A lower bound for approximating the geometric minimum weight matching

Gautam Das* Michiel Smid[†]

January 6, 1999

Abstract

Given a set S of 2n points in \mathbb{R}^d , a perfect matching of S is a set of n edges such that each point of S is a vertex of exactly one edge. The weight of a perfect matching is the sum of the Euclidean lengths of all edges. Rao and Smith have recently shown that there is a constant r > 1, that only depends on the dimension d, such that a perfect matching whose weight is less than or equal to r times the weight of a minimum weight perfect matching can be computed in $O(n \log n)$ time. We show that this algorithm is optimal in the algebraic computation tree model.

Keywords: Minimum weight matching, lower bounds, computational geometry.

1 Introduction

Let S be a set of 2n points in \mathbb{R}^d , where $d \geq 1$ is a (small) constant. We consider sets of edges having the points of S as vertices. Such a set M is called a *perfect matching* of S, if each point of S is a vertex of exactly one edge in M. In other words, a perfect matching is a partition of S into S subsets of size two. The weight S of a perfect matching S is defined as the sum of the Euclidean lengths of all edges in S. The minimum weight matching S of S is the perfect matching of S that has minimum weight.

^{*}Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, USA. E-mail: dasg@msci.memphis.edu.

[†]Department of Computer Science, University of Magdeburg, D-39106 Magdeburg, Germany. E-mail: michiel@isg.cs.uni-magdeburg.de.

The best known algorithm that computes a minimum weight matching is due to Vaidya [6]; its running time is bounded by $O(n^{5/2}(\log n)^4)$ if d = 2, and $O(n^{3-1/c^d})$ if d > 2, for some constant c > 1.

Rao and Smith [5] considered the easier problem of approximating the minimum weight matching. Let r > 1 be a real number. A perfect matching M of S is called an r-approximate MWM, if $wt(M) \leq r \cdot wt(MWM(S))$. Rao and Smith have shown that an r-approximate MWM, for

$$r = c \cdot \exp(8 \cdot 2^{1-1/(d-1)} \sqrt{d})$$

where c is a constant, can be computed in $O(n \log n)$ time.

In this paper, we will show that Rao and Smith's algorithm is optimal in the algebraic computation tree model. That is, we will prove the following theorem.

Theorem 1 Let $d \geq 1$ be an integer. Every algebraic computation tree algorithm that, when given a set of 2n points in \mathbb{R}^d and a real number r > 1, computes an r-approximate MWM, has worst-case running time $\Omega(n \log n)$.

Note that this lower bound even holds for dimension d=1. Moreover, it holds for any approximation factor r, even one that depends on n. For example, computing a 2^{2^n} -approximate MWM has worst-case running time $\Omega(n \log n)$.

Our proof of Theorem 1 uses Ben-Or's theorem [1]. The proof technique that we use is related to those used in Chen, Das and Smid [2], and Das, Kapoor and Smid [3].

2 The proof of Theorem 1

In this section, we prove Theorem 1 for the case when d = 1. Clearly, this implies an $\Omega(n \log n)$ lower bound for any dimension $d \geq 1$.

We assume that the reader is familiar with the algebraic computation tree model. (See Ben-Or [1], and Preparata and Shamos [4].) Our lower bound will use the following well known result.

Theorem 2 (Ben-Or [1]) Let V be any set in \mathbb{R}^n and let \mathcal{B} be any algorithm that belongs to the algebraic computation tree model and that accepts V. Let #V denote the number of connected components of V. Then the worst-case running time of \mathcal{B} is $\Omega(\log \#V - n)$.

Let \mathcal{A} be an arbitrary algebraic computation tree algorithm that, when given as input a sequence of 2n real numbers x_1, x_2, \ldots, x_{2n} and a real number r > 1, computes an r-approximate MWM for the x_i 's. We will use Theorem 2 to prove that \mathcal{A} has worst-case running time $\Omega(n \log n)$.

Note that algorithm \mathcal{A} solves a computation problem. In order to apply Theorem 2, we need a decision problem, i.e., a problem having values YES and NO. Below, we will define such a decision problem; in fact, we will define the corresponding subset $V \subseteq \mathbb{R}^{2n}$ of YES-inputs.

Fix the integer n and the real number r > 1. We define an algorithm \mathcal{B} that takes as input any sequence of 2n real numbers. On input sequence x_1, x_2, \ldots, x_{2n} , algorithm \mathcal{B} does the following.

- **Step 1.** Check if $x_i = i$, for all $i, 1 \le i \le n$. If not, output NO, and terminate. Otherwise, go to Step 2.
- Step 2. Let $\epsilon := 1/(2rn)$. Run algorithm \mathcal{A} on the input $x_1, x_2, \ldots, x_{2n}, r$. Let M be the r-approximate MWM that is computed by \mathcal{A} . Check if all edges of M have length ϵ . If so, output YES. Otherwise, output NO.

Let $T_{\mathcal{A}}(n)$ and $T_{\mathcal{B}}(n)$ denote the worst-case running times of algorithms \mathcal{A} and \mathcal{B} , respectively. Then, it is clear that

$$T_{\mathcal{B}}(n) \leq T_{\mathcal{A}}(n) + cn,$$

for some constant c. Therefore, if we can show that $T_{\mathcal{B}}(n) = \Omega(n \log n)$, then it follows immediately $T_{\mathcal{A}}(n) = \Omega(n \log n)$.

Let V be the set of all points $(x_1, x_2, \ldots, x_{2n})$ in \mathbb{R}^{2n} that are accepted by algorithm \mathcal{B} . We will show that V has at least n! connected components. As a result, Theorem 2 implies the $\Omega(n \log n)$ lower bound on the running time of \mathcal{B} .

Lemma 1 Let π be any permutation of 1, 2, ..., n, and let $\epsilon = 1/(2rn)$. Then the point

$$P := (1, 2, ..., n, \pi(1) + \epsilon, \pi(2) + \epsilon, ..., \pi(n) + \epsilon)$$

is contained in the set V.

Proof. Let M^* be the MWM of the elements $1, 2, ..., n, \pi(1) + \epsilon, \pi(2) + \epsilon, ..., \pi(n) + \epsilon$. Since $0 < \epsilon < 1/2$, it is easy to see that M^* consists of the edges $(i, i + \epsilon), 1 \le i \le n$.

Consider what happens when algorithm \mathcal{B} is run on input P. Clearly, this input "survives" Step 1. Let M be the r-approximate MWM that is computed in Step 2. We will show below that $M = M^*$. Having proved this, it follows that algorithm \mathcal{B} accepts the input P, i.e., $P \in V$.

Suppose that $M \neq M^*$. Then M contains an edge of the form (i, j), $(i, j + \epsilon)$, or $(i + \epsilon, j + \epsilon)$, for some integers i and j, $i \neq j$. (We consider edges to be undirected.) Since $0 < \epsilon < 1/2$, it follows that this edge and, hence, also the matching M, has weight more than 1/2. Clearly, the optimal matching M^* has weight $n\epsilon = 1/(2r)$. Therefore, $wt(M) > 1/2 = r \cdot wt(M^*)$. This is a contradiction, because M is an r-approximate MWM.

Lemma 2 The set V has at least n! connected components.

Proof. Let π and ρ be two different permutations of $1, 2, \ldots, n$. Consider the points

$$P := (1, 2, ..., n, \pi(1) + \epsilon, \pi(2) + \epsilon, ..., \pi(n) + \epsilon)$$

and

$$R := (1, 2, \dots, n, \rho(1) + \epsilon, \rho(2) + \epsilon, \dots, \rho(n) + \epsilon).$$

in \mathbb{R}^{2n} . By Lemma 1, both these points are contained in the set V. We will show that they are in different connected components of V.

Let C be an arbitrary curve in \mathbb{R}^{2n} that connects P and R. Since π and ρ are distinct permutations, there are indices i and j such that $\pi(i) < \pi(j)$ and $\rho(i) > \rho(j)$. Hence, the curve C contains a point Q,

$$Q = (p_1, p_2, \dots, p_n, q_1, q_2, \dots, q_n),$$

such that $q_i = q_j$. We claim that Q is not contained in V. This will prove that P and R are in different connected components of V.

To prove the claim, first assume that there is an index $k, 1 \leq k \leq n$, such that $p_k \neq k$. Then point Q is rejected by algorithm \mathcal{B} and, therefore, $Q \notin V$. Hence, we may assume that

$$Q = (1, 2, \ldots, n, q_1, q_2, \ldots, q_n).$$

Let us see what happens if we run algorithm \mathcal{B} on input Q. This input "survives" Step 1. Let M be the r-approximate MWM that is constructed in Step 2.

If M contains an edge of the form $(p_k, p_\ell) = (k, \ell)$, then algorithm \mathcal{B} rejects point Q, because such an edge has length more than ϵ . Hence, we may assume that each edge of M has the form $(p_k, q_\ell) = (k, q_\ell)$. Let a and b be the integers, $1 \leq a, b \leq n$, such that (a, q_i) and (b, q_j) are edges of M. Since (i) a and b are distinct integers, (ii) $q_i = q_j$, and (iii) $0 < \epsilon < 1/2$, one of these two edges must have length more than ϵ . Hence, algorithm \mathcal{B} rejects point Q. This completes the proof.

References

- [1] M. Ben-Or. Lower bounds for algebraic computation trees. In *Proc. 15th Annu. ACM Sympos. Theory Comput.*, pages 80–86, 1983.
- [2] D. Z. Chen, G. Das, and M. Smid. Lower bounds for computing geometric spanners and approximate shortest paths. In *Proc. 8th Canad. Conf. Comput. Geom.*, pages 155–160, 1996.
- [3] G. Das, S. Kapoor, and M. Smid. On the complexity of approximating Euclidean traveling salesman tours and minimum spanning trees. *Algorithmica*, 19:447–460, 1997.
- [4] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, NY, 1985.
- [5] S. B. Rao and W. D. Smith. Approximating geometrical graphs via "spanners" and "banyans". In *Proc. 30th Annu. ACM Sympos. Theory Comput.*, pages 540–550, 1998.
- [6] P. M. Vaidya. Geometry helps in matching. SIAM J. Comput., 18:1201– 1225, 1989.