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Abstract

Given a set S of 2n points in R?, a perfect matching of S is a
set of n edges such that each point of S is a vertex of exactly one
edge. The weight of a perfect matching is the sum of the Euclidean
lengths of all edges. Rao and Smith have recently shown that there
is a constant r > 1, that only depends on the dimension d, such
that a perfect matching whose weight is less than or equal to r times
the weight of a minimum weight perfect matching can be computed
in O(nlogn) time. We show that this algorithm is optimal in the
algebraic computation tree model.
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geometry.

1 Introduction

Let S be a set of 2n points in R?, where d > 1 is a (small) constant. We
consider sets of edges having the points of S as vertices. Such a set M is
called a perfect matching of S, if each point of S is a vertex of exactly one
edge in M. In other words, a perfect matching is a partition of S into n
subsets of size two. The weight wt(M) of a perfect matching M is defined
as the sum of the Euclidean lengths of all edges in M. The minimum weight
matching MWM (S) of S is the perfect matching of S that has minimum
weight.
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The best known algorithm that computes a minimum weight matching is
due to Vaidya [6]; its running time is bounded by O(n®2(logn)*) if d = 2,
and O(n®~'/¢") if d > 2, for some constant ¢ > 1.

Rao and Smith [5] considered the easier problem of approximating the
minimum weight matching. Let » > 1 be a real number. A perfect matching
M of S is called an r-approzimate MWM , if wt(M) < r-wt(MWM(S)). Rao
and Smith have shown that an r-approximate MWM, for

r=c-exp(8- 271 /d)

where c is a constant, can be computed in O(nlogn) time.

In this paper, we will show that Rao and Smith’s algorithm is optimal in
the algebraic computation tree model. That is, we will prove the following
theorem.

Theorem 1 Let d > 1 be an integer. Every algebraic computation tree al-
gorithm that, when given a set of 2n points in R and a real number r > 1,
computes an r-approrimate MWM | has worst-case running time Q(nlogn).

Note that this lower bound even holds for dimension d = 1. Moreover,
it holds for any approximation factor r, even one that depends on n. For
example, computing a 2%2"-approximate MWM has worst-case running time
Q(nlogn).

Our proof of Theorem 1 uses Ben-Or’s theorem [1]. The proof technique
that we use is related to those used in Chen, Das and Smid [2], and Das,
Kapoor and Smid [3].

2 The proof of Theorem 1

In this section, we prove Theorem 1 for the case when d = 1. Clearly, this
implies an ©(nlogn) lower bound for any dimension d > 1.

We assume that the reader is familiar with the algebraic computation tree
model. (See Ben-Or [1], and Preparata and Shamos [4].) Our lower bound
will use the following well known result.

Theorem 2 (Ben-Or [1]) Let V' be any set in R* and let B be any algo-
rithm that belongs to the algebraic computation tree model and that accepts
V. Let #V denote the number of connected components of V. Then the
worst-case running time of B is Q(log#V —n).



Let A be an arbitrary algebraic computation tree algorithm that, when
given as input a sequence of 2n real numbers x1, o, . . . , 2, and a real number
r > 1, computes an r-approximate M WM for the x;’s. We will use Theorem 2
to prove that A has worst-case running time (nlogn).

Note that algorithm A solves a computation problem. In order to apply
Theorem 2, we need a decision problem, i.e., a problem having values YES
and NO. Below, we will define such a decision problem; in fact, we will define
the corresponding subset V' C R?" of YES-inputs.

Fix the integer n and the real number » > 1. We define an algorithm
B that takes as input any sequence of 2n real numbers. On input sequence
X1, Lo, ..., Loy, algorithm B does the following.

Step 1. Check if z; = ¢, for all 4, 1 < ¢ < n. If not, output NO, and
terminate. Otherwise, go to Step 2.

Step 2. Let € := 1/(2rn). Run algorithm A on the input 1, o, . .., Top, 7
Let M be the r-approximate MWM that is computed by A. Check if
all edges of M have length €. If so, output YES. Otherwise, output
NO.

Let T4(n) and Tz(n) denote the worst-case running times of algorithms
A and B, respectively. Then, it is clear that

Ts(n) < Tu(n) + cn,

for some constant ¢. Therefore, if we can show that Tz(n) = Q(nlogn), then
it follows immediately T4(n) = Q(nlogn).

Let V be the set of all points (z1, 2, ...,T2,) in R?" that are accepted
by algorithm B. We will show that V' has at least n! connected components.
As a result, Theorem 2 implies the 2(nlogn) lower bound on the running
time of B.

Lemma 1 Let 7w be any permutation of 1,2,...,n, and let € = 1/(2rn).
Then the point

P:=(1,2,...,n,7(1) +€7m(2) +¢...,m(n) +¢€)
18 contained in the set V.

Proof. Let M* be the MWM of the elements 1,2,...,n,7(1) + ¢,7(2) +
€...,m(n) + € Since 0 < € < 1/2, it is easy to see that M* consists of the
edges (i,i+¢€), 1 <i<n.



Consider what happens when algorithm B is run on input P. Clearly,
this input “survives” Step 1. Let M be the r-approximate MWM that is
computed in Step 2. We will show below that M = M*. Having proved this,
it follows that algorithm B accepts the input P, i.e., P € V.

Suppose that M # M*. Then M contains an edge of the form (i, ),
(1,7 +¢€), or (i +€,j + €), for some integers i and j, i # j. (We consider
edges to be undirected.) Since 0 < e < 1/2, it follows that this edge and,
hence, also the matching M, has weight more than 1/2. Clearly, the optimal
matching M* has weight ne = 1/(2r). Therefore, wt(M) > 1/2 = r-wt(M*).
This is a contradiction, because M is an r-approximate MWM. |

Lemma 2 The set V' has at least n! connected components.

Proof. Let 7 and p be two different permutations of 1,2,...,n. Consider
the points

P:=(1,2,...,n,7(1) +¢,7(2) +¢...,m(n) +¢€)
and
R:=(1,2,...,n,p(1) +€p(2) +¢€...,p(n) +e).
in R?". By Lemma 1, both these points are contained in the set V. We will
show that they are in different connected components of V.
Let C be an arbitrary curve in R?*" that connects P and R. Since 7 and

p are distinct permutations, there are indices ¢ and j such that 7 (i) < 7(j)
and p(i) > p(j). Hence, the curve C contains a point @,

Q = (plap%"'apna(haq?a'"aQH)a

such that ¢; = ¢;. We claim that () is not contained in V. This will prove
that P and R are in different connected components of V.

To prove the claim, first assume that there is an index k, 1 < k£ < n, such
that py # k. Then point @ is rejected by algorithm B and, therefore, Q & V.
Hence, we may assume that

Q=(1,2,...,n,G1,G2,- -, Gn)-
Let us see what happens if we run algorithm B on input (). This input
“survives” Step 1. Let M be the r-approximate MWM that is constructed
in Step 2.

If M contains an edge of the form (pg,ps) = (k,£), then algorithm B
rejects point (), because such an edge has length more than e¢. Hence, we
may assume that each edge of M has the form (pg, ) = (k,q). Let a and
b be the integers, 1 < a,b < n, such that (a,¢;) and (b, ¢;) are edges of M.
Since (i) a and b are distinct integers, (ii) ¢; = ¢;, and (iii) 0 < € < 1/2, one
of these two edges must have length more than e. Hence, algorithm B rejects
point (). This completes the proof. |
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