

Privacy Preservation of Aggregates in Hidden Databases:
Why and How?

ABSTRACT
Many websites provide form-like interfaces which allow users to
execute search queries on the underlying hidden databases. In
this paper, we explain the importance of protecting sensitive
aggregate information of hidden databases from being disclosed
through individual tuples returned by the search queries. This
stands in contrast to the traditional privacy problem where
individual tuples must be protected while ensuring access to
aggregating information. We propose techniques to thwart bots
from sampling the hidden database to infer aggregate
information. We present theoretical analysis and extensive
experiments to illustrate the effectiveness of our approach.

Categories and Subject Descriptors
H.2.7 Database Administration

General Terms
Algorithms, Management, Measurement, Performance, Security

Keywords
Hidden Databases, Privacy Preservation

1. INTRODUCTION
Databases with public web-based search interfaces are

available for many government, scientific, and health-care
websites as well as for many commercial sites. Such sites are
part of the much talked about hidden web and contain a lot of
valuable information. These sites provide controlled access to
their databases through their search interfaces.

The simplest and most widely prevalent kind of search
interface over such databases allows users to specify selection
conditions (point or range queries) on a number of attributes and
the system returns the tuples that satisfy the selection conditions.
Sometimes the returned results may be restricted to a few (e.g.,
top-k) tuples, sorted by one or more ranking functions
predetermined by the hidden web site. To illustrate the scenario
let us consider the following examples.
Example 1: An auto dealer’s web form lets a user choose from
a set of attributes e.g., manufacturer, car type, mileage, age,
price, engine type, etc. The top-k answers, sorted according to a

ranking function such as price, are presented to the user, where
k is a small constant such as 10.
Example 2: An airline company’s flight search form lets a user
search for a flight by specifying a set of attributes such as
departure and destination cities, date, number of stops, carrier,
and cabin preferences. The top-k flights, sorted according to a
ranking function such as price, are presented.

In this paper, our key observation is that there is a large
class of such websites where individual result tuples from search
queries are public information and raise no privacy concerns
(e.g., availability of a specific model of car, schedule for a
specific flight). However, such sites would like to suppress
inference of aggregate information. In Example 1, while the
auto dealer wishes to allow potential car buyers to search its
database, it would not like to make public information that
enables competitors to infer its inventory, e.g., that a certain
popular car has been in short supply at the dealership in recent
weeks. If the competitors were able to infer such aggregate
information, then this would allow them to take advantage of the
low inventory by a multitude of tactics (e.g., stock that vehicle,
make appropriate adjustments to price).

Likewise in Example 2, an airline company would not wish
to reveal information that enables terrorists to predict which
flights, on what dates, are more likely to be relatively empty. In
recent hijackings such as 9/11 and Russian aircraft bombing of
2004, terrorists’ tactics are believed to be to hijack relatively
empty flights because there would be less resistance from
occupants. If terrorists are able to infer aggregate information
such as Friday afternoon flights from Washington DC to Denver
are emptier than others on average, they could leverage this
information to plan their attacks.

Of course, extremely broad aggregate information is usually
well known and publicly available – e.g., that family sedans are
more common than sports cars, or that flights are usually empty
on Christmas Day. It is the inferences of relatively fine-grained
aggregates as illustrated by the examples above that need to be
protected against, as the impact of such inference can range
from being merely disadvantageous to the data publisher to
posing serious security threats to society at large. Also,
aggregates collected from human efforts (through domain
knowledge) do not provide any form of statistical guarantees,
which may be particularly relevant for fine-grained aggregates.

It is important to recognize that our scenario of Privacy
Preservation of Aggregates is in sharp contrast to the
traditional privacy scenarios, where the individual information
needs to be protected against disclosure but aggregate
information that does not lead to inference to an individual’s
information is considered acceptable disclosure. To our best
knowledge, this form of data privacy is novel and has not been
explored by researchers.

The goal of this paper is to propose techniques that can
enable the owner of a hidden database to guarantee the privacy

∗ Partly supported by NSF grants 0852673, 0852674 and 0845644.
ζ Partly supported by NSF grants 0845644, 0812601 and grants from
Microsoft Research and Nokia Research.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SIGMOD ’09 Providence, RI, USA
Copyright 2009 ACM XXXXXXXXX/XX/XX ...$5.00.

Arjun Dasgupta
CSE Department

UT Arlington
arjundasgupta@uta.edu

Nan Zhang∗
CS Department

George Wash. Univ.
nzhang10@gwu.edu

Gautam Dasζ
CSE Department

UT Arlington
gdas@uta.edu

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

 2

of aggregate information without compromising the utility of
search queries submitted through the front-end search interfaces.

Because most interfaces only allow a limited number of
search results to be returned, and do not allow aggregate queries
(e.g., a query such as “SELECT COUNT(*) FROM D where
<selection-condition>”) to be directly executed, it may seem that
aggregate information is already adequately protected from bots
or malicious users, as they would have to execute an inordinate
number of search queries to collect enough returned tuples to
aggregate at their end. However, in our recent works [DDM07,
DZD09], we have studied how an external application can
leverage the public interface of a hidden database to draw high
quality uniform random samples of the underlying data, which
can then be used to approximately infer fine-grained aggregates.
As the size of the samples collected increases, the estimation of
aggregates becomes more robust. In particular, we proposed two
samplers that can be used against a wide variety of existing
hidden databases: HIDDEN-DB-SAMPLER [DDM07] and
HYBRID-SAMPLER [DZD09]. These approaches can be very
effective, as in many cases, approximate aggregates can provide
the critical insights into the data. These samplers obtain samples
from the restrictive interface provided by hidden databases in an
efficient manner by optimizing the number of queries posed to
the database. Thus, our main challenge is to develop techniques
to thwart such sampling attacks.
Technical Challenge: Given a hidden database, develop
techniques that make it very difficult to obtain uniform random
samples of the database via its search interface without
necessitating human intervention.

Note that if we were to accept a “human in the loop”, then a
seemingly simple solution is to embed into the search interface a
human-readable machine-unrecognizable image called
CAPTCHA [EDHS07], and to require each user to provide a
correct CAPTCHA solution before executing every search
query. This strategy is used in a number of real-world websites1.
Nonetheless, a key limitation of this approach is that it
eliminates the possibility of any automated access, including
legitimate ones such as third-party web services, over the hidden
database. Such limitation is becoming increasingly problematic
with the growing popularity mash-up web applications.

Thus, we aspire to develop techniques that allow search
queries issued by bona fide users, both human as well as third-
party web applications, but at the same time make it very
difficult for adversaries including automated bots by forcing
them to execute an inordinate number of search queries before
they can obtain a small random sample of the database.

While there has been significant recent work in the areas of
privacy preserving data mining [AS00, CKV+03, ZZ07], data
publishing [Swe02], OLAP [AST05], and information sharing
[AES03], these techniques are inadequate for our purposes.
Unlike our scenario, these techniques are appropriate where the
privacy of the individual needs to be preserved - e.g., in a
medical database, it is acceptable to reveal that the number of
HIV patients is 30% more than cancer patients, but not
acceptable to reveal that a particular patient has HIV. Tuplewise
privacy preservation techniques such as encryption [AES03],
data perturbation [AS00] and generalization methods [Swe02]
cannot be used in our framework either as obfuscating
individual data tuples is not an option since tuples need to be
made visible to normal search users. The well-studied online
query auditing [NMK+06], which answers or denies a query
based on the user’s query history, is also not applicable in our

1 e.g., http://www.seatcounter.com/

scenario as these websites provide public interfaces and cannot
monitor individual users’ history of past queries.
Our Approach: In this paper we present novel techniques for
protecting aggregates over hidden databases. We propose a
privacy-preserving algorithm called COUNTER-SAMPLER,
which can be used to defend against all possible sampling
attacks. The key idea used in COUNTER-SAMPLER is to insert
into the hidden database a small number of carefully constructed
dummies tuples, i.e., tuples that do not exist in the original
hidden database but are composed of legitimate attribute values.

The reasons why dummy tuples can be effective at
defending against sampling attacks are subtle - we defer a
detailed discussion for later in the paper, but provide brief
intuition here. Our approach builds on the observation that all
existing sampling attacks retrieve uniform random sample from
tuples returned by queries that select at most k tuples each
(where k is a small constant such as 10 or 100), because
otherwise the search on the hidden database will return only the
top-k tuples sorted by ranking functions unknown to the
sampler, and hence cannot be assumed to be random. In other
words, we target a common characteristic of samplers to find
“valid” search queries that neither “overflow” (i.e., do not have
broad conditions that select more than k tuples) nor “underflow”
(i.e., do not have narrow conditions that select no tuple). Thus,
the key idea of COUNTER-SAMPLER is to carefully construct
and insert dummy tuples into the database such that most valid
(and some underflowing) queries are converted to overflowing
queries, thus significantly decreasing the proportion of valid
queries within the space of all possible search queries. As a
result, any sampler which generates samples from valid queries
has to execute a huge number of queries before it encounters
enough valid queries be able to generate a uniform random
sample.

Of course, the presence of dummy tuples presents an
inconvenience to normal search users or applications, which
have to now distinguish the real tuples from the dummy tuples
in the returned results of any search query. How to distinguish
dummy tuples from real tuples is discussed later in the paper.
Nevertheless, to reduce such inconveniences, our objective is to
minimize the number of inserted dummy tuples while providing
the desired privacy guarantees. Our analytical as well as
experimental results show that only a small number of dummy
tuples are usually inserted by COUNTER-SAMPLER to provide
adequate privacy guarantees.
Summary of Contributions:
• We define the novel problem of Privacy Preservation of

Aggregates in Hidden Databases.
• We develop COUNTER-SAMPLER, a privacy-preserving

algorithm that inserts dummy tuples to prevent the efficient
sampling of hidden databases.

• We provide theoretical analysis on the privacy guarantee for
sensitive aggregates provided by COUNTER-SAMPLER.

• We describe a comprehensive set of experiments that
demonstrate the effectiveness of COUNTER-SAMPLER.
Although it is universally effective against all possible
sampling attacks, we demonstrate its effectiveness against
the state-of-the-art sampling algorithms, HIDDEN-DB-
SAMPLER [DDM07] and HYBRID-SAMPLER [DZD09].
The rest of this paper is organized as follows. We introduce

preliminaries notions in Section 2, the basic ideas behind
COUNTER-SAMPLER in Section 3, the actual algorithm and
analysis in Section 4, case studies against existing attacks in

 3

Section 5, experimental results in Section 5, related work in
Section 6 and final remarks in Section 7.

2. PRELIMINARIES
2.1 Hidden Databases

In most of this paper, we restrict discussions to categorical
data – we discuss extensions to numerical data in Section 4.5.
Consider a hidden database table D with m tuples t1,…,tm on N
attributes a1,…,aN. The table is only accessible through a web-
based interface where users can issue queries that specify values
for a subset of the attributes, say a1, …, an. We refer to such
queries as the search queries, which are of the form: QS: SELECT
* FROM D WHERE ac1 = vc1 AND ··· AND acu = vcu, where vc1,…,vcu
are from the domains of ac1,…,acu ∈ { a1, …, an}, respectively.

Let Sel(QS) be the set of tuples in D that satisfy QS. As is
common with most web interfaces, we assume that the query
interface is restricted to only return up to k tuples, where k << m
is a pre-determined small constant. If the query is too broad (i.e.,
|Sel(QS)| > k), only the top-k tuples in Sel(QS) will be selected
according to a ranking function, and returned as the query result.
The interface will also notify the user that there is an overflow.
At the other extreme, if the query is too specific and returns no
tuple, we say that an underflow occurs. If there is neither an
overflow nor an underflow, we have a valid query result.

In this paper, we assume that the interface does not allow a
user to “scroll through” the complete answer Sel(QS) when an
overflow occurs. We argue that this is a reasonable assumption
because many real-world top-k interfaces only allow a limited
number of “page turns”. Google, for example, only allows 100
page turns (10 results per page) per query. This essentially
makes Google a top-1000 interface in our model.

2.2 Privacy Requirements
Consider aggregate queries of the form: SELECT AGGR(*)
FROM D WHERE ac1=vc1 AND···AND acu = vcu, where AGGR(·) is
an aggregate function such as COUNT, SUM, etc, and vc1, …,
vcu are from the domains of ac1, …, acu, respectively. Let
Res(QA) be the result of such an aggregate query. As discussed
Section 1, due to privacy concerns the owner of a hidden
database may consider certain aggregate queries to be sensitive
and would not willingly disclose their results.

To quantify privacy protection, we first define the notion of
disclosure. Similar to the privacy models for individual data
tuples [NMK+06], we can define the exact and partial
disclosure of aggregates. Exact disclosure occurs when a user
learns the exact answer to an aggregate query. Exact disclosure
is a special case of partial disclosure; the latter occurs when
there is a significant change between a user’s prior and posterior
confidence about the range of a sensitive query answer.

In this paper we consider the (broader) partial disclosure
notion because approximate answers are often adequate for
aggregate queries. Carrying the same spirit in the privacy-game
notion for individual data tuples [KMN05], we define the
following (ε, δ)-privacy game between a user and the hidden
database owner for a sensitive aggregate query QA:
1. The owner chooses its defensive scheme.
2. The user issues search queries and analyzes their results to

try and estimate Res(QA).
3. The user wins if ∃x such that the user has confidence > δ

that Res(QA) ∈ [x, x+ε]. Otherwise, the user loses.
Based on the (ε, δ)-game notion, we define the privacy

requirement for a hidden database as follows:

Definition 2.1: We say that a defensive scheme achieves (ε, δ,
p)-privacy guarantee for QA iff for any user, Pr{A wins (ε, δ)-
privacy game for QA} ≤ p.

The probability is taken over the (possible) randomness in
both the defensive scheme and the attacking strategy. Note that
if a defensive scheme achieves (ε, δ, p)-privacy guarantee, then
no user can win a (ε0, δ0)-privacy game with probability of p0 if
ε0 ≤ ε, δ0 ≥δ, and p0 ≥ p. Thus, the greater ε or the smaller δ and
p are, the more protection a (ε, δ, p)-privacy guarantee provides.

2.3 Attack: Cost and Strategies
A user cannot directly execute aggregate queries. Instead, it

must issue search queries and infer sensitive aggregates from the
returned results. There may be an access fee for search queries
over a proprietary hidden database. Even for hidden databases
with publicly available interfaces, the server usually limits the
number of queries a user can issue before blocking the user’s
account or IP address (e.g., Google SOAP Search API enforces
a limit of 1,000 queries per day [Google08]). Thus, we define
the attacking-cost limit umax as the maximum number of search
queries that a user can issue. Such limits make it unrealistic for
an attacker to completely crawl a large hidden database.
However, as recent research [DDM07, DZD09] has shown, such
databases are vulnerable to sampling attacks, which are based on
the generation of uniform random samples (with replacement)
from the database and the approximate estimation of sensitive
aggregates from the samples.

2.4 Defense: Dummy Insertion
We study the strategy of inserting dummy tuples to defend

against sampling attacks. To enable a bona fide search user to
distinguish real tuples from dummies, we propose to accompany
each returned tuple with a CAPTCHA flag indicating whether it
is real or dummy. Unlike the CAPTCHA challenge discussed in
Section 1, our scheme applies to a large class of third-party
applications such as meta-search engines2. In particular, a meta-
search engine queries several hidden databases based on a
search condition specified by an end-user, and then returns the
union of all returned tuples after (re-)sorting or filtering. In the
process, it treats all tuples in the same manner regardless of real
or dummy. The engine does not parse any CAPTCHA itself, and
instead simply forwards the tuples with the CAPTCHA flags
they receive from the hidden database to end-users.

An important note of caution is that the attribute values of a
dummy tuple may allow an adversary to identify it as a dummy,
essentially incapacitating the CAPTCHA flag. In particular, an
adversary may identify a dummy tuple by checking whether its
attribute values violate constraints obtained by the adversary
through external knowledge (e.g., that the airline in Example 2
does not operate any flight out of Seattle, WA). A solution to
this problem requires the proper modeling of external
knowledge, which we will leave as an open problem. In this
paper, we assume that there exists a dummy-generating oracle
DUMMY-ORACLE(m0, C) which generates dummy tuples that
(1) satisfy the search condition C, and (2) cannot be identified as
a dummy by the adversary. The oracle terminates when either no
more tuples satisfying the above conditions can be generated, or
m0 dummy tuples have been generated, whichever occurs first.

2.5 Problem Definition
The objective of defense is to protect sensitive aggregates

while maintaining the utility of search queries to normal users.

2 e.g., http://www.kayak.com/

 4

We measure the (loss of) utility by the number of inserted
dummy tuples: more dummy tuples increases inconvenience for
normal users and hence reduces utility3. The problem studied for
the remainder of this paper is formally defined as follows:
Problem: Given the attacking-cost limit and a set of sensitive
aggregate queries, the objective of dummy insertion is to
achieve (ε, δ, p)-guarantee for each aggregate query while
minimizing the number of inserted dummy tuples.

3. SAMPLING ATTACK AND DEFENSE
In this section, we develop the main intuitive ideas behind

COUNTER-SAMPLER, our algorithm for defense against all
possible sampling attacks. The actual algorithm and its analysis
are presented later in Section 4. For simplicity, in this section we
shall consider Boolean databases (extensions for categorical and
other non-Boolean databases will be discussed later in Section
4). We assume the actual number of tuples m is much smaller
than the space of possible tuples, which is at least 2n. We shall
frequently refer to the two running examples in Table 1:
Example A: A Boolean database with m unique tuples on n
attributes. Only one tuple t1 = <0,…, 0,1> satisfies a1=a2=0.
Example B: A Boolean database with m = 2l unique tuples on n
attributes. All tuples satisfy a1 = ··· = an–l = 0.

Table 1. Examples
a1 a2 a3 ··· an–1 an a1 ··· an–l ··· an
0 0 0 ··· 0 1 0 ··· 0 ··· 1

1 0 0 ··· 1 1 0 ··· 0 ··· 0

··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···

0 1 1 ··· 0 0 0 ··· 0 ··· 1

Example A Example B

3.1 A Common Characteristic of Sampling
Algorithms

We begin by finding a common characteristic for all existing
sampling attacks. Recall that a search query has three possible
outcomes: overflow, valid, underflow. A common characteristic
for all existing samplers [DDM07, DZD09] is: to obtain a
uniform random sample tuple t, a sampler must have discovered
at least one valid search query that contains t in its result. The
reason for this property is that sample tuples are only retrieved
from results of valid queries: An underflowing query of course
does not return any tuple. And even though an overflowing
query returns k tuples, these are the top-k tuples preferentially
selected by a ranking function, and hence cannot be assumed to
be random. We focus on defending against sampling algorithms
with this property in the paper.

It is also worth noting a restriction on how valid queries can
be discovered: they cannot be constructed using tuples returned
by overflowing queries. Without this restriction, a trivial way to
generate a valid query is to issue SELECT * FROM D, pick one
of the k returned tuples, and construct an n-predicate query from
it. Such valid queries are useless for sampling due to the same
reason why overflowing queries cannot be used: The returned
tuples are not randomly but preferentially selected by some
ranking function.

3 Admittedly, this is a simplified measure because a dummy tuple in a

frequently issued search query might introduce more inconvenience
than one that is rarely retrieved. We propose to study such query-
distribution-based utility measures in the future.

3.2 Single-Sample Attack and Defense
We start with a simple version: how a sampler can obtain

one uniform random sample tuple by finding one valid query,
and how to defend against such single-sample attacks by forcing
a sampler to issue a large number of queries. There are two
important concepts related to the space of search queries used in
this subsection: the universal space Ω and the active space Θ.
The universal space Ω is the set of all possible search queries.
The active space Θ will be defined during the discussion later,
but intuitively, at any point during the search for a valid query,
Θ is a subset of Ω containing only those queries that are
candidates for issuing at a subsequent time. That is, after a
sampler receives a query answer, it removes from Θ all queries
which it determines should never be issued later.

3.2.1 How to Find a Single Valid Query
Consider the task of finding one valid query. A naïve sampler
may randomly choose a query from Ω, submit it through the
interface, and retry if the query returns not valid. However, this
is extremely inefficient: Each tuple may be retrieved by (at
most) nC0 + nC1 + ··· + nCn = 2n queries, where nCi is the number
of i-predicate queries that retrieve the tuple4. On the other hand,
the universal space Ω contains 3n unique queries because each
attribute ai has three possibilities in the query specification (i.e.,
ai = 0, ai = 1, or not specified). Thus, the probability of picking a
valid query is at most m ⋅ (2/3)n, which is extremely small when
n is large. Thus, such a naïve sampler may need to issue a very
large number of queries before it encounters a valid query.

Due to the low percentage of valid queries in Ω, in order to
find a valid query without incurring a high query cost, any
reasonable sampler should not blindly guess the next query to
issue. Instead, it should adopt a “smarter” strategy to reduce the
active space of candidate queries based on the previously
received query answers and improve efficiency.

In what follows we investigate the characteristics of such
smart samplers that attempt to reduce the active space of
candidate queries. We first describe examples that illustrate the
various ways in which Θ can be shrunk. We then follow with a
more general quantification of the amount of shrinkage possible
by receiving answers to any arbitrary search query.
Examples of Active Space Shrinkage: As a sampler issues
queries and receives their answers, it is able to shrink the active
space Θ. For example, let the first query issued be Q1: SELECT
* FROM D WHERE a1 = 1. We discuss the three possible
outcomes of Q1: underflow, overflow, and valid, respectively:
Case 1: Q1 underflows: In this case the size of Θ decreases to
3n–1 because
• Since Q1 underflows, any query with predicate a1 = 1 will

underflow. Thus, all such queries can be removed from Θ.
• Any query with predicate a1=0 can also be removed because

it will remain the same after removing predicate a1 = 0. That
is, it can be reduced to another query in the remaining Θ.

• Thus, Θ contains only 3n–1 queries with no predicate of a1.
Case 2: Q1 overflows: Any smart sampler can first remove from
Θ two queries, Q1, and SELECT * FROM D, because they both
will overflow. Furthermore, since Q1 overflows, at least k + 1
queries with predicate a1 = 1 are valid. Since the sampler only
aims to find one valid query, it may choose to remove from Θ
all queries except those with predicate a1 = 1. After doing so, the
size of Θ becomes 3n–1.

4 The reason is that once the i (out of n) attributes are chosen, their

values in the search condition are determined by the tuple’s values.

 5

Case 3: Q1 is valid: The sampler concludes the search for a valid
query. The new size of Θ is shrunk to 1.

As we can see, no matter whether Q1 underflows, overflows,
or returns valid answers, it always shrinks Θ and thereby
reduces the query cost for obtaining one valid query. The formal
definition of Θ is as follows:
Definition 3.1 (Active Space): The active space Θ is the
minimum subset of Ω for which there exists a previously issued
overflowing query Q such that every query Q´ ∈ Ω which
contains all predicates of Q can be inferred from the previously
received query answers and the answer to a query in Θ.
Quantifying Active Space Shrinkage: We now generalize the
above observations and derive the amount of shrinkage possible
by any arbitrary query Qc containing c Boolean predicates:
• An underflowing Qc can remove from Θ as many as (c +

1)⋅3n–c queries consisting of two disjoint sets: (1) at most 3n–c
queries each of which includes all predicates of Qc, as these
queries always underflow, and (2) at most c⋅3n–c queries
each of which includes c – 1 predicates of Qc and the
complement of the remaining predicate of Qc, because such
a query is equivalent to a corresponding query (that is
retained in Θ) with the last predicate removed.

• An overflowing Qc may lead to an active space only
containing queries with all of Qc’s predicates, as it is
guaranteed to contain at least one valid query. Thus, Θ may
shrink to size as small as ≈ |Θ|/3c

. Note that when c is large,
such reduction of Θ is usually much more significant than
that with an underflowing query.

• A valid query Qc concludes the search for the current valid
query and shrinks Θ to size 1.

Key Observations: Based on the above discussion, we make
two key observations on single-sample attack characteristics:
• Shrinking Θ significantly reduces sampling query cost. Thus

any smart sampler should attempt to issue queries that
maximize the shrinkage of Θ.

• In particular, valid queries as well as long overflowing
queries contribute the most to shrinking Θ and thereby lead
to the most reduction in the cost of sampling. Here “long”
refers to queries having many predicates. Thus a smart
sampler should attempt to issue these types of queries as
often as possible.

3.2.2 Neighbor Insertion: Defense against Single-
Sample Attacks

To defend against single-sample attacks, we introduce a
strategy called Neighbor Insertion based on the attacking
characteristics discussed above. Recall from Section 1 that we
cannot change/remove existing tuples, as this will pose a severe
adverse impact to normal search users. Instead, we propose to
insert dummy tuples into the database in such a way that valid
and/or underflowing queries get converted into overflowing
ones, thus making the task of finding a valid query by a sampler
difficult (note that with the insertion of dummy tuples,
overflowing queries will continue to overflow).

Recall from the key observations above that an efficient
single-sample attack relies on two types of queries: valid queries
and long overflowing queries. These two types form the main
threat to defense. Fortunately, long queries (both overflowing as
well as valid) are usually difficult for a sampler to find even
before dummy insertion: within the (2c ⋅ nCc) c-predicate queries
in Ω, the total number of valid and overflowing queries is at

most m⋅ nCc; thus the probability of choosing one is no more
than m/2c, which is extremely small when c is large5. This
inherent difficulty of finding long valid/overflowing queries
leaves us with short valid queries as being the most dangerous
threat to the defense. Thus, our objective of dummy tuples
insertion is to convert short valid queries into short overflowing
queries; the latter are orders of magnitude less effective in
shrinking Θ (recall that a c-predicate overflowing query Qc
reduces Θ to approximately |Θ|/3c).

To convert short valid queries to short overflowing queries,
our basic idea is to insert dummy tuples into the “neighboring
zone” of real tuples (i.e., sharing the same values on a large
number of attributes). In Example A, <0,…,0,0> is a neighbor of
t1 = <0, …,0,1>, and may be added as a dummy tuple to
overflow an originally valid query SELECT * FROM D
WHERE a1=0 AND a2=0 when k = 1. In our algorithm, we
choose to add dummy tuples such that all valid queries with
fewer than b predicates will overflow, where b is a parameter.
We refer to such a method as b-neighbor insertion. The detailed
algorithm and analysis will be provided in Section 4.

3.3 Multi-Sample Attack and Defense
Having discussed the simple single-sample cases, we now

consider practical cases where a sampler must obtain multiple
uniform random sample tuples. We will point out the key
differences between the two cases, and present an additional
strategy called high-level packing to defend against all possible
multi-sample attacks.

3.3.1 How to Find Multiple Valid Queries
Recall from Section 3.1 that obtaining multiple sample

tuples may require the sampler to find multiple valid queries. To
do so, a sampler can always invoke a single-sample attack for
multiple rounds by resetting Θ to Ω at the end of each round.
For such samplers, our neighbor insertion technique discussed
above would provide adequate defense. However, such samplers
are hardly optimal - they are essentially memory-less and use no
information from queries answered in the previous rounds. In
what follows, we investigate the characteristics of “smart”
samplers that can take advantage of historic queries in multi-
sample attacks, and then describe additional defense techniques
to counter such attacks.

Recall two important concepts: the universal space Ω and
the active space Θ. For multi-sample cases, we further
distinguish between two types of active spaces, the essential
space ΘE and the focused space ΘF. They will be formally
defined later in the discussion, but intuitively, ΘE is a subset of
Ω that excludes all queries the sampler knows will not be issued
during the entire search process, while ΘF is a subset of ΘE that
further excludes all queries the sampler knows should not be
issued during the search for the current valid query. For single-
sample attacks, Θ=ΘE=ΘF. However, for multi-sample attack,
ΘE excludes queries based on historic information that a sampler
is able to carry over to future rounds.
Examples Comparing with Single-Sample Attacks: Consider
again Q1: SELECT * FROM D WHERE a1 = 1. The
consequence of an underflowing Q1 is similar to the single-
sample case. All queries removed from Θ in that case can be
simultaneously removed from ΘE and ΘF. However, there are
two important differences in the aftermath of valid and
overflowing queries:

5 Esp. when the size of the database is much smaller than the space of all

possible tuple values (m << 2n). This is usually the case in practice.

 6

First, a valid Q1 shrinks ΘE for the subsequent search of
valid queries, but not to the size of 1 (as was the case with Θ for
the single-sample case). In particular, the size of ΘE will
decrease to 3n–1 due to the following reasons:
• All queries with predicate a1 = 1 can be removed from ΘE

because their answers can be inferred from the returned
tuple of Q1 (by matching them with all predicates).

• All queries Q without predicate of a1 can also be removed
from ΘE because the answer to such a query is a union of (1)
the tuple in Q1 that match all predicates of Q, and (2) the
answer to Q' which is the same as Q except having an
additional predicate a1=0. (i.e., Q can be reduced to Q').

• Thus, the essential space ΘE contains only queries with
predicate a1 = 0. Similar to the discussion in Section 3.2.1
for overflowing queries, there are 3n–1 such queries.
Second, with an overflowing Q1, the distinction between ΘE

and ΘF becomes necessary. Recall that in a single-sample case,
two types of queries are removed from Θ: The first type has two
queries, Q1 and SELECT * FROM D, which always overflow.
These can be removed from both ΘE and ΘF in multi-sample
attacks. The second type contains all queries without predicate
a1 = 1, because the sampler chooses to focus on queries with this
predicate. These queries can be removed from ΘF as they should
never be issued during the search for the current valid query.
However, they cannot be removed from ΘE if the sampler needs
to find more valid queries than the two guaranteed in ΘF.

Formally, we have the following definition of ΘE:
Definition 3.2 (Essential Space): The essential space ΘE is the
minimum subset of Ω such that for every query Q ∈ Ω, there
exists Q´ ∈ ΘE such that the answer to Q can be inferred from
the answer to Q´ and the previously received query answers.

That is, a query should be excluded from ΘE iff (1) its
answer can be inferred from the previously received query
answers, or (2) it can be reduced to another query in the new ΘE.
Such a query never needs to be issued. Thus, the size of ΘE
decreases monotonically over time. Based on the definition of
ΘE, the formal definition of ΘF is as follows:
Definition 3.3 (Focused Space): The focused space ΘF is the
minimum subset of ΘE for which there exists a previously issued
overflowing query Q satisfying the next drawn sample tuple,
such that ΘF includes every query Q´ ∈ ΘE which contains all
predicates of Q.

The focused space ΘF only contains queries in ΘE that the
sampler chooses to focus on for finding the current valid query.
A query in ΘE\ΘF may be issued to find other valid queries in
the future. In particular, to generate uniform random samples,
ΘF decreases monotonically during the process of finding each
valid query, but must be reset to ΘE to find the next valid query.
Quantifying Shrinkage of ΘE and ΘF: We again generalize
the results to any c-predicate search query Qc:
• An underflowing Qc has similar consequence as the single-

sample case: up to (c+1)⋅3n–c queries should be removed
from both ΘE and ΘF.

• An overflowing Qc removes from ΘE as many as 2c queries
which are formed by a subset of the predicates of Qc because
they all overflow. In addition, Qc leads to a focused space
ΘF consisting of queries with all of Qc’s predicates. The size
of ΘF can be as small as |ΘE|/3c.

• A valid query Qc concludes the search for the current valid
query. Similar to the underflowing case, it also removes
from ΘE as many as (c+1)⋅3n–c queries.

Key Observations: Based on the above discussions, we make
two key observations on the characteristics of multi-sample
attacks:
• For multi-sample attacks, shrinking ΘE contributes more to

the efficiency of sampling than shrinking ΘF, because the
shrinkage of ΘE accelerates the process of finding all
remaining valid queries while the shrinkage of ΘF only
accelerates the search for the current valid query.

• In particular, short underflowing queries become a major
threat to defense because each of them may remove from the
“critical” ΘE as many as (c+1)⋅3n–c queries, which is much
more than the reduction of 2c queries by an overflowing
query. Thus, a smart multi-sample attacker should attempt to
issue these types of queries as often as possible.

3.3.2 High-Level Packing: Defense against Multi-
Sample Attacks

We introduce another dummy insertion defensive strategy
called High-Level Packing based on the attacking
characteristics discussed above. The objective here is to address
the new threat from short underflowing queries. We do so by
converting such queries into short overflowing queries which are
much less effective for shrinking ΘE. With such conversion, the
reduction in the size of ΘE may be lessened by orders of
magnitude, from (c+1)⋅3n–c to 2c (e.g., from 8.6×107 to 32 when
n=20 and c=5). Although the converted short overflowing query
also sets ΘF to size |ΘE|/3c, the impact of ΘF only lasts during the
search for the current valid query.

To convert short underflowing queries to overflowing ones,
we need to “pack” such queries with dummy tuples. In Example
B, when k = 1, <1,0,…,0> and <1,0,…,1> may be added as
dummy tuples to overflow an originally underflowing query
SELECT * FROM D WHERE a1 = 1. More generally, in our
algorithm we choose to add dummy tuples such that all
underflowing queries with fewer than d predicates will
overflow, where d is a parameter. We refer to such a method as
d-level packing.

In our COUNTER-SAMPLER algorithm, high-level
packing is used alongside neighbor insertion to defend against
all multi-sample attacks. The detailed algorithm and analysis are
provided in the next section.

4. COUNTER-SAMPLER
In this section, we present the detailed algorithm of

COUNTER-SAMPLER and analyze its performance.

4.1 Algorithm COUNTER-SAMPLER
Algorithm COUNTER-SAMPLER consists of two steps: d-

level packing (Lines 1-6) and b-neighbor insertion (Lines 7-15).
The subroutine DUMMY-ORACLE was discussed in Section
2.4. Lines 1-6 ensure that no (d–1)-predicate (or shorter) query
will underflow, while Lines 7-15 ensure that no (b–1)-predicate
(or shorter) query will be valid. Thus, Algorithm COUNTER-
SAMPLER achieves d-level packing and b-neighbor insertion.

Note that while COUNTER-SAMPLER does not require the
hidden database D to be Boolean, for ease of discussion our
following analysis will be restricted to Boolean databases. We
will discuss categorical and numerical databases in Section 4.5.
Also, for this moment, we assume b and d are parameters set by
the hidden database owner. How they should be determined will
be discussed in Section 4.2.

 7

4.2 Privacy Guarantee
To provide a privacy guarantee against any sampler that

aims to draw uniform random samples from the hidden database,
we will first prove a lower bound on the expected number of
search queries required for a sampler to find s uniform random
sample tuples over a Boolean hidden database. Based on the
bound, we will derive a (ε,δ,p)-privacy guarantee achieved by
COUNTER-SAMPLER.

Before formally presenting the results, we would like to
point out that although Algorithm COUNTER-SAMPLER is
quite intuitive, the theoretical analysis is quite challenging and
consequently the derived bounds are rather loose. We also point
out that the results address the class of samplers that use finding
valid queries as a part of their sampling strategy. Our goal of
presenting these analytical results is not to promote the tightness
of bounds, but to demonstrate the versatility of COUNTER-
SAMPLER in defending against any arbitrary sampler.
However, as our experiments in Section 6 show, the actual
performance is much better in practice.
Lemma 4.1: For a Boolean hidden database with m tuples, after
COUNTER-SAMPLER has been executed with parameters b
and d such that 4s(b–d)(d+1)  ≤  3d and m ≤  2d–1, any sampler
needs at least an expected number of 4s(b–d)/3 search queries to
find s uniform random sample tuples over the database.

Due to space limitation, we omit the proof – it is based on
the main ideas discussed in Section 3, and the full details are
available at [DZDC08]. Interestingly, the bound is decreasing
with d, which seems to suggest that d-level packing is hurting
the defense. However, this is not true because, in order for the
lemma to hold, d must be large enough to satisfy the two
conditions in the lemma. The reason why the bound decreases
with d is because a “smart” sampler (which may be aware of the
COUNTER-SAMPLER algorithm and hence knows b and d)
does not need to issue any queries with fewer than d-predicates.

Based on the lemma, the following Theorem 4.2 provides
privacy guarantees for sensitive COUNT aggregate queries.
Recall from Section 2 that the attacking-cost limit umax is the
maximum number of search queries that an adversary can issue.

Theorem 4.2. For a Boolean hidden database with m tuples,
when all samplers have an attacking-cost limit umax, for any

COUNT query with answer in [x, y], the hidden database owner
achieves (ε,δ,50%)-privacy guarantee if COUNTER-SAMPLER
has been executed with parameters b and d which satisfy

(a) and
(b)

where erf–1(⋅) is the inverse error function.
The details of the proof are available in [DZDC08], but in

brief, Conditions (a) and (b) directly follow from Lemma 4.1
and a lower bound on the number of samples required to win a
(ε, δ)-privacy game, which can be derived via standard sampling
theory. The theorem can be easily extended to other types of
aggregates (e.g., SUM) by making proper assumptions on the
distribution of the measure attribute.

Theorem 4.2 provides guidelines on the parameter settings
for b and d. In particular, Conditions (a) and (b) imply lower
bounds on d and b, respectively. Note that the smaller b or d is,
the fewer dummy tuples are required. Thus, to achieve a (ε, δ,
50%)-privacy guarantee, for a given attacking-cost limit umax,
we should first set d to be the minimum value that satisfies
Condition (a), and then compute b as the minimum value that
satisfies Condition (b). Ideally, we can follow these settings to
make Algorithm COUNTER-SAMPLER parameter-less.
Nonetheless, as discussed earlier, this theorem only provides
necessary but not sufficient conditions for (ε, δ, 50%)-privacy
guarantee. In practice, other (tighter) bounds on the b and d
suffice, as we will demonstrate in the experimental results.

An interesting observation is that Condition (b) depends on
the range [x, y] of COUNT query answers. In particular, for
given values of umax, b, d, and δ, the value of ε is maximized
when x = y = m/2. This shows that COUNTER-SAMPLER
provides the strongest privacy guarantee when a COUNT query
is neither too broad nor too narrow. This is consistent with our
objective (Section 1) of protecting fine-grained aggregates.

It is important to note that the privacy guarantee holds for
all COUNT queries against possible sampling algorithms. This
renders inference-based attacks that try to infer aggregates by
combining answers of two or more non-sensitive queries,
useless.

4.3 Number of Inserted Dummy Tuples
The privacy guarantee derived above is independent of the

interface parameter k. The number of inserted dummy tuples
however, depends on k because, intuitively, for a larger k more
dummy tuples are required for making underflowing or valid
queries overflow. The number of inserted dummy tuples also
depends on the original data distribution. For example, when the
data is densely distributed into a few clusters, b-neighbor
insertion requires much fewer dummy tuples than when all
attributes are i.i.d. with uniform distribution. For d-level
packing, the i.i.d. case requires much fewer dummy tuples than
when the data is highly skewed (e.g., all attributes have
probability of 99% to be 1). Because of this dependency, we will
not attempt a theoretical analysis of the number of dummy
tuples inserted, and instead present a thorough experimental
evaluation in Section 6.

4.4 Efficiency and Implementation Issues
Given b and d, the time complexity of COUNTER-

SAMPLER is O(nCd–1·max(2d, m) + nCb–1·m), where n is the
number of (searchable) attributes and m is the number of tuples.
The efficiency is usually not a concern because (1) COUNTER-
SAMPLER only needs to be executed once as a pre-processing
step for a static database, and (2) n is usually quite small for a
hidden database with web interface. However, COUNTER-

Algorithm COUNTER-SAMPLER(b, d, k)
// Start of d-level packing
1: for each set S of d – 1 attributes
2: KS = Cartesian product of domains of attributes in S;
3: DS = SELECT S FROM D;
4: for each tuple t in SELECT * FROM KS – DS
5:
6: D = D ∪ DUMMY-ORACLE(k + 1, C);
// Start of b-neighbor insertion
7: DDUMMY = φ;
8: for each set S of b – 1 attributes
9: DS = SELECT S FROM D;
10: NS = SELECT S, COUNT(*) FROM D ∪ DDUMMY
 GROUP BY S HAVING COUNT(*) > k;
11: for each tuple t in SELECT * FROM DS – NS[S]
12:
13: c = SELECT COUNT(*) FROM D∪DDUMMY WHERE C;
14: DDUMMY = DDUMMY ∪ DUMMY-ORACLE(k+1–c, C);
15: D = D ∪ DDUMMY;

 8

SAMPLER can be slow when n is large. To address this
problem, we present RANDOM-COUNTER-SAMPLER, a
randomized version which replaces the enumeration of all (d–1)-
or (b–1)-attribute sets by checking such attribute sets at random.

Since the dummy tuples inserted for one attribute set may

also overflow queries corresponding to other attribute sets, the
number of dummy tuples required for the not-yet-chosen
attribute sets decreases quickly. We terminate the process when
no dummy tuple is inserted for h consecutive iterations. Thus,
even when n is large, RANDOM-COUNTER-SAMPER is able
to terminate quickly with a small probability of error.

4.5 Extensions for Categorical and
Numerical Databases

Algorithm COUNTER-SAMPLER can be directly applied
as-is to both Boolean and categorical databases. Nonetheless, for
categorical data, the number of predicates of a query (e.g., b and
d) is not an effective measure for the query’s power in helping a
sampler prune its search space. For example, consider an
underflowing Q1: SELECT * FROM D WHERE a1 = 1. A
binary a1 can reduce ΘE to about 2/3 of its original size, while an
a1 with 100 possible values can only reduce ΘE to about 100/101
of its original size. Moreover, the number of all possible b-
predicate queries is also determined by the size of the Cartesian
product of all involved attributes’ domains (i.e., multiplication
of the domain sizes), rather than simply the number of
predicates b. Thus, an extension of high-level packing and
neighbor insertion to categorical databases is to replace d and b
with two new parameters cd and cb, such that the Cartesian
product size of underflowing and valid queries must be no less
than cd and cb, respectively. Note that when the database is
Boolean, we have cd = 2d and cb = 2b. Our experiments presented
in Section 6 adopt this strategy for categorical databases.

For numerical data, we can apply COUNTER-SAMPLER
by appropriately discretizing the numerical data to resemble
categorical data. However, different discretization techniques
have different impact on the usability of the system. For
example, a larger bucket size may reduce the precision of

numerical values and affect search results usability. In contrast,
a smaller bucket size may require a larger number of dummy
tuples (e.g., to achieve the same cd and cb). How to choose an
optimal discretization scheme is left as an open problem.

5. CASE STUDIES
The analysis in Section 4 showed that COUNTER-

SAMPLER can effectively defend against any sampler over
hidden databases. As examples, we now illustrate how
COUNTER-SAMPLER defends against HIDDEN-DB-
SAMPLER [DDM07] and HYBRID-SAMPLER [DZD09], two
state-of-the-art sampling algorithms over hidden databases.
Defense against HIDDEN-DB-SAMPLER: We start our
discussion by a brief overview of HIDDEN-DB-SAMPLER. Its
basic idea is to repeatedly perform random “drill-down”
searches over the query space. Consider Figure 1(a) and 1(b)
which shows binary query trees for Examples A and B,
respectively. Each tree is a complete binary tree with n+1 levels
(though we only show parts of each tree due to space
limitations). The i-th (1≤i≤n) internal level represents attribute
ai, and the left (resp. right) edge downward from any i-th level
node is labeled 0 (resp. 1), representing a predicate of ai having
the labeled value. Thus, the leaves (i.e., (n+1)-th level) represent
all possible tuple values. Only a small proportion of the leaves
will correspond to actual tuples; the vast majority will be empty.

The random drill-down approach essentially performs a
random walk down this tree. The walk starts from the root node
and takes a random path to level a1 (by issuing a query with
predicate corresponding to the path). If it returns overflow, then
another step is taken to the next level (i.e., the query is appended
by a random predicate involving a2). This drill-down process
shall either lead to a valid query, or return empty. If a valid
query is reached, a tuple randomly chosen from the query result
is returned as a sample after acceptance-rejection sampling.

HIDDEN-DB-SAMPLER has two variants, with fixed and
random order of attributes, respectively. In the latter variant, the
attributes order in the tree is randomly permuted before each
random walk. For the ease of discussion, we consider a fixed
order [a1,…,an] (as Figure 1) for a Boolean database with k = 1.

Consider Example A. Before dummy insertion, an expected
number of only 3 queries are needed to retrieve t1:<0,…,0,1>
(from SELECT * FROM D WHERE a1=0 AND a2=0). To see
how b-neighbor insertion delays the sampling, consider b = n. A
dummy tuple t2:<0,…, 0,0> will be inserted to overflow a (b–1)-
predicate query SELECT * FROM D WHERE a1=0
AND ⋅⋅⋅AND an–1=0. Figure 1(c) depicts the tree after dummy
insertion. As we can see, with the insertion of t2, HIDDEN-DB-
SAMPLER needs a minimum of n queries (traveling from the
root to the leaf) to retrieve t1 from a valid query. This is much
more than the two queries needed before dummy insertion.

However, b-neighbor insertion alone is insufficient, as will
be illustrated for Example B. In this case, for any b ∈ [1, l], b-
neighbor insertion will not insert any dummy tuple. As a result,
the sampler remains efficient as it can still detect underflows on
levels 1 to n – l and prune a major portion (i.e., 1 – 1/2n–l) of the
tree after issuing only n – l underflowing queries.

Now consider the effect of d-level packing. Since there is no
real tuple with a1 = 1, two dummy tuples will be inserted with
a1=1 and equal values for any other d – 2 attributes, e.g., a2 to
ad–1. Figure 1(d) depicts a tree after dummy insertion. As we can
see, in the right half (i.e., a1=1) of the tree, there is one
overflowing node on every level between the 1st and the (d – 1)-
th level. Consider such a node v at the x-th level. Since
HIDDEN-DB-SAMPLER travels to left or right with equal
probability, the probability for a sampler drawing s samples to

Algorithm RANDOM-COUNTER-SAMPLER(b, d, k)
1: Randomly choose a set S of d – 1 attributes
2: Call Lines 2 – 6 of Algorithm COUNTER-SAMPLER
3: Goto 1 until no dummy has been inserted for h iterations
4: DDUMMY = φ;
5: Randomly choose a set S of b – 1 attributes
6: Call Lines 9 – 14 of Algorithm COUNTER-SAMPLER
7: Goto 5 until no dummy has been inserted for h iterations
8: D = D ∪ DDUMMY;

Figure 1. Query Trees for Examples A and B

 9

reach v or its underflowing neighbor v' is p(v) = 1–(1–1/2x–1)s.
Since p(v)>1–1/e when x ≤ log2s + 1, as long as d ≥log2s+1, the
two inserted dummy tuples increase the expected number of
queries by at least Σv(2p(v)) – 1 > 2(1 – 1/e)log2s – 1.

As we can see from the examples, by inserting a few dummy
tuples, COUNTER-SAMPLER can substantially increase the
query cost of HIDDEN-DB-SAMPLER.
Defense against HYBRID-SAMPLER: HYBRID-SAMPLER
[DZD09] consists of two phases: pilot-sample collection and
COUNT-assisted sampling. The vast majority of queries issued
are in the phase of pilot-sample collection, where HIDDEN-DB-
SAMPLER is called to collect a pre-determined number of pilot
samples. As we illustrated above, COUNTER-SAMPLER can
significantly increase the query cost of HIDDEN-DB-
SAMPLER. Thus, it can also substantially delay sampling by
HYBRID-SAMPLER. We will demonstrate such delay in the
experimental results.

6. EXPERIMENTS AND RESULTS
In this section, we describe our experimental setup and

present the experimental results. Note that the Section 4
provides theoretical privacy guarantees against all possible
samplers. We now carry out empirical studies for two state-of-
the-art sampling algorithms, HIDDEN-DB-SAMPLER and
HYBRID-SAMPLER for Boolean and categorical hidden
databases. We also draw conclusions on the individual impact of
high-level packing and neighbor insertion on the delay of
sampling attacks and the number of inserted dummy tuples.

6.1 Experimental Setup
1) Hardware and Platform: All our experiments were
performed on a 1.99 Ghz Intel Xeon machine with 4 GB of
RAM. The COUNTER-SAMPLER algorithm was implemented
in MATLAB. We set h = 40 for the randomized version.
2) Data Sets: HIDDEN-DB-SAMPLER recommends different
strategies for Boolean and categorical databases (with random
order of attributes for the former and fixed order for the latter).
Thus, we consider both Boolean and categorical datasets. Note
that in order to apply COUNTER-SAMPLER, these datasets are
offline ones to which we have full access.
Boolean Synthetic: We generated two Boolean datasets, each of
which has 100,000 tuples and 30 attributes. The first dataset is
generated as i.i.d. data with each attribute having probability of
p = 0.3 to be 1. We refer to this dataset as the Bool-0.3 dataset.
The second dataset is generated in a way such that different
attributes have different distribution. In particular, there are 30
independent attributes, 5 have probability of p = 0.5 to be 1, 10

have p = 0.3, the other 10 have p = 0.1. We refer to this dataset
as the Bool-mixed dataset.
Categorical Census: The Census dataset consists of the 1990 US
Census Adult data published on the UCI Data Mining archive
[HB99]. After removing attributes with domain size greater than
100, the dataset had 12 attributes and 32,561 tuples. It is
instructive to note that the domain size of the attributes of the
underlying data is unbalanced in nature. The attribute with the
highest domain size has 92 categories and the lowest-domain-
size attributes are Boolean.
3) Sampling Algorithms: We tested two state-of-the-art
sampling algorithms for hidden databases: HIDDEN-DB-
SAMPLER [DDM07] and HYBRID-SAMPLER [DZD09].

HIDDEN-DB-SAMPLER has two variations, HIDDEN-
DB-RANDOM and HIDDEN-DB-FIXED, which use random
and fixed order of attributes, respectively. HIDDEN-DB-
RANDOM can only be applied to Boolean data, while
HIDDEN-DB-FIXED can also be applied to categorical data.
HIDDEN-DB-RANDOM is parameter-less, while HIDDEN-
DB-FIXED requires a parameter called scaling factor C for the
acceptance/rejection module, in order to balance between
efficiency and bias. Following the heuristic in [DDM07], we set
C = 1/2l where l is the average length of random walks for
collecting the samples.

HYBRID-SAMPLER has two parameters: s1, the number of
pilot samples collected for optimizing future sampling, and cS,
the count threshold for switching between HYBRID-SAMPLER
and HIDDEN-DB-SAMPLER. Following the settings in
[DZD09], we set s1 = 20 and cS = 5.
4) Performance Measures for COUNTER-SAMPLER: We
evaluated two performance measures for COUNTER-
SAMPLER. The first is privacy protection, i.e., the delay (or
inefficiency) forced onto the sampling algorithms by
COUNTER-SAMPLER. This is measured by the number of
unique queries issued by HIDDEN-DB-SAMPLER and
HYBRID-SAMPLER to obtain a certain number of samples.
The second measure is the loss of utility, i.e., the overhead
incurred to bona fide users. In particular, we used the number of
dummy tuples inserted by COUNTER-SAMPLER, as discussed
in Section 2.5.

6.2 Effectiveness of COUNTER-SAMPLER
HIDDEN-DB-RANDOM: Since HIDDEN-DB-RANDOM
only supports Boolean data, we tested the effectiveness of
COUNTER-SAMPLER on defending against HIDDEN-DB-
RANDOM over the two Boolean synthetic datasets. We first
applied COUNTER-SAMPLER with a fixed pair of parameters
b = 10 (for b-neighbor insertion) and d = 6 (for d-level packing)

Figure 2: Number of queries
before and after COUNTER-

SAMPLER for Boolean

Figure 3: Delay of sampling vs.
Percentage of dummy tuples

Figure 4: Number of queries
before and after COUNTER-

SAMPLER for Census

Figure 5: Delay of sampling
vs. number of dummy tuples

 10

when k = 1. In this case, COUNTER-SAMPLER inserts 29218
and 32717 dummy tuples for the Bool-0.3 and Bool-mixed
datasets, respectively, leading to a proportion of 22.6% and
24.7% tuples of the final database being dummies. Figure 2
depicts the number of queries required by HIDDEN-DB-
RANDOM to obtain 1 to 100 samples before and after
COUNTER-SAMPLER is used. One can see from the figure
that for both datasets, COUNTER-SAMPLER significantly
increases the number of queries HIDDEN-DB-RANDOM has to
issue. For example, to draw 100 samples from the Bool-mixed
dataset, HIDDEN-DB-RANDOM requires only 1987 queries
before COUNTER-SAMPLER is applied, but 23751 queries
afterwards.

We also tested the tradeoff between the delay of HIDDEN-
DB-RANDOM and the number of dummy tuples inserted by
COUNTER-SAMPLER. To do so, we set d = 5 and vary b
between 10, 12, and 15. Again, k = 1. Figure 3 depicts
relationship between the percentage of dummy tuples in the final
database and the average number of queries required by
HIDDEN-DB-RANDOM to obtain a sample during the process
of drawing 50 samples. One can see from the figure that the
sampler can be delayed by orders of magnitude with a moderate
number of dummy tuples. For example, HIDDEN-DB-
SAMPLER requires over 700 times more queries when there are
43.7% dummy tuples in the dummy-inserted version of the
Bool-mixed dataset.
HIDDEN-DB-FIXED: In [DDM07], HIDDEN-DB-FIXED is
recommended over HIDDEN-DB-RANDOM for categorical
data as it generally yields a smaller bias in the samples. Thus,
we tested the effectiveness of COUNTER-SAMPLER in
defending against HIDDEN-DB-FIXED over the Census
dataset. We set k = 10 by default unless otherwise noted.

Similar to the experiments on Boolean synthetic datasets, we
first applied COUNTER-SAMPLER with a fixed pair of
parameters cd = 50 (for high-level packing) and cb = 500 (for
neighbor insertion). In this case, COUNTER-SAMPLER inserts
10697 dummy tuples, leading to a proportion of 24.7% tuples of
the final database being dummies. Figure 4 depicts the number

of queries required by HIDDEN-DB-FIXED to obtain 1 to 100
samples before and after COUNTER-SAMPLER is used. One
can see from the figure that COUNTER-SAMPLER
significantly increases the number of queries HIDDEN-DB-
FIXED needs to issue. For example, to obtain 30 samples,
HIDDEN-DB-FIXED needs only 277 queries before
COUNTER-SAMPLER is applied, but 1423 queries afterwards.

We again tested the relationship between the delay of
HIDDEN-DB-FIXED and the number of inserted dummy tuples.
To do so, we set cd = 100 and varied cb between 500, 1000, and
1500. Figure 5 depicts the results. As we can see, COUNTER-
SAMPLER delays HIDDEN-DB-FIXED by more than ten-fold,
from 6.41 to 69.07 queries per sample, when 53.4% tuples of the
final database are dummies.

We also tested COUNTER-SAMPLER with varying cd.
Figure 6 shows the number of queries required by HIDDEN-
DB-FIXED for each sample (while drawing 100 samples) when
cd varies from 0 to 300. One can observe from the figure a
pattern that holds for all three cases of cb = 500, 1000, and 1500:
when cd increases, the number of queries required by HIDDEN-
DB-FIXED first increases, and then decreases. This verifies
what is indicated by our theoretical results in Lemma 4.1 and
Theorem 4.2: once the value of d (resp. cd) used by high-level
packing reaches a threshold, the further increase of d (resp. cd)
can only reduce, and not improve, the protection provided by
COUNTER-SAMPLER.

We tested COUNTER-SAMPLER with varying database
sizes. In particular, we constructed 10 databases with 10,000 to
100,000 tuples by sampling with replacement from the Census
dataset. Then, we applied COUNTER-SAMPLER with cb = 500
and cd = 50 to all of them. Figure 7 shows the percentage of
dummy tuples in the dummy-inserted databases. One can see
that this percentage decreases rapidly when k increases. For
example, the percentage is 49.11% for the 10,000-tuple database
but only 5.77% for the 100,000-tuple database. Meanwhile, the
privacy protection provided by COUNTER-SAMPLER remains
effective, as demonstrated in Figure 8.

Figure 6: Delay of sampling
vs. cd for high-level packing

Figure 7: Percentage of Dummy
Tuples vs. Database Size

Figure 8: Efficiency of
sampling vs. Database Size

Figure 9: Efficiency of
sampling vs. k

Figure 10: Percentage of
Dummy Tuples vs. k

Figure 11: HYBRID-
SAMPLER

Figure 12: RANDOM-
COUNTER-SAMPLER

Figure 13: High-Level Packing
Only

 11

We also studied the impact of the interface parameter k on
COUNTER-SAMPLER. In particular, we tested cases where k
ranges from 10 to 50. To highlight the change of sampling
efficiency with k, we used the case where k = 10 as the baseline
scenario, and calculated the relative number of queries required
by HIDDEN-DB-FIXED for other values of k (for collecting the
same number (100) of samples). Figure 9 shows the results
before and after COUNTER-SAMPLER with cb = 500 and cd =
50 is applied. One can see from the figure that without
COUNTER-SAMPLER, the number of queries required by
HIDDEN-DB-FIXED decreases rapidly with increasing k. After
COUNTER-SAMPLER is applied, however, the number of
queries remains stable for all values of k. This is consistent with
the fact that our privacy guarantees derived in Lemma 4.1 and
Theorem 4.2 are independent of the value of k.

Figure 10 shows the change in the number of dummy tuples
with k when cb = 500 and cd = 50. Naturally, with a larger k,
more dummy tuples are needed to achieve the same values of cb
and cd. Nonetheless, recall from Figure 7 that the percentage of
dummy tuples decreases rapidly with the database size. Thus,
for a real-world hidden database which has a very large number
of tuples and also a large k, the percentage of dummy tuples
inserted by COUNTER-SAMPLER should remain small.
HYBRID-SAMPLER: To demonstrate the universality of
COUNTER-SAMPLER on defending against any samplers, we
tested it against another sampling algorithm, HYBRID-
SAMPLER [DZD09], over the two Boolean synthetic datasets.
Similar to Figure 1, we set b = 10 and d = 6 when k = 1, leading
to 29218 (22.6%) and 32717 (24.7%) dummy tuples for Bool-
0.3 and Bool-mixed, respectively. Figure 11 depicts the number
of queries required by HYBRID-SAMPLER to obtain 1 to 100
samples before and after COUNTER-SAMPLER is used. One
can see from the figure that HYBRID-SAMPLER is also
significantly delayed by COUNTER-SAMPLER. For example,
to draw 100 samples from the Bool-mixed dataset, HIDDEN-
DB-RANDOM requires only 851 queries before COUNTER-
SAMPLER is applied, but 12878 queries afterwards.
PREPROCESSING EFFICIENCY: COUNTER-SAMPLER
is essentially a preprocessing step; hence its runtime efficiency
is usually not a concern. Nevertheless, we observed that it is
quite efficient for real-world categorical hidden databases that
usually have a smaller number of attributes. For example, for the
Census dataset, the deterministic version of COUNTER-
SAMPLER only requires 91.18 seconds to complete when cb =
500 and cd = 50. We also performed experiments on Boolean
dataset with many attributes, which represents an extremely
inefficient scenario for the deterministic version. We tested the
execution time of COUNTER-SAMPLER as well as
RANDOM-COUNTER-SAMPLER on the Bool-mixed dataset
(which has 30 attributes) when b = 10 and d = 5. Unsurprisingly,
while the deterministic version took days to complete, the
randomized version was much more efficient. Figure 14 shows
the relationship between the percentage of dummy tuples
inserted and the execution time. One can see that when h = 40,
with 4585 seconds, RANDOM-COUNTER-SAMPLER inserts
more than 92.84% of all dummy tuples inserted by the
deterministic version.

6.3 Individual Effects of Neighbor Insertion
and High-level Packing

We also studied the individual effects of neighbor insertion
and high-level packing. As an example, we considered the
HIDDEN-DB-FIXED sampling algorithm and the Census
dataset. First, we applied only high-level packing, and then

executed HIDDEN-DB-FIXED to collect 100 samples. Figure
13 depicts the number of queries required by HIDDEN-DB-
FIXED and the percentage of dummy tuples when cd ranges
from 0 to 300. One can observe that high-level packing alone
only inserts a very small amount of dummy tuples, but is already
quite effective against HIDDEN-DB-FIXED. For example,
when only 3.55% tuples of the final database are dummies, high-
level packing can delay HIDDEN-DB-FIXED by a factor of
2.50 (from 2.77 to 6.92 queries per sample).

Second, we applied only neighbor insertion to the Census
dataset, and then executed HIDDEN-DB-FIXED to collect 100
samples. Figure 14 depicts the number of queries required by
HIDDEN-DB-FIXED and the number of inserted dummy tuples
when cb ranges from 0 to 1500. One can see from the figure that
neighbor insertion alone imposes significant delays to HIDDEN-
DB-FIXED. For example, HIDDEN-DB-FIXED requires 13.64
times more queries (37.10 vs. 2.77 queries per sample) after
applying COUNTER-SAMPLER with cb = 1500. Meanwhile,
53.01% tuples in the final database are dummies.

To get a rough estimate on the effect of including the
dummy tuples on usability, we sampled 1,000 queries with
replacement from each level of the query tree on the Census
dataset, and found very few queries returning only dummies:
When k=10 and 24.7% (resp. 54.3%) tuples are dummies, only
1.1% (resp. 4%) queries return only dummy tuples.

Figure 14: Neighbor Insertion Only

7. RELATED WORK
There has been recent work on crawling as well as sampling

from hidden databases. However, here we restrict our discussion
to prior works on sampling. In [DDM07, DZD09] the authors
have developed techniques for sampling from structured hidden
databases leading to the HIDDEN-DB-SAMPLER and
HYBRID-SAMPLER algorithms respectively. A closely related
area of sampling from a search engines index using a public
interface has been addressed in [BB98] and more recently
[BG06, BG07]. [CC01] and [IG02] use query based sampling
methods to generate content summaries with relative and
absolute frequencies while [HYJS04, HYJS06] uses two phase
sampling method on text based interfaces. On a related front
[CH02, BGM02] discuss top-k processing which considers
sampling or distribution estimation over hidden sources.
[CHW+08] discusses keyword search over a corpus of
structured web databases in the form of HTML tables.
[MKK+08] considers the surfacing of hidden web databases by
efficiently navigating the space of possible search queries.

Much research on privacy/security issues in databases and
data mining focused on the protection of individual tuples which
is complementary to our proposed research. Traditional studies
on access control and data sanitization are designed to limit the
access to private data in relational databases [SCF+96, JSSS01].
Researchers have proposed various privacy-preserving
(aggregate) query processing techniques, which can be classified
as query auditing [NMK+06, KMN05] and value

 12

encryption/perturbation [AES03, AS00, Swe02, MKGV07,
AST05]. The perturbation of (output) query answers has also
been studied [DMNS06]. More closely related to the problem
addressed in this paper is the existing work on protecting
sensitive aggregation information [ABE+99, VEB+04, GV06].
Nonetheless, to our best knowledge, all existing work in this
category focuses on the protection of sensitive association rules
in frequent pattern mining.

8. FINAL REMARKS
In this paper, we have initiated an investigation of the

protection of sensitive aggregates over hidden databases. We
proposed Algorithm COUNTER-SAMPLER that inserts a
number of carefully constructed dummies tuples into the hidden
database to prevent the aggregates from being compromised by
the sampling attacks. We derived the privacy guarantees
achieved by COUNTER-SAMPLER against any sampler that
aims to draw uniform random samples of the hidden database.
We demonstrated the effectiveness of COUNTER-SAMPLER
against the state-of-the-art sampling algorithms [DDM07,
DZD09]. We performed a comprehensive set of experiments to
illustrate the effectiveness of or algorithm.

Our investigation is preliminary and many extensions are
possible. For example, we focused on the dummy tuple insertion
paradigm in this paper. In the future work, we shall investigate
other defensive paradigms, such as the integration of dummy
insertion and query auditing, for protecting sensitive aggregates.
We shall also investigate the techniques for the protection of
sensitive aggregates against adversaries holding external
knowledge about the underlying data distribution. Scenarios
where hidden database interfaces return COUNT results
[DZD09] also need to be explored. Another interesting future
direction is the investigation of dynamic hidden databases and
their impact on aggregates protection.

9. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their

careful reading of the draft and thoughtful comments.

10. REFERENCES
[ABE+99] M. Atallah, E. Bertino, A. K. Elmagarmid, M.

Ibrahim, V. S. Verykios, Disclose Limitation of Sensitive
Rules. Knowledge and Data Exchange Workshop 1999.

[AES03] R. Agrawal, A. Evfimievski, and R. Srikant,
Information Sharing Across Private Databases. SIGMOD
2003.

[AS00] R. Agrawal and R. Srikant, Privacy-Preserving Data
Mining, SIGMOD 2000.

[AST05] R. Agrawal, R. Srikant, and D. Thomas, Privacy
Preserving OLAP, SIGMOD 2005.

[BB98] K. Bharat and A. Broder. A Technique for Measuring
the Relative Size and Overlap of Public Web Search
Engines. WWW 1998.

[BG06] Z. Bar-Yossef and M. Gurevich. Random Sampling
from a Search Engine’s Index. WWW 2006.

[BG07] Z. Bar-Yossef and M. Gurevich: Efficient search engine
measurements. WWW 2007.

[BGM02] N. Bruno, L. Gravano, A. Marian: Evaluating Top-k
Queries over Web-Accessible Databases. ICDE 2002.

[CC01] J. P. Callan, M. E. Connell: Query-based sampling of
text databases. ACM Trans. Inf. Syst. 19(2): 2001.

[CH02] K. C-C. Chang, S. Hwang: Minimal probing: supporting
expensive predicates for top-k queries. SIGMOD 2002.

[CHW+08] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang, WebTables: Exploring the Power of Tables on the
Web, VLDB 2008.

[CKV+03] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and
M. Zhu, Tools for Privacy Preserving Distributed Data
Mining, ACM SIGKDD Explorations, 4(28): 2003.

[DDM07] A. Dasgupta, G. Das, H. Mannila: A random walk
approach to sampling hidden databases. SIGMOD 2007.

[DMNS06] C. Dwork, F. McSherry, K. Nissim, and A. Smith,
Calibrating noise to sensitivity in private data analysis.
Theory of Cryptography Conference 2006.

[DZD09] A. Dasgupta, N. Zhang, G. Das: Leveraging COUNT
Information in Sampling Hidden Databases. ICDE 2009.

[DZDC08] A. Dasgupta, N. Zhang, G. Das, S. Chaudhuri, On
Privacy Preservations of Aggregates in Hidden Databases,
Technical Report TR-GWU-CS-09-001, George Washington
University, 2009.

[EDHS07] J. Elson, J. R. Douceur, J. Howell, J. Saul: Asirra: a
CAPTCHA that exploits interest-aligned manual image
categorization, CCS 2007.

[Google08] http://code.google.com/apis/soapsearch/api_faq.html
[GV06] A. Gkoulalas-Divanis and V. S. Verykios, An Integer

Programming Approach for Frequent Itemset Hiding. CIKM
2006

[HB99] S. Hettich and S. D. Bay, The UCI KDD Archive
[http://kdd.ics.uci.edu]. Irvine, CA: University of California,
Department of Information and Computer Science. 1999.

[HYJS04] Y. Hedley, M. Younas, A. E. James, M. Sanderson: A
two-phase sampling technique for information extraction
from hidden web databases. WIDM 2004.

[HYJS06] Y. Hedley, M. Younas, A. E. James, M. Sanderson:
Sampling, information extraction and summarisation of
Hidden Web databases. Data Knowl. Eng. 59(2): 2006.

[IG02] P. G. Ipeirotis, L. Gravano: Distributed Search over the
Hidden Web: Hierarchical Database Sampling and Selection.
VLDB 2002.

[JSSS01] S. Jajodia, P. Samarati, M. L. Sapino, V. S.
Subrahmanian, Flexible support for multiple access control
policies. TODS 26(2): 2001.

[KMN05] K. Kenthapadi, N. Mishra, and K. Nissim,
Simulatable auditing. PODS 2005.

[MKGV07] A. Machanavajjhala, D. Kifer, J. Gehrke, and M.
Venkitasubramaniam, l-Diversity: Privacy Beyond k-
Anonymity. TKDD 1(1): 2007.

[MKK+08] J. Madhavan, D. Ko, Ł. Kot, V. Ganapathy, A.
Rasmussen, and A. Halevy, Google’s Deep-Web Crawl,
VLDB 2008.

[NMK+06] S. U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra,
and R. Motwani, Towards robustness in query auditing.
VLDB 2006.

[SCF+96] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman, Role-based access control models. IEEE
Computer, 29(2): 1996.

[Swe02] L. Sweeney, k-anonymity: a model for protecting
privacy. International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5): 2002.

[VEB+04] V. S. Verykios, A. K. Elmagarmid, E. Bertino, Y.
Saygin, and E. Dasseni, Association rule hiding, TKDE
16(4): 2004.

[ZZ07] N. Zhang and W. Zhao, Privacy-Preserving Data
Mining Systems. IEEE Computer, 40(4): 2007.

