Lower Bounds for Computing Geometric
Spanners and Approximate Shortest Paths

Danny Z. Chen* Gautam Das' Michiel Smid?
April 22, 1996

Abstract

We consider the problems of constructing geometric spanners, possibly con-
taining Steiner points, for sets of points in the d-dimensional space IR?, and
constructing spanners and approximate shortest paths among a collection of
polygonal obstacles in the plane. The complexities of these problems are shown
to be Q(nlogn) in the algebraic computation tree model. Since O(nlogn)-time
algorithms are known for solving these problems, our lower bounds are tight up
to a constant factor.

1 Introduction

Geometric spanners are data structures that approximate the complete graph on a set
of points in the d-dimensional space IR?, in the sense that the shortest path (based on
such a spanner) between any pair of given points is not more than a factor of ¢ longer
than the distance between the points in IR?.

Let 7 be a fixed constant such that 1 < 7 < oo. Throughout this paper, we
measure distances between points in the d-dimensional space IR? with the L,-metric,
where d > 1 is an integer constant. Let S be a set of n points in IR?. We consider
the kind of graphs G = (V, E) such that (i) V is a set of points in IR, (ii) S C V,
and (iii) the edges of (i are straight-line segments in IR* that connect pairs of points
in V. The length of an edge in (G is defined as the L, -distance between its endpoints.
In such a graph, the length of a path is defined as the sum of the lengths of the edges
on the path.

Let t > 1 be any real number. Consider a graph G = (V, E) that satisfies (i), (ii),
and (iii), such that for every pair p, g of points of S, there is a path in GG between p

*Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN
46556, USA. E-mail: dchen@euclid.cse.nd.edu. The research of this author was supported in part
by the National Science Foundation under Grant CCR-9623585.

TMath Sciences Dept., The University of Memphis, Memphis, TN 38152, USA. Supported in part
by NSF Grant CCR-9306822. E-mail: dasg@nextl.msci.memphis.edu.

tDepartment of Computer Science, King’s College London, Strand, London WC2R 2LS, United
Kingdom. E-mail: michiel@dcs.kcl.ac.uk.

and ¢ of length at most ¢ times the distance between p and ¢ in IR?. If V = S, then
G is called a t-spanner for S. Otherwise, if G contains additional vertices other than
those in S, we call G a Steiner t-spanner for S, and call the points of V'\ S the Steiner
points of (.

Several algorithms are known that for any fixed constant ¢ > 1 and any set S of
n points in IRY, construct in O(nlogn) time a t-spanner for S (i.e., without Steiner
points) which consists of O(n) edges. Note that the constant factors in the Big-Oh
bounds of these algorithms depend on ¢ and d. (See [3, 12, 13].) All these algorithms
can be implemented in the algebraic computation tree model [2].

These algorithmic results naturally lead to the question of whether there are faster
algorithms for constructing geometric spanners. In particular, if we allow a spanner
to use significantly many Steiner points, is it possible to construct the spanner in
o(nlogn) time? In this paper, we give a negative answer to this question. We will
prove that in the algebraic computation tree model, any algorithm that constructs a
Steiner t-spanner for any set of n points in IR?, has an Q(nlogn) worst-case running
time. This follows by a reduction from the element uniqueness problem [2, 10]. (See
Section 2.) In computational geometry, however, we often assume implicitly that all
input elements are pairwise distinct. For such inputs, this reduction obviously does
not work. In Section 2, we will prove that the Q(nlogn) lower bound for constructing
Steiner t-spanners still holds for inputs consisting of pairwise distinct points. This
lower bound is proved by using Ben-Or’s theorem [2]. Note that this theorem cannot
be applied directly, because it does not assume any restriction on the input. We will
show, however, how to circumvent this.

The O(nlogn)-time algorithms for constructing ¢-spanners that were mentioned
above all assume that ¢ is a fixed constant. Our lower bound implies that these
algorithms are optimal. In fact, our lower bound result says more: Even if ¢ is part of
the input, it takes Q(nlogn) time to compute a Steiner ¢t-spanner. In particular, the
lower bound holds even if ¢ is a (very large valued) function of n.

In the last part of the paper (Section 3), we consider the problem of computing
Steiner t-spanners among obstacles. In this case, we are given a set S of planar points, a
set of polygonal obstacles in the plane, and a real number ¢ > 1. A (Steiner) t-spanner
is defined as before, except that now the edges of the spanner do not intersect the
interior of any obstacle. There are several O(nlog n)-time algorithms for constructing
such spanners, where n denotes the number of points of S plus the total number of
obstacle vertices. (See [1, 4, 5, 6, 7].) We prove an Q(nlogn) lower bound on the
time complexity for solving this problem in the algebraic computation tree model.
Note that although for certain cases of spanners this lower bound also follows from
the results of Section 2, the proof techniques we use in Section 3 are different from
those in Section 2. Furthermore, as we will also show, the proof given in Section 3
extends to the same lower bound for computing approzimate shortest paths among
polygonal obstacles in the plane and for computing other kind of spanners than those
of Section 2. Again, there are O(n log n)-time algorithms for the latter problem. (See
[5, 6, 7, 8, 9].) Hence, by our lower bound, these results are optimal.

2 The lower bound for constructing Steiner span-
ners

We assume that the reader is familiar with the algebraic computation tree model.
(See Ben-Or [2] and Preparata and Shamos [10].) Throughout the rest of this section,
we only consider algorithms that can be implemented in the algebraic computation
tree model and that construct Steiner ¢-spanners with o(nlogn) edges. (Clearly, any
algorithm that constructs Steiner ¢-spanners with Q(nlogn) edges takes Q(nlogn)
time.) Also, we will focus on algorithms that construct Steiner ¢-spanners for one-
dimensional point sets. As will be seen, even the one-dimensional case has an Q(n log n)
lower bound. (Clearly, this implies the same lower bound for any dimension d > 1.)

The element uniqueness problem is defined as follows: Given n real numbers
X1, T2,...,T,, decide if they are pairwise distinct. It is well known that this problem
has an Q(rnlogn) lower bound in the algebraic computation tree model. (See [2, 10].)
We shall reduce this problem to that of constructing a Steiner ¢-spanner.

The main observation is that if z; = z; for some ¢ and 7 with ¢ # 7, then any
Steiner t-spanner for z;,z,,...,z, contains a path between z; and z; of length at
most t|z; — x;| = 0. In particular, each edge on this path has length zero. Because
the spanner may contain Steiner points, we have to be careful in formalizing this.

Let A be any algorithm that, given a set S of n real numbers zy,z,,...,z, and a
real number ¢ > 1, constructs a Steiner ¢t-spanner for S. We may assume that each
vertex of the spanner graph constructed by A is labeled as either being an element of
S or being a Steiner point.

We start with a preliminary reduction as follows. Let (z1,22,...,,) be a sequence
of n real numbers. Choose any real number ¢ > 1. Using algorithm A, construct a
Steiner t-spanner G on the x;’s. Construct the subgraph G’ of G such that G’ contains
the same vertices as ¢ and G’ contains all edges of G of length zero. Compute the
connected components of G'. For each component of G, check if it contains two
distinct elements of S among its vertices. If this is the case for some component,
output NO. Otherwise, output YES.

Hence, given the Steiner t-spanner (&, we can solve the element uniqueness problem
in a time proportional to the number of edges of GG, which is o(nlogn). Therefore,
algorithm A has an Q(nlogn) running time.

However, this lower bound proof is unsatisfying in the sense that in computational
geometry we often assume implicitly that all input elements are pairwise distinct. For
such inputs, the above proof does not work. Therefore, in the rest of this section, we
prove the following result.

Theorem 1 Let d > 1 be an integer constant. In the algebraic computation tree
model, any algorithm that, given a set S of n pairwise distinet points in IR and a real
number t > 1, constructs a Steiner t-spanner for S, takes Q(nlogn) time in the worst
case.

As mentioned already, we prove this theorem for algorithms that compute Steiner
t-spanners for one-dimensional point sets. Our proof makes use of the following well
known result.

Theorem 2 (Ben-Or [2]) Let W be any set in IR™ and let C be any algorithm that
belongs to the algebraic computation tree model and that accepts W. Let #W denote
the number of connected components of W. Then the worst-case running time of C is

Qlog #W — n).

Throughout the rest of this section, A denotes any algorithm that, given a set S
of n pairwise distinct real numbers and a real number ¢ > 1, constructs a Steiner
t-spanner for S with o(nlogn) edges. Hence, the output of A is a graph having as its
vertices the elements of S and (possibly) some additional Steiner points. Note that,
although the elements of S are pairwise distinct, this graph may have multiple vertices
that represent the same numbers: There may be an element u of S and a Steiner point
v that represent the same real number. Similarly, there may be Steiner points u and
v that are different as vertices of the graph, but that represent the same real number.
Hence, the graph may have edges of length zero. We assume that each vertex of A’s
output graph is labeled as either being an element of S or being a Steiner point.

We will show that the worst-case running time of A is Q(rnlogn). In order to
apply Theorem 2, we have to define an appropriate algorithm C such that (i) C solves
a decision problem, i.e., it outputs YES or NO, (ii) C has a running time that is within
a constant factor of A’s running time, and (iii) the set of YES-inputs of C, considered
as a subset of IR", consists of many (at least n! in our case) connected components.

There is one problem here. We consider decision algorithms whose inputs consist of
n real numbers that are pairwise distinct. The subset of IR" on which such an algorithm
A is defined (i.e., the collection of sequences of n pairwise distinct real numbers)
trivially has at least n! connected components: Consider two distinct permutations 7
and p of 1,2,...,n. Let ¢ and j be indices such that 7(i) < 7 (j) and p(i) > p(J).
Any continuous curve in IR" between the points P = (7 (1),7(2),...,m(n)) and R =
(p(1),p(2),...,p(n)) contains a point) whose i-th and j-th coordinates are equal.
Algorithm &' is not defined for the input that consists of the point (). Therefore, P
and R belong to different connected components of the set of valid inputs for X'. The
problem is that we cannot apply Theorem 2 to algorithm &’. For example, X could
be the algorithm that takes as input a sequence of n pairwise distinct real numbers,
and simply outputs YES. The subset of IR" accepted by this algorithm has at least n!
connected components, although it has a running time of O(1).

Therefore, to be able to apply Theorem 2, we must carefully define algorithm
C. After we define algorithm C as specified above, we will further define a related
algorithm D that takes any point of IR" as input, and whose set of YES-inputs still
has at least n! connected components.

As the reader might expect, we start with defining an algorithm B, before intro-
ducing algorithm C.

Algorithm B does the following on an input consisting of n pairwise distinct real
numbers 1, g, ..., x, and a real number ¢ > 1. It first runs algorithm A on the input
X1,%2,...,2T,,t. Let G be the Steiner t-spanner that is computed by A. Considering
all edges of (G, algorithm B then selects a shortest edge of non-zero length, and outputs
the length Is of this edge.

We introduce the following notation. For real numbers x4, 2o, ..., z,, we denote
mingap (&1, Ta,...,¢,) = min{|e; — ;| 1 <1< j<n}.
Lemma 1 The shortest non-zero length ls that is output by algorithm B satisfies
0 <ls <t-mingap(x1,za,...,2,).

Proof: Let ¢ and j be two indices such that |x; — x| = mingap(zy1, zq,...,2,). Note
that since the input elements are pairwise distinct, we have |z; — ;| > 0. The graph
G constructed by algorithm A must contain a path between x; and z; of length at
most t|z; — x;|. Each edge on this path obviously has a length of at most ¢|z; — x;|.
Moreover, this path contains at least one edge of non-zero length. |

Let T4(n,t) and Ta(n,t) denote the worst-case running times of algorithms A and
B, respectively. Then the fact that the graph G has o(nlogn) edges implies that
Te(n,t) < Ta(n,t)+ o(nlogn).

We now fix an integer n and a real number ¢ > 1. For any permutation 7 of
the integers 1,2,...,n, let ls, be the output of algorithm B when given as input
m(1),7(2),...,7(n),t. Among all these n! outputs, let [s* be one that has the minimal
value.

Now we can define algorithm C. It only accepts inputs of our fixed length n,
consisting of n pairwise distinct real numbers. On input zq,xs,...,z,, algorithm C
does the following. It first runs algorithm B on the input zy,zs,...,2,,t. Let ls be
the output of B. Algorithm C then outputs YES if s > I[s*, and NO otherwise.

Since algorithm C only accepts inputs of our fixed length n, and since we also fixed
t, we may assume that it “knows” the value [s*. Algorithm C exists, although we have
not explicitly computed Is*.

It is clear that the running time of algorithm C is within a constant factor of B’s
running time.

Algorithm C is defined only for inputs consisting of n pairwise distinct real numbers.
As a result, C can safely perform operations of the form z := z/(x; — x;), for any real
number z, without having to worry whether the denominator is zero or not. Our final
algorithm D will take any point (z1,x2,...,2,) of R" as input. On input ay, z2,...,z,,
D performs the same computation as C does on the same input, except that each
operation of the form z := z/y is performed by D as

if y # 0 then z := z/y else output YES and terminate fi.

Since C is a well-defined algorithm, it will always be the case that y # 0 if the input
consists of n pairwise distinct real numbers. When two input elements are equal, it
may still be true that y # 0, although this is not necessarily the case.

It is clear that C and D give the same output when given as input the same sequence
of n pairwise distinct real numbers. If these numbers are not pairwise distinct, then C
is not defined, whereas D is, although its output may not have a meaning at all. Also
note that the running time of D is within a constant factor of that of C.

We will prove now that the worst-case running time of algorithm D is Q(nlogn).
This will imply the same lower bound on the running time of our target algorithm A.

Let W be the set of all points (21, x2,...,2,) € IR" that are accepted by algorithm
D.

Lemma 2 The set W has at least n! connected components.

Proof: Let m and p be two different permutations of 1,2,...,n. We will show that
the points

and
R= (p(1),p(2), ..., p(n)

belong to different connected components of W. (Note that both these points are
elements of W.) This will prove the lemma.

Let ¢ and 7, 1 < ,5 < n, be two indices such that 7(i) < 7m(j) and p(z) > p(j).
Consider any continuous curve C' in IR" that connects P and R. Since this curve passes
through the hyperplane x; = z;, it contains points for which the absolute difference
between the i-th and j-th coordinates is positive but arbitrarily small. However, for
such points Q) = (¢1,92,...,q,), there may be two distinct indices k and £ such that
qr = q¢- We do not have any control over algorithm D when given such a point () as
input. Therefore, we proceed as follows.

Parametrize the curve C' as C(7), 0 < 7 < 1, where C'(0) = P and C(1) = R. For
1 <k < n, we write the k-th coordinate of the point C'(7) as C(7),. Define

70 := min{0 < 7 < 1: mingap(C(7)1,C(7)2,...,C(7),) < Is*/(2t)}.

Note that 7y exists, because the curve ' passes through the hyperplane x; = z;, and
the function mingap is continuous along C'.
Let @ := C(70), and write this point as @ = (¢1,92,-..,¢n). Then we have

mingap(Qh q2; - - - aQR) § ZS*/(:Zt) < ZS*/t

Also,
mingap(C(0)1,C(0)z,...,C(0),) > Is™ > Is™/(2t).

The value of 74 is the first “time” at which the mingap-function is at most equal to
[s*/(2t). Since this function is continuous along C', we have mingap(q1,q2,...,q,) > 0.
Hence, (¢1,¢2,...,¢s) is a sequence of n pairwise distinct real numbers. Consider
algorithm D when given this sequence as input. It runs algorithm B on the input
G1,G2, - - -, qn,t. Let Is be the output of B. By Lemma 1, we have

ls S t- mingap(Qlaq% s 7Qn)

Hence, ls < Is* and, therefore, algorithm D outputs NO. This implies that point @)
does not belong to the set W.

We have shown that any continuous curve connecting P and R passes through a
point outside W. Therefore, P and R are contained in different connected components

of W. []

Recall that we denote the number of connected components of the set W by #W.
Lemma 2 and Theorem 2 imply that any algorithm that accepts the set W has a
running time

Qlog #W —n) = Q(nlogn).

Since D is one such algorithm, it follows that for our fixed values of n and ¢, the
worst-case running time of D is at least equal to ¢nlog n, where ¢ is a positive constant
independent of n and ¢. This, in turn, implies that there is an input on which algorithm
A takes time at least ¢'n log n, for some constant ¢’ > 0. Since ¢’ does not depend on n
and ¢, this implies that the lower bound holds for all values of n and ¢. This completes
the proof of Theorem 1.

3 Spanners and approximate shortest paths among
obstacles in the plane

In this section, we consider lower bounds for the problems of computing approximate
shortest paths and of constructing various spanners among disjoint polygonal obstacles
in the plane with a total of n vertices. We prove that Q(nlogn) is a lower bound on the
time complexity for solving these problems in the algebraic computation tree model.

Let S be the set of obstacle vertices (isolated points are considered as point-
obstacles), and let n = |S|. Let G = (V, F) be a graph such that (i) S is a subset of V/,
and (ii) the edges of (& are straight-line segments in the plane that do not intersect the
interior of any obstacle. Then the notion of spanners in the previous sections can be
generalized such that G is a t-spanner for S if for any two obstacle vertices u,v € 5,
there is a u-to-v path in GG whose length is no more than ¢ times the length of a shortest
u-to-v obstacle-avoiding path in the plane. If V = S, then we call G a t-spanner for 5.
Otherwise, if G contains additional vertices (Steiner points), then we call G a Steiner
t-spanner for S. Here t > 1 can be any real number, and can even depend on the
input (e.g., as a function of n). If a spanner G is planar, then there is an embedding
of the graph G in the plane, such that no two of its embedded edges properly cross
each other (n.b., the edges need not be embedded as straight-line segments).

An obstacle-avoiding path connecting two points u and v in the plane is called a
t-short u-to-v path if the length of that path is no more than ¢ times the length of a
shortest u-to-v obstacle-avoiding path in the plane.

We need to distinguish two kinds of spanners in this section: Explicitly represented
spanners and implicitly represented spanners. The spanners considered in Section 2
are explicitly represented spanners, since there we assumed that each edge of such a
spanner is specified or represented in some explicit manner. For example, the edges of
such a spanner are to be output one by one, or are stored in a set of adjacency lists,
one list for each vertex of the spanner. Thus, constructing an explicitly represented
spanner with n vertices and m edges requires Q(n 4+ m) time. Specifically, our lower
bound results in Section 2 hold for explicitly represented spanners with o(nlogn)
edges. Spanners in this section, however, are allowed to contain Q(nlogn) edges, and
if this is the case, the spanners, called implicitly represented spanners, are assumed to
be representable in some implicit fashion. That is, a certain representation of such a

spanner (possibly with Q(nlogn) edges) is assumed to be possible which takes only
o(nlogn) space to construct, such that information of the spanner can be obtained
as if an explicit representation were used. For example, one could, in O(n) space,
somehow represent a coloring of the points in S with several different colors, such that
a spanner (G of S would contain only the edges whose endpoints are of different colors.

Our proof of the Q(nlogn) lower bound for computing ¢-short obstacle-avoiding
paths is inspired by the reduction that de Rezende, Lee, and Wu used to prove the
Q(nlogn) lower bound for computing rectilinear shortest obstacle-avoiding paths [11].
However, the construction in our proof is quite different from that in [11]; furthermore,
we add several new ideas to our construction to prove lower bounds for constructing
various spanners. More specifically, we reduce the problem of sorting an arbitrary set
K of n distinct positive integers Iy, I3, ..., I, (whose range can be much larger than
O(n)) to the t-short path and spanner problems we consider. This reduction is done
mainly by constructing a geometric sorting device based on an (arbitrary) algorithm
for the t-short path or spanner problem.

We first show that the problem of sorting n distinct (positive) integers has an
Q(nlogn) lower bound.

Lemma 3 In the algebraic computation tree model, any algorithm that, given a set S
of n pairwise distinct integers, sorts the elements of S, takes Q(nlogn) time in the
worst case. Furthermore, the Q(nlogn) lower bound also holds for the case of sorting
n positive pairwise distinct integers.

Proof: Yao showed in [14] that the element uniqueness problem for a sequence of
n arbitrary integers has an (nlogn) lower bound in the algebraic computation tree
model. This implies the same lower bound for the problem of sorting a sequence of
n arbitrary integers. We shall reduce the latter problem to that of sorting n pairwise
distinct integers.

Let (o, 1,...,2,-1) be a sequence of n arbitrary integers. For 0 < i < n, let
y; :=nx; +1. Then, (yo,y1,...,Yn—1) so obtained is a sequence of n pairwise distinct
integers. If m is the permutation such that yro) < yr1) < -+ < Yr(n-1), then z,) <
Tr) < 00 < Tr(aon) (i.e., sorting the y;’s immediately gives the z;’s in sorted order).

Reducing the problem of sorting n pairwise distinct integers to the case with only
positive pairwise distinct integers is easy. One only needs to first find the minimum of
the n given integers (in linear time) and then add to each such integer a sufficiently
large positive integral value, in order to obtain a set of positive pairwise distinct
integers to work with. |

Our lower bound proofs are based on the following framework of reduction (but
the actual values of several parameters can vary from one proof to another). Consider
a set K of n positive pairwise distinct integers Iy, Iy, ..., I,. Let I, (resp., I,) be the
smallest (resp., largest) integer in the set K (it is easy to find [, and [, in O(n) time).
For every integer I; € K, first map [; to the point p; = (/;,0) in the plane, and then
construct a rectangle R; and a rectilinear notch N; associated with p;, as follows (see
Figure 1). The edges of R; and N, are parallel to an axis of the coordinate system.
The cutoff of the rectilinear notch N; forms a § x 0 square s; whose vertices are b, ¢,

Figure 1: The rectangle R; and rectilinear notch N; associated with the point p;.

d, and e (the value of ¢ is carefully chosen to be sufficiently small and this will be done
later). The point p; is at the center of the square s; and also at the center of the edge
gh of R;. The length of the edge gh is §/2, and the length of both the edges ab and
ef of N;is §/4. Let C be a large circle (in the Ly-metric) whose center is at the origin
of the coordinate system and whose radius is dependent on the input value of ¢ and
on the specific problem (to be discussed later). We only consider the half of C' to the
right of the y-axis. Let the upper-right (resp., lower-right) corner of each R; (resp.,
N;) touch the circle C (see Figure 2). Let the obstacle set consist of the R;’s and NV;’s.
It is not hard to observe that, because each R; (resp., N;) is contained in the La-circle
C and its upper-right (resp., lower-right) corner touches C, the visibility graph of the
obstacle vertices in this geometric setting has only O(n) edges (Figure 2). Moreover,
observe that the length of the shortest p,-to-p, obstacle-avoiding path among this set
of obstacles is < 2(1, — I,,). Also, note that once the Ly-circle C' is given, this reduction
can be easily performed in O(n) time.
We are now ready to prove the lower bounds of our problems.

Theorem 3 In the algebraic computation tree model, any algorithm that, given a set of
disjoint polygonal obstacles in the plane with a total of n vertices, two obstacle vertices
pu and p, (of possibly certain point obstacles), and a real number t > 1, computes
a t-short p,-to-p, obstacle-avoiding path in the plane requires Q(nlogn) time in the
worst case.

Proof: We reduce, as discussed above (Figure 2), the problem of sorting a set K of n
positive pairwise distinct integers Iy, I, ..., I, to the problem of computing a ¢-short
pu-to-p, obstacle-avoiding path in the plane, where I, (resp., I,) is the smallest (resp.,
largest) integer in K. The key is to make the heights of the R;’s and N,’s very large,
thus forcing the (unique) t-short p,-to-p, path to go through the points p;, in sorted
order. Specifically, we let § be any real number with 0 < § < 1/8, and let the height
of N, be > 6 4 2t(I, — I,). (Note that this choice of ¢’s value ensures that the NV;’s
and R;’s are pairwise disjoint.) Next, we let C' be the Ly-circle whose center is at the
origin and that passes through the lower-right corner of V,, and let other obstacles R;
and N; touch C as discussed above (Figure 2). Now, observe that the height of any R,

Figure 2: Reducing integers Iy, I, ..., I,, to a geometric setting.

(resp., N;), for each i = 1, 2, ..., n, is no smaller than the height of N, (which is >
d +2t(l, — 1)), because R; (resp., N;) touches the half circle of C' on or to the left of
that of N,. Also, observe that, because of the heights of the obstacles in this setting
(Figure 2), there can be only one t-short p,-to-p, path in the plane. Furthermore, this
t-short p,-to-p, path goes through the edge of each R; that contains p;, and the length
of this t-short path is < 2t([, — [,,). In fact, for every value ¢’ with 1 < ¢ < ¢, the
t'-short p,-to-p, path in this geometric setting is identical to the ¢-short p,-to-p, path.

After the O(n) time reduction, we simply use an (arbitrary) algorithm to compute
a t-short p,-to-p, path in this geometric setting. Then tracing this path from p, to p,
(in O(n) time) will give us a sorted sequence of the integers Iy, I5, ..., I,. Therefore,
the Q(nlogn) lower bound holds for the ¢-short path problem in an obstacle-scattered
plane. |

It is worth pointing out that Theorem 3 can be easily generalized to obstacle-
scattered spaces of higher dimensions.

Theorem 4 In the algebraic computation tree model, any algorithm that, given a set
of disjoint polygonal obstacles in the plane with a total of n vertices, and a real number
t > 1, constructs a t-spanner (explicitly or implicitly represented) requires Q(nlogn)
time in the worst case.

Proof: We first perform exactly the same reduction as in the proof of Theorem 3
(with the same values for the parameters). We then use an (arbitrary) algorithm to
construct a t-spanner G whose vertices are precisely the obstacle vertices (it does not
matter whether GG is explicitly or implicitly represented). Now observe that, because
of the chosen heights of the obstacles R; and N;, G must contain a t-short p,-to-p,
path P that does not pass through any upper (resp., lower) vertices of the R;’s (resp.,

10

N;’s). Furthermore, observe that (G contains only O(n) edges because the visibility
graph of the obstacle vertices in this setting has only O(n) edges.

From the spanner (G, we remove all its edges whose lengths are > ¢(1, — I,,) (this
can be easily done in O(n) time), and let the graph so resulted be G’. Note that no
edge on the t-short p,-to-p, path P is removed from G since the length of each such
edge is < I, — I, < t(I,— I,). More importantly, G’ has the following property: There
is no path in G' from p, to any upper (resp., lower) vertex of the R;’s (resp., N;’s). If
this were not the case, then there would be a path P’ in G’ from p, to (say) an upper
vertex of an R;. W.lo.g., let R; be the rectangle such that its upper vertex z first
appears in P’. But then the edge on P’ connecting with z cannot be adjacent to an
upper vertex of another Ry, and, consequently, this edge is of a length > ¢([, — [,,), a
contradiction.

It is now an easy matter to find in G’ a p,-to-p, path P* in O(n) time (say,
by performing a depth-first search in G’). Note that P* need not pass through a
particular point p;. But, for each point p;, P* must pass through some of the vertices
in {a,b,c,d, e, f,g,h} that are associated with p; (see Figure 1). We “color” all the
vertices in {a,b,c,d, e, f, g, h} associated with a point p; by a “color” i. Note that, if
we travel along the p,-to-p, path P*, the vertices of the same “color” need not appear
consecutively along P*. Nevertheless, we can obtain a sorted sequence of the input
integers from P*, as follows: We travel along P* from p, to p, two times. In the first
traveling along P*, we keep track of, for each “color”, the last vertex with that “color”
that we encounter. This traveling process can be easily done in O(n) time. After the
first traveling along P*, we travel along P* again, and this time, we output along the
order of P* the “color” vertices that we have kept track of as the result of our first
traveling on P*. That the “colors” we output in this manner are in the sorted order of
the input integers follows from the fact that P* is a path of the visibility graph that
does not pass through the upper (resp., lower) vertices of the R;’s (resp., N;’s). This
proves the theorem. |

Theorem 5 In the algebraic computation tree model, any algorithm that, given a set
of disjoint polygonal obstacles in the plane with a total of n vertices, and a real number
t > 1, constructs an explicitly represented Steiner t-spanner that contains o(nlogn)
Steiner points and o(nlogn) edges requires Q(nlogn) time in the worst case.

Proof: The proof of this theorem can be viewed as a generalization of the ideas used
in proving Theorem 4. We use basically the same reduction framework as in the proof
of Theorem 4 (i.e., reducing the problem of sorting positive pairwise distinct integers
to the geometric setting as shown in Figure 2). However, we need to choose carefully
the values for a few parameters of the geometric setting and to use several additional
observations and ideas in this proof. In particular, we let § be a positive number <
min{l/(2tn?),1/8}, and let the height of N, be a value > ¢ + 2¢tn*(1, — I,)). Note that
once the value of the height of N, is decided, the value of the radius of the Ly-circle
C' and the values of the heights of all the other R;’s and N;’s can also be decided
accordingly.

Suppose that we have used an (arbitrary) algorithm to construct an explicitly
represented Steiner t-spanner G = (V, E) with o(n log n) Steiner points and o(n logn)

11

edges. Then |V| = o(nlogn) because V consists of n obstacle vertices and o(n logn)
Steiner points. It should be pointed out that the o(nlogn) Steiner points can be
scattered all over the obstacle-free region of the plane in any possible fashion.

As in the proof of Theorem 4, the key idea is to obtain from the spanner G an
obstacle-avoiding path P* from p, to p,, such that (1) P* does not pass through any
upper (resp., lower) vertices of the R;’s (resp., N;’s), and (2) with an appropriate
“coloring” of a subset of the vertices in V', the “colors” of the vertices along P* can
lead to finding the sorted sequence of the input integers. However, with the presence of
Steiner points, preventing such a p,-to-p, path P* in GG from going through the upper
(resp., lower) vertices of the R;’s (resp., N;’s) and appropriately coloring a subset of
the vertices in V' must be done in a quite different way from that of the proof of
Theorem 4.

We first discuss how to prevent a certain p,-to-p, obstacle-avoiding path from going
through the upper (resp., lower) vertices of the R;’s (resp., N;’s). Observe that (1)
there is a t-short p,-to-p, path P in GG (because G is a t-spanner), and (2) the length
of every edge on P is < 2t(I, — I,) (because the shortest p,-to-p, obstacle-avoiding
path in the plane is of a length < 2(1, — 1,)), the length of P is < 2t(I, — 1,)). We
obtain another graph G’ from G by removing from G all the edges whose lengths are
> 2t(1, — I.,). Note that no edge on the path P is removed from G. More importantly,
we claim that in G, there is no path from p, to any upper (resp., lower) vertex of the
R;’s (resp., N;’s). If this were not the case, then there would be a path P’ in G’ from
pu to (say) an upper vertex of an R;. W.l.o.g, let R; be the rectangle such that its
upper vertex z first appears in P’. It means that when we travel along P’ from p, to
z, we encounter no other upper (resp., lower) vertex of the R;’s (resp., N;’s) than z.
There can be only o(nlogn) vertices of G on the path along P’ from p, to z, and the
length of this p,-to-z path is > 2tn?(I, — I,) (by our choice of the height of N,). It
then follows that at least one edge on this p,-to-z path is of a length > 2¢(1, — 1,,)
(otherwise, the length of this p,-to-z path in G’ would be < 2t([, — I,,) x o(nlogn)
< 2tn*(I, — I,), a contradiction). But this is a contradiction to the definition of G'.
Note that because GG has only o(nlog n) edges, G can be easily obtained in o(n logn)
time.

We now discuss how to “color” a subset of the vertices in G'. Note that because
of the presence of Steiner points, a p,-to-p, path P’ in G’ (which cannot go through
any upper (resp., lower) vertices of the R;’s (resp., N;’s)) need not pass through any
vertex in the set {a,b, ¢, d, e, f, g, h} associated with a point p; (Figure 3), even though
P’ does have to pass through the “alley” between R; and N;. Our “coloring” method
is based on the following observation:

(%) For a point p;, let r; be the portion of the square s; (recall that s; is defined by
the obstacle vertices b, ¢, d, and e associated with p;) that is on or below the
horizontal line passing through p; (see Figure 3). Then every p,-to-p, path P’ in
G’ goes through at least one point ¢ in r; such that ¢ is either an obstacle vertex
or a Steiner point of G. Furthermore, the distance between p; and ¢ is < §, and
there is a t-short p;-to-¢ path in G’ whose length is < ¢4.

The above observation follows from the facts that such a path P’ is in the visibility
graph, that G contains all edges of G whose lengths are < 2t([, — [,)), and that the

12

Figure 3: Every p,-to-p, path P’ in G’ contains a vertex g of G in r;.

square s; is of size 6 x 6. We do the “coloring” as follows. We first obtain from G’
another graph G”, by removing from G’ all the edges whose lengths are > 1/n%. We
then have the following claims on G":

1. There is no path in G connecting two distinct points p; and p;.

2. For every point p; and every vertex w of G such that the length of the shortest p;-
to-w obstacle-avoiding path in the plane is < ¢, there is a path in G” connecting
p; and w.

Recall that we have chosen to be < 1/(2¢n*). To prove the first claim, observe
that for any two distinct points p; and p;, the shortest p;-to-p; obstacle-avoiding path
in the plane has a length > 1, and hence any t-short p;-to-p; path in G’ also has a
length > 1. Since every t-short p;-to-p; path @) in G’ can have only o(nlogn) vertices
from ', there must be an edge on) whose length is > 1/o(nlogn) > 1/n*. But
such an edge must be removed from G’ by the definition of G". Hence the first claim
follows. To show the second claim, note that there is a t-short p;-to-w path Q" in G’
whose length is < ¢§ < ¢/(2tn?) = 1/(2n?) (since § < 1/(2¢n?)). Hence every edge on
Q' is also of a length < 1/(2n?). By the definition of G"”, such an edge stays in G".
Note that the second claim implies that there is a path in G” connecting p; and the
point ¢, where ¢ is defined as in the observation (*) given above. Also, note that it is
trivial to obtain G” from G’ in o(nlogn) time.

Based on the above two claims, the rest of the “coloring” process is done as follows:
For every point p;, compute the connected component in G” that contains p; (by
performing a depth-first search in G”), and “color” this connected component with a
“color” i. This computation certainly takes o(nlogn) time.

The rest of the proof proceeds as in the proof of Theorem 4: (1) Find a p,-to-p,
path P* in ' (by performing a depth-first search in G'), (2) travel along P* and
keep track of, for each “color”, the last vertex with that “color” that we encounter in
this traveling on P*, and (3) travel along P* again and output along the order of P*
the “color” vertices that we have kept track of in step (2). These steps clearly take
o(nlog n) time. These steps can be easily modified to output the input integers in the
desired sorted sequence, and the correctness can be argued in the same way as in the
proof of Theorem 4. This concludes the proof of this theorem. |

13

Corollary 1 In the algebraic computation tree model, any algorithm that, given a set
of disjoint polygonal obstacles in the plane with a total of n vertices, and a real number
t > 1, constructs an explicitly represented planar Steiner t-spanner with o(nlogn)
Steiner points requires Q(nlogn) time in the worst case.

Proof: Since such a planar Steiner t-spanner uses o(n log n) Steiner points, it contains
only o(nlogn) edges. Hence the corollary follows from Theorem 5. |

As an example of the implications of Corollary 1, the O(nlogn)-time algorithms
in [1] for constructing planar Steiner t-spanners with O(n) Steiner points are asymp-
totically optimal.

References

[1] S. Arikati, D.Z. Chen, L.P. Chew, G. Das, M. Smid, and C.D. Zaroliagis. Planar
spanners and approximate shortest path queries among obstacles in the plane.
Manuscript, 1996.

[2] M. Ben-Or. Lower bounds for algebraic computation trees. Proceedings 15th An-
nual ACM Symposium on the Theory of Computing, 1983, pp. 80-86.

[3] P.B. Callahan and S.R. Kosaraju. Faster algorithms for some geometric graph
problems in higher dimensions. Proceedings 4th Annual Symposium on Discrete

Algorithms, 1993, pp. 291-300.

[4] L.P. Chew. Constrained Delaunay triangulations. Algorithmica 4 (1989), pp. 97—
108.

[5] L.P. Chew. There are planar graphs almost as good as the complete graph. Journal
of Computer and System Sciences 39 (1989), pp. 205-219.

[6] L.P. Chew. Planar graphs and sparse graphs for efficient motion planning in the
plane. Computer Science Tech Report, PC5-TR90-146, Dartmouth College.

[7] K.L. Clarkson. Approzimation algorithms for shortest path motion planning. Pro-
ceedings 19th Annual ACM Symposium on the Theory of Computing, 1987, pp.
56-65.

[8] J.S.B. Mitchell. An optimal algorithm for shortest rectilinear paths among obsta-
cles. Proceedings 1st Canadian Conference on Computational Geometry, 1989,
page 22.

[9] J.S.B. Mitchell. L; shortest paths among polygonal obstacle in the plane. Algo-
rithmica 8 (1992), pp. 55-88.

[10] F.P. Preparata and M.I. Shamos. Computational Geometry, an Introduction.
Springer-Verlag, New York, 1985.

14

[11] P.J. de Rezende, D.T. Lee, and Y.F. Wu. Rectilinear shortest paths in the presence
of rectangular barriers. Discrete & Computational Geometry 4 (1989), pp. 41-53.

[12] J.S. Salowe. Constructing multidimensional spanner graphs. International Journal
of Computational Geometry and Applications 1 (1991), pp. 99-107.

[13] P.M. Vaidya. A sparse graph almost as good as the complete graph on points in
K dimensions. Discrete & Computational Geometry 6 (1991), pp. 369-381.

[14] A.C.-C. Yao. Lower bounds for algebraic computation trees with integer inputs.
SIAM Journal on Computing 20 (1991), pp. 655-668.

15

