
Mining chains of relations

Foto Afrati∗

National Technical University of Athens,
Athens, Greece

Gautam Das∗

University of Texas at Arlington,
Arlington, TX, USA

Aristides Gionis, Heikki Mannila, Taneli Mielikäinen, and Panayiotis Tsaparas
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Abstract

Traditional data mining applications consider the prob-
lem of mining a single relation between two attributes. For
example, in a scientific bibliography database, authors are
related to papers, and we may be interested in discovering
association rules between authors. However, in real life,
we often have multiple attributes related though chains of
relations. For example, authors write papers, and papers
concern one or more topics. Mining such relational chains
poses additional challenges. In this paper we consider the
following problem: given a chain of two relations R1(A, P )
and R2(P, T ) we want to find selectors for the objects in T
such that the projected relation between A and P satisfies
a specific property. The motivation for our approach is that
a given property might not hold on the whole dataset, but it
might hold when projecting the data on a selector set. We
discuss various algorithms and we examine the conditions
under which the apriori technique can be used. We experi-
mentally demonstrate the effectiveness of our methods.

1 Introduction

Traditional data mining applications extract interesting
patterns from a single relation between two attributes, e.g.,
customers buying products, documents containing words,
or genes expressed in tissues. Multi-relational data mining
has been considered an extension to the simple transactional
data model. However, addressing the problem in the full
generality proved to be a daunting task. In this paper, we
restrict our attention to a specific case of chains of relations.
Our formulation captures many practical applications, yet
the problems are still easy to formulate and feasible to solve.

As an example, consider a dataset with attributes A (au-
thors), P (papers), and T (topics), and relations R1(A, P )
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on authors writing papers, and R2(P, T ) on papers concern-
ing topics. An interesting pattern, e.g., “authors a and b
frequently write papers together” might not be true for the
whole dataset, but it might be true for a specific topic t.
Therefore, it is meaningful to search for projections of the
data on which interesting patterns occur. We model datasets
as graphs and patterns as graph properties. Under this
light, the data-mining problem is to find nodes (selectors
to project the data on) so that the induced subgraph (the
projected data) satisfies a given property.

In the most general case of a database schema we as-
sume n attributes A1, . . . , An, and m relations R1, . . . , Rm

on the attributes. In this paper, we focus on a simple scheme
with three attributes A, B and C, and a chain of two rela-
tions R1(A, B) and R2(B, C). However, the general ideas
of our extension can be applied to more complex schemas.

We find it convenient to work with the graph represen-
tation of schemas:1 we assume a graph G with three sets
of nodes A, B and C corresponding to the three attributes
and having one node for each value in the domain of the
attribute. The graph has two sets of edges, E1 connect-
ing nodes in A and B, and E2 connecting nodes in B
and C. Edges are defined so that (a, b) ∈ E1 if and only if
(a, b) ∈ R1, and (b, c) ∈ E2 if and only if (b, c) ∈ R2. We
call such a graph a three-level graph. Examples of datasets
that can be modeled with three-level graphs include: AU-
THORS writing PAPERS about TOPICS; ACTORS playing in
MOVIES belonging to GENRES; and DOCUMENTS contain-
ing PARAGRAPHS containing WORDS.

The general data-mining problem we consider is infor-
mally defined as follows. Consider the three-level graph
G = (A, B, C; E1, E2). Given a subset C ′ ⊆ C of nodes
from level C, one can induce a subgraph G′ from G by tak-
ing B′ ⊆ B and A′ ⊆ A, such that every node in B′ is con-
nected to a node in C ′ with an edge in E2, and every node

1Graph representation works well as long as all relations have two at-
tributes. For relations with more than two attributes, one would need to
talk about hypergraphs.



in A′ is connected to a node in B′ with an edge in E1. Now
the induced subgraph G′ might satisfy a given property or it
might not. Example of properties are “G′ contains a bipar-
tite clique Ks,t”, and “all nodes in A′ have degree at least
k”. The intuition is that the induced subgraph corresponds
to a projection of the data, while the graph property corre-
sponds to an interesting pattern. Note that many traditional
data-mining problems can be viewed as finding subgraphs
with certain properties. For instance, finding itemsets of
size s and support t in market-basket data corresponds to
finding Ks,t cliques.

For solving the general problem, we provide conditions
under which monotonicity properties hold, and thus, a level-
wise method like apriori (see, e.g., [8]) can be used. Many
of the problems we consider are NP-hard — many of them
are hard instances of node removal problems [11]. For such
problems we propose an Integer Programming (IP) formu-
lation that can be used to solve medium-size instances by
using existing IP solvers.

2 Problem definition

We start with attributes A, P and T , relations E1(A, P )
and E2(P, T ), and the corresponding three-level graph G =
(A, P, T ; E1, E2).2 Let S ⊆ T be a subset of T . The set
S acts as a selector over the sets P and A. Namely, for
some t ∈ T , we define Pt = {p ∈ P : (p, t) ∈ E2}, and
At = {a ∈ A : ∃p ∈ Pt, s.t. (a, p) ∈ E1}. That is, the sets
At and Pt are the subsets of nodes in P and A, respectively,
that are reachable from the node t ∈ T . We can extend
the definition to subsets PS and AS that are reachable from
the set S ⊆ T . Extending the definition to sets requires to
define the interpretation I of the selector S.

Disjunctive Interpretation (D): the sets PS and AS are
reachable from at least one node in S:

PD
S =

⋃

t∈T

Pt and AD
S =

⋃

t∈T

At.

Conjunctive Interpretation (C): the sets PS and AS are
reachable from every node in S:

P C
S =

⋂

t∈T

Pt and AC
S =

⋂

t∈T

At.

Given the subsets AS and PS we can define the induced
bipartite subgraph GS = (AS , PS ; ES), where ES =
{(a, p) ∈ E1 : a ∈ AS , p ∈ PS}. We use GD

S and GC
S

to denote the induced subgraph under disjunctive and con-
junctive interpretation respectively.

2The attribute naming and the names of the problems and the graph
properties we introduce later are inspired by the bibliography dataset (AU-
THORS – PAPERS – TOPICS).

Now let Ψ denote a graph property. Given a three-level
graph G, a property Ψ, and the interpretation I, we define
the following problems.
MAXI-Ψ(G): Find the maximal set S ⊆ T such that GI

S

satisfies Ψ.
MINI-Ψ(G): Find the minimal set S ⊆ T such that GI

S

satisfies Ψ.
ANYI-Ψ(G): Find any set S ⊆ T such that GI

S satisfies Ψ.
Below we give a few examples of interesting properties.

Many more can be found in the full version of the paper.
In all cases, we the graph G = (A, P, T ; E1, E2) is the
input, and GS = (AS , PS ; ES), is the graph induced by the
selector S, under either interpretation.
AUTHORITY(c): Given a node c ∈ A, the graph GS satisfies
AUTHORITY(c) if c ∈ AS , and c has the maximum degree
among all nodes in AS .
CLIQUE: The graph GS satisfies CLIQUE if it is a bi-clique.
FREQUENCY(f ): Given threshold value f ∈ [0, 1], the
graph GS satisfies the property FREQUENCY(f ) if GS con-
tains a bipartite clique Ks,f |PS| for some s > 0. Also inter-
esting is to enumerate all such cliques. The intuition is that
a bipartite clique Ks,f |PS | implies a frequent itemset of size
s with frequency threshold f .
PROGRAMCOMMITTEE(Z, l, m): We are given a set Z ⊆
T (topics of a conference), and values l and m. We say
that the induced subgraph B = (X, Y, Z; E, F ) satisfies
the property PROGRAMCOMMITTEE(Z, l, m) if |X | = m
(m members in the program committee) and every node t ∈
Z is connected to at least l nodes in X (for each topic there
are at least l experts in the committee). Notice that this is the
only example in which we reverse the roles of the attributes
A and T , that is, the input specifies a subsets of nodes from
T and the selector set is chosen from A. However, there is
no real conceptual difference with the other examples, we
make only this exception to be consistent with the semantics
of the bibliography dataset.

3 A characterization of monotonicity

We now characterize graph properties for which standard
level-wise methods can be used. Given a three-level graph
G and an interpretation I ∈ {C,D}, let SI = {GI

S : S ⊆
T} be the set of all possible induced bipartite graphs under
interpretation I.

Definition 1 A property Ψ is monotone (anti-monotone) on
the set SI if for any selector set S ⊆ T such that GI

S satis-
fies Ψ, we have that GI

S′ satisfies Ψ for all S′ ⊆ S (for all
S′ ⊇ S).

Monotonicity is used to prune the search space, by not
considering supersets of a selector set that does not satisfy a
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property [1]. Here, we relate monotonicity with the concept
of hereditary properties on graphs.

Definition 2 A property Ψ is hereditary on the set G of all
possible graphs with respect to node deletions, if the follow-
ing is true. If G = (V, E) is a graph that satisfies Ψ, then
for any V ′ ⊆ V the induced subgraph G′ = (V ′, E′) of G
also satisfies the property.

We can prove the following. We omit the proof due to
lack of space.

Theorem 1 Any hereditary property is monotone on the set
SD, and anti-monotone on the set SC .

Theorem 1 has many interesting consequences, e.g.,

Proposition 1 The CLIQUE property is monotone on SD.

4 Integer Programming formulations

Computing the maximal or the minimal or any selector
set in many cases is an NP-hard problem. Here we give IP
formulations for such problems. We found that small- and
medium-size instances of the problems we consider can be
solved quite efficiently using an off-the-shelf IP solver.3 For
the following we assume a disjunctive interpretation, but
similar formulations can be given for the conjunctive case.

Let G = (A, P, T, E1, E2) be a three-level graph. For
each element i ∈ T , we define a variable ti ∈ {0, 1},
where ti = 1 if the element i is selected and 0 otherwise.
Similarly, for each element j ∈ P we define a variable
pj ∈ {0, 1}. First we require that if an element i ∈ T is
chosen, then the set P T

i = {j ∈ P : (j, i) ∈ E2} is also
chosen. This condition is enforced by requiring that

pj ≥ ti for all j ∈ P T
i .

Furthermore, we require that for each j ∈ P that is chosen,
at least one i ∈ T is chosen, such that (j, i) ∈ E2. Let
T P

j = {i ∈ T : (j, i) ∈ E2}. We have that

∑

i∈T P
j

ti ≥ pj .

Finally, for each element k ∈ A, we define a variable
ak ∈ {0, 1} and impose similar constraints. Let AP

j = {k :

(k, j) ∈ E1} and P A
k = {j : (k, j) ∈ E1}. Then we have

ak ≥ pj for all k ∈ AP
j , and

∑

j∈P A
k

pj ≥ ak.

3In practice, we solve IPs using the Mixed Integer Programming
(MIP) solver lp solve obtained from http://groups.yahoo.
com/group/lp solve/

We also define variable xk , that captures the degree of the
node k ∈ A in the subgraph induced by the selected nodes
in T , i.e., xk =

∑

j∈P A
k

pj .
For the properties we discussed in Section 2 we need to

impose additional restrictions on the different variables.

AUTHORITY(c): We require xc ≥ xk for all k ∈ A − {c}.

PROGRAMCOMMITTEE(Z, l, m): Let AT
i = {k ∈ A :

∃j ∈ P A
k s.t. (j, i) ∈ E2}. We add the constraints

∑

k∈A ak ≤ m, and
∑

k∈AT
i

ak ≥ l for all i ∈ Z. For
this problem, we need also the constraints ak ∈ {0, 1} for
all k ∈ A since there are no topic set selection involved
in the program. Note also that we can neglect the authors
outside the set

⋃

i∈Z AT
i .

5 Algorithmic considerations

The FREQUENCY problem: We can show that finding fre-
quent itemsets V with frequency threshold f in the three-
level graphs is equivalent to finding association rules S →
V with confidence threshold f . We omit the details.

The AUTHORITY problem: For a single author c, we solve
the authority problem using MIP. The actual details depend
on which interpretation we use.

In the conjunctive interpretation, the subgraph induced
by a topic set S contains a paper j ∈ P iff S ⊆ T P

j .
Thus, we can consider each paper j ∈ P as a topic set T P

j .
Finding all topic sets with nonempty induced subgraph cor-
responds to mining frequent sets with frequency threshold
f = 1/|P | in the database consisting the topic sets T P

j , and
frequent set mining algorithms can be used, e.g., see [1].

In the disjunctive interpretation, the subgraph induced by
the topic set S contains a paper j ∈ P iff S hits the paper,
i.e., S∩T P

j 6= ∅. Hence, it is sufficient to compute the rank-
ings only for those topic sets S that hit strictly more papers
than any of their subsets. It can be to shown that such sets of
topics correspond to minimal hypergraph transversals and
their subsets in the hypergraph (T,

{

T P
j

}

j∈P
). They can

be generated efficiently by the level-wise approach.

The PROGRAMCOMMITTEE problem: For the PROGRAM-
COMMITTEE problem we use the MIP formulation sketched
in Section 4. For an objective function, we use the number
of papers written by the program committee about the topics
in the given set Z.

6 Experiments

We used information available on the Web to construct
two real datasets with three-level structure. For the datasets
we used we found more interesting to experiment with the
AUTHORITY and the PROGRAMCOMMITTEE problem.
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Bibliography datasets: We crawled the ACM digital li-
brary website4 and we extracted information about two fo-
rums: Journal of ACM (JACM) and ACM Symposium on
Theory of Computing (STOC). For each paper we obtained
the authors, the title, and the topics. Examples of topics are
“numerical analysis”, “programming languages”, and “dis-
crete mathematics”. In the JACM dataset we have 2112 au-
thors, 2321 papers and 56 topics. In the STOC dataset we
have 1404 authors, 1790 papers and 48 topics.

IMDB dataset: We use IMDB5 to extract an actors-
movies-genres dataset. We preprocess the original dataset
to prune TV serials, non-English movies, movies with no
genre, as well as actors with secondary roles. We have
45342 actors, 71912 movies and 21 genres.

The AUTHORITY problem: We run the level-wise algo-
rithms described in Section 5 on our three datasets. Given
an author a, we define the collection of topic sets A(a) =
{S : a is authority for topic set S}, and A0(a) the collec-
tion of minimal sets of A(a), or more precisely A0(a) =
{S ∈ A(a) : @T ∈ A(a), with T ⊂ S}. For authors who
are not authorities, A(a) and A0(a) are empty.

The author with the most papers in STOC is Wigderson
(36 papers). The size of A0 and the average set size in A0

for Wigderson is 37 and 2.8, respectively, indicating that
he tends to work in many different combinations of topics.
On the other hand, Tarjan who is 4th in the overall ranking
(25 papers), has corresponding values 2 and 1.5. That is,
he is very focused on two topic sets: “data structures” and
(“discrete mathematics”, “artificial intelligence”). These in-
dicative results match our intuition about the authors.

We also searched for authorities in the JACM and IMDB
datasets, but we omit the results due to lack of space. As
a small example in the IMDB dataset, we observed that
Schwarzenegger is an authority of the combinations (“ac-
tion”, “fantasy”) and (“action”, “sci-fi”) but he is not an au-
thority in any of those single genres.

The PROGRAMCOMMITTEE problem: The task is to se-
lect PC members for a subset of topics (potential confer-
ence). We give two examples of selecting PC members for
two fictional conferences. For the first conference, which
we called LOGIC-AI, we used the topics “mathematical
logic and formal languages”, “artificial intelligence”, “mod-
els and principles”, and “logics and meanings of programs”.
For the second conference, which we called ALGORITHMS-
COMPLEXITY, we used the topics “discrete mathematics”,
“analysis of algorithms and problem complexity”, “com-
putation by abstract devices”, and “data structures”. We
requested 12-member committees requiring each topic to
be covered by at least 4 PC members. The objective was
to maximize the total number of papers written by the PC

4http://portal.acm.org/dl
5http://www.imdb.com/

members. The committee members for the LOGIC-AI con-
ference, ordered by their number of papers, were Vardi,
Raz, Vazirani, Blum, Kearns, Kilian, Beame, Goldreich,
Kushilevitz, Bellare, Warmuth, and Smith. The commit-
tee for the ALGORITHMS-COMPLEXITY conference was
Wigderson, Naor, Tarjan, Leighton, Nisan, Raghavan, Yan-
nakakis, Feige, Awerbuch, Galil, Yao, and Kosaraju. In both
cases, all constraints are satisfied and the committees are
composed by well-known authorities in the fields.

7 Related work

There has already been some effort on multi-relational
mining [2, 3, 4]. The approach taken has been to generalize
apriori-like data-mining algorithms to the multi-relational
case using inductive logic programming concepts. Our
work also has connections with work in mining from mul-
tidimensional data such as OLAP databases [9] and with
the very recent multi-structural databases [5]. Our work
on mining layered graphs also has connections with the
general area of graph mining, in which various problems
have been investigated, ranging from mining frequent sub-
graphs [7, 10, 12] to extraction of web communities [6], and
so on.
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