Time-Series Similarity Problems and Well-Separated
Geometric Sets

Béla Bollobds* Gautam Das! Dimitrios Gunopulos* Heikki Mannilal

Abstract

Given a pair of nonidentical complex objects, defining (and determining) how similar
they are to each other is a nontrivial problem. In data mining applications, one frequently
needs to determine the similarity between two time series. We analyze a model of time-
series similarity that allows outliers, different scaling functions, and variable sampling
rates. We present several deterministic and randomized algorithms for computing this
notion of similarity. The algorithms are based on nontrivial tools and methods from
computational geometry. In particular, we use properties of families of well-separated
geometric sets. The randomized algorithm has provably good performance and also
works extremely efficiently in practice.

1 Introduction

Being able to measure the similarity between objects is a crucial issue in many data retrieval
and data mining applications; see [10] for a general discussion on similarity queries. Typically,
the task is to define a function Sim(X,Y’), where X and Y are two objects of a certain class,
and the function value represents how “similar” they are to each other. For complex objects,
designing such functions, and algorithms to compute them, is by no means trivial.

Time series are an important class of complex data objects: they arise in many appli-
cations. Examples of time series databases are stock price indices, volume of product sales,
telecommunication data, one-dimensional medical signals, audio data, and environmental mea-
surement sequences.

In data mining applications, it is often necessary to search within a series database for
those series that are similar to a given query series. This primitive is needed, for example, for
prediction and clustering purposes. While the statistical literature on time-series is vast, it has
not studied similarity notions that would be appropriate for, e.g., data mining applications.

*Institute for Advanced Study, Princeton, N.J. 08540 AND University of Memphis, Department of Math-
ematical Sciences, Memphis, TN 38152, USA, bollobas@IAS.EDU.

tUniversity of Memphis, Department of Mathematical Sciences, Memphis, TN 38152, USA,
dasg@mathsci.msci.memphis.edu.

'YIBM Almaden RC K55/B1, 650 Harry Rd., San Jose CA 95120, USA, gunopulo@almaden.ibm.com.

$University of Helsinki, Department of Computer Science, P.O. Box 26, FIN-00014 Helsinki, Finland,
Heikki.Mannila@cs.helsinki.fi.

In this paper we present and analyze some similarity functions for time series. The main
contributions of our paper are, we present new deterministic and randomized algorithms that
are both practical and have provable performance bounds. Interestingly, these algorithms are
based on several subtle geometric properties of the problems. In particular, we investigate
properties of certain well-separated geometric sets, which are interesting in their own right. In
addition to our theoretical analysis, we present several implementation results.

Next we describe the similarity notion used here;! related work is considered at the end of
the introduction.

Suppose we are given two sequences X = z1,2s,...,Z, and Y = y1,Y2,...,Yn. A simple
starting point would be to measure the similarity of X and Y by using their L,-distance as
points of R™. For time series, this way of measuring similarity or distance is not appropriate,
since the sequences can have outliers, different scaling factors, baselines, and sampling factors.

Outliers are values that are measurement errors and should be omitted when comparing
the sequence against others. A grossly outlying value can cause two otherwise identical series
to have large distance. A more reasonably similarity notion is based on the longest common
subsequence concept, where intuitively X and Y are considered similar if they exhibit similar
behavior for a large part of their length. More formally, let X' = z;,...,z; and Y’ =
Yir,- -+, Yj be the longest subsequences in X and Y respectively, where (a) for 1 <k <[-1,
1 < k1 and Jg < Jr41, and (b) for 1 < k <[, z;,, = y;,. We define Stm(X,Y) to be I/n.
Note that it is not necessary for the two given sequences to have the same length, because the
shorter sequence can always be padded with dummy numbers.

There are still several shortcomings in the above model. The two sequences may have
different scaling factors and baselines. For example, two stock indices could be essentially
similar (i.e. they react similarly to changing market conditions) even though one fluctuates
near $30 while the other fluctuates near $100. Secondly, the two sequences could have variable
sampling rates, i.e. the rate of measurement of one sequence could (for some time) be different
from the other. Thirdly, in practice there should be some allowable tolerance when compar-
ing elements from both sequences (even after one sequence has been appropriately scaled or
otherwise transformed to resemble the other sequence).

The following similarity function overcomes these problems.

The similarity function Sim.s(X,Y):

Let 6 > 0 be an integer constant, 0 < € < 1 a real constant, and f a linear function (of
the form f :y = az + b) belonging to the (infinite) family of linear functions £. Given two
sequences X = z1,...,2, and Y = y1,...,Yn, let X' = (z;,...,2;) and Y' = (y;,,...,y;) be
the longest subsequences in X and Y respectively such that

1. for 1 <k <I-1, 1 <ty and 75 < Jra1,
2. for 1 <k<I, |t — gk| <4, and

3. for 1 <k<ly;,/(1+4+¢€ < flzi) <y, (l+e).

land in a preliminary form in [7]

Let S;es(X,Y) be defined as [/n. Then Sim,s(X,Y) is defined as maxses{Sfes(X,Y)}.

Thus, when Sim. s(X,Y) is close to 1, the two sequences are considered to be very similar.
The constant § ensures that the positions of each matched pair of elements are not too far
apart. In practice this is a reasonable assumption, and it also helps in designing very eflicient
algorithms.

The linear function (or transformation) f allows us to detect similarity between two se-
quences with different base values and scaling factors. Note than an algorithm trying to
compute the similarity will have to find out which linear function to use (i.e. the values of a
and b) that maximizes .

Depending on the application, we could also define similarity using other interesting func-
tion families such as, scaling functions (i.e. of the form y = az), quadratic functions, various
monotone functions, etc.

The tolerance € allows us to “approximately” match an element in X (after transformation)
with an element in Y. Depending on the application, other reasonable tolerance models worth
considering would be, absolute tolerance (i.e. y;, —e < f(z;,) < y;, +¢€), or even a combination
of absolute and relative tolerance (i.e., y;, /(1 + €1) — €2 < f(zs,) < y;.(1 + €1) + €2, for two
given constants €; and 62), etc.

We observe that our similarity function is not necessarily symmetric; in general Stm, s(X,Y")
may not be the same as Stm.s(Y, X). This is because, even though f(z;) may be within
¢ tolerance of y;,, f'(y;,) may not be within the same tolerance of z;,. A more symmetric
definition of similarity would be to use max{Sim.s(X,Y), Sim.s(Y, X)}.

Given two sequences of length n, the longest common subsequence can be found in O(n?)
time by a well known dynamic programming algorithm [3, 6]; This algorithm can easily be
modified to compute St s(X,Y) in O(nd) time where f is a given linear function. Note that
this is essentially linear time. We refer to this algorithm as the LCSS algorithm.

To design algorithms to compute Sim,. s5(X,Y), the main task is to locate a finite set of all
fundamentally different linear transformations and run LCSS on each one. In this paper we
concentrate primarily on this problem. Wherever appropriate, we mention the modifications
necessary to our algorithms to handle other variations such as different function families (e.g.
scaling functions), absolute tolerance, etc.

In the present paper we describe algorithms that are based on a thorough analysis of the
geometric properties of the problem. These algorithms have provable performance bounds,
and some of them are very eflicient in practice. The geometric properties that we discover are
of independent interest and represent a major contribution of the paper. We summarize our
results below.

1. Cubic-time exact algorithm: Sim.s(X,Y) can be computed in O(n383) time.

2. Quadratic-time approximation algorithm: Let 0 < 8 < 1 be any desired small
constant. A linear transformation f and the corresponding S¢.s(X,Y’) can be computed

in O(n%§? + nd®/B?) time such that Sim s(X,Y) — S;.5(X,Y) < B.

3. Linear-time randomized approximation algorithm: Let 0 < 8 < 1 be any desired
small constant. A linear transformation f and the corresponding Sf.s(X,Y) can be

computed in O(nd3/B?) expected-time such that Sim.s(X,Y) — S;s(X,Y) < 8.

3

4. Experimental results: The randomized approximation algorithm is easy to imple-
ment, is much faster than the exact algorithm, and finds very good approximations to
the similarity measure. The absolute difference in the length of the longest common
subsequence found is typically 1 or 2 for a very small number of random trials.

While developing these algorithms we discovered several geometric results which are of
independent interest. We describe these results below.

Let S;AS; represent the symmetric-difference between two sets. Let V' be a finite set and
2V be its power set. Let & > 0 be an integer. A family of finite sets S C 2V is k-separated
if for all S;,S5; € S, |S;AS;| > k. It is known that there exist a k-separated family & where
|S| = 2°" where o depends on k/n [4]. However, we can get much better bounds if we only
consider certain kinds of geometric sets.

Consider the following set system. Let R be a fixed set of n line segments on the plane.
Given any infinite line L, let Ry, be the set of line segments of R intersected (or stabbed) by L.
(If R, = R, then L is known as a transversal of R; refer to [8] for interesting combinatorial
and algorithmic results on transversals). Let the family S consist of the distinct stabbed sets
Ry, of R, for all possible infinite lines L. The following result and its corollaries are crucial for
our algorithms.

4. k-separated stabbed sets: The maximum size of a k-separated family &’ C S is
O(n?/k?).

In particular, if & = Bn for some constant 0 < § < 1, the size of any k-separated family is
O(1). It is this property that is used in our approximation algorithms.

While not directly relevant to our time-series algorithms, our next results concern two
other interesting and natural geometric sets. Let V' be a fixed set of n points on the plane.
A half-plane is the unbounded region to one side of an infinite line (i.e. any line, and not
necessarily one that passes through a point in V). Thus a half-plane can be considered as a
subset of V that it contains. Let the family H consist of the distinct subsets of V' corresponding
to all possible half-planes.

5. k-separated half-planes: The maximum size of a k-separated family H' C H is
O(n?/k?).

Let V again be a fixed set of n points on the plane. A triangle is the intersection of three
half-planes (the vertices of the triangle do not have to be points in V'). Thus a triangle can be
considered as a subset of V that it contains. Let the family 7 consist of the distinct subsets
of V corresponding to all possible triangles.

6. k-separated triangles: The maximum size of a k-separated family 7' C T is ©(n%/k5).

Some of our results extend to higher dimensions as well as to other kinds of geometric sets
(such as p-topes). Details will appear in the full paper.

The rest of the paper is organized as follows. In Section 2 we discuss the results concerning
k-separated geometric sets. We then describe in Section 3 the exact algorithm, in Section 4 the
approximate algorithm, and in Section 5 the randomized algorithm. In Section 6 we discuss
our implementation results. We conclude with some future research directions.

4

Related work: There has been some recent work on the problem of defining similarity
between time series; due to lack of space we only give some references. The problem was
introduced to the data mining community by papers [1, 9]. The similarity measures considered
in [2, 7, 13] use the concept of longest common subsequence. In [1], a fingerprint method is
used, where the discrete Fourier transform is employed to reduce the dimensions of each
sequence, and the resulting fingerprints are compared. In [11], feature eztraction techniques
are used; see [12] for a general discussion on fingerprinting techniques.

Essentially the same similarity function as above was investigated in [7] (except that § was
not considered). In that paper, each linear function y = az + b is treated as a point (a,b) in
the dual ab-plane. Using statistical measures, a bounded polygonal region in the ab-plane is
computed which is guaranteed to contain all potential transformations. This region is then
sampled by overlaying a grid on it, and running LCSS on the functions represented by the
grid vertices. While the algorithm works reasonably well in practice, its efficiency is sensitive
to the values of the input numbers (as opposed to input size), and furthermore, the computed
similarity may not be the optimal. Our experiments show that the randomized algorithm
presented in this paper produces more accurate results and is far faster.

2 k-Separated Geometric Sets

In this section we discuss k-separated geometric sets. We start by proving an useful lemma
concerning arrangements of infinite lines.

Let H be a set of n infinite lines on the plane in general positions (i.e no three line intersect
at a point). It is well known that the arrangement A(H) is a planar graph with ©(n?) vertices,
edges and faces [8]. Let & > 0 be any integer. For any face f in the arrangement, define a
region Ni(f) as the union of all faces g such that a line segment connecting a point within f
with a point within g intersects at most & lines of H. Figure 1(a) illustrates these notions.

Nl(

Figure 1: The Ni(f) regions

Lemma 2.1 The number of vertices of A(H) contained within Ni(f) is Q(k?).

Proof : (Sketch) Let u be a point in f and v a “target” point beyond the boundary of Ny/2(f)
(see Figure 1(b)). If we start from v and start walking straight towards v, we will intersect
k/2 lines of H, say L1, Ly, ..., Ly, before we reach the boundary of Ny/;(f). Consider one
such line, say L;. Since it is an infinite line, it has to intersect the boundary of Ny ,(f) as
well as the boundary of Ni(f). Let (wi,ws2) be a portion of L; within Ni(f) \ Ngj2(f) such
that w; (resp. ws) is on the boundary of Ny/a(f) (resp. Ni(f)). If we walk along L; from w;
to wa, it should be clear that we will encounter at least k/2 vertices of A(H).

Thus, there are £/2 lines of H such that each line contributes at least k/2 vertices of A(H)
inside Ni(f). The same vertex can be contributed by at most two lines. Thus the number of

vertices contained within Ni(f) is Q(k?). [l

We are now ready to prove our k-separated results. We start with stabbed sets. Consider
a well known duality transformation, where a (non-vertical) line y = az + b in the zy-plane is
mapped to the point (a,b) in the ab-plane, and a point (z,y) is mapped to the line b = za —y
[5, 8]. By this transformation, a line segment (u,v) in the zy-plane (Figure 2(a)) corresponds
to a double-wedge in the ab-plane, where the duals of v and v form the boundaries of the
double-wedge (Figure 2(b)). Furthermore, if an infinite line L intersects (u,v), then the dual
of L becomes a point inside the double-wedge.

(a) (b)

Figure 2: The dual of a line segment is a double-wedge

Let R be a fixed set of n line segments in the zy-plane, and let the family & consist of the
stabbed sets of all possible infinite lines. Let k& > 0 be any constant.

Theorem 2.2 The mazimum size of a k-separated family S’ C S is O(n?/k?).

Proof : (Sketch) We shall only prove the upper bound in this version of the paper. Compute
the dual transformations of all segments in B. We thus get a collection of double-wedges in
the ab-plane. Compute the arrangement of these double-wedges. The number of vertices (also
edges and faces) of this arrangement is ©(n?). In this arrangement, each face f is essentially
the intersection of a subset of the double-wedges. Any point inside f represents the dual of an
infinite line that stabs precisely the corresponding subset of R in the zy-plane. It is also easy
to see that for all g € Ny(f), the symmetric difference between the subsets of R corresponding
to f and g is at most k.

Let &' C S be the largest k-separated family. Consider any pair of subsets S}, S € &'
Let f; and f; be their corresponding faces in the arrangement of double-wedges. Clearly the

6

region Ny2(f{) is completely disjoint from the region Ny/2(f}). But by Lemma 2.1 each such
region contains at least (k?) vertices of the arrangement. Thus, |S'| = O(n?/k?). [

Our next result is on half-planes. Let V be a fixed set of n points on the plane. Let the
family H consist of the distinct subsets of V corresponding to all possible half-planes.

Theorem 2.3 The mazimum size of a k-separated family H' C H of half-planes is ©(n?/k?).

The proof is structurally similar to the proof of Theorem 2.2, and we omit it from this
version of the paper.

Our final result in this section is on triangles, and is somewhat more involved. We first
introduce some useful concepts. Given a family of sets S, a subfamily &’ is a k-cover if for
all § € S, there is &’ € &' such that |SAS'| < k. The following simple greedy algorithm
constructs a k-cover for &, such that the cover is also k-separated. Initialize S’ to empty.
While S is not empty, repeat the following steps: delete any S’ € S from S, add S’ to &', and
delete from S all S such that |[SAS'| < k.

We next introduce an useful set-theoretic lemma, whose proof is omitted from this version
of the paper.

Lemma 2.4 Let R, G, B, R', G' and B’ be finite sets. Then (RNGN B)A(R'NG'NB'") C
(RAR'YU (GAG")U(BAB').

We are now ready to prove our result on triangles. Let V be a fixed set of n points on
the plane. Let the family 7 consist of the distinct subsets of V' corresponding to all possible
triangles.

Theorem 2.5 The mazimum size of a k-separated family T' C T of triangles is ©(nS/k5).

Proof : (Sketch) We shall only prove the upper bound. Let 7' C T be the largest k-separated
family. Let the set of triangles that realize this family be 7}, T5,..., T, . Each triangle is the
intersection of three half-planes; color the three half-planes as red, green and blue. Thus each
T! becomes a triple of colored half-planes (R}, G%, B!). Note that each half-plane in the triple
represents a subset of V', but this subset might contain many points not in 7.

Consider the three families of half-planes, R' = {R},...,R..}, ¢' = {G},...,G.,} and
B'={Bj,..., B! }. Note that these three families may not be k-separated by themselves. Let
us apply the greedy algorithm to each of R’, G’ and B’ to get corresponding k/6-separated k/6-
covers R"”, G" and B”. ;From Theorem 2.3 we know that each cover is O(n?/k?) in size. Let
R" x G" x B" represent the Cartesian product of these three families. Thus |R" x G" x B"| =
O(n®/k%). For every triangle 7' = (R',G',B’) in T, there exists a triple (R"”,G", B") in
R" x G" x B", such that |[R'AR"| < k/3, |G'AG"| < k/3, and |B'AB"| < k/3. Let one such
triple (R”,G", B") be defined as the representative of T".

We claim that every 7" in 7' has a unique representative. To prove this, consider any pair
of subsets T] = (R|, G, Bf) and T, = (R},G’, B;) in T'. We know that |T/AT}| > k. If T}
and T, have the same representative, say (R",G", B"), then by applying Lemma 2.4 we get
IT/A(R"NG"NB")| < k/2, and |T;A(R"NG"N B")| < k/2. Thus we get |T;AT}| <k, which
is a contradiction.

Thus, |7'| < |R" x G" x B"| = O(n8/k"). [

3 An O(n?)-Time Exact Algorithm for Time-Series Sim-
ilarity

Let X = z1,z9,...,2, and Y = y1,v2,...,Y, be two sequences. Let 0 < € < 1 be a real
constant and § > 0 an integer constant. In this section we shall describe an exact algorithm
to compute Sim.s(X,Y).

Theorem 3.1 Sim s(X,Y) can be computed in O(n383%) time.

Proof : (Sketch) Consider any linear transformation f : y = az + b. When plotted on the
zy-plane, f is a straight line which meets the z-axis at point p = (—b/a,0). Consider two
other linear functions, y = (az + b)(1 + €) and y = (az + b)/(1 + €). These are also straight
lines, and both meet the z-axis at p. Let us define the region between these two lines as the
double-wedge of f, denoted as DW; (note: these double-wedges are not to be confused with
the double-wedges of the previous section). We observe that DW; contains the line f.

Let V = {(z;,y,)|z: € X,y; € Y,|i — 7| < 6} be a set of points in the zy-plane. Clearly
|V| = O(né). Let V3 C V be those points inside DW5-.

Suppose f':y = a'z 4 b is a different linear transformation. As was done with f, we can
correspondingly define DWy and Vy. We make an important observation: if V; = V}/, then
Stes(X,Y) = Spes(X,Y). In other words, even if both are different functions (i.e different
straight lines), the LCSS algorithm will produce the same output when run on both. Our
task then, is to determine a finite family of linear functions that cover all linear functions, i.e.
for every function there should be a corresponding representative function in the finite family
such that their corresponding double-wedges contain identical subsets of V.

Instead of working with double-wedges, we will reformulate the problem using the equiv-
alent concept of stabbed sets, which is easier to analyze. For every point p = (z;,y;) € V,
consider a vertical line segment L, = (p1, p2), where p; = (z;,y;(1+€)) and ps = (z,,y;/(1+¢€)).
Let R = {L,|p € V}. Consider the linear transformation f : y = az 4+ b. Let R; be the seg-
ments of R stabbed by the infinite line f. The following lemma establishes the equivalence
between R; and V}. The proof is easy, and is omitted from this version of the paper.

Lemma 3.2 R; = {L,|p € V§}.

Let Vg be the set of end points of all vertical segments in R. Thus |Vg| = 2|V| = O(né).
Consider any linear function f that does not pass through any point in Vg. Clearly if we
perturb f slightly, R; will not change. Recall that £ is the (infinite) family of all linear
functions. Let £’ be the family of linear functions such that f' € £’ iff f’ passes through two
points of Vg. It is easy to see that for any linear function f € L, there is a function f' € L'
such that Vy = V.

Thus, our algorithm first computes £’ (whose size is O(n%6?)), then runs LCSS on each
function, and finally outputs the normalized length of the longest sequence found. This gives
a total running time of O(n33§3). This concludes the proof of Theorem 3.1. [

It is instructive to study the above algorithm from the duality point of view (see [5, 8]).
Recall that the dual of a line segment is a double-wedge in the ab-plane. Imagine computing

8

the duals of each segment in R, and computing the arrangement, A, of these double-wedges.
Any linear function f corresponds to a point in the ab-plane. In particular, the duals of the
functions in £’ correspond to vertices of A. In a sense, our exact algorithm implicitly generates
all the vertices of A.

The arrangement A will have a significant role in our other algorithms.

4 An O(n?)-Time Approximation Algorithm

In this section we shall describe an approximation algorithm to compute Sim.s(X,Y).

Theorem 4.1 Let0 < 3 < 1 be any desired small constant. A linear transformation f and the
corresponding St s(X,Y) can be computed in O(n?§?+nd3/B?) time such that Sim.s(X,Y)—
Sf,e,J(Xv Y) S /8

Proof : (Sketch) Recall the definitions of the previous section, especially that of V, R, Vg,
L', and A. Let f and f’ be any two linear functions such that |[V;AVy| < Bn. It is not hard to
see that Sy . s(X,Y) > Sts(X,Y) — 3. Our approximation algorithm first computes a finite
family of linear functions £, such that for any linear function f, there is f” € L” such that
|V} AViu| < Bn. It then runs LCSS on each function in £, and finally outputs the normalized
length of the longest sequence found.

Compute the arrangement A as defined in the previous section (this can be done in O(n?§?%)
time, see [5]).

We shall construct the family £” as follows. Within each face of A, select a representative
point. Build the planar dual graph of A, say Dual(A), where these representative points
become vertices. Let P be an initially empty set of points. While Dual(A) is not empty,
repeat the following steps: add any vertex p in Dual(A) to P, then for all p’ € Dual(A) such
that distpuai(a)(p,p’) < k, remove p’ and associated edges from Dual(A). (The function Dist
computes the number of edges on the shortest path in Dual(A) between p and p’). Let L” be
the family of functions whose duals are the points in P. It should be clear that for any linear
function f, thereis f” € L" such that |[V;AV;s| < fn. The above steps can be implemented in
time linear in the size of Dual(A) (i.e. O(n?6?)), essentially by making breadth-first searches
from each p added to P.

All that remains is to estimate the size of L"”. Let 8" = {Ry|f' € L"}, i.e. each set
in §” represents the segments of R stabbed by a function in £”. It is not hard to see that
S" is k-separated. By invoking Theorem 2.2, we get |S”| = [£"| = O((r%6?)/(n?B?)) =
O(62/B%)). We have to run LCSS on each of these functions. This phase takes time O(né3/5?).
When combined with the time taken to compute A(H), we get an overall running time of
O(n252 + n53/52).

This concludes the proof of Theorem 4.1. [l

5 An O(n)-Time Randomized Approximation Algorithm

In this section we give a simple randomized approximation algorithm to compute Sim, s(X,Y).

9

Theorem 5.1 Let 0 < 8 < 1 be any desired small constant. A linear transformation f

and the corresponding Stes(X,Y) can be computed in O(nd3/B?) ezpected-time such that
Stmes(X,Y) — Stes(X,Y) < B

Proof : (Sketch) Consider a procedure which works as follows. It selects two points at random
from Vg, and defines the function f that passes through these two points. It then computes
Stes(X,Y). We shall show that Prob(Sim.s(X,Y) — S;.s(X,Y) < B) = Q(B%/8%). Let
M be an optimal function, i.e. let Spes(X,Y) = Sim.5(X,Y)). Let the dual of M belong
to face r in the arrangement A. Using Lemma 2.1, we know that the number of vertices
of A within Ng,(r) is Q(n?3?). The procedure is essentially selecting at random one of the
O(n?5?) vertices of A. The probability that the vertex selected is within Ng,(r) is therefore
Q(n?B?/n?6%) = O(B*/5?).

Our randomized algorithm iterates the above procedure a certain number of times, and
outputs the normalized length of the longest subsequence computed thus far. To get the
claimed approximation bounds, the expected number of iterations should be O(§?/3%). Each
iteration requires running the LCSS algorithm which takes O(né) time. Thus the expected
running time of the randomized algorithm is O(nd3/3?).

This concludes the proof of Theorem 5.1. O

6 Experimental results

We experimented with the exact algorithm and the randomized approximation algorithm using
three collections of sequences. One consisted of quaterly indicators of the status of the Finnish
economy (67 sequences, 85 points), another of measurements of traffic data, error counts and
call counts at 15 minute intervals (17 different phone lines, i.e., 51 sequences, 478 points each),
and the third one about stock prices at the NYSE. Especially in the phone line data outliers
are truly a problem: there are values in the sequence that differ by a factor of 2-5 from all
the other values. In most cases these are outliers, but in some cases not; removing them
permanently from the data is not possibly.

Overall, the algorithms behaved as predicted by the theoretical analysis. The exact O(n?)
algorithm was far too slow to use for any but the smallest sequences and displacements. The
randomized algorithm proved to be very eflicient. Moreover, it produced approximations to
the true similarity that are very close to the correct values. For example, in Table 1 we see that
for varying €, the randomized algorithm got to within 1 from the true optimum already after
500 randomly chosen wedges. Table 2 shows the time needed for this analysis. We see that
for displacement of 0, the exact algorithm takes about 360 seconds, and for a displacement
of 1, about 1 hour. (All timings are on a Pentium machine with 32 MB of main memory.)
The randomized algorithm works extremely fast, checking 500 random wedges in about 6.5
seconds, and this time is almost independent of the displacement. The results for the other
sequence types were similar, and they are omitted from this version of the paper.

10

K

€ LCSS | 10 25 50 100 200 500 1000

6
0.10 0 85 80.6 82.0 83.1 834 83.2 84.0 84.0
0.10 1 85 79.2 81.6 83.2 83.7 83.9 84.7 84.9
0.05 0 81 777 79.5 80.1 80.2 80.2 80.5 80.9
0.06 1 81 78.1 79.3 80.3 80.3 80.6 81.0 80.9
0.01 0 56 49.5 53.3 534 53.8 547 553 553
1

0.01 57 50.2 51.8 525 53.6 544 548 556

Table 1: True similarity between sequences and the length of longest common subsequence
found by using K randomly chosen linear functions; averages over 10 trials. Data: two series
of 85 points about the Finnish national economy.

K
€ LCSS exact | 10 25 50 100 200 500 1000
0.10 85 361 | 0.16 0.36 0.67 13 26 6.5 13.0
0.10 85 3211 | 0.15 0.36 0.68 1.3 2.7 6.5 13.0

0.05 81 3236 | 0.14 030 057 1.1 26 5.6 11.3
0.01 56 364 | 0.15 0.36 0.67 13 2.6 6.5 13.0
0.01 57 3269 | 0.11 030 058 1.1 23 5.6 11.2

)
0
1
0.05 0 81 358 | 0.15 0.35 0.67 14 26 6.5 13.0
1
0
1

Table 2: Time used by the exact algortithm and the randomized approximate algorithm (for
K randomly chosen linear functions; averages over 10 trials). Data: two series of 85 points
about the Finnish national economy.

11

7 Conclusions

We have addressed the problem of defining (and determining) the similarity between two
time series. The algorithms we present are based on a careful investigation of the geometric
properties of the problem, which are interesting in their own right. At the same time, the
algorithms are very eflicient in practice. We intend to focus our future efforts in the directions
summarized below.
In the full paper we will discuss how the algorithms can be extended to allow variations
in our similarity model, such as considering different function families, tolerance models, etc.
We plan to investigate further some of the practical issues of the implementations. For
example, preliminary experiments indicate that a combination of our statistical methods (see
[7]) with the methods of this paper result in hybrid algorithms that seem to work very well.
Interesting fundamental questions still remain. It is not clear whether any of the algorithms
are optimal w.r.t. running time. For example, an o(n?) time exact algorithm would be a
remarkable breakthrough. Similarly, in case of the approximation algorithm, is it necessary to
first compute the entire arrangement A, and then look for the O(1)-sized family £"”?7 Another
theoretical question is, what is the maximum size of a k-separated family of convex sets?
Finally, an interesting related data retrieval problem is the sequence database query prob-
lem: given a database of N sequences and a query sequence, find out which sequences in the
database are similar to the query sequence. It is desirable to have algorithms that preprocess
the database so that a linear scan can be avoided at query time. Several solutions exist (see
[1, 2]), and it is intriguing whether our techniques can be extended to this problem.

References

[1] R. Agrawal, C. Faloutsos and A. Swami. Efficient Similarity Search in Sequence
Databases. In Proc. of the 4th Intl. Conf. on Foundations of Data Organization and
Algorithms (FOD0O’93), 1993.

[2] R. Agrawal, K.-I. Lin, H. S. Sawhney and K. Shim. Fast Similarity Search in the Presence
of Noise, Scaling, and Translation in Time-Series Databases. In Proc. of the 21st Intl.
Conf. on Very Large Data Bases (VLDB’95), pp 490-501.

[3] A.V. Aho. Algorithms for Finding Patterns in Strings. In Handbook of Theoretical Com-
puter Science, Volume A: Algorithms and Complezity, Elsevier, 1990, pp. 255-400.

[4] B. Bollobas. Combinatorics. Cambridge University Press, 1986.

[5] B. Chazelle, L. J. Guibas and D. T. Lee. The Power of Geometric Duality. In Proc. of
IEEE FOCS, 1983, pp. 217-225.

[6] T. H. Cormen, C. E. Leiserson and R. L. Rivest. Introduction to Algorithms. The MIT
Press, 1990, pp. 314-319.

[7] G. Das, D. Gunopulos and H. Mannila. Finding Similar Time Series. Manuscript, 1996.

12

[8] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, 1987.

[9] C. Faloutsos, M. Ranganathan and Y. Manolopoulos. Fast Subsequence Matching in
Time-Series Databases. In SIGMOD’94, 1994.

[10] H.V. Jagadish, A. O. Mendelzon and T. Milo. Similarity-Based Queries. In Proc. of 1/th
Symp. on Principles of Database Systems (PODS’95), 1995, pp. 36-45.

[11] H. Shatkay and S. Zdonik. Approximate Queries and Representations for Large Data
Sequences. In ICDE’96, 1996.

[12] D. A. White and R. Jain. Algorithms and Strategies for Similarity Retrieval. Technical
Report VCL-96-101, Visual Computing Laboratory, UC Davis, 1996.

[13] N. Yazdani and Z. M. Ozsoyoglu. Sequence Matching of Images. In Proc. of the 8th Intl.
Conf. on Scientific and Statistical Database Management, 1996, pp. 53-62.

13

