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Abs t rac t  

Let V be any set of n points in k-dimensional Euclidean space. A subgraph 
of the complete Euclidean graph is a t-spanner if for any ~ and ~ in V, the 
length of the shortest path from u to v in the spanner is at most t times d(~, ~). 
We show that for any 5 > 1, there exists a polynomial-time constructihle t- 
spanner (where ~ is a constant that depends only on 5 and k) with the following 
properties. Its maximum degree is 3, it has at most n �9 6 edges, and its total 
edge weight is comparable to the minimum spanning tree of V (for/~ < 3 its 
weight is O(1). wt(MgT), and for k > 3 its weight is O(log n). wt(MST)). 

1 Introduction 
Let V be any set of n points in k-dimensional Euclidean space. A subgraph of the 
complete Euclidean graph is a t-sparmer if for any u and v in V, the length of  the 
shortest path from u to v in the spanner is at most  t times d(u, r).  The  value of 
t is called the sLretch factor  of G. We consider the problem of construct ing sparse 
spanners, with the objective of keeping the stretch factor a constant  ( that  is, inde- 
pendent of n). The motivation is, complete graphs represent ideal communicat ion 
networks but are expensive to build in practice, and sparse spanners represent low 
cost alternatives. Sparseness of spanners is usually measured by various criteria 
such as small degree, few edges, and/or  small edge weight. This paper  is significant 
because we construct a single spanner which is extremely sparse by all the abore 
criteria. Some of the sparseness results are optimal in a very strong sense. 

Spanners for complete Euclidean graphs as well as for general graphs find appli- 
cations in robotics, network topology design, distributed systems, design of  parallel 
machines, and have also been investigated by graph theorists. Recent surveys on 
spanners may be found in [2, 3, 12]. 

The minimum spanning tree of V, MST, is obviously the sparsest possible con- 
nected spanner both in number of edges and weight (although not in degree), but  its 

"Supported in part by NSF grant CCR-9306822 



]2 

stretch factor can be as bad as n - 1 [1]. The sparseness of a spanner is frequently 
judged by comparing it to the  number of edges and weight of the M S T .  In this 
paper we prove the following theorem. 

T h e o r e m  1.1 Let V be any set of n points in k-dimensional Euclide,,n space. For 
any 6 > i, there ezists a polynomial-time constructible t-spanner (where t depends 
only on 6 and k) with the folZowing properties: 

1. Its mazimum degree is 3. 

~. It has at most n .  6 edges. 

B. For k < 3 its weight is O(1).  wt (MST) ,  and for k > 3 its weight is O(logn) .  
w t ( M S T ) .  The constants implicit in the O-notation depend only on 5 and k. 

Let us first consider the problem of constructing spanners with a small degree. 
In [2] an algorithm is described which constructs a spanner in k-dimensions with 
a constant maximum degree (that is, not dependent on n), however the degree is 
exponentially dependent on k and hence quite large for higher dimensions. In 2 
dimensions, a degree-7 spanner is reported in [6], and a degree-5 spanner in [13]. 
It is known that  the lower bound for the degree is 3 because, given n set of points 
arranged in a grid, a Hamiltonian path or circuit cannot be a spanner with a constant 
stretch factor. A breakthrough in this problem appeared in [11] where it is shown 
that there exists a degree-4 spanner with a constant stretch factor in k-dimenslonal 
space. In that paper the author reports that it may be difficult to extend the 
technique to construct degree-3 spanners, but conjectures that such spanners exist. 

In this paper we prove the existence of a degree-3 spanner in k-dimensional 
space. With this result, the problem of constructing spanners with small degree is 
satisfactorily solved. The proof employs some of the techniques in [11], but several 
new and non-trivial ideas are used. 

Now consider the problem of generating spanners with few edges. A lower bound 
on the number of edges is n - 1 because a spanning tree is a connected graph with 
the fewest edges. Spanners with O(n) edges and constant stretch factors have been 
designed in several papers, but in most of these spanners the c~nstant implicit in 
the O-notation depends on the dimension [1, 2, 3, 4, 7, 9, 10, 14]. The degree-4 
spanner constructed in [11] is an improvement, because it has at most 2.  n edges. 
The next question is, can the proportionality constant be reduced even further? We 
are thus seeking edge sparseness in a very strong sense. This has been answered in 
the affirmative in 2-dimensions. In [1] it is shown that, given any 5 > 1, a spanner 
with a constant stretch factor (which depends on 5) can be constructed with at most 
n .  5 edges. However, the techniques employ planarity properties and do not extend 
to higher dimensions. 

In this paper we show that, given any 5 > 1, a degree-3 spanner in k-dimensional 
space can be constructed with a constant stretch factor (which depends on k and 
5), and with at most n .  5 edges. Thus the number of edges can be made arbitrarily 
small, with a corresponding increase in the stretch factor. This result satisfactorily 
solves the general problem of constructing spanners with few edges. 

We now turn our attention to the third criterion, that is the weight of the spanner. 
Let wt(G) be the total edge weight of a graph G. In [5, 8] it is shown that  a 
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2-dimensional spanner exists with weight at most O(1) �9 wt(MST), which is an 
asymptotically optimal result. Both papers exploit planarity and the techniques do 
not extend to higher dimensions. In [2] it is shown that  a k-dimensional spanner 
exists with weight at most O( logn) .  wt(MST). In [4] it is shown that  for k < 3, 
a spanner exists with weight at most O(1).  wt(MST). Thus asymptotic optimality 
has been achieved up to the third dimension. But the spanners in [2, 4] do not have 
the degree and edges bounds presented here. 

In addition to having a degree of 3 and the number of edges bounded by r , .  6, 
the spanner in this paper has a weight bound that match the spanners in [2, 4]. 
However, the general problem of constructing spanners with low weight has not 
yet been satisfactorily solved. The O(logn) factor in dimensions higher than 3 is 
probably suboptimal, and one would like to go beyond asymptotic optimality even 
for k < 3. For example, given any "r > 1, are there spanners with weight at most 
wr M ST) . "7? 

The paper is organized as follows. In Section 2 we introduce some notations 
and summarize previous research relevant to our proofs. Section 3 describes the 
algorithm and shows that the resulting spanner is degree-3. Sections 4 and 5 are 
devoted to proving upper bounds on the number of edges and the total weight 
respectively. We conclude with some open problems. 

R e m a r k :  Throughout the paper various constants are used, but lack of space 
prohibits us from explicitly presenting their values or their functional depen- 
dencies on other parameters such as k and 6. They are available in the complete 
version of this paper. 

2 P r e l i m i n a r i e s  

In this section we introduce a few basic definitions and also summarize some previous 
relevant results. The Euclidean distance between two points u and v is d(u, v). The 
length of the shortest path between two vertices u and v of a graph G is da(u,  v). 

In [2, 4] a greedy algorithm is developed for constructing spanners of any set V 
of n points in k-dimensional space. Given any ~1 > 1, this algorithm constructs a 
degree-s ~'-spanner, where s depends on k and ~'. Such spanners are called greedy 
spaaner~ because the algorithm is greedy. Select a fixed value of t ~ (such as ~ --- 2). 
In the rest of this paper, assume that whenever the greedy algorithm is run, it uses 
this value of ~. Thus the degree of the resulting spanner, s, depends only on k. I t  is 
known that for k _< 3 the weight of the greedy spanner is O(1).  w~(MST), and for 
k > 3 the weight is O(log n) �9 wt(MST). The constants implicit in the O-notation 
depend only on k. 

The technique in [11] generates a degree-4 spanner whose stretch factor depends 
only on k. This result uses the concept of neares~-r~eig/~bor graphs. Since our paper 
also relies on the same concept, we present it in detail here. 

Assume no two interdistances among the points in V are identical. The ~eares~- 
aeifl:bor 9raph is a digraph over the vertex set V, such that from each vertex u, 
there is a directed edge to its nearest neighboring vertex, nv(u) .  The following are 
true. Every simple path in this digraph follows edges of decreasing length. The only 
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cycles are short cycles, containing exactly two vertices. In every simply-connected 
component of this digraph, exactly one short cycle appears. Thus, each simply- 
connected component has at least two vertices. 

This digraph can be transformed into an undirected forest as follows. Replace 
directed edges by undirected edges. Since short cycles will be transformed into multi- 
edges, replace multi-edges by single edges. The result is the undirected nearest- 
neighbor forest. In this forest, each tree contains a special edge created from the 
unique short cycle of the corresponding simply-connected component of the digraph. 
Designate one of the two adjacent vertices of this edge the root of the tree. We use 
the notation r(T) to represent the root of a tree T. Thus the nearest-neighbor forest 
is a forest of rooted trees. It is noted in [11] that the degree of a nearest-neighbor 
forest is at most 3 4 . 

3 Construct ing a Degree-3 Spanner 

In this section we show how to construct a degree-3 spanner in k-dimensional space, 
whose stretch factor depends only on k. In [11] an algorithm is described for con- 
structing degree-4 spanners. We borrow two techniques from that  paper, namely 
the use of nearest-neighbor forests, and a method of transforming a fixed degree tree 
into a degree-3 tree. However, to construct a degree-3 spanner with other sparseness 
properties requires several new and non-trivial ideas. 

Recall that s is the maximum degree of greedy spanners, where s depends only 
on k. The intuitive idea is to partition V into clusters such that  each cluster has a 
representative vertex u (called the root) and several other vertices, of which at least 
s - 2 vertices (say wl, w~, . . . ,  w~-2) are quite close to u as compared to the distance 
between u and roots of other clusters. Then an individual spanner for each cluster 
is constructed, such that each root is degree-l, each of wl, w~, . . . ,  w, -2  is degree-2, 
and the remaining vertices in the cluster are at most degree-3. A spanner G for 
V is created by taking the union of all individual spanners with a greedy spanner 
constructed for the set of roots of all clusters. The degree of G is reduced to 3 by 
shifting s - 2 of the greedy spanner edges incident to a root u to its nearby vertices 
1 / 3 1 , 1 / 3 2 ,  " " " ,  ~ s - 2 .  

The result in [11] also uses a clustering concept. There each cluster may have 
several vertices, but only one other vertex is guaranteed to be close to the represen- 
tative vertex. The drawback is that a degree-3 spanner cannot be constructed. The 
advantage of our clustering technique is two-fold. Apart  from constructing degree-3 
spanners, we also reduce the total number of edges in the spanner. Our clusters are 
constructed from a hierarchy of nearest-neighbor forests, whereas the clusters in [11] 
are constructed from a single level nearest-neighbor forest. 

The construction will consist of a series of steps. 

S t e p  1: Let V 1 -- V. Construct the nearest-neighbor forest of V 1, which is called 
the first-level nearest-neighbor forest and denoted N N F  1. Then construct 
the fragmented first-level nearesl-ne@hbor forest (denoted F N N F 1) as follows. 
Select any c > 1. Label each edge of N N F  1 as either shorl or long. An edge 
in a tree is labeled short if it is adjacent to the root or if its length is less than 
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c times the length of its parent edge. Otherwise the edge is labeled long. After 
the labeling is over, repeat the following step until no tree in the forest has 
three consecutive short edges on a root to leaf path. Locate a tree which has 
three consecutive short edges, with the middle short edge being (u, w), with 
u the parent of w. Fragment the tree into two by removing the middle short 
edge, and make w the root of the new tree. 

S t e p  2: Let l = s - 2. (A larger I will also work, and in f ~ t ,  in the next section 
the algori thm is run with a larger l). Thus 1 depends only on k. Repeat the 
following procedure for i = 2, 3 , . . . , I .  Set V i to be the set of all the roots 
in F N N F  ~-1. Construct the nearest-neighbor forest of V i, denoted N N F  ~. 
Then construct F N N F  ~ by fragmenting N N F  i exactly as in Step 1, using the 
same value of c. 

At this stage we have constructed a hierarchy of I fragmented forests. Several 
properties hold. The forests are pairwise edge disjoint. Each tree in F N N F  i has 
at least two vertices. The set V i is a proper subset of V i-1.  The following lemmas 
describe additional properties. 

L e m m a  3.1 Let u be a vertez of tree T ~ belon#in# to F N N F  i. I, et v be any other 
vertez of V i. Then dT,(U, r(Ti))  is at most  a constant t imes d(u, v). 

P r o o f :  Clearly d(u, nv , (u ) )  < d(u, v). But (u, nv , (u ) )  is the first edge along the 
path in T i from u to the root. The way F N N F  i is constructed, no three consecutive 
edges on this path are short edges. Thus the length of this path converges to at  most  
a constant times the length of the first edge, d(u, nv , (u ) ) .  �9 

We next show that  each root has a close child compared to the distance between 
the root  and other roots in the same level. 

L e m m a  3.2 Let u and v be two roots of F N N F  ~. Let w be the closest child of u. 
Then d(u, v) is at least a constant t imes d(w, u). 

P r o o f  : The vertex u could either be a root of N N F  i, or a root of a tree created 
by the fragmentat ion process. In the first case, w = rive(u) so the lemma trivially 
holds. In the second case, u became a root because, both (w, u) and (u, nv , (u))  were 
short edges in g N F  ~ and (u, nv , (u ) )  was removed. Thus d(w, u) < c.d(u, nv,(U)) < 
c .  d(u,  v).  �9 

S t e p  3: Construct  the composite forest by taking the union of all F N N F  i, for 
i =  1 , 2 , . . . , l .  

Each connected component R in the composite forest is a tree, and is basically 
the union of a single ph level tree T z, with all (I - I) th level trees whose roots are 
vertice s of T z, with all (l - 2) th level trees whose roots are vertices of these ( l -  1) t~ 
level trees, and so on. Define the root of R as r (R)  = r(T~). The maximum degree 
of R depends only on k (it is at most l times the maximum degree of any nearest- 
neighbor forest). Each R has at least 2 z vertices. Furthermore, r (R)  has at least l 
children because it is the common root to I different level trees. 
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Lemma 3.3 Each composite Sree R is a spanner over ifJ own veriice$, tui~h a stretch 
factor dependen$ only on k. 

Proof  ." Let u and v be two vertices in R. We shall show that  dR(u, v) is at most s 
constant times d(u, v). Let ~z be the nearest common ancestor of u and v in R. Let 
T1, T2, . .  . , T  z be trees such that  u is in T 1, r (T  1) is in T 2, r (T  2) is in T s, and so 
on. Let H ~, H2, . . . ,  H z be trees such that  v is in H 1, r (H  1) is in H 2, r ( H  2) is in 
H ~, and so on. Let j be the smallest integer such that  TJ = H j.  Thus w belongs to 
TJ. The path from u to w in R goes via r (T1) , r (T2) , .  �9 . , r (TJ-X) .  The path from 
v to w in R goes via r(H1),  r(H2),  . . . ,  r (HJ-1 ) .  

By applying Lemma 3.1, both dT, a(u,r(T1))  and dHa(v,r(H1))  are at most  a 
constant times d(u, v). This also implies that  d(r(T1), r (H1))  is at  most  a constant 
times d(u, v). If  we carry this argument to higher levels we can conclude that  both 
d.j, ,(r(T~-l),r(T~)) and dH, ( r (H ' - l ) ,  r (H ' ) )  are at most  a constant times d(u, v). 
This also implies that  d(r(T~), r ( H ' ) )  is at most a constant times d(u, v). At level 
j we can conclude that  both dTj ( r (TJ-1) ,w)  and d n j ( r ( H i - ~ ) , w )  are at most  a 
constant times d(u, v). However, these constants now depend on the level. 

Since we have shown that  each fragment of the path from u to v via w is at most  
a constant times d(u, v), and there are 2. j such fragments, the l cmma is proved. Of 
course, the constant depends on l, which in turn depends on k. �9 

We next show that  in the composite forest each root has I distinct close children 
compared to the distance between the root and other roots. This fact is crucial in 
the eventual construction. This is different from Lemma 3.2 where trees at any given 
level have only one child guaranteed to be close to the root. 

L e m m a  3.4 Let u and v be $wo roo~s of the composite forest. Let R be the composiSe 
tree such ~ha~ u = r(R) .  For i = 1 , 2 , . . . , I ,  let T i be the i ~h level tree such tha~ 
u = r(T~), and let w~ be ~he closest child o fu  in T ~. Then each w~ is a dis~inc~ child 
o/u  in R, and d(u, v) is at ZeaU a cons an  Umes 

P r o o f  : By applying Lemma 3.2 at all levels. �9 

We now introduce a tree transformation called f ,  which is similar to one used in 
[11]. Let R be any rooted tree with a constant maximum degree, f ( R )  is another tree 
defined as follows. The root and the vertex set remain unchanged. For every vertex 
u in R, order its children in terms of increasing distance from u, say Zl, z 2 , "  ", zrn. 
Remove all edges between u and its children, and reconnect by creating the chain 
(u, z l ) , ( z l ,  z 2 ) , ' " ( z m - l , z ~ n ) .  We see that  the root of f ( R )  is degree-l, and the 
max imum degree of f ( R )  is 3. If we apply the transformation again and create 
f ( f ( R ) ) ,  the degree of the root will remain 1, the maximum degree will remain 3, 
and additionally the child of the root will have degree at most  2. In general, for the 
tree j~(R), the root will form one end of a chain of i -t- 1 vertices, with the rest of 
the tree connected to the other end of the chain. The maximum degree will remain 
3. 

L e m m a  3.5 Le~ R be a ~ree with a constan~ degree, such tha~ it is a spanner over 
its own vertices, wi~h a constan~ s~reteh factor. Then f~(R) is also a spanner wiLh 
a stretch factor dependent upon i. 
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P r o o f  : Let (u, z) be an edge remOved from R where u was the parent of z. An 
alternate path is created from u to z in f ( R )  consisting of a constant number of 
edges, the length of each being no more than a constant times d(u, z) .  Thus .f(R) 
is a spanner. Applying this argument i times proves the lemma. �9 

S tep  4: Construct a transformed/ores~ from the composite forest as follows. Re- 
place each trec R in the composite forest by the transformed tree F = / l + l  (R). 

Each F is a spanner over its vertices with a stretch factor dependent only on k, 
due to Lemmas 3.3 and 3.5. In addition, the root is connected to l + 1 other vertices 
by a chain. In this chain the root is degree-1 and the I intermediate vertices are each 
degree-2. The last vertex on this chain is attached to the rest of the tree, and may 
be degree-3. 

We next show that in the transformed forest the chain attached to each root is 
quite short compared to the distance between the root and other roots. 

L e m m a  3.6 Let u and v be two roots of the transformed forest. Le~ F be the 
transformed tree such that u : r (F) .  Then d(u,v)  is at least a constant ~ime8 
She path length in F from u to its I th descendent, where thia constan~ depends on ]r 

Proof : Let R be the composite tree such that u = r(R). In R, u has I distinct 
children Wl, w2,..., w! satisfying Lemma 3.4. The tree F is transformed from R, and 
thus has a chain whose edges are say, (u, zl), (zl, z2),'" (zt, z/+1). The final vertex 
z#+1 is connected to the rest of the tree. Since the vertex sets of R and F are the 
same, one of wl, w2,'-', wl has to belong to the subtrce of F with root zz. Suppose 
this is vertex wi. We know F is a spanner, so dF(wl, u) is at most a constant (which 
depends on/~) times d(wi, u). But dF(w~, u) > dF(z~, u) because the path from w~ 
to u has to traverse zz. So dF(zz, u) is at most a constant times d(wi, z), which in 
turn is at most a constant times d(u, v) due to Lemma 3.4. �9 

S tep  5: Let Y I-F1 be the set of roots of the transformed forest. Construct a degree- 
s greedy spanner of V z+l using the greedy algorithm in [2, 4]. Let G be the 
graph formed by the union of the greedy spanner and the transformed forest. 

L e m m a  3.7 G is a spanner of V with a stretch factor dependent only on k. 

P r o o f  : Let u and v be two vertices in V. We have to construct a short path between 
them within G. If both belong to the same transformed tree F,  there exists a short 
path between them within F since F is a spanner over its vertices. Otherwise let u 
belong to F1 and v belong to F2. Let F1 and F2 be transformed from the composite 
trees R1 and R2. Arguments similar to those in Lemma 3.3 can be used to show 
that both dRl(u,r(R1)) and dR~(v,r(R2)) are at most a constant (which depends 
only on k) times d(u, v). Since F1 and F2 are themselves spanners, this implies that 
both dFl(u, r(F1)) and are at most a constant (which depends only on 
k) times d(u, v). This in turn implies that d(r(Fi), r(F2)) is also at most a constant 
(which depends only on k) times d(u, v). Since the greedy spanner has a short path 
between r(Yl) and r(Y2), we conclude that the path from u to r(F1) within FI, then 
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from r(F1) to r(F2) within the greedy spanner, then from r($'2) to v within Fz is at  
most  a constant times d(u, v), where the constant depends only on k. �9 

The vertices of  G are at most degree-3, except for the vertices in V z+1. Such 
vertices could potentially be degree-(s d- 1), one edge belonging to the transformed 
tree, and s edges belonging to the greedy spanner. We now show how to reduce 
these to degree-3. 

S t e p  6: Perform the following at each vertex u in V I+1. Let F be the trans- 
formed tree whose root is u. Suppose the chain in F originating from u is 
(u, ml), (zl ,  z 2 ) , " . ,  (zl, m~+l). Suppose the greedy spanner edges incident at  
u are el, e2, . .  -, e,. Recall that  l = s - 2. Shift el, e 2 , ' . . ,  e,_2 away from u so 
that  they are incident to ml, z ~ , . . . ,  m,-2 respectively. 

L e m m a  3.8 G is a degree-3 spanner of V wi~h a s~re~ch factor depe~der~$ ordy or, 
k. 

P r o o f  : It is easy to see that G is a degree-3 graph. Now consider an edge (u,v)  
tha t  was shifted in Step 6. Let the new endpoints be (u l ,v l ) .  The vertex ul  can 
be no further away from u than the l ~h descendent of u in the transformed forest. 
Similarly the vertex vl can be no further away from v than the l ~h descendent of v 
in the transformed forest. By applying Lemmas 3.6 and 3.7, there is a path  in G 
from u to v which is at most a constant times d(u, v), where this constant depends 
only on h. �9 

4 Reducing the Number of Edges 

In the previous section we showed how to construct a degree-3 spanner G with a 
stretch factor dependent only on/~. However, graphs with max imum degree of  3 may  
still have as many as n.(3/2)  edges. It is oflnterest to see whether the proportionali ty 
factor can be reduced even further. In this section we show that  given any 6 > 1, 
there exists a degree-3 spanner with at most  n .  6 edges, and with a stretch factor 
dependent only on/~ and 5. 

Earlier we had chosen l = s - 2. A larger l will work, and the resulting degree-3 
spanner will have fewer edges. Select the smallest integer I such that  l ~_ s - 2 and 
6 > 1 -k * and then construct the spanner G as in the previous section. The 

21+1 
stretch factor now depends on ~ and &. 

L e m m a  4.1 G has a~ mos~ n.  6 edges. 

P r o o f  : There are two types of edges in G: the foresg edges that  belong to the 
transformed forest, and the smiled greedy spanner edRes that  belonged to the greedy 
spanner over V z+l but were eventually shifted in Step 6 (see previous section). There 
are at most n -  1 forest edges. Since each transformed tree has at  least 21 vertices, 
the number of roots in the transformed forest is at m o s t  n /2  l. Thus the number  of 
shifted greedy spanner edges is at most  n -  ( 2 ~ ) ,  which implies tha t  the number  of  

$ edges in G is at most n .  (1 + 2,+~ ) - 1. �9 
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5 Estimating the Weight of the Spanner 

In this section we provide an upper bound on the total edge weight of the spanner 
G constructed in Section 3. Let MST(V) denote a minimum spanning tree of 
the point set Y. We show that for /~ < 3, wt(G) = O(1) .  wt(MST(V)).  This 
is an asymptotically optimal result. For k > 3 we show that  wt(G) = O(logn) �9 
wt(MST(V)).  The constants implicit in the O-notation depend on k and 6. 

L e m m a  5.1 Let U be a subset of V. The following are true. 

I. The nearest-neighbor forest of V is contained in MST(V).  

2. wt(MST(U)) : O(wt(MST(V))). 

P r o o f  : Straightforward. �9 

The edges of G consist of forest edges and shifted greedy spanner edges. Consider 
the forest 'edges first. Let F be a transformed tree which is constructed from a 
composite tree R. The nature of the transformation makes it easy to see that  the 
weight of F is at most a constant (which depends on/c and 5) times the weight of 
R. Thus the weight of the transformed forest is at most a constant times the weight 
of the composite forest. But the weight of the composite forest is the sum of the 
weight of each F N N F  ~, where F N N F  ~ is constructed over V i. But V i is a subset 
of V. By applying Lemma 5.1, we can conclude that the transformed forest weighs 
at most a constant times MST(V),  and this constant depends on k and 5. 

Now consider the shifted greedy spanner edges. Each edge (u l ,v l )  corresponds 
to an edge (u, v) of the greedy spanner over V z+l. But d(ul, vl) is at most a constant 
(which depends on k and 6) times d(u, v). Using the known weight bounds on greedy 
spanners (see Section 2), the fact that V t+l is a subset of V, and Lemma 5.1, we can 
conclude that  the total weight of these edges is O(1).  wt(MST(V)) for k < 3, and 
O( logn) .  wt(MST(V))  for k > 3. Thus the weight of the shifted greedy spanner 
edges dominates the weight of forest edges in an asymptotic sense, and we have 
proven the following lemma. 

L e m r n a  5.2 For k <_ 3, wt(G) : O(1) .  wt('MST(V)), and for k > 3, wt(G) = 
O(logn) .  wt( M ST(V) ). The constants implicit in the O-notation deverrd only o~ 6 
and k. 

6 O p e n  P r o b l e m s  

We conclude with some open problems. Most of the problems considered in this 
paper have their optimization counterparts. For example, given V, design a degree- 
3 spanner with the minimum stretch factor. Another version is, given a stretch 
factor, design a spanner with minimum number of edges, or minimum weight. It  is 
likely that  most of these are intractable. If so, then good approximation algorithms 
are necessary. 

The weight result has room for improvement. For k > 3 the O(logn) factor needs 
to be eliminated. Even if that is achieved, we can still ask stronger questions such 
as, given 7 > 1, are there spanners with weight wt(MST(V)) .  77 
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