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Abstract. Matrix decomposition methods represent a data matrix as
a product of two smaller matrices: one containing basis vectors that
represent meaningful concepts in the data, and another describing how
the observed data can be expressed as combinations of the basis vec-
tors. Decomposition methods have been studied extensively, but many
methods return real-valued matrices. If the original data is binary, the
interpretation of the basis vectors is hard. We describe a matrix decom-
position formulation, the Discrete Basis Problem. The problem seeks for
a Boolean decomposition of a binary matrix, thus allowing the user to
easily interpret the basis vectors. We show that the problem is com-
putationally difficult and give a simple greedy algorithm for solving it.
We present experimental results for the algorithm. The method gives
intuitively appealing basis vectors. On the other hand, the continuous
decomposition methods often give better reconstruction accuracies. We
discuss the reasons for this behavior.

1 Introduction

Given an n×m matrix C and an integer k < m, classical matrix decomposition
methods aim at finding an n×k matrix S and a k×m matrix B such that C can
be approximately represented as the product of S and B. The decomposition
method represents the data by using k components: the matrix B tells how the
components are related to the original attributes (columns), and the matrix S
indicates how strongly each component is related to each row.

Singular value decomposition (svd) [1] and nonnegative matrix factorization
(nmf) [2] are typical examples of decomposition methods; the difference between
the two is that nmf assumes that C is nonnegative and requires that S and B
are nonnegative. Other matrix decomposition methods include latent Dirichlet
allocation (lda) [3] and multinomial pca [4]; see Section 3 for additional discus-
sion of related work.
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These (and other) matrix decomposition methods allow the matrices S and
B to contain arbitrary real numbers. However, if the input matrix C is binary,
it is natural to require that S and B are also binary. In this paper we consider
the matrix decomposition problem created by this requirement. In this case the
combination operation of matrices S and B is the Boolean matrix product (i.e.,
the matrix product in the semiring of Boolean ∧ and ∨).

The intuition behind considering Boolean operations is as follows. Consider
a course enrollment dataset in a CS department. Such a dataset indicates which
students enroll to which courses. Naturally, courses are divided into specializa-
tion areas. A student X interested in the Systems specialization needs to take,
among others, courses on {Operating Systems, Programming languages}, and
a student Y interested in the Software specialization needs to take courses
on {Compilers, Programming languages}. On the other hand, a student Z
interested in combining both of the above two specializations should take all
courses {Compilers, Operating systems, Programming languages} (among
others). The point is that student Z should (obviously) take Programming langu-
ages only once. Thus the set union operation is more appropriate for describing
the actual data from the basis vectors (specialization areas).

Following the intuition in the previous example, we formulate the problem of
finding a decomposition into binary matrices that give the best approximation
to the input matrix. We call this problem the Discrete Basis Problem (dbp). We
show that dbp is NP-hard and it cannot be approximated unless P = NP.

We give a simple greedy algorithm for solving the dbp and assess its empirical
performance. We show that the algorithm produces intuitively appealing basis
vectors. On the other hand, the continuous decomposition methods often give
better reconstruction accuracies and are also stronger in providing predictive
features for classification. We discuss the reasons for this behavior.

The rest of the paper is organized as follows. In Section 2 we formally define
the Discrete Basis Problem and in Section 3 we review related work. In Sec-
tion 4 we compare continuous and discrete matrix decomposition approaches. In
Section 5 we discuss issues related to the computational complexity of dbp. In
Section 6 we present our greedy algorithm, and in Section 7 we report experi-
mental results. Finally, Section 8 is a short conclusion.

2 Problem definition

Consider an n×m binary matrix C. The rows of the matrix represent observa-
tions and the columns the attributes of the dataset. For instance, in a document
corpus dataset, rows are documents and columns are words, and Cij = 1 denotes
that the i’th document contains the j’th word.

A basis vector, intuitively, represents a set of correlated attributes. In the
document corpus example, a basis vector corresponds to a set of words that
constitute a topic. The dbp formulation aims at discovering the topics that are
present in the dataset, and also discovering how each observation (document) in
the dataset can be expressed by a combination of those topics.



Let S and B be binary matrices of dimensions n×k and k×m, respectively.
Let P = S ◦ B denote the (n × m matrix) Boolean product of S and B, i.e.,
the matrix product with addition defined by 1 + 1 = 1. The i’th row of P is the
logical OR of the rows of B for which the corresponding entry in the i’th row
of S is 1. Intuitively, S is the usage matrix, i.e., it contains information about
which topics appear in each observation, and B is the basis vector matrix, i.e.,
it contains information about which attributes appear in each topic.

The dbp seeks k binary basis vectors such that the binary data vectors can
be represented by using disjunctions of the basis vectors. The key aspect of
the formulation is that both decomposition matrices, S and B, are required to
be binary, and are thus more easily interpretable than arbitrary real matrices.
Formally, the dbp is defined as follows.

Problem 1 (The Discrete Basis Problem). Given a binary n×m matrix C and
a positive integer k < min{m,n}, find an n × k binary matrix S and a k × m
binary matrix B that minimize

|C − S ◦B| =
n∑

i=1

m∑
j=1

|cij − (S ◦B)ij | . (1)

3 Related work

Probably the best-known method to decompose a matrix is the Singular Value
Decomposition (svd) [1]. The svd decomposes a matrix A into the form UΣV T ,
where U and V are orthonormal matrices and Σ is a diagonal matrix with pos-
itive entries—the singular values of A. SVD gives the optimal rank-k approxi-
mation of the matrix A (simply by setting all but the k largest singular values
to 0). Optimality of svd means that the approximation produced by svd is the
best with respect to the squared reconstruction error and using normal matrix
multiplication for real matrices. SVD has been widely used in data mining for
matrix simplification and topic identification.

One problem with svd is that the factor matrices can also contain nega-
tive values that are difficult to interpret (see also Section 4). To overcome this
problem, and also to avoid the restriction to orthogonal matrices, Lee and Seung
proposed a method known as non-negative matrix factorization (nmf) [2]. While
nmf does not minimize the global squared reconstruction error, the existing al-
gorithms for nmf converge to the local optima [5].

In addition to svd and nmf, many other matrix decomposition methods have
been proposed, most of which are based on probabilistic models. Such methods
include multinomial pca [4], probabilistic Latent Semantic Indexing [6], Latent
Dirichlet Allocation [3], aspect Bernoulli models [7], and topic models [8]. The
last two models are closest to dbp as they are designed for binary data.

Also hierarchical descriptions of binary data have been studied: the Prox-
imus framework constructs a hierarchical clustering of rows of a given binary
matrix [9] and hierarchical tiles are probabilistic models hierarchically decom-
posing a binary matrix into almost monochromatic 0/1 submatrices [10].



Tiling transaction databases (i.e., binary matrices) is another line of related
research [11]. A tiling covers a given binary matrix with a small number of
submatrices full of 1’s. The main difference to dbp is that no 0’s can be covered in
a feasible tiling. Methods have been developed for finding also large approximate
tiles, for example fault-tolerant patterns [12] and conjunctive clusters [13], but
obtaining an accurate description of the whole dataset with a small number of
approximate tiles has not been studied previously explicitly.

Boolean factorization, i.e., factoring Boolean functions [14], is an important
part of logic synthesis. Rectangular coverings of Boolean matrices are one method
used to obtain good factorizations. However, the weight functions used and the
acceptance of noise are different to those of our work.

Finally, in co-clustering (or bi-clustering) the goal is to cluster simultaneously
both dimensions of a matrix [15]. A co-cluster is thus a tuple (R,C), R giving
the indices of rows and C giving the indices of columns. Decomposing a Boolean
matrix into two matrices can be seen as a co-clustering of binary data where the
clusters can overlap. Different methods for co-clustering have been proposed,
see, for example, work of Banerjee, Dhillon and others [15].

4 Continuous and discrete decompositions

In this section we discuss the properties of continuous and discrete approaches
to matrix decomposition, and in particular the properties of svd as compared
to those of dbp.

In svd the resulting matrices, U and V , have real-valued and even nega-
tive entries, so they do not necessarily have an intuitive interpretation. As an
example, consider the case of matrix C and its rank-2 svd decomposition:

C =

1 1 0
1 1 1
0 1 1

 , U =

0.50 0.71
0.71 0
0.50 −0.71

 , Σ =
(

2.41 0
0 1

)
, V =

0.50 0.71
0.71 0
0.50 −0.71

 .

The basis vectors in V are not the easiest to interpret. Matrix C has rank 3,
and the approximation to C produced by svd with rank-2 decomposition is

UΣV T =

1.10 0.85 0.10
0.85 1.21 0.85
0.10 0.85 1.10

 .

By the optimality of svd, this is the best that can be achieved by looking at real
matrices and squared error. On the other hand, dbp produces the representation

C =

1 1 0
1 1 1
0 1 1

 =

1 0
1 1
0 1

 ◦
(

1 1 0
0 1 1

)
,

which has no error and is easy to understand.



As noted above, svd produces optimal rank-k representations of matrices
with respect to the Frobenius norm (sum of squares of elements). It is also
relatively fast to compute, requiring time O(nm min{n, m}) [1].

Optimality for arbitrary matrices is not the whole story, however. For binary
matrices, one can study two types of ranks. The real rank rR(C) of a binary
matrix C is simply the smallest value of k such that C = SB with an n × k
matrix S, a k × m matrix B, and using normal matrix multiplication. The
Boolean rank rB(C) of C is the smallest k such that C = S ◦B, where S is an
n × k matrix, B is a k × m matrix, and the matrix multiplication is Boolean.
It can be shown that there are matrices C for which rR(C) < rB(C) and vice
versa [16]. The complement of the identity matrix of size n × n is an example
where rB(C) = O(log n), but rR(C) = n [16]. This shows that while svd can
use the space of reals, dbp can take advantage of the properties of Boolean
operations to achieve much smaller rank than svd. Empirical experiments on
generated data support this conclusion. Thus it is not a priori obvious that svd
will produce more concise representations than the Boolean methods.

The concepts of real and Boolean rank discuss the exact representation of
the matrix C, and we are more interested in the approximate representation.
One could define the ε-ranks rε

R(C) and rε
B(C) as the smallest k such that there

is a representation of C as SB or S ◦ B with B being a k × m matrix and
|C − SB| < ε. Even less seems to be known about such concepts than about
exact real and Boolean ranks. One goal of our paper is to investigate empirically
and theoretically whether the Boolean decompositions are feasible alternatives
of the continuous methods.

5 Computational Complexity of DBP

The dbp is an optimization problem: find the matrix decomposition into k basis
vectors that minimizes the representation error according to the definition of
Problem 1. To put the problem in the perspective of complexity theory, we
formulate the decision version of the problem. This is defined as in Problem 1,
but additionally we are given a target cost t and the task is to decide whether
there is a decomposition of the input binary matrix C into binary matrices S
and B that yields an error at most equal to t.

The problem is NP-hard as the Set Basis Problem (sbp) [17, problem SP7]
is a special case of the decision version of the dbp.

Problem 2 (The Set Basis Problem). Given a collection C of subsets of a finite
universe U and a positive integer k, decide whether or not there is a collection
B ⊆ 2U of at most k sets (|B| ≤ k) such that for every set C ∈ C there is a
subcollection BC ⊆ B with

⋃
B∈BC

B = C.

More specifically, for any instance of sbp there is an equivalent instance of dbp
with t = 0, even when only the matrix B is requested. The NP-hardness can
also be shown by observing that the Biclique Covering Problem is a special case
of dbp with t = 0 where both S and B are needed. It is immediate that dbp is
in NP. Thus we have:



Theorem 1. The decision version of dbp is NP-complete.

The reduction from sbp to dbp with t = 0 implies also the following simple
inapproximability result:

Theorem 2. DBP cannot be approximated within any factor in polynomial time,
unless P = NP.

The problem of solving the whole decomposition of the matrix for given basis
vectors, i.e., finding the matrix S for given B and C, can be solved by a straight-
forward algorithm in time O(2kmn) where k is the number of basis vectors (i.e.,
the number of rows in B): Each of the n rows in C can be decomposed indepen-
dently and there are only 2k different ways to choose a subset of basis vectors.
Thus the problem of finding the optimal decomposition after the basis vector
matrix is known, is in the class of fixed-parameter tractable problems (see [18]).

6 The Algorithm

In this section we give a greedy algorithm for dbp. The basic idea of the algo-
rithm is to exploit the correlations between the columns. First, the associations
between each two columns are computed. Second, the associations are used to
form candidate basis vectors. Third, a small set of candidate basis vectors are
selected in a greedy way to form the basis.

In the rest of the section we denote a row vector of a matrix M by mi, a
column vector by m·i and a matrix entry by mij . The confidence of an association
between the i-th and j-th column is defined as in association rule mining [19], i.e.,
c(i ⇒ j) = 〈c·i, c·j〉 / 〈c·i, c·i〉, where 〈·, ·〉 is the vector inner product operation.
An association between columns i and j is τ -strong if c(i ⇒ j) ≥ τ .

We construct an association matrix A where row ai consists of 1’s in columns
j such that c(i ⇒ j) ≥ τ . Each row of A is considered as a candidate for being a
basis vector. The threshold τ controls the level of confidence required to include
an attribute to the basis vector candidate, and it is assumed that τ is a parameter
of the algorithm.

The dbp objective function, described by (1), penalizes equally for both types
of errors: for 0 becoming 1 in the approximation, and for 1 becoming 0. We have
found that in practice the results of dbp can be improved if we distinguish
between these two types of error. Thus we introduce weights w+ and w− that
are used to reward for covering 1’s and penalize for covering 0’s, respectively.
Clearly, without loss of generality, we can assume that w− = 1.

The basis vectors are selected from the matrix A and the columns of the
usage matrix S are fixed in a greedy manner as follows. Initially B = 0k×m and
S = 0n×k. The basis B is updated in the iteration l by setting the row bl to be
the row ai in A and the column s·l to be the binary vector maximizing

cover (B,S,C, w+, w−) = w+|{(i, j) : cij = 1, (S ◦B)ij = 1}|
− w−|{(i, j) : cij = 0, (S ◦B)ij = 1}|,



Algorithm 1 An algorithm for the dbp using association rules
Input: Matrix C ∈ {0, 1}n×m for data, positive integer k < min{n, m}, threshold

value τ ∈]0, 1], and real-valued weights w+ and w−.
Output: Matrices B ∈ {0, 1}k×m and S ∈ {0, 1}n×k.
1: function Association(C, k, τ, w+, w−)
2: for i = 1, . . . , n do . Construct the association matrix A row by row.
3: ai ← {j : c(i⇒ j) ≥ τ}
4: B ← 0k×m

5: for l = 1, . . . , k do . Select the k basis vectors from A.
6: bl ← ai and s·l ← {0, 1}n maximizing cover (B, S, C, w+, w−)

7: return B and S

which can be considered as the “profit” of describing C using the basis B and
the decomposition S.

The association matrix can be constructed in time O(nm2) and a single
discrete basis vector can be obtained in time O(nm2). Thus, Algorithm 1 has
time complexity O(knm2). The run-time can be improved in practice by using
upper bounds and approximations for the confidences.

The algorithm has two parameters that control the quality of results: the
threshold τ , and weight w+ (again assuming that w− = 1). The straightforward
way to set the parameters is to try several different possibilities and take the
best. Alternatively the weight w+ can be used to express different valuations for
covering 1’s and 0’s.

Unfortunately there exist cases, where the algorithm is able to find only
suboptimal solution. For example, if all 1’s in some basis vector occur in some
other basis vectors, then the algorithm is unable to find that basis vector.

7 Experimental results

We have performed tests using Algorithm 1 on generated and real-world datasets.
The goals of the experiments are (i) to verify whether dbp produces intuitive
basis vectors, (ii) to check whether dbp can reconstruct basis vectors used to
generate artificial data, and (iii) to compare the reconstruction accuracy of dbp
against svd and nmf both for real and generated data.

7.1 Data and error measures

Generated data. We generated three sets of data to test the effects of (i) noise,
(ii) overlap between basis vectors, and (iii) input size. First, a set of basis
vectors was generated; then random subsets of these basis vectors were used to
generate the data rows; finally, random uniform noise was added. Details on the
parameters used to generate the three sets of data are shown in Table 1.
Real data. The real data consists of the following datasets: NSF Abstracts, 20
Newsgroups, Digits, and Courses. Details of the datasets are given in Table 2.



Table 1. Details on generated datasets. Each row represents a set of generated datasets.
#bv: number of basis vectors; #bv/row: average number of basis vectors used to gen-
erate each data row; 1s/bv: number of 1’s per basis vector; noise: number of entries
flipped in the data as a percentage of the total number of 1’s.

dataset rows columns #bv #bv/row 1s/bv noise

set 1 1000 500 12 4 50 5–40%
set 2 1000 500 12 4, 8 25–200 0%
set 3 1K–16K 1K–16K 10–160 5–80 0.5K–80K 0%

NSF Abstracts3 contain document–word information on a collection of project
abstracts submitted for funding by NSF. 20 Newsgroups4 is a collection of ap-
proximately 20000 newsgroup documents across 20 different newsgroups [20].
Digits5 is a collection of 1000 binary images of handwritten digits [21]. Courses
is a student–course dataset of courses completed by the CS students of the Uni-
versity of Helsinki. A random sample of NSF Abstracts and 20 Newsgroups was
used for comparisons between different algorithms due to memory constraints of
svd and nmf implementations.

Table 2. Attributes of the real-world datasets.

dataset rows columns 1s in data avg. 1s/row avg. 1s/column

NSF Abstracts 12 841 4 894 564 462 43.96 115.34
20 Newsgroups 10 000 5 163 455 526 45.55 88.23
Digits 2 000 240 291 654 145.83 1 215.23
Courses 2 405 615 52 739 21.92 85.75

Error measures. We use two measures to quantify the error of the approximation:
sum-of-absolute-values distance d1 and Frobenius distance d2, defined as

d1(A,B) =
∑

i

∑
j

|aij − bij | and d2(A,B) =
√∑

i

∑
j

(aij − bij)2.

7.2 Results

Reconstructing the basis vectors from generated data. We studied the effects of
noise and overlap between basis vectors to the reconstruction error. The main
measure was the d1 distance. Algorithm 1 was compared against svd and nmf.
For svd and nmf we also used the knowledge that the matrix is supposed to be
binary, and rounded the reconstructed matrix before computing the error with
3 http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html
4 http://people.csail.mit.edu/jrennie/20Newsgroups/
5 http://www.ics.uci.edu/∼mlearn/databases/optdigits/



respect to the original matrix. Values smaller than 0.5 are rounded to 0 and
values greater than 0.5 are rounded to 1. We call these methods rounded svd
and rounded nmf.

The effects of noise are illustrated in Figure 1(a). Lines for plain svd and
nmf coincide at the top of the figure, partly because of the logarithmic scale. In
general, plain svd and nmf are the worst, rounded svd and nmf are the best,
and dbp is in between. Additionally, all methods seem to be rather immune to
small amounts of noise. With one input set, rounded nmf converged far from
global optimum, thus causing a peak in the graph.
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Fig. 1. Reconstruction errors using d1 as a function of (a) noise (dataset 1), and (b) 1’s
in basis vector (dataset 2). Points in plots represent the mean error over five random
data matrices with the same attributes. Logarithmic scale on both axes of both plots.

Figure 1(b) illustrates the effects of basis vector’s overlap. The expected
overlap of two random vectors is uniquely defined by the number of 1’s in basis
vectors, i.e., the values in x-axis of Figure 1(b). If basis vectors have high overlap,
it becomes harder to distinguish the basis vectors using association confidences.
Thus higher overlap degrades the quality of dbp results, as one can clearly
see from Figure 1(b). On the other hand, rounded svd and nmf seem to have
more problems on reconstructing data with high overlap in basis vectors. In this
experiment, rounded svd and nmf are again the best, plain svd and nmf the
worst, and dbp is in between. The only exception is the first point, in which the
dbp is the best. The explanation is that with small overlap, Algorithm 1 is very
effective.
Reconstruction errors for real data. Reconstruction errors for the real datasets
are given in Tables 3 (d1 distance) and 4 (d2 distance).

We used two additional methods in these experiments, namely 0–1 svd and
0–1 nmf. The idea is to make binary the factor matrices of svd and nmf and



multiply them using Boolean algebra. However, it is far from obvious how to
binarize the factor matrices. We used again a threshold approach: values below
the threshold are rounded to 0 and values above the threshold are rounded to 1.
To be fair, we used a brute-force search to select the optimal thresholds for both
factor matrices (different threshold for each matrix).

Table 3 shows that in d1 dbp is comparable to other methods, including
rounded svd. For example, in 20 Newsgroups and NSF Abstracts with k = 5
dbp gives the smallest error. While dbp cannot beat svd or nmf in d2 (Table 4),
it is not too far away from them in most of the cases. The 0–1 svd and 0–1 nmf
have the largest reconstruction error.

Table 3. Reconstruction error of real-world datasets using d1 distance. Values are
scaled and truncated to three decimals.

algorithm

dataset k scale svd nmf r. svd r. nmf 0–1 svd 0–1 nmf dbp

NSF Abstr. 5 106 1.124 1.089 0.563 0.563 5.171 3.328 0.559
NSF Abstr. 10 1.152 1.091 0.561 0.561 6.065 5.890 0.554
NSF Abstr. 20 1.197 1.099 0.555 0.556 9.605 10.228 0.545
20 Newsgr. 5 106 0.900 0.875 0.450 0.450 4.185 2.612 0.449
20 Newsgr. 10 0.928 0.881 0.446 0.447 4.950 4.447 0.446
20 Newsgr. 20 0.969 0.889 0.440 0.441 7.293 8.096 0.441
Digits 5 105 1.308 1.382 0.763 0.855 1.678 1.113 2.133
Digits 10 1.070 1.206 0.471 0.610 1.817 0.967 2.125
Digits 20 0.878 1.028 0.254 0.444 1.678 0.815 2.119
Courses 5 104 6.467 6.204 3.215 3.350 8.202 6.418 3.783
Courses 10 6.164 5.779 2.770 2.951 14.051 9.840 3.515
Courses 20 5.949 5.186 2.219 2.495 20.490 17.021 3.160

Empirical time complexity. Set 3 was used to verify the empirical time complexity
of the algorithm. The results obtained agreed with theoretical complexity results
perfectly, i.e., the running time of Algorithm 1 increased linearly with the number
of rows in data and with the size of the basis, and quadratically with the number
of columns in data.
Quality of basis vectors for real data. We used the NSF Abstracts dataset to
examine the quality of the dbp basis vectors. We used τ = 0.3 and w+ = 6
as the set of parameters that gave the most intuitive results. Examples of basis
vectors and representative words are as follows.

<fund, NSF, year>,
<cell, gene, molecular, protein>,
<gopher, internet, network, world, wide, web>,
<behavior, effect, estim, impact, measure, model, overestimate,
predict, test>, and



Table 4. Reconstruction error of real-world datasets using d2 distance. Values are
rounded to nearest the integer.

algorithm

dataset k svd nmf r. svd r. nmf 0–1 svd 0–1 nmf dbp

NSF Abstr. 5 727 728 751 750 2 274 1 825 748
NSF Abstr. 10 719 721 749 749 2 463 2 427 745
NSF Abstr. 20 709 713 745 746 3 099 3 198 738
20 Newsgr. 5 649 650 671 672 2 046 1 616 671
20 Newsgr. 10 643 644 668 669 2 225 2 109 668
20 Newsgr. 20 634 637 664 665 2 701 2 845 665
Digits 5 239 248 276 293 410 334 462
Digits 10 201 221 217 247 426 311 461
Digits 20 168 196 159 211 410 286 460
Courses 5 165 167 179 183 286 253 195
Courses 10 154 158 166 172 375 314 188
Courses 20 141 147 149 158 453 413 178

<course, education, enrol, faculty, institute, school, student,
undergraduate>.

8 Discussion and conclusions

We have described the Discrete Basis Problem, investigated its computational
complexity, given a simple algorithm for it, and have shown empirical results on
the behavior of the algorithm. The results indicate that the algorithm discovers
intuitively useful basis vectors. In generated data, the method can reconstruct
the basis vectors that were used to generate the data; this holds even with high
amounts of noise.

On the other hand, in many cases, svd has lower reconstruction error than
dbp. There are several possible reasons for this. The first possibility is that svd
is in some sense inherently more powerful than dbp. This is of course vaguely
expressed. While we know that svd is optimal with respect to the Frobenius
norm, we also know that the Boolean rank of a matrix can be much smaller
than its real rank. svd in some ways has more power than dbp, as svd works on
the continuous values; on the other hand, dbp can take advantage of the Boolean
semiring on which it operates. This suggests that the relative performance of dbp
against svd should improve as the overlap between basis vectors increases.

The second alternative reason for the good performance of svd is that the
dbp algorithm is suboptimal. This suboptimality certainly degrades the results:
for example, overlap between the basis vectors makes them harder to be dis-
covered. However, for our generated data, in many cases, the dbp algorithm
reconstructs the original basis vectors perfectly. Thus, at least for those data
sets the algorithm is sufficiently good.



We have shown that Boolean approaches to matrix decomposition form a vi-
able alternative for traditional methods. For further work, it would be of interest
to understand the relationship between the approximate Boolean and real ranks
of binary matrices better. Also, a more detailed comparison of dbp against the
probabilistic approaches such as lda and multinomial pca would be useful.
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