under Grant CCR-9623585.

*** E-mail: cheu@cs, cornel l , edu. This author was supported by ONR Grant N00014-
89-J-1946, by ARPA under ONR contract N00014-88-K-0591, by the U.S. Army
Research Office through the Math. Sciences Institute of Cornell Univ. under contract
DAAL03-91-C-0027, and by the Cornell Theory Center which receives funding from
its Corporate Research Institute, NSF, New York State, ARPA, NItt, and IBM.

t E-mail: michiel~dcs.kcl.ac.uk. Part of this work was done while the author was
with the Max-Planck-Institut fiir Informatik, Saarbr'ficken, Germany.

t E-mail: zaro@mpi-sb.mpg.de. This author was partially supported by the EU ES-

PRIT LTR Project No. 20244 (ALCOM-IT).

515

Lp-metric for some integer p, 1 < p < or To be more precise, such a shortest
path consists of straight-line segments, called edges, and the length of each edge
is equal to the Lp-distance between its end points. The length of the entire path
is defined as the sum of the lengths of its edges. Computing shortest paths is a
fundamental topic in computat ional geometry because shortest paths problems
appear in many application areas, such as robotics and VLSI design, and play
vital roles in solving various geometric problems.

In this paper, we consider shortest paths problems in the plane, for a general
Lp-metric. Natural special cases are the L1 and L2 (Euclidean) metrics. Both
these metrics have been extensively studied, since they are important in practice
and have a lot of applications. Note that when we refer to a path in the L1-
metric, we do not mean that this path uses only line segments that are parallel
to a coordinate axis, but that the lengths of the segments of the paths are
measured in the L1 metric. There are several different versions of the shortest
paths problem, depending on whether we ask for a shortest path between any
two obstacle vertices s and t, or whether s and t can be arbitrary points in
the obstacle-free space. In addition, we are often satisfied in many applications
with an obstacle-avoiding path that is not necessarily shortest, but whose length
is within a small constant factor c of the length of a shortest path. Such an
approximate shortest path is called a c-short path, and the constant c is called
the stretch factor of the path.

The first problem considered in this paper is that of answering short path
queries in the Lp metric: Given a set of disjoint polygonal obstacles in the plane,
construct an efficient da ta structure that enables a fast report of an s-t c-short
path (or its length) between any pair of query points s and t (regardless whether
they are arbi trary points or obstacle vertices).

Previous results for this problem are as follows. Clarkson [13] gave an al-
gorithm for L~ (1 + e)-short path queries among polygonal obstacles, for any
positive r His algorithm uses O(n) space, and answers a short path query in
O(n log n) time. As was indicated in [13] and shown in [5], it is possible to extend
Clarkson's result as follows. In O(n 2 log n) time, an O(n 2) space data structure
can be constructed such that a length query can be answered in O(log n) time.
Reporting an actual (1 + r path takes O(logn + L) time, where L is the
number of edges of the path. Chen [5] presented an efficient da ta structure for
L2 (6 -J- r path queries among polygonal obstacles. His data structure re-
quires O(n log n) space and O(n3/2/Vq--d- ~ t ime to construct, and supports a
time of O(log n) for a length query and an additional O(L) t ime for reporting an
actual path. Results on some special cases of short path queries can be found in
[6]. In contrast, the (exact) shortest path queries problem typically takes more
time and space to solve. There are several results on /)2 shortest path queries
in a simple polygon [12, 20, 21, 22] and L1 shortest path queries among various
types of obstacles [3, 4, 7, 16]. Note that for even the seemingly simpler case of
L1 shortest path queries among multiple obstacles in the plane, all known data
structures supporting a polylogarithmic length query time require ~ (n 2) space
and time to construct.

516

In this paper, we improve all of the above results for the short pa th queries
problem. We give a family of algori thms whose bounds are summarized in Ta-
ble 1.

Short paths are closely related to the notion of a spanner, see e.g. [13, 5].
Given a set S of n points, a v-spanner is a graph having the points of S as its
vertices, such that for any two points s and t of S, there is an s-t pa th in the
graph of length at most r t imes the Lp-distance between s and t. The problem of
constructing spanners has a t t racted a considerable amount of at tention recently
(see e.g. [1] and the references given there). In particular, the main goal is to
construct spanners that contain a linear number of edges (and that possibly
satisfy some other constraints [1]).

Stretch factor Preprocessing Time Space Query Time
c + ~ O(n~/~) 0(n~/47) O(log n + 47)
r + ~ o (n log n) o (n) o (n)
2c + ~ O(n3/2) O(n 3/2) O(log n)

3c+e O(n3/2/v/logn) O(nlogn) O(logn)

TABLE 1: Our results for the short path query problems. For the Ll-metric c = 1,
for the Euclidean metric c = x/~, and in general for the Lp-metric c = 2 (p-1)/p. The
parameter e is an arbitrarily small positive constant, whereas r is an arbitrary integer,
such that 1 < r < n. The actual short path can be output in an additional O(L) time,
where L is the number of edges of the reported path.

The second problem considered in this paper is the following planar spanner
problem. Given a set of disjoint polygonal obstacles in the plane, construct a
graph G = (V, E) such that: (i) the set of obstacle vertices S is a subset of V;
(ii) the edges of G are straight-line segments that do not intersect the interior
of any obstacle; (iii) for any two obstacle vertices s, t E S, there is an s-t path
in G which is a r -short path; and (iv) G is planar. If V = S, then we call G a
planar Lp v-spanner. Otherwise, if G contains additional vertices (called Steiner
vertices), we call G a planar Steiner Lp v-spanner. The real number r >_ 1,
representing the stretch factor of short paths, is called the stretch factor of the
spanner. There are several algori thms that construct planar L2 r-spanners in
O(n log n) t ime [9, 10, 15]. The best known stretch factor is r = 2 [9, 10]. We are
not aware of any previous spanners specifically constructed for the L1 metric.
Regarding the planar Steiner spanner problem, no previous results are known in

any metric.
We present the following new results for the planar spanner problem.

�9 We prove (Section 2) tha t a planar L1 2-spanner among polygonal obstacles
can be constructed in O(n log n) t ime without using Steiner vertices. This
result is not only opt imal w.r.t, time, but also w.r.t, stretch factor: we show
that there are sets of polygonal obstacles in the plane such that any planar
L1 v-spanner which does not use Steiner vertices has a stretch factor r > 2.

�9 In view of the above result, if we want a planar L1 spanner with a stretch
factor less than 2, then we have to use Steiner vertices. In this case, we

517

prove (Section 3) that, for any e > 0, a planar Steiner L1 (1 + e)-spanner
with O(n) Steiner vertices can be constructed in O(nlogn) time. In fact,

(p-1)/p e s the same construction produces a planar Steiner Lp (2 +)- panner
with O(n) Steiner vertices. (The constants that appear in the Big-O bounds
depend on e.)

The first result on constructing a planar L1 2-spanner is based on a con-
strained Delaunay triangulation [8] that uses a special convex distance function.
This convex distance function is defined by a carefully chosen equilateral triangle
in the L1 metric whose shape is somewhat different from the standard equilateral
triangles. We also construct examples to show that 2 is the lower bound of the
stretch factor achieved by any planar L1 spanner without using Steiner vertices.

The approach used for the second result is based on an algorithm of Arya
et al. [2], that, given a set of points, constructs a subdivision of the plane into
boxes. We first build this subdivision on the set of obstacle vertices. Then, each
of the resulting O(n) boxes is "gridded" in an appropriate way. Each box gives
a constant number of Steiner vertices. Superimposing the obstacles onto this
subdivision gives a planar Steiner L1 (1 + e)-spanner, which may have Y?(n 2)
Steiner vertices. We show, however, that by carefully merging regions of the
superimposed subdivision, we get a planar (1 + c)-spanner with only a linear
number of Steiner vertices. But constructing the spanner in this way would still
take f2(n 2) time. Fortunately, our algorithm avoids the costly merging procedure
and manages to construct the spanner in only O(n log n) time.

Our results for short path queries given in Table 1 are based on the above
results on planar spanners, and on the following two graph-theoretic results
(Section 4) which are of independent interest:

I. Given an n-vertex (directed or undirected) planar graph G with nonnegative
real edge weights, we can perform, for any 1 <<_ r <_ n, an O(n2 /v~) time
and space preprocessing of G such that the length of a shortest path in G
between any two vertices can be found in O(v/~) time.

II. Given an n-vertex undirected planar graph G with nonnegative real edge
weights, we can perform an O(n3/2) time and space preprocessing of G such
that the length of a 2-short path in G between any two vertices can be found
in O(log n) time.

We can also output the actual shortest (or 2-short) path between the query
vertices in an additional O(L) time, where L is the number of edges of the
reported path. Our algorithms for planar graphs improve (in one or another
way) upon known previous results (see e.g. [5, 14, 18]).

2 P l a n a r L1 s p a n n e r s w i t h o u t u s i n g S t e i n e r v e r t i c e s

We first prove that planar spanners (without Steiner vertices) for L1 shortest
paths can achieve a stretch factor no better than 2. Note that it is sufficient to
show this fact on the simpler case with just point-obstacles in the plane.

518

L e m m a 1. There exist point sets in the plane such that any planar L1 spanner
that is a subgraph of the complete graph has a stretch factor > 2.

Proof. We first consider a simple case: A unit diamond in the plane with points
a, b, c, and d as its vertices (i.e., the L1 distance from each vertex to any of the
other vertices of the unit diamond is 1). Let K4 be a complete undirected graph
for vertices a, b, c, and d (see Figure la). It is clear that K4, in which we let each
edge have a unit weight, is the complete graph modeling the exact L1 shortest
paths among the four vertices. Suppose we obtain a spanner of K4 by removing
an arbitrary edge (say, the edge (a, b)). Then the shortest path from a to b in
this spanner becomes 2. Therefore, no proper subgraph of K4 can approximate
the shortest paths with a stretch factor better than 2. Consequently, the only
spanner of K4 with a stretch factor less than 2 is K4 itself.

O~
/ s q [I t b �9 �9 �9 �9

!

9J l o ID OoOo@oOoOoOoOo~
% i ~ / c a

"~'a ~ 1 7 6 1 7 6 1 7 6 1 7 6

(a) (b)

Fig. 1. (a) A t(4 on a unit diamond; (b) a diamond grid with n points.

Although the K4 is a planar graph (Figure la), it plays a critical role in our
following argument. Consider a set of n points forming a ~ • v/-ff "diamond
grid" in the plane (see Figure lb). A planar graph on these vertices has at most
3n - 6 edges, while one can show that a larger number of edges (4n - 6v/-n + 2)
are required to make each unit diamond have stretch factor less than 2. []

The idea to efficiently construct a spanner with stretch factor exactly 2 is to
use a type of the Constrained Delaunay Triangulation (CDT) using a distance
based on a triangle [11, 8, 9]. The trick here is to find the right triangle-shape
and the right triangle-orientation. Standard equilateral triangles that worked for
the L2 case, as described in [9, 10], fail to yield the desired planar L1 2-spanner,
so we turn to the following triangle shape: An isosceles triangle as depicted
in Figure 2. Note that this triangle fits nicely within an L1 circle (i.e., a unit
diamond). In a sense, this is still an equilateral triangle: The L1 length of the
base is equal to 1 and each of the other two sides of the triangle also has its L1
length equal to 1. We can prove the following.

T h e o r e m 2. Let S be the set of obstacle vertices for any set of disjoint, polygonal
obstacles in the plane with ISI = n. There is a planar subgraph of the visibility
graph, modeling the L1 distances among the points in S, whose stretch factor is
exactly 2 (i.e., an L1 2-spanner). Furthermore, such a planar L1 2-spanner can

be constructed optimally in O(n log n) time.

519

/ \
/ \ \

L 1 length length 1

Fig. 2. Our distance-defining isosceles triangle and a CDT based on it. The dotted
triangle represents an "empty circle."

3 P l a n a r L 1 s p a n n e r s w i t h S t e i n e r v e r t i c e s

In this section we prove the following theorem.

T h e o r e m 3. Given a collection of disjoint polygonal obstacles on the plane with
n vertices and any e > O, a planar i l (1 + e)-spanner with O(n/e ~) Steiner
vertices can be constructed in O(n logn + n/e 2) time.

3.1 A Ste lner spanner w i t h o u t obstac les

Let us start with the simpler problem of constructing a Steiner spanner for a
set S of n points without any obstacles. (Note: in the rest of the section, the
default metric is L1). We frequently make use of a procedure called interval.
Given a line segment xy and r > 0, interval(xy, r) starts from x and introduces
Steiner vertices along xy such tha t the segment is broken into intervals of length
r, except possibly for the last interval.

Arya et al. [2] describe a certain planar subdivision for solving nearest neigh-
bor search problems, and we find it useful in constructing our Steiner spanner.
This subdivision is a planar graph where each face is a connected region called
a cell. The shapes of the cells have special significance, and are best described
through the concept of boxes. A box is an axis-parallel rectangle such tha t the
ratio of its longest side to its shortest side is at most 2. A cell is either a box
(called a box cell), or the set-theoretic difference of two boxes, one contained
within the other (called a doughnut cell). Furthermore, each doughnut cell is
restricted as follows. For each side e ~ of the inner box, the orthogonal distance
between e ~ and the corresponding side of the outer box is either zero, or greater
than or equal to the length of e'. Finally, a box cell contains at most one point
of S, whereas a doughnut cell contains no points of S. The following l emma can
be derived from the results in [2].

L e m m a 4. Given a set S of n points, let B be any box containing them. Then,
in O(n log n) time a subdivision D of B can be constructed such that, each cell
of D is either a box cell or a doughnut cell, and the number of cells is O(n).

In constructing our spanner, we first construct a planar subdivision of any
box B containing S, as in the above lemma. We then augment the graph of the

520

subdivision by adding new Steiner vertices and edges within each cell as follows.
Consider any box/doughnut cell. For every boundary edge xy, first perform
interval(xy, el), where l is the length of shortest side of the box to which xy
belongs. Then, from z, y and each of the Steiner vertices generated, shoot rays
orthogonal to xy and directed into the interior of the cell, until they hit the cell's
boundary, possibly creating new Steiner vertices. This process introduces O(1/~)
vertical and horizontal rays. If we further break the rays up by computing their
intersections, we get a "grid" with O(1/e 2) Steiner vertices and edges per cell.
Note that the grid inside a doughnut cell is somewhat more complex than the
one inside a box cell.

The resulting graph G is clearly planar and has O(n/c 2) Steiner vertices.
We now show that its stretch factor is (1 + e). Consider any path on the plane
between points u and v of S, say P(u, v). Let P(u, v) be divided into the pieces
P1, P2, . . . , Pk, where each Pi is a maximal portion confined within a cell. Con-
sider a particular Pi and let its end points be a and b. Note that a and b need
not necessarily be vertices of G, although they lie on edges of G. We show that
there is a path P/~ from a to b that "stays on" G, such that P[is at most (1 + ~)
times longer that Pi.

Consider one possible case. Suppose 2 < i < k - 1 and P~ is within a doughnut
cell (with outer corners x, y, z and w as seen clockwise from top-left, correspond-
ing inner corners z ~, y~, z ~ and w ~, length of shortest side of outer box l, and length
of shortest side of inner box l/). Suppose a is on xy and b is on x~y ~. To construct
P[we go from a along xy until we reach a Steiner vertex whose horizontal sep-
aration from b is within ~l~/2 (such a Steiner vertex has to exist because of the
upward ray shots from x~y~), then go down vertically until we reach x~y ~, and
finally go horizontally until we reach b. It is easily seen that the length of P/~ is
at most (1 + e) times the L1 distance between a and b.

A full case analysis (which we omit) proves the same for all possible types
of Pi. If we merge the P/s and eliminate any overlaps, we get a path P'(u, v)
composed of whole edges of G, which is at most (1 +e) times longer than P(u, v).

The time taken to construct G is O(nlogn + n/c2), i.e. the t ime taken for
the planar subdivision as well as the time taken to grid each cell.

3.2 A S t e i n e r s p a n n e r a m i d s t o b s t a c l e s

Our solution for obstacles is similar, except that we use a more complicated
subdivision. Let us treat each polygonal obstacle as a collection of edge obstacles
(i.e. the boundary edges). Once the spanner has been computed, we can easily
recognize and discard the portions that lie within the interiors of the original

obstacles.
Let E be the given edge obstacles and let S be the set of their end points.

Let B be a box containing them. The obstacles induce a natural subdivision
of B into a single connected region where each obstacle edge is a "hole". Let
this subdivision be D. We also compute another subdivision D ~ of B for the
points of S as in Lemma 4. Let S' (E') be the vertices (edges) of D'. Define the

521

subdivision D1 as the superimposition of D on D ~. The vertices of D1 will be
S U S t, and additional vertices created by intersecting edges of D and D I.

(b) (a)

Fig. 3. (a) Red regions in D1 (b) Blue regions in D1

d/
Fig. 4. A ladder in D1

The regions of D1 can be classified into two types. A red region is a quadri-
lateral such that none of the four vertices belong to S U S' (see Figure 3(a)).
Note that the number of red regions may be ~(n2). The rest of the regions are
blue regions. Note that blue regions may or may not have boundary vertices
from S U S/. As Figure 3(b) shows, the maximum number of boundary edges of
a blue region can be 16. Define the red graph of D~, as follows: Create a vertex
for each red region; there is an edge between two vertices if the corresponding
red regions share a boundary edge that is part of a box/doughnut cell. Each
connected component of this graph is a simple chain, and all the red regions of
the chain lie between the same two obstacle edges (Figure 4). The configuration
resembles a ladder, with the obstacle edges forming the two sides, and parts
of box/doughnut cell edges forming the rungs. Of course, some rungs may be
horizontal while others may be vertical. Now collapse every ladder in D1 (i.e.,
eliminate the intermediate rungs), yielding a single quadrilateral red region per
ladder. Call the resulting subdivision D2. (D 2 has the same blue regions as D1.)

L e m m a 5. The subdivision D2 has O(n) vertices, edges and regions.

522

Proof. We omit the details in this version. The idea is to show that there are
O(n) extremal rungs of ladders remaining in D2. This is done by a charging
technique, where each rung is charged to a vertex in S U S' "just outside" its
ladder. We can show that in this way, each vertex in S U S' is charged at most
a constant number of times. []

A crucial result of our paper (to be presented later) is an efficient and non-
trivial algorithm for constructing D2. For the moment, assume we have con-
structed D2. We discard the red/blue regions that lie within obstacles, then grid
the remaining regions as follows. For every blue/red region, for every boundary
edge xy that is part of a box/doughnut cell, first perform interval(xy, fl), where
l is the length of the shortest side of the box to which xy belongs. Then, from
x, y and each of the Steiner vertices generated, shoot rays orthogonal to xy
and directed into the interior of the region, until they hit the region's boundary,
possibly creating more Steiner vertices. Finally, compute the intersections of the
horizontal and vertical rays, thus constructing a O(1/c 2) grid for the region.

Clearly the eventual graph G is planar, and has O(n/c 2) Steiner vertices.
Although some edges may not be axis-parallel, the length of each is defined in
the L1 metric. The proof that its stretch factor is (l + e) is structurally similar to
the earlier proof without obstacles; essentially we show that in a red/blue region,
between every a and b on boundary edges that are parts of box/doughnut cells,
there is an (1 + c)-short path that "stays on" G. The details are omitted.

Finally, we outline the efficient algorithm for constructing D2. Clearly a naive
algorithm which first constructs D1 and then collapses ladders will take t2(n ~)
time. Our algorithm avoids constructing D1. Let E~ and E~ be the set of hor-
izontal and vertical edges of D ~. Define Dlh (DI,) as the superimposition of
D with only E~ (E~). As was done for D1, define ladders for Dlh (DI~) (note
that in Dlh (Dlv) the rungs are horizontal (vertical)). Define D2h (D2v) as Dlh
(Dlv), but with all ladders collapsed. Define D3 as the superimposition of D2h
on D2v. Define ladders for D3. It can be shown that each ladder in D3 has at
most four rungs, and that D2 is D3 with all ladders collapsed.

The algorithm consists of four stages. In the first and second stages, we
construct D2h and D2" respectively. In the third stage we construct D3 (easy to
do since the horizontal edges of D2h do not intersect the vertical edges of D2v).
In the last stage we construct D2 (easy to do by collapsing the ladders of D3).

We give details of the first stage (the second stage is similar). It is imple-
mented by an upward plane sweep which discovers the top rungs of all ladders in
D2h, followed by an identical downward sweep that discovers the bot tom rungs.

Consider the upward sweep. At any instant, the sweep line intersects a subset
of the obstacle edges, where a pair of adjacent edges in the left-to-right order
define an interval on the sweep line. Consider any interval I = (l, r) where l and
r are two obstacle edges. Let h be the highest horizontal edge of E~ (but no
higher than the sweep line) which intersects both l and r. If no such edge exists,
or if the region between h, l, r and the sweep line contains a point of SU S', then
I is a non-ladder interval. Otherwise I is a ladder interval, and its current top
rung (denoted as top(I)) is defined to be h. It can be shown that if two ladder

523

intervals are adjacent, then their current top rungs are the same.
We maintain the obstacle edges intersected by the sweep line as a balanced

binary search tree T. The innovative idea used in our algorithm is that the
additional properties of the intervals such as ladder/non-ladder classification
and current top rung information, ave not maintained in T. Instead, consider
another tree T ' which contains a subset of the obstacle edges intersected by the
sweep line. Each interval M defined by these edges on the sweep line is either an
original non-ladder interval, or is the union of a maximal contiguous sequence
of original ladder intervals, called a merged-ladder interval. Each merged-ladder
interval is associated with a horizontal edge of E~ called top(M). The above
information is maintained with each interval of T ~.

We update T and T' as follows. Consider the event where the sweep line
encounters an edge of E~, say h = uv. We search for u and v in T and find the
intervals Iy = (4 , r~,) and Iv = (4, rv). We search for u and v in T ' and find
the intervals My = (L~, Ry) and My = (Lv, Rv). If M~ is a merged-ladder, we
classify Iy as ladder, otherwise as non-ladder. We similarly classify Iv. If Iy is
ladder, we output the part of top(My) between the obstacle edges ly and ry.
Similarly if Iv is ladder, we output the part of top(My) between the obstacle
edges 4 and rv. Let the sequence of edges in T ' be aLyRyflLvRv7 where ~,/~
and 7 represent subsequences of edges. Using a constant number of balanced
binary search tree operations (search/insert /delete/spli t /merge), we can achieve
a new tree T ' which has the sequence aL~l~ryl, r~RvT. In this tree, the intervals
(L ~ , 4) and (r~, Rv), if non-zero, are classified as merged-ladder with current
top rungs the same as top(M~) and top(My) respectively. The intervals (4 , ry)
and (lv, r ,) are classified as non-ladder. Finally, the interval (v~, 4) , if non-zero,
is classified as merge-ladder with current top rung h.

In this version we omit discussing how other events are handled (e.g. encoun-
tering t op /bo t t om end points of obstacle edges), but claim that each requires at
most a constant number of balanced binary search tree operations. Since each
tree operation takes O(logn) time, the sweep takes O(nlogn) time. Thus, the
overall algorithm for constructing the Steiner spanner takes O(n log n + n/e 2)
time.

4 A l l - p a i r s s h o r t a n d s h o r t e s t p a t h s i n p l a n a r g r a p h s

Let G = (V(G), E(G)) be a graph with nonnegative real edge-weights. The all-
pairs shortest paths (APSP) problem asks for finding shortest paths between every
pair of vertices in G, while the single-source shortest paths (sssP) (or shortest
path tree) problem asks for shortest paths between a specific vertex and all other
vertices in G. For s,t C V(G), we will call the length of a shortest s-t path in
G the distance between them, and the length of a c-short s-t path in G their
c-approximate distance. For a subgraph H of G and vertices s, t E V(H), we will
denote the distance from s to t in H by 5H(S, t). For s, t E V(G), we will denote
their distance in G simply by 5(s, t). A separator Sa of an n-vertex planar graph
G is a set of vertices whose removal divides G into two subgraphs G1 and G2

524

such that IV(G~)I <_ 2n/3, for i = 1, 2, no vertex of G1 is adjacent to any vertex
in G2, and ISal = O(vf~). Such a separator can be found in O(n) time [24].

In this section we shall give a family of algorithms for solving the APSP and the
all-pairs 2-short paths problems on an n-vertex undirected planar graph Gp with
nonnegative real edge-weights. (Remark: All of our results for the APSP problem
hold also for directed planar graphs with nonnegative real edge-weights.) Our
algorithms first preprocess Gp (by creating a data structure) and then query
this da ta structure to find a shortest or 2-short path between a query pair of
vertices. Due to space limitations, we will only describe how distance queries are
answered. The corresponding shortest (or short) path queries can be answered
in an additional time proportional to the number of edges of the reported path.

We start with the APSP problem. We first sketch a simple algorithm, called
BASIC-APSP, which provides the basis for the other algorithms in this section.
This algorithm is a straightforward application of the divide-and-conquer tech-
nique using separators. (Although we have not found this algorithm in the liter-
ature, we suspect that it was known as a folklore.) Its preprocessing procedure
consists of the following steps: (1) Perform a reeursive separator decomposition
of Gp and associate with it a binary tree called the separator decomposition tree
T(Gp). Moreover, associate with every node x of T(Gp) a certain subgraph G of
Gp, denoted by x(G), and the separator Sa of this subgraph, denoted by x(Sa).
(The root is associated with the input graph Gp and its separator Sap-) If x is
a leaf of T(Gp), then consider all vertices of x(G) as separator vertices. (2) For
each node x of T(Gp) and for every vertex v C x(Sa), compute a shortest path
tree in x(G) rooted at v, by running the O(n)-time sssp algorithm of [23]. (3)
Preprocess T(Gp) in linear time (using the algorithm of [25]) such that lowest
common ancestor (LCA) queries are answered in O(1) time.

It is not hard to see that the running time is dominated by the running time,
say P(n), of Step (2) which satisfies the recurrence P(n) < m a x { P (n l) + P(n2) :
nl+n2 = n and nl , n2 ~ 2n/U}+O(n3/2), and whose solution is P(n) = 0(n3/2).
Let x be a node of T(Gp). For an ancestor (resp. descendant) node y of x in
T(Gp), we will call the subgraph y(G) the ancestor (resp. descendant) subgraph

of x(G).
The main idea behind the query procedure is the following. Let s, t E V(Gp)

be any two vertices and let x be the node of T(Gp) for which the separa-
tor x(Sa) separates s from t in the descendant subgraph x(G) of Gp. Then
clearly, 8x(c)(s, t) = min, e= (st){8=(a)(s, v) + 6~(G) (V, t)}. However, it is possible
that 6=(a)(s,t) ~ 8(s,r since a shortest s-t path in Gp need not necessarily
stay inside x(G). For this reason we look for shortest s-t paths in the ancestor
subgraphs of x(G). The crucial observation is that in such a case the short-
est path has to pass through some separation vertex of these subgraphs. Let
A(z) = {y : y is an ancestor of x in T (G ,)} . Then, it is not hard to verify that

The query procedure of algorithm BASIC-APSP consists of the following steps.
(1) Let y and z be the lowest-level nodes (i.e. closest to the root) of T(Ge)
such that s G y(G), t G z(G) and y r z. Find the LCA x of y and z in

525

T(Gp). (2) Compute 5=(c)(s,t) (as shown above). Set 5(s,t) = 5x(G)(s,t). If x
is the root of TG, then stop. (3) Let u be the parent of x. Compute 5(s,t) =
min{ (s, t), v) + t)}}. (4) u is the root of
then stop. Otherwise, set x = u and repeat Steps (3) and (4).

Clearly, Step (1) takes O(1) time and Step (2) takes time O([x(Sa)[) =
O(v/]V(x(G))]) = O(v~) . Let Q(i) be the maximum time required by Steps
(3) and (4), where 0 < i < d is the level number of node x in T(Gp) and
d = O(log n) is the depth of T(Ge). One iteration of Step (3) takes O(((~)in)U ~)
time, since [Y(x(G)) I 2 i = 0 ((5) n). Hence, Q(i) satisfies the recurrence Q(i) <
Q(i - 1) + O(((~)in)l/2), whose solution is O(v~) .

The above discussion implies that algorithm BASIC-APSe can answer a dis-
tance query between any two vertices in O(v/~) time, after an O(n 3/2) time
and space preprocessing of Gp. We now show how we can improve more on the
query time. Frederickson [17] showed how to divide an n-vertex planar graph
into O(n/r) edge-disjoint subgraphs, called regions, such that each region has
O(r) vertices, 1 < r < n, and O (v ~) boundary vertices (i.e. vertices shared with
other regions). Such a division is called an r-division and can be computed in
O(nlogn) time [17], or even in O(n) time using the results of Goodrich [19].

We call our new algorithm IMPROVED-APSe. Preprocessing procedure of algo-
ri thm IMPROVED-APSe: (e l) Find an r-division D of Gp. (P2) Run the prepro-
eessing procedure of algorithm BASIC-APSe inside every region. (P3) For every
boundary vertex b of D, compute a shortest path tree in Gp rooted at b using
the algorithm of [23].

Query procedure of algorithm IMPaOVED-APSP: Let s,t E V(Gp). (Q1)
If s and t belong to the same region R, then find their distance 5R(s,t) in-
side R (using the query procedure of algorithm BASIC-APSe), find 5~(s,t) =
minveB(R){~(s, v) + (~(v,t)}, (where B(R) is the set of boundary vertices of R),
and output as 5(s, t) the minimum of 5R(s, t) and 5~(s, t). (Q2) I fs and t belong to
different regions R and R' respectively, then 5(s, t) = min~eB(R){5(s, v)+5(v, t)}.

It can be easily verified that the preprocessing procedure of algorithm IMPROVED-
APSe needs O(n2/v/~) time and space, while the query procedure of the same
algorithm takes O(v/7) time. This yields the first graph-theoretic result (I) men-
tioned in the introduction.

Both previous algorithms compute (exact) APSe information in planar graphs.
We will now see how 2-short paths can be efficiently computed. Let s be a vertex
of a planar graph G, and let b~ E S, where S is a separator of G. The vertex bs,
satisfying that 5(s, b~) ~ 5(s, u), k/u E S, is called the closest separator vertex of
s on the separator S. Our algorithm is based on the following lemma.

L e m m a 6 . Let s and t be two vertices of a planar graph G and let S be a
separator of G. Ira shortest s-t path contains a vertex from S, then min{5(s, bs)+
5(b~, t), 5(t, bt) + 5(b~, s)} __< 2~(s, t).

Proof. Consider a shortest s-t path P in G. Let u be the first vertex of S in P.
Then, the length of P is given by 5(s, t) = 5(s, u) + 5(u, t). Consider first the
case that d(s, u) < 5(u, t). Since 5(s, b~) <_ g(s, u) by the definition of b~, we have

526

5(b,, t) < 5(b,, u) + 5(u, t) < 5(b,, s) + 5(s, u) + 5(u, t) < 25(s, u) + 5(u, t). Thus,
~(~, b,) + ~(bs, t) _< ~(~, ~) + 25(~, ~) + ~(~, t) < 2~(~, ~) + 2~(~, t) = 2(~(~, ~) +
5(u, t)) = 25(s, t), where the second inequality follows from our assumption that
5(s, u) <_ 5(u, t). In the other case, namely when 5(u, t) <_ 5(s, u), we can show
in a similar way that 5(t, bt) + 5(bt, s) <_ 25(s, t). []

We now present algorithm 2-APPROX-APSP that computes all-pairs 2-short
paths in Gp. The preprocessing procedure is the same as that of algorithm
BASIC-APSP, except for the computation of the closest separator vertices. How-
ever, observe that the required closest separator vertices, for every u 6 x(G), can
be easily found in Step (2) (within the same resource bounds) from the shortest
path trees rooted at every vertex v 6 x(SG).

The query procedure of algorithm 2-APPROX-APSP is based on Lemma 6,
and its structure is similar to that of algorithm BASIC-APSP. Let s,t 6 V(Vrp)
be the query vertices. The query procedure is as follows: (Q1) Let y and z be the
lowest-level nodes (i.e. closest to the root) of T(Gp) such that s 6 y(G), t 6 z(G)
and y # z. Find the LCA z of y and z in T(Gp). (Q2) Compute 5"(G)(s,t) =
min{5=(a) (s, b,) + 5x(a)(b,, t), 5~(a)(t, bt) + 5~:(a)(bt, s)}, where b, (resp. bt) de-
notes the closest separator vertex of s (resp. of t) on the separator x(Sa). Set
52(s,t) = 5' ~(G)(s,t)" If x is the root of T(Gp), then stop. (Q3) Let u be the
parent of x. Compute 5~(G)(s, t) = min{hu(a)(S, bs) + 5u(v)(bs, t), 5~(v)(t, bt) +
5~(e)(bt, s)}, where now bs (resp. bt) denotes the closest separator vertex of s
(resp. of t) on the separator u(Sa). Set 52(s, t) = min{52(s, t), 6~(v)(S, t)}. (Q4)
If u is the root of T(Gp), then stop. Otherwise, set x = u and repeat Steps (3)
and (4).

The correctness of the query procedure is established by the following lemma.

' (s , t) be as L e m m a T . Let s,t be two vertices in Gp, and let y , z ,x and 5=(a)
defined above. Then, min{g~(a)(s, t), min{Jw(6)(s, bs)+5~(G)(bs, t), 5~o(G)(t, bt)+
5~(6) (btl s)}} < 2hap (s, t) for some ancestor w of x in T(Gp), where b~ (resp. bt)
is the cZosest separator vertex of ~ (resp. t) on the ~eparator w(SG) in the ~b-
graph w(G).

Proof. Omitted due to space limitations. []

Concerning the resource bounds of the query procedure, note that Steps (Q1)
and (Q2) take O(1) time. As before, let Q(i) be the maximum time required by
Steps (Q3) and (Q4), where 0 < i < d is the level number of node x in T(Gp)
and d = O(log n) is the depth of T(Gp). One iteration of Step (Q3) clearly takes
O(1) time, since the required distances are available from the preprocessing of
the graph. Hence, Q(i) satisfies the recurrence Q(i) <__ Q (i - 1) + O(1), whose so-
lution is O(log n). Therefore, algorithm 2-APPrtox-APSP answers a length query
between any two vertices of Gp in O(logn) time, after an O(n 3/2) time and
space preprocessing, yielding the second graph-theoretic result (II) mentioned in

the introduction.

527

5 Short path queries among obstacles in the plane

Following Chen's approach for processing L2 short path queries [5], our Lp short
path da ta structures consist of two major components:
P a r t A. A data structure for answering queries on all-pairs short(est) paths in a
graph Gp which is the planar Steiner Lp r-spanner constructed by our algorithm
in Section 3.
P a r t B. A data structure that, given any two query points s and t in the plane,
quickly reduces the computat ion of a short s-t path to computing the short(est)
paths between a constant number of vertices of Gp.

Given the results in Sections 3 and 4, the data structure of Part A can be
easily constructed as follows. Let Q > 0 be a value depending on the required
stretch factor. We first obtain a planar Steiner Lp (2(p-1)/p + el)-spanner with
O(n) Steiner vertices, denoted by Gp, and then build a data structure for an-
swering Ml-pairs short(est) path queries in the planar graph Gp. It is clear from
Section 4 that, for the results of the first and third row of Table 1, an all-pairs
short(est) path query data structure on Gp can be built in the claimed time and
space bounds. It should be also clear that the result of the second row can be
achieved by applying to Gp the linear time sssP algorithm of [23]. The result
of the fourth row follows by applying to Gp Chen's all-pairs short path query
algorithm on planar graphs [5].

The data structure of Part B is the same for all results of Table 1, and is a
generalization of Chen's approach [5] for processing L2 short path queries. (We
omit the details due to space limitations.) The data structure of Part B can be
set up in O((nlogn)/e2) t ime and O(n/e2) space, for some c2 > 0 depending
on the required stretch factor. Given two query points s and t in the plane, the
data structures of Parts A and B together enable us to compute the length of
a geometric short s-t path in O((logn)/e2) t ime from the "graphic" short(est)
paths between O((]/e2) 2) pairs of vertices in Gp.

6 F i n a l R e m a r k s

We have recently improved the planar spanner results presented in this paper
using new ideas. More precisely, we can achieve a planar (1 + e)-spanner with a
linear number of Steiner vertices for all metrics (i.e., the constant c, in Table 1,
is equal to 1 for any Lp-metric). The details will be given in the full paper.

R e f e r e n c e s

1. S. Arya, G. Das, D.M. Mount, J.S. Salowe and M. Staid, "Euclidean spanners:
short, thin, and lanky", Proc. 27th ACM STOC, 1995, pp. 489-498.

2. S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman and A. Wu, "An optimal al-
gorithm for approximate nearest neighbor searching", Proc. 5th A CM-SIAM Syrup.
on Discrete Algorithms, 1994, pp. 573-582.

3. M. J. Atallah and D. Z. Chen, "Parallel rectilinear shortest paths with rectangular
obstacles," Comp. Geometry: Theory and Appl., 1:2 (1991), pp.79-113.

528

4. M. J. Atallah and D. Z. Chen, "On parallel rectilinear obstacle-avoiding paths,"
Computational Geometry: Theory and Applications, 3 (1993), pp. 307-313:

5. D. Z. Chen. "On the all-pairs Euclidean short path problem," Proc. 6th Annual
A CM-SIAM Syrup. on Discrete Algorithms, San Francisco, 1995, pp. 292-301.

6. D. Z. Chen and K. S. Klenk, "Rectilinear short path queries among rectangular
obstacles," Proc. 7th Can. Conf. on Comp. Geometry, 1995, pp. 169-174.

7. D. Z. Chen, K. S. Klenk, and H.-Y. T. Tu, "Rectilinear shortest path queries among
weighted obstacles in the rectilinear plane," Proc. 11th Annual ACM Symp. on
Computational Geometry, 1995, pp. 370-379.

8. L. P. Chew, "Constrained Delaunay triangulations," Algorithmiea, 4 (1989),
pp. 97-108.

9. L. P. Chew, "There are planar graphs almost as good as the complete graph," J.
o] Computer and System Sciences, 39 (1989), pp. 205-219.

10. L. P. Chew, "Planar graphs and sparse graphs for efficient motion planning in the
plane," Computer Science Tech Report, PCS-TR90-146, Dartmouth College.

11. L. P. Chew and R. L. Drysdale, "Voronoi diagrams based on convex distance
functions," Proc. 1st Annual ACM Symp. on Comp. Geometry, 1985, pp. 235-244.

12. Y.-J. Chiang, F. P. Preparata, and R. Tamassia, "A unified approach to dynamic
point location, ray shooting, and shortest paths in planar maps," Proc. of the 4th
ACM-SIAM Syrup. on Discrete Algorithms, 1993, pp. 44-53.

13. K. L. Clarkson, "Approximation algorithms for shortest path motion planning,"
Proc. 19th Annual ACM Syrup. Theory o] Computing, 1987, pp. 56-65.

14. H. Djidjev, G. Pantziou and C. Zaroliagis, "On-line and dynamic algorithms for
shortest path problems", Proc. 12th Syrup. on Theor. Aspects o] Comp. Sc., LNCS
900, Springer-Verlag, 1995, pp. 193-204.

15. D. P. Dobkin, S. J. Friedman, and K. J. Supowit, "Delaunay graphs are almost as
good as complete graphs," Discrete ~ Comp. Geometry, 5 (1990), pp. 399-407.

16. H. E1Gindy and P. Mitra, "Orthogonal shortest route queries among axes parallel
rectangular obstacles," Int. J. o] Comp. Geometry and Appl., 4 (1) (1994), 3-24.

17. G. Frederickson, "Fast algorithms for shortest paths in planar graphs, with appli-
cations", SIAM J. on Computing, 16 (1987), pp.1004-1022.

18. G.N. Frederickson, "Using cellular graph embeddings in solving all pairs shortest
path problems", J. o] Algorithms, 19 (1995), pp. 45-85.

19. M. Goodrich, "Planar separators and parallel polygon triangulation", Proc. 24th
ACM Syrup. on Theory of Comp., 1992, pp.507-516.

20. M.T. Goodrich and R. Tamassia, "Dynamic ray shooting and shortest paths via
balanced geodesic triangulations," Proc. 9th Annual ACM Syrup. on Computa-
tional Geometry, 1993, pp. 318-327.

21. L.J. Guibas and J. Hershberger, "Optimal shortest path queries in a simple poly-
gon," Proc. 3rd Annual A CM Syrup. on Computational Geometry, 1987, pp. 50-63.

22. L.J. Guibas, J. ttershberger, D. Leven, M. Sharir, and R.E. Tarjan, "Linear time
algorithms for visibility and shortest paths problems inside triangulated simple
polygons," Algorithmica, 2 (1987), pp. 209-233.

23. P. Klein, S. Rao, M. Rauch and S. Subramanian, "Faster shortest-path algorithms
for planar graphs", Proc. 26th ACM Syrup. on Theory of Comp., 1994, pp.27-37.

24. R. Lipton and R. Tarjan, "A separator theorem for planar graphs", SIAM
J. Applied Mathematics, 36 (1979), pp.177-189.

25. B. Schieber and U. Vishkin, "On finding lowest common ancestors: Simplification
and parallelization", SIAM J. Computing, 17:6 (1988), pp.1253-1262.

