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A b s t r a c t .  We consider the problem of finding an obstacle-avoiding path 
between two points s and t in the plane, amidst a set of disjoint polyg- 
onal obstacles with a total of n vertices. The length of this path should 
be within a small constant factor c of the length of the shortest possible 
obstacle-avoiding s-t path measured in the Lv-metric. Such an approxi- 
mate shortest path is called a c-short path, or a short path with stretch 
]actor c. The goal is to preprocess the obstacle-scattered plane by creat- 
ing an efficient data structure that enables fast reporting of a c-short path 
(or its length). In this paper, we give a family of algorithms for the above 
problem that achieve an interesting trade-off between the stretch factor, 
the query time and the preprocessing bounds. Our main results are al- 
gorithms that achieve logarithmic length query time, after subquadratic 
time and space preprocessing. 

1 Introduct ion  

Given a set of disjoint polygonal obstacles with a total of n vertices in the plane, 
the (geometric) shortest paths problem is that  of finding a path between two 
points s and t (henceforth shortest s-t path) in the plane that  does not intersect 
the interior of any obstacle, and that  has the minimum length measured in the 
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Lp-metric for some integer p, 1 < p < or To be more precise, such a shortest 
path consists of straight-line segments, called edges, and the length of each edge 
is equal to the Lp-distance between its end points. The length of the entire path 
is defined as the sum of the lengths of its edges. Computing shortest paths is a 
fundamental  topic in computat ional  geometry because shortest paths problems 
appear in many application areas, such as robotics and VLSI design, and play 
vital roles in solving various geometric problems. 

In this paper, we consider shortest paths problems in the plane, for a general 
Lp-metric. Natural  special cases are the L1 and L2 (Euclidean) metrics. Both 
these metrics have been extensively studied, since they are important  in practice 
and have a lot of applications. Note that  when we refer to a path in the L1- 
metric, we do not mean that  this path uses only line segments that  are parallel 
to a coordinate axis, but that  the lengths of the segments of the paths are 
measured in the L1 metric. There are several different versions of the shortest 
paths problem, depending on whether we ask for a shortest path between any 
two obstacle vertices s and t, or whether s and t can be arbitrary points in 
the obstacle-free space. In addition, we are often satisfied in many applications 
with an obstacle-avoiding path that  is not necessarily shortest, but whose length 
is within a small constant factor c of the length of a shortest path. Such an 
approximate shortest path is called a c-short path, and the constant c is called 
the stretch factor of the path. 

The first problem considered in this paper is that  of answering short path 
queries in the Lp metric: Given a set of disjoint polygonal obstacles in the plane, 
construct an efficient da ta  structure that  enables a fast report of an s-t c-short 
path (or its length) between any pair of query points s and t (regardless whether 
they are arbi trary points or obstacle vertices). 

Previous results for this problem are as follows. Clarkson [13] gave an al- 
gorithm for L~ (1 + e)-short path queries among polygonal obstacles, for any 
positive r His algorithm uses O(n) space, and answers a short path query in 
O(n log n) time. As was indicated in [13] and shown in [5], it is possible to extend 
Clarkson's result as follows. In O(n 2 log n) time, an O(n 2) space data  structure 
can be constructed such that  a length query can be answered in O(log n) time. 
Reporting an actual (1 + r path takes O(logn + L) time, where L is the 
number of edges of the path. Chen [5] presented an efficient da ta  structure for 
L2 (6 -J- r path queries among polygonal obstacles. His data  structure re- 
quires O(n log n) space and O(n3/2/Vq--d- ~ t ime to construct, and supports a 
time of O(log n) for a length query and an additional O(L) t ime for reporting an 
actual path. Results on some special cases of short path queries can be found in 
[6]. In contrast, the (exact) shortest path queries problem typically takes more 
time and space to solve. There are several results on /)2 shortest path queries 
in a simple polygon [12, 20, 21, 22] and L1 shortest path queries among various 
types of obstacles [3, 4, 7, 16]. Note that for even the seemingly simpler case of 
L1 shortest path queries among multiple obstacles in the plane, all known data  
structures supporting a polylogarithmic length query time require ~ ( n  2) space 
and time to construct. 
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In this paper,  we improve all of the above results for the short pa th  queries 
problem. We give a family of algori thms whose bounds are summarized in Ta- 
ble 1. 

Short paths are closely related to the notion of a spanner, see e.g. [13, 5]. 
Given a set S of n points, a v-spanner is a graph having the points of S as its 
vertices, such that  for any two points s and t of S, there is an s-t pa th  in the 
graph of length at most  r t imes the Lp-distance between s and t. The problem of 
constructing spanners has a t t racted a considerable amount  of at tention recently 
(see e.g. [1] and the references given there). In particular,  the main goal is to 
construct spanners that  contain a linear number  of edges (and that  possibly 
satisfy some other constraints [1]). 

Stretch factor Preprocessing Time Space Query Time 
c + ~ O(n~/~)  0(n~/47) O(log n + 47) 
r + ~ o ( n  log n) o ( n )  o ( n )  
2c + ~ O(n3/2) O(n 3/2) O(log n) 

3c+e O(n3/2/v/logn ) O(nlogn) O(logn)  

TABLE 1: Our results for the short path query problems. For the Ll-metric c = 1, 
for the Euclidean metric c = x/~, and in general for the Lp-metric c = 2 (p-1)/p. The 
parameter e is an arbitrarily small positive constant, whereas r is an arbitrary integer, 
such that 1 < r < n. The actual short path can be output in an additional O(L) time, 
where L is the number of edges of the reported path. 

The second problem considered in this paper  is the following planar spanner 
problem. Given a set of disjoint polygonal obstacles in the plane, construct a 
graph G = (V, E) such that:  (i) the set of obstacle vertices S is a subset of V; 
(ii) the edges of G are straight-line segments that  do not intersect the interior 
of any obstacle; (iii) for any two obstacle vertices s, t E S, there is an s-t path  
in G which is a r -short  path; and (iv) G is planar. If  V = S, then we call G a 
planar Lp v-spanner. Otherwise, if G contains additional vertices (called Steiner 
vertices), we call G a planar Steiner Lp v-spanner. The real number  r >_ 1, 
representing the stretch factor of short paths, is called the stretch factor of the 
spanner. There are several algori thms that  construct planar L2 r-spanners  in 
O(n log n) t ime [9, 10, 15]. The best known stretch factor is r = 2 [9, 10]. We are 
not aware of any previous spanners specifically constructed for the L1 metric. 
Regarding the planar Steiner spanner problem, no previous results are known in 

any metric.  
We present the following new results  for the planar spanner problem. 

�9 We prove (Section 2) tha t  a planar L1 2-spanner among polygonal obstacles 
can be constructed in O(n log n) t ime without using Steiner vertices. This 
result is not only opt imal  w.r.t, time, but  also w.r.t, stretch factor: we show 
that  there are sets of polygonal obstacles in the plane such that  any planar 
L1 v-spanner which does not use Steiner vertices has a stretch factor r > 2. 

�9 In view of the above result, if we want a planar L1 spanner with a stretch 
factor less than  2, then we have to use Steiner vertices. In this case, we 
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prove (Section 3) that,  for any e > 0, a planar Steiner L1 (1 + e)-spanner 
with O(n) Steiner vertices can be constructed in O(nlogn) time. In fact, 

(p-1)/p e s the same construction produces a planar Steiner Lp (2 + )- panner 
with O(n) Steiner vertices. (The constants that  appear in the Big-O bounds 
depend on e.) 

The first result on constructing a planar L1 2-spanner is based on a con- 
strained Delaunay triangulation [8] that  uses a special convex distance function. 
This convex distance function is defined by a carefully chosen equilateral triangle 
in the L1 metric whose shape is somewhat different from the standard equilateral 
triangles. We also construct examples to show that  2 is the lower bound of the 
stretch factor achieved by any planar L1 spanner without using Steiner vertices. 

The approach used for the second result is based on an algorithm of Arya 
et al. [2], that,  given a set of points, constructs a subdivision of the plane into 
boxes. We first build this subdivision on the set of obstacle vertices. Then, each 
of the resulting O(n) boxes is "gridded" in an appropriate way. Each box gives 
a constant number of Steiner vertices. Superimposing the obstacles onto this 
subdivision gives a planar Steiner L1 (1 + e)-spanner, which may have Y?(n 2) 
Steiner vertices. We show, however, that by carefully merging regions of the 
superimposed subdivision, we get a planar (1 + c)-spanner with only a linear 
number of Steiner vertices. But constructing the spanner in this way would still 
take f2(n 2) time. Fortunately, our algorithm avoids the costly merging procedure 
and manages to construct the spanner in only O(n log n) time. 

Our results for short path queries given in Table 1 are based on the above 
results on planar spanners, and on the following two graph-theoretic results 
(Section 4) which are of independent interest: 

I. Given an n-vertex (directed or undirected) planar graph G with nonnegative 
real edge weights, we can perform, for any 1 <<_ r <_ n, an O(n2 /v~)  time 
and space preprocessing of G such that  the length of a shortest path in G 
between any two vertices can be found in O(v/~) time. 

II. Given an n-vertex undirected planar graph G with nonnegative real edge 
weights, we can perform an O(n3/2) time and space preprocessing of G such 
that  the length of a 2-short path in G between any two vertices can be found 
in O(log n) time. 

We can also output the actual shortest (or 2-short) path between the query 
vertices in an additional O(L) time, where L is the number of edges of the 
reported path. Our algorithms for planar graphs improve (in one or another 
way) upon known previous results (see e.g. [5, 14, 18]). 

2 P l a n a r  L1  s p a n n e r s  w i t h o u t  u s i n g  S t e i n e r  v e r t i c e s  

We first prove that  planar spanners (without Steiner vertices) for L1 shortest 
paths can achieve a stretch factor no better than 2. Note that it is sufficient to 
show this fact on the simpler case with just point-obstacles in the plane. 
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L e m m a  1. There exist point sets in the plane such that any planar L1 spanner 
that is a subgraph of the complete graph has a stretch factor > 2. 

Proof. We first consider a simple case: A unit diamond in the plane with points 
a, b, c, and d as its vertices (i.e., the L1 distance from each vertex to any of the 
other vertices of the unit diamond is 1). Let K4 be a complete undirected graph 
for vertices a, b, c, and d (see Figure la).  It is clear that  K4, in which we let each 
edge have a unit weight, is the complete graph modeling the exact L1 shortest 
paths among the four vertices. Suppose we obtain a spanner of K4 by removing 
an arbitrary edge (say, the edge (a, b)). Then the shortest path from a to b in 
this spanner becomes 2. Therefore, no proper subgraph of K4 can approximate 
the shortest paths with a stretch factor better  than 2. Consequently, the only 
spanner of K4 with a stretch factor less than 2 is K4 itself. 

O~ 
/ s  q [ I t b  �9 �9 �9 �9 

! 
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Fig. 1. (a) A t(4 on a unit diamond; (b) a diamond grid with n points. 

Although the K4 is a planar graph (Figure la),  it plays a critical role in our 
following argument. Consider a set of n points forming a ~ • v/-ff "diamond 
grid" in the plane (see Figure lb).  A planar graph on these vertices has at most 
3n - 6 edges, while one can show that  a larger number of edges (4n - 6v/-n + 2) 
are required to make each unit diamond have stretch factor less than 2. [] 

The idea to efficiently construct a spanner with stretch factor exactly 2 is to 
use a type of the Constrained Delaunay Triangulation (CDT) using a distance 
based on a triangle [11, 8, 9]. The trick here is to find the right triangle-shape 
and the right triangle-orientation. Standard equilateral triangles that  worked for 
the L2 case, as described in [9, 10], fail to yield the desired planar L1 2-spanner, 
so we turn to the following triangle shape: An isosceles triangle as depicted 
in Figure 2. Note that  this triangle fits nicely within an L1 circle (i.e., a unit 
diamond). In a sense, this is still an equilateral triangle: The L1 length of the 
base is equal to 1 and each of the other two sides of the triangle also has its L1 
length equal to 1. We can prove the following. 

T h e o r e m  2. Let S be the set of obstacle vertices for any set of disjoint, polygonal 
obstacles in the plane with ISI = n. There is a planar subgraph of the visibility 
graph, modeling the L1 distances among the points in S, whose stretch factor is 
exactly 2 (i.e., an L1 2-spanner). Furthermore, such a planar L1 2-spanner can 

be constructed optimally in O(n log n) time. 
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L 1 length length 1 

Fig. 2. Our distance-defining isosceles triangle and a CDT based on it. The dotted 
triangle represents an "empty circle." 

3 P l a n a r  L 1  s p a n n e r s  w i t h  S t e i n e r  v e r t i c e s  

In this section we prove the following theorem. 

T h e o r e m  3. Given a collection of disjoint polygonal obstacles on the plane with 
n vertices and any e > O, a planar i l  (1 + e)-spanner with O(n/e  ~) Steiner 
vertices can be constructed in O(n logn + n/e  2) time. 

3.1 A Ste lner  spanner  w i t h o u t  obstac les  

Let us start  with the simpler problem of constructing a Steiner spanner for a 
set S of n points without any obstacles. (Note: in the rest of the section, the 
default metric is L1). We frequently make use of a procedure called interval. 
Given a line segment xy and r > 0, interval(xy,  r) starts  from x and introduces 
Steiner vertices along xy  such tha t  the segment is broken into intervals of length 
r, except possibly for the last interval. 

Arya et al. [2] describe a certain planar subdivision for solving nearest neigh- 
bor search problems, and we find it useful in constructing our Steiner spanner. 
This subdivision is a planar graph where each face is a connected region called 
a cell. The shapes of the cells have special significance, and are best described 
through the concept of boxes. A box is an axis-parallel rectangle such tha t  the 
ratio of its longest side to its shortest side is at  most  2. A cell is either a box 
(called a box cell), or the set-theoretic difference of two boxes, one contained 
within the other (called a doughnut cell). Furthermore,  each doughnut cell is 
restricted as follows. For each side e ~ of the inner box, the orthogonal distance 
between e ~ and the corresponding side of the outer box is either zero, or greater 
than or equal to the length of e'. Finally, a box cell contains at most  one point 
of S, whereas a doughnut cell contains no points of S. The following l emma  can 
be derived from the results in [2]. 

L e m m a  4. Given a set S of n points, let B be any box containing them. Then, 
in O(n log n) time a subdivision D of B can be constructed such that, each cell 
of D is either a box cell or a doughnut cell, and the number of cells is O(n).  

In constructing our spanner, we first construct a planar subdivision of any 
box B containing S, as in the above lemma.  We then augment  the graph of the 
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subdivision by adding new Steiner vertices and edges within each cell as follows. 
Consider any box/doughnut  cell. For every boundary edge xy, first perform 
interval(xy, el), where l is the length of shortest side of the box to which xy 
belongs. Then, from z, y and each of the Steiner vertices generated, shoot rays 
orthogonal to xy and directed into the interior of the cell, until they hit the cell's 
boundary, possibly creating new Steiner vertices. This process introduces O(1/~) 
vertical and horizontal rays. If we further break the rays up by computing their 
intersections, we get a "grid" with O(1/e 2) Steiner vertices and edges per cell. 
Note that  the grid inside a doughnut cell is somewhat more complex than the 
one inside a box cell. 

The resulting graph G is clearly planar and has O(n/c 2) Steiner vertices. 
We now show that  its stretch factor is (1 + e). Consider any path on the plane 
between points u and v of S, say P(u, v). Let P(u, v) be divided into the pieces 
P1, P2, . . . ,  Pk, where each Pi is a maximal portion confined within a cell. Con- 
sider a particular Pi and let its end points be a and b. Note that  a and b need 
not necessarily be vertices of G, although they lie on edges of G. We show that  
there is a path P/~ from a to b that  "stays on" G, such that  P[ is at most (1 + ~) 
times longer that  Pi. 

Consider one possible case. Suppose 2 < i < k -  1 and P~ is within a doughnut 
cell (with outer corners x, y, z and w as seen clockwise from top-left, correspond- 
ing inner corners z ~, y~, z ~ and w ~, length of shortest side of outer box l, and length 
of shortest side of inner box l/). Suppose a is on xy and b is on x~y ~. To construct 
P[ we go from a along xy until we reach a Steiner vertex whose horizontal sep- 
aration from b is within ~l~/2 (such a Steiner vertex has to exist because of the 
upward ray shots from x~y~), then go down vertically until we reach x~y ~, and 
finally go horizontally until we reach b. It is easily seen that  the length of P/~ is 
at most (1 + e) times the L1 distance between a and b. 

A full case analysis (which we omit) proves the same for all possible types 
of Pi. If we merge the P/s and eliminate any overlaps, we get a path P'(u, v) 
composed of whole edges of G, which is at most (1 +e)  times longer than P(u, v). 

The time taken to construct G is O(nlogn + n/c2), i.e. the t ime taken for 
the planar subdivision as well as the time taken to grid each cell. 

3.2 A S t e i n e r  s p a n n e r  a m i d s t  o b s t a c l e s  

Our solution for obstacles is similar, except that  we use a more complicated 
subdivision. Let us treat each polygonal obstacle as a collection of edge obstacles 
(i.e. the boundary edges). Once the spanner has been computed, we can easily 
recognize and discard the portions that  lie within the interiors of the original 

obstacles. 
Let E be the given edge obstacles and let S be the set of their end points. 

Let B be a box containing them. The obstacles induce a natural  subdivision 
of B into a single connected region where each obstacle edge is a "hole". Let 
this subdivision be D. We also compute another subdivision D ~ of B for the 
points of S as in Lemma 4. Let S' (E')  be the vertices (edges) of D'. Define the 
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subdivision D1 as the superimposition of D on D ~. The vertices of D1 will be 
S U S t, and additional vertices created by intersecting edges of D and D I. 

(b) (a) 

Fig. 3. (a) Red regions in D1 (b) Blue regions in D1 

d/ 
Fig. 4. A ladder in D1 

The regions of D1 can be classified into two types. A red region is a quadri- 
lateral such that none of the four vertices belong to S U S' (see Figure 3(a)). 
Note that the number of red regions may be ~(n2). The rest of the regions are 
blue regions. Note that blue regions may or may not have boundary vertices 
from S U S/. As Figure 3(b) shows, the maximum number of boundary edges of 
a blue region can be 16. Define the red graph of D~, as follows: Create a vertex 
for each red region; there is an edge between two vertices if the corresponding 
red regions share a boundary edge that is part of a box/doughnut cell. Each 
connected component of this graph is a simple chain, and all the red regions of 
the chain lie between the same two obstacle edges (Figure 4). The configuration 
resembles a ladder, with the obstacle edges forming the two sides, and parts 
of box/doughnut cell edges forming the rungs. Of course, some rungs may be 
horizontal while others may be vertical. Now collapse every ladder in D1 (i.e., 
eliminate the intermediate rungs), yielding a single quadrilateral red region per 
ladder. Call the resulting subdivision D2. (D 2 has the same blue regions as D1.) 

L e m m a  5. The subdivision D2 has O(n) vertices, edges and regions. 
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Proof. We omit the details in this version. The idea is to show that  there are 
O(n) extremal rungs of ladders remaining in D2. This is done by a charging 
technique, where each rung is charged to a vertex in S U S' "just outside" its 
ladder. We can show that  in this way, each vertex in S U S' is charged at most 
a constant number of times. [] 

A crucial result of our paper (to be presented later) is an efficient and non- 
trivial algorithm for constructing D2. For the moment,  assume we have con- 
structed D2. We discard the red/blue regions that  lie within obstacles, then grid 
the remaining regions as follows. For every blue/red region, for every boundary 
edge xy that  is part  of a box/doughnut  cell, first perform interval(xy, fl), where 
l is the length of the shortest side of the box to which xy belongs. Then, from 
x, y and each of the Steiner vertices generated, shoot rays orthogonal to xy 
and directed into the interior of the region, until they hit the region's boundary, 
possibly creating more Steiner vertices. Finally, compute the intersections of the 
horizontal and vertical rays, thus constructing a O(1/c 2) grid for the region. 

Clearly the eventual graph G is planar, and has O(n/c 2) Steiner vertices. 
Although some edges may not be axis-parallel, the length of each is defined in 
the L1 metric. The proof that  its stretch factor is ( l + e )  is structurally similar to 
the earlier proof without obstacles; essentially we show that  in a red/blue region, 
between every a and b on boundary edges that  are parts of box/doughnut  cells, 
there is an (1 + c)-short path that  "stays on" G. The details are omitted. 

Finally, we outline the efficient algorithm for constructing D2. Clearly a naive 
algorithm which first constructs D1 and then collapses ladders will take t2(n ~) 
time. Our algorithm avoids constructing D1. Let E~ and E~ be the set of hor- 
izontal and vertical edges of D ~. Define Dlh (DI,) as the superimposition of 
D with only E~ (E~). As was done for D1, define ladders for Dlh (DI~) (note 
that  in Dlh (Dlv) the rungs are horizontal (vertical)). Define D2h (D2v) as Dlh 
(Dlv), but  with all ladders collapsed. Define D3 as the superimposition of D2h 
on D2v. Define ladders for D3. It can be shown that  each ladder in D3 has at 
most four rungs, and that  D2 is D3 with all ladders collapsed. 

The algorithm consists of four stages. In the first and second stages, we 
construct D2h and D2" respectively. In the third stage we construct D3 (easy to 
do since the horizontal edges of D2h do not intersect the vertical edges of D2v). 
In the last stage we construct D2 (easy to do by collapsing the ladders of D3). 

We give details of the first stage (the second stage is similar). It is imple- 
mented by an upward plane sweep which discovers the top rungs of all ladders in 
D2h, followed by an identical downward sweep that  discovers the bot tom rungs. 

Consider the upward sweep. At any instant, the sweep line intersects a subset 
of the obstacle edges, where a pair of adjacent edges in the left-to-right order 
define an interval on the sweep line. Consider any interval I = (l, r) where l and 
r are two obstacle edges. Let h be the highest horizontal edge of E~ (but no 
higher than the sweep line) which intersects both l and r. If no such edge exists, 
or if the region between h, l, r and the sweep line contains a point of SU S', then 
I is a non-ladder interval. Otherwise I is a ladder interval, and its current top 
rung (denoted as top(I)) is defined to be h. It can be shown that  if two ladder 
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intervals are adjacent, then their current top rungs are the same. 
We maintain the obstacle edges intersected by the sweep line as a balanced 

binary search tree T. The innovative idea used in our algorithm is that  the 
additional properties of the intervals such as ladder/non-ladder classification 
and current top rung information, ave not maintained in T. Instead, consider 
another tree T '  which contains a subset of the obstacle edges intersected by the 
sweep line. Each interval M defined by these edges on the sweep line is either an 
original non-ladder interval, or is the union of a maximal contiguous sequence 
of original ladder intervals, called a merged-ladder interval. Each merged-ladder 
interval is associated with a horizontal edge of E~ called top(M). The above 
information is maintained with each interval of T ~. 

We update T and T'  as follows. Consider the event where the sweep line 
encounters an edge of E~, say h = uv. We search for u and v in T and find the 
intervals Iy = (4 ,  r~,) and Iv = (4,  rv). We search for u and v in T '  and find 
the intervals My = (L~, Ry) and My = (Lv, Rv). If M~ is a merged-ladder, we 
classify Iy as ladder, otherwise as non-ladder. We similarly classify Iv. If Iy is 
ladder, we output  the part of top(My) between the obstacle edges ly and ry. 
Similarly if Iv is ladder, we output  the part  of top(My) between the obstacle 
edges 4 and rv. Let the sequence of edges in T '  be aLyRyflLvRv7 where ~,/~ 
and 7 represent subsequences of edges. Using a constant number of balanced 
binary search tree operations (search/insert /delete/spli t /merge),  we can achieve 
a new tree T '  which has the sequence aL~l~ryl, r~RvT. In this tree, the intervals 
( L ~ , 4 )  and (r~, Rv), if non-zero, are classified as merged-ladder with current 
top rungs the same as top(M~) and top(My) respectively. The intervals (4 ,  ry) 
and (lv, r , )  are classified as non-ladder. Finally, the interval (v~, 4 ) ,  if non-zero, 
is classified as merge-ladder with current top rung h. 

In this version we omit discussing how other events are handled (e.g. encoun- 
tering t op /bo t t om end points of obstacle edges), but claim that each requires at 
most a constant number of balanced binary search tree operations. Since each 
tree operation takes O(logn) time, the sweep takes O(nlogn) time. Thus, the 
overall algorithm for constructing the Steiner spanner takes O(n log n + n/e 2) 
time. 

4 A l l - p a i r s  s h o r t  a n d  s h o r t e s t  p a t h s  i n  p l a n a r  g r a p h s  

Let G = (V(G), E(G)) be a graph with nonnegative real edge-weights. The all- 
pairs shortest paths (APSP) problem asks for finding shortest paths between every 
pair of vertices in G, while the single-source shortest paths (sssP) (or shortest 
path tree) problem asks for shortest paths between a specific vertex and all other 
vertices in G. For s,t C V(G), we will call the length of a shortest s-t path in 
G the distance between them, and the length of a c-short s-t path in G their 
c-approximate distance. For a subgraph H of G and vertices s, t E V(H), we will 
denote the distance from s to t in H by 5H(S, t). For s, t E V(G), we will denote 
their distance in G simply by 5(s, t). A separator Sa of an n-vertex planar graph 
G is a set of vertices whose removal divides G into two subgraphs G1 and G2 
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such that  IV(G~)I <_ 2n/3, for i = 1, 2, no vertex of G1 is adjacent to any vertex 
in G2, and ISal = O(vf~). Such a separator can be found in O(n) time [24]. 

In this section we shall give a family of algorithms for solving the APSP and the 
all-pairs 2-short paths problems on an n-vertex undirected planar graph Gp with 
nonnegative real edge-weights. (Remark: All of our results for the APSP problem 
hold also for directed planar graphs with nonnegative real edge-weights.) Our 
algorithms first preprocess Gp (by creating a data  structure) and then query 
this da ta  structure to find a shortest or 2-short path between a query pair of 
vertices. Due to space limitations, we will only describe how distance queries are 
answered. The corresponding shortest (or short) path queries can be answered 
in an additional time proportional to the number of edges of the reported path. 

We start with the APSP problem. We first sketch a simple algorithm, called 
BASIC-APSP, which provides the basis for the other algorithms in this section. 
This algorithm is a straightforward application of the divide-and-conquer tech- 
nique using separators. (Although we have not found this algorithm in the liter- 
ature, we suspect that  it was known as a folklore.) Its preprocessing procedure 
consists of the following steps: (1) Perform a reeursive separator decomposition 
of Gp and associate with it a binary tree called the separator decomposition tree 
T(Gp). Moreover, associate with every node x of T(Gp) a certain subgraph G of 
Gp, denoted by x(G), and the separator Sa of this subgraph, denoted by x(Sa). 
(The root is associated with the input graph Gp and its separator Sap-) If x is 
a leaf of T(Gp), then consider all vertices of x(G) as separator vertices. (2) For 
each node x of T(Gp) and for every vertex v C x(Sa),  compute a shortest path 
tree in x(G) rooted at v, by running the O(n)-time sssp algorithm of [23]. (3) 
Preprocess T(Gp) in linear time (using the algorithm of [25]) such that  lowest 
common ancestor (LCA) queries are answered in O(1) time. 

It is not hard to see that  the running time is dominated by the running time, 
say P(n),  of Step (2) which satisfies the recurrence P(n) < m a x { P ( n l ) +  P(n2) : 
nl+n2 = n and nl ,  n2 ~ 2n/U}+O(n3/2), and whose solution is P(n) = 0(n3/2). 
Let x be a node of T(Gp). For an ancestor (resp. descendant) node y of x in 
T(Gp), we will call the subgraph y(G) the ancestor (resp. descendant) subgraph 

of x(G). 
The main idea behind the query procedure is the following. Let s, t E V(Gp) 

be any two vertices and let x be the node of T(Gp) for which the separa- 
tor x(Sa) separates s from t in the descendant subgraph x(G) of Gp. Then 
clearly, 8x(c)(s, t) = min,  e= (st){8=(a)(s, v) + 6~(G) (V, t)}. However, it is possible 
that  6=(a)(s,t) ~ 8(s,r since a shortest s-t path in Gp need not necessarily 
stay inside x(G). For this reason we look for shortest s-t paths in the ancestor 
subgraphs of x(G). The crucial observation is that  in such a case the short- 
est path has to pass through some separation vertex of these subgraphs. Let 
A(z) = {y : y is an ancestor of x in T (G , )} .  Then, it is not hard to verify that  

The query procedure of algorithm BASIC-APSP consists of the following steps. 
(1) Let y and z be the lowest-level nodes (i.e. closest to the root) of T(Ge) 
such that  s G y(G), t G z(G) and y r z. Find the LCA x of y and z in 
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T(Gp). (2) Compute 5=(c)(s,t) (as shown above). Set 5(s,t) = 5x(G)(s,t). If x 
is the root of TG, then stop. (3) Let u be the parent of x. Compute 5(s,t) = 
min{ (s, t), v ) +  t)}}.  (4) u is the root of 
then stop. Otherwise, set x = u and repeat Steps (3) and (4). 

Clearly, Step (1) takes O(1) time and Step (2) takes time O([x(Sa)[) = 
O(v/]V(x(G))]) = O(v~) .  Let Q(i) be the maximum time required by Steps 
(3) and (4), where 0 < i < d is the level number of node x in T(Gp) and 
d = O(log n) is the depth of T(Ge). One iteration of Step (3) takes O(((~)in)U ~) 
time, since [Y(x(G)) I 2 i  = 0 ( (5 )  n). Hence, Q(i) satisfies the recurrence Q(i) < 
Q(i - 1) + O(((~)in)l/2), whose solution is O(v~) .  

The above discussion implies that  algorithm BASIC-APSe can answer a dis- 
tance query between any two vertices in O(v/~) time, after an O(n 3/2) time 
and space preprocessing of Gp. We now show how we can improve more on the 
query time. Frederickson [17] showed how to divide an n-vertex planar graph 
into O(n/r) edge-disjoint subgraphs, called regions, such that each region has 
O(r) vertices, 1 < r < n, and O ( v ~  ) boundary vertices (i.e. vertices shared with 
other regions). Such a division is called an r-division and can be computed in 
O(nlogn) time [17], or even in O(n) time using the results of Goodrich [19]. 

We call our new algorithm IMPROVED-APSe. Preprocessing procedure of algo- 
ri thm IMPROVED-APSe: (e l )  Find an r-division D of Gp. (P2) Run the prepro- 
eessing procedure of algorithm BASIC-APSe inside every region. (P3) For every 
boundary vertex b of D, compute a shortest path tree in Gp rooted at b using 
the algorithm of [23]. 

Query procedure of algorithm IMPaOVED-APSP: Let s,t E V(Gp). (Q1) 
If s and t belong to the same region R, then find their distance 5R(s,t) in- 
side R (using the query procedure of algorithm BASIC-APSe), find 5~(s,t) = 
minveB(R){~(s, v) + (~(v,t)}, (where B(R) is the set of boundary vertices of R), 
and output  as 5(s, t) the minimum of 5R(s, t) and 5~(s, t). (Q2) I fs  and t belong to 
different regions R and R' respectively, then 5(s, t) = min~eB(R){5(s, v)+5(v, t)}. 

It can be easily verified that the preprocessing procedure of algorithm IMPROVED- 
APSe needs O(n2/v/~) time and space, while the query procedure of the same 
algorithm takes O(v/7) time. This yields the first graph-theoretic result (I) men- 
tioned in the introduction. 

Both previous algorithms compute (exact) APSe information in planar graphs. 
We will now see how 2-short paths can be efficiently computed. Let s be a vertex 
of a planar graph G, and let b~ E S, where S is a separator of G. The vertex bs, 
satisfying that 5(s, b~) ~ 5(s, u), k/u E S, is called the closest separator vertex of 
s on the separator S. Our algorithm is based on the following lemma. 

L e m m a 6 .  Let s and t be two vertices of a planar graph G and let S be a 
separator of G. Ira shortest s-t path contains a vertex from S, then min{5(s, bs)+ 
5(b~, t), 5(t, bt) + 5(b~, s)} __< 2~(s, t). 

Proof. Consider a shortest s-t path P in G. Let u be the first vertex of S in P.  
Then, the length of P is given by 5(s, t) = 5(s, u) + 5(u, t). Consider first the 
case that d(s, u) < 5(u, t). Since 5(s, b~) <_ g(s, u) by the definition of b~, we have 
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5(b,, t) < 5(b,, u) + 5(u, t) < 5(b,, s) + 5(s, u) + 5(u, t) < 25(s, u) + 5(u, t). Thus, 
~(~, b,) + ~(bs, t) _< ~(~, ~) + 25(~, ~) + ~(~, t) < 2~(~, ~) + 2~(~, t) = 2(~(~, ~) + 
5(u, t)) = 25(s, t), where the second inequality follows from our assumption that 
5(s, u) <_ 5(u, t). In the other case, namely when 5(u, t) <_ 5(s, u), we can show 
in a similar way that 5(t, bt) + 5(bt, s) <_ 25(s, t). [] 

We now present algorithm 2-APPROX-APSP that  computes all-pairs 2-short 
paths in Gp. The preprocessing procedure is the same as that  of algorithm 
BASIC-APSP, except for the computation of the closest separator vertices. How- 
ever, observe that the required closest separator vertices, for every u 6 x(G), can 
be easily found in Step (2) (within the same resource bounds) from the shortest 
path trees rooted at every vertex v 6 x(SG). 

The query procedure of algorithm 2-APPROX-APSP is based on Lemma 6, 
and its structure is similar to that of algorithm BASIC-APSP. Let s,t 6 V(Vrp) 
be the query vertices. The query procedure is as follows: (Q1) Let y and z be the 
lowest-level nodes (i.e. closest to the root) of T(Gp) such that s 6 y(G), t 6 z(G) 
and y # z. Find the LCA z of y and z in T(Gp). (Q2) Compute 5"(G)(s,t ) = 
min{5=(a) (s, b,) + 5x(a)(b,, t), 5~(a)(t, bt) + 5~:(a)(bt, s)}, where b, (resp. bt) de- 
notes the closest separator vertex of s (resp. of t) on the separator x(Sa). Set 
52(s,t) = 5' ~(G)(s,t)" If x is the root of T(Gp), then stop. (Q3) Let u be the 
parent of x. Compute 5~(G)(s, t) = min{hu(a)(S, bs) + 5u(v)(bs, t), 5~(v)(t, bt) + 
5~(e)(bt, s)}, where now bs (resp. bt) denotes the closest separator vertex of s 
(resp. of t) on the separator u(Sa). Set 52(s, t) = min{52(s, t), 6~(v)(S, t)}. (Q4) 
If u is the root of T(Gp), then stop. Otherwise, set x = u and repeat Steps (3) 
and (4). 

The correctness of the query procedure is established by the following lemma. 

' (s , t )  be as L e m m a T .  Let s,t be two vertices in Gp, and let y , z ,x  and 5=(a) 
defined above. Then, min{g~(a)(s, t), min{Jw(6)(s, bs)+5~(G)(bs, t), 5~o(G)(t, bt)+ 
5~(6) (btl s)}} < 2hap (s, t) for some ancestor w of x in T(Gp), where b~ (resp. bt) 
is the cZosest separator vertex of ~ (resp. t) on the ~eparator w(SG) in the ~b-  
graph w(G). 

Proof. Omitted due to space limitations. [] 

Concerning the resource bounds of the query procedure, note that Steps (Q1) 
and (Q2) take O(1) time. As before, let Q(i) be the maximum time required by 
Steps (Q3) and (Q4), where 0 < i < d is the level number of node x in T(Gp) 
and d = O(log n) is the depth of T(Gp). One iteration of Step (Q3) clearly takes 
O(1) time, since the required distances are available from the preprocessing of 
the graph. Hence, Q(i) satisfies the recurrence Q(i) <__ Q ( i -  1) + O(1), whose so- 
lution is O(log n). Therefore, algorithm 2-APPrtox-APSP answers a length query 
between any two vertices of Gp in O(logn) time, after an O(n 3/2) time and 
space preprocessing, yielding the second graph-theoretic result (II) mentioned in 

the introduction. 
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5 Short path queries among obstacles in the plane 

Following Chen's approach for processing L2 short path queries [5], our Lp short 
path da ta  structures consist of two major  components: 
P a r t  A. A data  structure for answering queries on all-pairs short(est) paths in a 
graph Gp which is the planar Steiner Lp r-spanner constructed by our algorithm 
in Section 3. 
P a r t  B.  A data  structure that,  given any two query points s and t in the plane, 
quickly reduces the computat ion of a short s-t path to computing the short(est) 
paths between a constant number of vertices of Gp. 

Given the results in Sections 3 and 4, the data  structure of Part  A can be 
easily constructed as follows. Let Q > 0 be a value depending on the required 
stretch factor. We first obtain a planar Steiner Lp (2(p-1)/p + el)-spanner with 
O(n) Steiner vertices, denoted by Gp, and then build a data  structure for an- 
swering Ml-pairs short(est) path queries in the planar graph Gp. It is clear from 
Section 4 that,  for the results of the first and third row of Table 1, an all-pairs 
short(est) path query data  structure on Gp can be built in the claimed time and 
space bounds. It should be also clear that  the result of the second row can be 
achieved by applying to Gp the linear time sssP algorithm of [23]. The result 
of the fourth row follows by applying to Gp Chen's all-pairs short path query 
algorithm on planar graphs [5]. 

The data  structure of Part  B is the same for all results of Table 1, and is a 
generalization of Chen's approach [5] for processing L2 short path queries. (We 
omit the details due to space limitations.) The data  structure of Part  B can be 
set up in O((nlogn)/e2) t ime and O(n/e2) space, for some c2 > 0 depending 
on the required stretch factor. Given two query points s and t in the plane, the 
data  structures of Parts A and B together enable us to compute the length of 
a geometric short s-t path in O((logn)/e2) t ime from the "graphic" short(est) 
paths between O((]/e2) 2) pairs of vertices in Gp. 

6 F i n a l  R e m a r k s  

We have recently improved the planar spanner results presented in this paper 
using new ideas. More precisely, we can achieve a planar (1 + e)-spanner with a 
linear number of Steiner vertices for all metrics (i.e., the constant c, in Table 1, 
is equal to 1 for any Lp-metric). The details will be given in the full paper. 
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