Optimally computing a shortest weakly visible

line segment inside a simple polygon *

Binay K. Bhattacharya

School of Comp. Science, Simon Fraser Univ., Burnaby, B.C., Canada, V5A 156.

Gautam Das!

Mathematical Sciences Department, University of Memphis, Memphis, TN 38152

Asish Mukhopadhyay 2

School of Comp. Science, University of Windsor, Ontario, Canada N9B 3Pj.

Giri Narasimhan *3

Mathematical Sciences Department, University of Memphis, Memphis, TN 38152.

Abstract

A simple polygon is said to be weakly internally visible from a line segment lying
inside it if every point on the boundary of the polygon is visible from some point on
the line segment. In this paper, we present an optimal linear-time algorithm for the
following problem: Given a simple polygon, either compute a shortest line segment
from which the polygon is weakly internally visible, or report that the polygon is
not weakly internally visible.

The algorithm presented is conceptually simple; furthermore, the result settles
the long-standing open question of improving the upper bound for the time com-
plexity of this problem from O(nlogn) (due to Ke [1987]) to O(n). This paper
also incorporates a significant improvement over the linear-time algorithm for the
same problem, presented in a preliminary version [Das and Narasimhan, 1994], in
the sense that it eliminates the need for using two complicated preprocessing tools:
Chazelle’s linear-time triangulation algorithm [Chazelle, 1991], and the algorithm
for computing single-source-shortest-paths from a specified vertex in a triangulated
polygon [Guibas et al., 1987], thus making the algorithm practical.

Preprint submitted to Elsevier Preprint 29 September 2001



1 Introduction

Polygonal visibility problems arise naturally in such diverse areas as robotics
(path planning, motion planning), computer graphics (hidden-line and hidden-
surface removal), image processing (hamiltonian triangulations). The notion
has been extant in the mathematical literature [Valentine, 1953, Buchman and
Valentine, 1976] long before it was introduced into Computational Geometry.
Research into the computational aspects of visibility was initiated by the well-
known art-gallery problem, posed by Klee (see [O’Rourke, 1987]), which is the
problem of determining the minimum number of guards sufficient to cover the
interior of a polygonal art-gallery.

A visibility problem in its most abstract form can be formulated thus:

Given a scene composed of a finite number of geometrical objects, a viewpoint
or a set of viewpoints, and a notion of visibility, compute the scene as viewed.

A concrete example of this abstract formulation is the following: Given a point
(i.e, viewpoint) lying inside a simple polygon (where the scene consists of only
the polygon), compute the part of the polygon visible from this point [El
Gindy and Avis, 1981] (where two points are considered visible if the straight
line segment joining them lies entirely within this polygon).

When there is a set of viewpoints (instead of a single viewpoint), the appro-
priate notion of visibility that is useful is that of weak visibility, which was
introduced by Avis and Toussaint [1981] (they also introduced other kinds of
visibility). An object is said to be weakly visible from a set of viewpoints if
every point of the object is visible from some viewpoint. Weak visibility has
received much attention from a number of researchers [Avis and Toussaint,
1981, Bhattacharya et al., 1999, Sack and Suri, 1990, Tseng et al., 1998, Das
et al., 1997, 1994, Chen, 1996, Doh and Chwa, 1993, Icking and Klein, 1992,
Ke, 1987]; also see the survey article by O’Rourke [1993].

* A preliminary version of parts of this paper by the second and fourth authors
appeared in the Proc. of the 10th ACM Symp. on Computational Geometry, 1994.
* Corresponding author.

Email  addresses:  binay@cs.sfu.ca  (Binay K. Bhattacharya), Gau-
tamD@microsoft.com (Gautam Das), asishm@cs.uwindsor.ca (Asish Mukhopad-
hyay), giri@fiu.edu (Giri Narasimhan).

1 Current Address: Microsoft Research, One Microsoft Way, Microsoft Corp., Red-
mond, WA 98052 USA; Supported in part by NSF Grant CCR-930-6822.

2 Research supported by NSERC Grant 227693-00

3 Current Address: School of Computer Science, Florida International University,
Miami, FL 33199; Supported in part by NSF Grants INT-911-5870 and CCR-940-
9752.



This brings us to the notion of interest in this paper, namely that of a weakly
visible line segment in the interior of a simple polygon. If we replace a point
by a line segment lying inside the polygon we have a set of viewpoints instead.
If every point of the polygon is thus visible, it is said to be weakly internally
visible (wiv from now on) from this line segment.

The problem we consider in this paper is to find a shortest internal line segment
of a given polygon P from which it is wiv or else report that the polygon is not
wiv. An appealing reformulation of this problem is in terms of the illumination
paradigm: if we think of the line segment as a linear light source, then the
problem can be thought of as that of computing the shortest light source that
completely illuminates the interior of the polygon, whenever it is possible to
do so. A related problem is that of computing the shortest line segment from
which the exterior of a simple polygon is weakly visible; an optimal linear-time
algorithm was presented for this problem by Bhattacharya et al. [1999].

The shortest illuminating line segment in a polygon can also be thought of as
the shortest straight line path that a watchman could patrol along in order
to watch over a polygonal art gallery. There have been a number of papers
on the shortest watchman tour problem [Chin and Ntafos, 1991, Kumar and
Madhavan, 1993]. The algorithm in this paper finds the shortest straight-line
watchman tour, if one exists.

Earlier attempts to solve this problem include O(nlogn)-time algorithms by
Ke [1987] and by Doh and Chwa [1993]. Sack and Suri [1990] presented a linear
time solution to determine whether a given polygon is wiv from any edge of
the polygon. In this paper we present an optimal linear time algorithm for
this problem, thus settling a long-standing open problem of improving the
O(nlogn) upper bound due to Ke [1987].

An interesting related problem is that of computing a single weakly-visible
line segment in a simple polygon. This problem is solved by Das et al. [1994],
who presented a linear-time algorithm for this problem. However, an improved
linear-time algorithm due to Bhattacharya and Mukhopadhyay [1995] avoids
the use of two tools that had rendered the algorithm by Das et al. [1994]
impractical: (a) the linear-time triangulation algorithm [Chazelle, 1991], and
(b) the linear-time algorithm to compute shortest paths in a triangulated
polygon [Lee and Preparata, 1979, Guibas et al., 1987].

In this paper we combine ideas from Bhattacharya and Mukhopadhyay [1995]
and from Das and Narasimhan [1994] and present a linear-time algorithm
to compute the shortest weakly-visible segment in a polygon. The algorithm
avoids the two tools mentioned above, thus significantly improving the linear-
time algorithm for the same problem presented in a preliminary version of this
paper by Das and Narasimhan [1994].



Besides resolving a long-standing open problem, our paper is also interesting
because of the techniques used. The results in this paper build on some of our
previous work on optimal linear-time algorithms for weak-visibility problems
in polygons. The linear-time algorithms for computing all LR-visible pairs of
points [Das et al., 1997] and for computing all weakly-visible chords [Das et al.,
1994] output a mass of information related to visibility within a polygon. Our
present algorithm shows how to exploit this wealth of information to answer
more interesting questions related to weak visibility in polygons. We achieve
our results by studying the structure of minimal weakly-visible segments and
identifying the bounding chords for such segments. As described later, one
of the by-products of our algorithm in this paper is a linear-time algorithm
to generate all minimal weakly-visible segments. These techniques were also
used in Das et al. [1997] to obtain a linear-time recognition of Ly—convezity of
simple polygons.

The paper is organized as follows. In the next two sections we introduce all
the preliminaries, geometric and otherwise. Section 4 gives an overview of the
algorithm. Sections 5, 6, and 7 provide details of the algorithm. In section 8
we discuss an extension of our algorithm to a slightly more general problem.
Finally, we conclude with open problems in the last section.

2 Notations

Let P be a simple polygon on n vertices. We shall denote its interior by int(P)
and its boundary by bdy(P). Despite this distinction, we shall sometimes use
simply P to refer to a polygon plus its interior. The exact usage should be
clear from the context. We also make the usual general position assumptions
that no three vertices of P are collinear, and no three of its edges have a
common vertex.

The line segment joining two points x and y is denoted by 7y. Two points
z,y € P are mutually wvisible (or co-visible) if Ty lies entirely in P. We let
7(z,y) represent the ray rooted at x towards point y. Informally, the ray shot
from a point z € P in direction of point y consists of “shooting” a “bullet”
from x towards y. The first point where this shot hits P is called the hit point
of the ray shot.

A polygonal chain is a concatenation of line segments. If x and y are points
on bdy(P), then Pow(z,y) (Pcew(x,y)) is the subchain of bdy(P), obtained
by going clockwise (counterclockwise) from z to y. Let v be a reflex vertex of
P. Let v~ and v be the vertices that precede and succeed v with respect to a
counterclockwise vertex order on P. Let 7#(v~,v) and 7(v", v) when extended
meet the polygon again at v' and v" respectively. The subchain Poyw (v, ') is



Fig. 1. A clockwise component and its C-polygon

called the clockwise component of v (see Fig. 1), while Poow (v, v") is called
the counterclockwise component of v . Crucial to our algorithm is the concept
of a non-redundant component. A component is redundant if it is a superset
of another component. All other components are non-redundant components.

The clockwise component of v also defines a subpolygon called the clockwise
C-polygon of v, which is the subpolygon of P bounded by the polygonal chain
Pow (v,v') and the chord vv'. The clockwise C-polygon of v is shown as a
shaded region in Fig. 1. The counterclockwise C-polygons are defined in a
similar fashion. For a clockwise C-polygon of vertex v, v' will be referred to
as its clockwise endpoint (and v its counterclockwise endpoint). Similarly,
for a counterclockwise C-polygon of vertex v, v” will be referred to as its
counterclockwise endpoint (this time, v is its clockwise endpoint). Given a C-
polygon (or an intersection of a set of C-polygons) denoted by Py, its envelope
is defined as the convex polygonal chain bounding P,4 in the interior of P
(except for its endpoints) and connecting points v and v, which lie on the
boundary of P (and P,). Note that the envelope of the C-polygon in Fig. 1 is
simply the straight-line segment (chord) vv’. A (clockwise or counterclockwise)
C-polygon of some reflex vertex v is called redundant (non-redundant, resp.)
if its corresponding component is redundant (non-redundant, resp.).

Two subsets X and Y of P are said to be weakly visible from each other if every
point in X is visible from some point of Y, and vice versa. A polygon P is
said to be LR-visible with respect to a pair of points x and y on its boundary,
if the chains Pow(z,y) and Poow(z,y) are weakly visible from each other.
A polygon is said to be Lo—convex if for every pair of points in the polygon,
there exists another point from which the first two are visible.

3 Preliminaries

A chord Ty of the polygon P is a line segment connecting two visible points z
and y on bdy(P). A weakly-visible chord is a chord from which the polygon is
weakly visible. A weakly-visible segment is simply any line segment in P from
which P is weakly visible. A minimal weakly-visible segment is a weakly-visible
line segment, no subsegment of which is weakly visible from P.



In this section we describe some of the geometric properties of a weakly-
visible line segment. It was noted in Icking and Klein [1992] that the fam-
ily of non-redundant components completely determines LR-visibility of P,
since a pair of points s and ¢t admits LR-visibility if and only if each non-
redundant component of P contains either s or . A similar result from Das
et al. [1994] states that the family of non-redundant components also deter-
mines all weakly-visible chords, since a chord st is weakly-visible if and only
if each non-redundant component of P contains either s or t. We first prove
Lemma 1, which describes a simple property satisfied by all weakly-visible
segments in P. We then show in Lemma 2 that the family of non-redundant
components also determines the family of weakly-visible segments,

Lemma 1 If P is weakly visible from a line segment | = wv, then the chord
l', obtained by extending | in both directions until it hits bdy(P) is a weakly-
visible chord; furthermore, the endpoints of I' form a LR-visible pair of points
with respect to P.

PROOF. The first part is trivial. The second follows from Lemma 5 of Das
et al. [1997]. O

Lemma 2 P is weakly visible from a line segment (= uv) iff | intersects
every non-redundant C-polygon of P.

PROOF. If does not intersect a C-polygon, then it cannot see all the points
on the edge of P that is used to generate the corresponding component. Hence
the only if part is proved.

For the if part, let us assume that there is a point x on P that is not visible
from [, i.e., all rays shots emanating from x miss /. This implies that there
exists a ray shot from x that is tangent to P at some vertex z and that
brings the ray closest to the one of the endpoints of /. But then, there exists
a C-polygon associated with the reflex vertex z that does not intersect [. A
contradiction! [

The obvious implication of Lemma 1 is that a polygon has at least one weakly-
visible chord iff it has at least one weakly-visible segment and consequently a
shortest weakly-visible segment.

Before giving an overview of the algorithm, we describe the peculiar output of
the O(n)-time algorithm for computing all weakly-visible chords of a polygon
(this algorithm is described in [Das et al., 1994] and will henceforth be referred
to as the chords algorithm), since this algorithm is used by our scheme. The
chords algorithm generates k¥ = O(n) pairs of the form (A;, B;) along with
two linear functions L;(xz) and R;(z). Each A; is a subedge of P with all A;’s



being disjoint (except at their endpoints) line segments; each B; is a subchain
of P with the B;’s possibly overlapping each other. For a given point p € A;
every line segment joining p and any point on a specified subchain B, C B,
forms a weakly-visible chord. In order to describe this succinctly, a parameter
z € [0,1] is used. Let A;(z), for x € [0, 1], denote the points of A;. Similarly,
let B;(z), for z € [0, 1], denote the points of B;. For example, B;(0) and B;(1)
refer to the left and right endpoints of B;, and A4;(0) and A;(0.5) refer to the
left endpoint and the mid point of segment A;. For each value of z € [0, 1], the
linear functions L;(z) and R;(x) correspond to the endpoints of the polygonal
subchain of B; which form weakly visible chords with A;(z). In other words,
for each value of z € [0, 1], the chord joining A;(z) and B;(y) is weakly visible
for y € [L;(x), Ri(z)]. It may be helpful to point out that no component has
one of its endpoints in the interior of A;, for any 1.

4 Overview of algorithm

We first compute all the non-redundant components of P or determine that the
polygon is not weakly internally visible; this is described in detail in section 5.
If the intersection of the C-polygons corresponding to all the non-redundant
components is non-empty, then we stop since the smallest weakly-visible seg-
ment is simply a point. Note that finding the intersection of the C-polygons
is described in detail as part of another step in section 6, after which picking
an arbitrary point in this region solves the problem. If the polygon is weakly
internally visible, with the non-redundant components as input we run the
LR-visibility algorithm of Das et al. [1997]. The third step of our algorithm is
to run the chords algorithm. If the polygon has no weakly-visible chords, then
the algorithm stops and declares that there are no weakly-visible segments
either.

Henceforth by components we shall mean non-redundant components; simi-
larly, by C-polygons we shall mean the C-polygons corresponding to the non-
redundant components. For every A; output by the chords algorithm, let «;
denote the envelope of the intersection of the C-polygons that contain A;. Let
B; denote the envelope due to the intersection of the remaining C-polygons.

It is clear that any line segment of P that touches both «; and 3; for some
1, must intersect every C-polygon and by Lemma 2 must be a weakly-visible
segment. However, the converse is not so obvious. In Lemma 3 below, we
establish this for the shortest weakly-visible segment. This vital property is
necessary to make our algorithm work in linear time. It is also noteworthy
that the components that contain A; correspond to a subsequence of the sorted
(with respect to the order of appearance along the polygon boundary) sequence
of components. What Lemma 3 proves is that only such subsequences (and



Fig. 2. The endpoints of the shortest weakly-visible segment must lie on the chains
«; and (; for some 1 <i <k

not an arbitrary subset) of non-redundant components need be considered for
computing the shortest weakly-visible segment.

Lemma 3 If st = | is a shortest weakly-visible segment, then s must lie on
a; and t must lie on B;, for somet1=1,... k.

PROOF. Consider the polygon P of Fig. 2, drawn with smooth curves for
simplicity. We extend the shortest weakly-visible line segment [ to meet bdy(P)
at the points p and ¢. So the chord ' = pg contains /.

By Lemma 2, the segment [ intersects every C-polygon. Thus every C-polygon
completely contains either ps or ¢f. Consider the components corresponding
to the C-polygons that contain ps. From the minimality of /, one of them must
contain exactly ps or equivalently that s must lie on its bounding chord (or
envelope). We conclude that s lies on the envelope of the intersection of all
the C-polygons that contain ps. A similar argument proves that t lies on the
envelope of the intersection of all the C-polygons that contain ¢t. [

The above lemma suggests the following skeleton for our algorithm, which will
be refined later. For every i = 1,..., k, construct the envelopes «; and 3;, and
then compute the shortest line segment joining a point on «; and a point on
Bi. Then compute the shortest of these segments.

Note that since both a; and S; are convex polygonal chains, computing the



Fig. 3. The shortest line segment connecting «; and S; may not lie entirely in P

shortest line segment connecting them can be computed in time O(|o;|+ |5i]),
where |o;| and |§;| are the lengths of the two chains. However, each of the
|a;| and |B;] could be O(n), and thus performing this computation in a naive
fashion could take a total time of O(n?). Fortunately, in general, there may
be considerable overlap between «; and o1, as well as between 3; and S;;.
For the i-th iteration, instead of simply finding the shortest line segment that
joins «; and f;, the algorithm finds the shortest line segment that has at least
one endpoint on the portion of @; that is not part of a;,; or on the portion
of f; that is not part of 3, ;. The assumption is that the rest of the portions
of the two envelopes will be scanned as part of a later iteration. Repetitious
scanning of the polygonal chains is thus prevented by delaying the scanning
of overlapping portions as much as possible.

In section 6.1, we precisely characterize how «; changes to become «; 1, and
correspondingly, how [; changes to become S;;;. In section 6.2, we describe
a data structure that stores «;, ¢ = 1,...,k, and another identical structure
that stores 3;, ¢ = 1,..., k. We also prove that the total size of the union of
o;’s and the total size of the union of g;’s (for i =1,...,k) is O(n).

One problem with the skeleton algorithm described above is that the shortest
line segment joining «; and f; for some ¢ may not lie entirely within P. In
Fig. 3, the segment st, which is the shortest illuminating line segment joining
a; and f;, does not lie entirely within P. This happens because even though
the line segment when extended may hit A;, it might not hit B; because of
obstruction from the rest of P, i.e., the extended line is not a weakly-visible



chord. In this case, if there does exist a weakly-visible chord connecting A; and
B;, then the shortest weakly-visible segment joining «; and 3; would touch a
vertex of P. In Fig. 3, such a segment is wv.

This suggests that our algorithm needs to deal with two main cases. The first
case is when the shortest illuminating segment does not touch a vertex of P
except possibly at its endpoints; the second case is when it touches a vertex
of P in its interior. If the first case occurs, the algorithm briefly described
earlier will output the shortest illuminating segment. The details of this case
are described in the section 6. The second case is handled separately in section
7. The algorithm for the second case is a modification of our earlier algorithm
for computing all weakly-visible chords of a polygon [Das et al., 1994]. If a
weakly-visible segment does not touch a vertex of P it is referred to as a non-
tangential weakly-visible segment; otherwise it is referred to as a tangential
weakly-visible segment.

By putting all the pieces together, we show a linear-time algorithm to obtain
the shortest non-tangential weakly-visible segment, and a linear-time algo-
rithm to compute the shortest tangential weakly-visible segment. The shortest
of the two segments is the shortest weakly-visible segment in a polygon, thus
giving us the desired algorithm.

5 Computing all non-redundant components

In this section we show how to compute the set of all non-redundant compo-
nents, N R, of P, or report that P is not weakly internally visible. In the former
case, the set NR is input to the chords algorithm from Das et al. [1994]. We
adopt the following nomenclature: we label the vertices of the polygon from
1...n in counterclockwise order, while an edge whose endpoints are ¢ and
i+ 1 (mod n) is labeled i. With reflex vertex i, we maintain the ordered
triplet (4,7, k), where j and k are respectively the labels of the edges that
are hit by ray shots 7#(:74) and along 7(i*7). We use the special symbol null
in place of j or k if the corresponding component has been identified to be
redundant. Initially, j and & are set to null for all the reflex vertices.

We also use the concept of a critical polygon, which is defined as a subpolygon
of P enveloped by a chord and the boundary of P that does not wholly contain
a component and that every weakly visible segment must penetrate. Note that
every non-redundant C-polygon of P is critical; however, the converse is not
true as can be seen from the simple example of Fig. 4 in which the shaded
subpolygon is critical, but is not a C-polygon.

The overview of the algorithm in this section is as follows:

10



490 g2

q1 ,

qa qs

Fig. 4. The shaded polygon is critical but not non-redundant

Step 1 Split the boundary of P into two, three, or four polygonal chains
(denoted by C1, Cs, Cs, and Cy) such that no component is wholly contained
in any one of them. Furthermore, the endpoints of C; (and Cs, if it is
non-empty) are co-visible and the corresponding chord envelopes a critical
polygon.

Step 2 For each possible value of 7 and j, compute a superset of all non-
redundant components that have endpoints on C; and C;. For a given i
and 7, this superset will not contain any component that is non-redundant
with respect to another component of the same orientation (clockwise or
counterclockwise) and with endpoints on C; and C;. Note that 7 and j may
be equal.

Step 3 At the end, a clean-up phase is carried out to eliminate components
that have endpoints on C; and Cj, but are rendered redundant by compo-
nents of a different orientation with endpoints on C; and C}, or by compo-
nent that have endpoints on Cy and C) with either ¢ # k or j # L.

5.1 Step 1: Finding the Polygonal Chains

We now describe how to compute the four polygonal chains Cy, Cy, C3, and
C, required by Step 1 of the algorithm.

Set NR to empty. We search the boundary of P to find a reflex vertex, say p.
If none exists, we return N R and quit; else, we consider the clockwise ray shot
from this reflex vertex, and determine, by brute force, the first point p’ where
this ray intersects the boundary of P. This gives us a component Py (p,p')
with a corresponding C-polygon denoted by P/ enveloped by the chord pp'.

Using the algorithm of Avis and Toussaint [1981], we check if P is weakly
visible from the chord pp’. If it is, then we C; is set equal to Pow (p,p') and
we proceed to compute the other three chains. If not, we use the procedure
described below in Section 5.1.1 to compute a critical polygon inside P/. As
defined above, the critical polygon is bounded by a chord. We denote the

11



critical polygon by P, and, for the sake of convenience, we relabel the bounding
chord as pp’. Thus, C; is set equal to Pow (p,p’) and we proceed to compute
the other three chains.

Next we check if P — P; is weakly visible from pp’ using the algorithm of Avis
and Toussaint [1981]. If it is, then Cj is set equal to Peow (p, p'), the other two
chains C'3 and C}y are set to empty and we proceed to Step 2 of the algorithm.
If not, once again we use the procedure described below in Section 5.1.1 to
compute a critical polygon P, inside P — P;. The critical polygon is bounded
by a chord, which we denote by gq’. We set Cs equal to Pow(q,¢'). Cs and
Cy are now set equal to the two left over portions of P, namely Pow(q',p)
and Pow (p', q), respectively. Note that we are left with checking whether Cj
and Cy (if non-empty) have any components wholly contained in them. Before
proceeding further, we present the procedure to compute a critical polygon
inside P{ and P — P;.

5.1.1 Finding a Critical Polygon

In what follows, we assume that a given subpolygon (of P) denoted by Pj is
not weakly visible from its bounding chord pp’. We show how to compute a
critical subpolygon P; C Pj.

By Lemma 2 above, P| contains a non-redundant component of P. By defi-
nition, a critical polygon is enveloped by some bounding chord and does not
wholly contain a component. As described below, the critical polygon we find
may either be a non-redundant C-polygon or may be a subpolygon that is
bounded by a chord passing through a reflex vertex and that contains the
intersection of the clockwise and the counterclockwise C-polygon of that re-
flex vertex. Clearly, every line segment from which the polygon P is weakly
internally visible must intersect this critical subpolygon. The following lemma
is therefore an easy consequence and is stated without proof. We remark that
it generalizes Lemma 5 from Das et al. [1997] which states that if a simple
polygon has three disjoint components, then it is not LR-visible (and, con-
sequently, cannot have any weakly visible chords and hence cannot have any
weakly visible segments).

Lemma 4 If a simple polygon P has three disjoint critical polygons then it is
not weakly visible from any line segment.

First, a definition. A clockwise (resp. counterclockwise) Restricted Shortest
Path between two vertices v and v of P is the shortest path (not necessarily
restricted to remain within P) that only makes left (resp. right) turns and
that does not intersect the polygonal chain Py (u,v) (resp. Poow (u,v)); it
is denoted by RSP, (u,v) (resp. RSP..,(u,v)). Note that RSP, (u,v) (resp.
RSP,.,(u,v)) may be different from the actual shortest path between u and v

12



inside P because it ignores any obstructions from the rest of the polygon, i.e.,
it ignores obstructions from Poow (u,v) (resp. Pew(u,v)). Another way to
think of RSP, (u,v) is that it is the shortest path between u and v assuming
that the initial and final edges of the polygonal chain from u to v is extended
indefinitely.

Next we incrementally compute the RSP’s from the endpoints of P (p and
p') to all the intermediate vertices of P| and use them to compute a critical
polygon in P{. We now take a closer look at the way the (counterclockwise)
restricted shortest paths are constructed as we make a counterclockwise sweep
starting from p. The counterclockwise scan is reminiscent of the linear-time
“Graham scan” for computing convex hulls, in that we move forward with
right turns and backtrack on left turns. This is a standard procedure employed
in several algorithms (for example, see Bhattacharya et al. [1999] and Bhat-
tacharya and Mukhopadhyay [1995]). It can be implemented in time linear in
the number of nodes of P| because every vertex of P/ is inserted in some RSP
from p exactly once and is deleted exactly once. Thus, incrementally comput-
ing the counterclockwise RSP to the next counterclockwise vertex on P/ is
straightforward. However, as we compute the RS Ps, our goal is to compute a
critical polygon.

Suppose that RS P,.,(p, q¢) has been computed for all vertices ¢ € Pcow (P, Peur)s
where p, denotes the current vertex. Note that Poow (P, Peur) consists of only

right turns. The invariant maintained by the scan is that there are no clock-

wise components contained in Pocow (P, Peur)- Let erq5: be the last edge on this

path, while €,eu (= PeurPrezt) and e q are the two edges of P/ incident on pey,-.

Assuming that e,y and e, are distinct, one of the following three situations

can arise when we try to extend the path to ppes.

(A) enew makes up a left turn with ey, (Fig. 5(A))
(B) €new makes up a right turn with both e,q and e, (Fig. 5(B))
(C) enew makes up a left turn with e,q and a right turn with ey (Fig. 5(C))

To see that all cases are covered, note that e,., can make a right turn or
left turn with e;,; and a right turn or a left turn with e,y. Two of these
possibilities are covered by case (A), while the other two are covered by cases
(B) and (C).

In case (A), we scan backwards from p,,, until we find the point of tangency
(call it p;) from ppest to the path RSP, (p, Peur). Now RSP(p, Prest) is ob-
tained by concatenating edge (pt, Pnest) to the portion of the path RS P.cy, (p, Peur)
until p;. We then continue on the counterclockwise sweep. No critical polygon
is located yet, but the invariant is clearly maintained.

In case (B), since epe, makes a right turn with e;,5; and RS Piey (P, Pewr) only
involves right turns, the clockwise ray shot along e, cannot hit the traversed

13



enew

€old €ol e
€last €last €old last

enew

p cur p cur p cur

new

(A) left and left  (B) right and right (C) left and right

Fig. 5. Turns of epeq at pey,r with respect to eyq and ejqst

part of P (i.e., Pcow (P, Pewr)) and hence cannot generate a clockwise com-
ponent wholly contained in P]. Now RSP,..y,(p, Prest) is computed easily by
simply augmenting RS P,.,(p, Peur) With the edge ejust = (Peurs Prest)- Thus
the invariant that there are no clockwise components completely contained in
Pcow (P, peur) is maintained and we continue on the counterclockwise sweep
without locating a critical polygon.

Case (C) guarantees that the clockwise ray shot along e, hits the polygon
inside P since otherwise e,,, would not have a right turn with €;,5;. Assuming
that the vertex ppes that follows p.,, is a reflex vertex, case (C) captures
a necessary condition for the generation of a clockwise component (wholly
contained in P]) by a clockwise ray shot along e,,¢,,. Fig. 6(a) shows an example
where case (C) is satisfied and results in a clockwise component. (Fig. 6(b)
shows an example of a counterclockwise component that may be generated
on a symmetric clockwise sweep starting from p'.) This condition is only a
necessary one because p,.,;+ need not be a reflex vertex, and, even when it is,
the clockwise ray shot along e,e,) can be obstructed by the as yet unexamined
part of the boundary chain Poow (Prest, P')- Also, even when pye is reflex and
the ray shot along e, is unobstructed, the component may be redundant by
way of containing a counterclockwise component. Notwithstanding, for all the
possibilities that may be true when case (C) is detected, we can compute a
critical polygon or a non-redundant component.

pCU’I‘

pcur

(a) clockwise (b) counterclockwise

Fig. 6. The subpolygon P/ can contain a non-redundant component

If case (C) is detected at pey,, then the ray shot 7(peyr, Prest) hits the chain

14



Poow (D, Peur) if it is not obstructed by Poow (Pest; ). We denote the chain
Poew (P, Peur) by Chair and the chain Poow (Pnest; ') by Crront. We first find
the point, p! _where the ray shot along edge epe, hits Cyqy if unobstructed
by Poow (Prext; P')- We then proceed to test if the ray shot 7(peyr,Prest) 1S
obstructed by Pocow (Prest,P’). The polygon defined by the polygonal chain
PCW(pnemt:p;w])t and the segment pnewtp;wwt will be referred to as a “pocket”
and will be denoted by pkt. Next, we traverse Cjron; (traversal may be clock-
wise or counterclockwise) to determine if this chain dips into the pocket, pkt.
Simultaneously, we keep track of the vertex p, that causes the largest angle
between the segments PreztPv and PnestP! . In particular, note that in the
event that ppeq: is not a reflex vertex, then Cy,qy clearly dips into the pocket
(at Prest itself), and we proceed by keeping track of p, in exactly the same way.
This takes care of one of the possibilities in case (C) mentioned previously.

Our immediate goal is to check if Cons dips into the pocket. If Cypopy has
not dipped into pkt, then pkt is the required subpolygon of P/ that does not
wholly contain another clockwise component (because of the invariant). If it
does dip into pkt, then we argue that pkt (and consequently, P/) is guaranteed
to completely contain a clockwise component (i.e., the clockwise component
at v), in which case we compute a critical polygon inside pkt. If Cfpops has
dipped into the pocket then p, lies in that pocket (see Fig. 7), and we find
the two consecutive intersection points p; and ps of the ray 7(ppest, py) With
Cieir that are separated by p,. (Note that an entire edge may be supported,;

however, there is no loss of generality in assuming that a support point exists).
The chord PiP2, together with Pow (pe,p1) gives us a subpolygon which is

input to the next step (in order to verify that it does not wholly contain a
counterclockwise component). Fig. 7 illustrates this situation.

D1y e .
Py~ \ éC’fromt

Craa =\ pkt [ | L

Fig. 7. Finding a critical subpolygon

15



The subpolygon obtained from the above description may yet contain a coun-
terclockwise component (although it cannot contain a clockwise one). So, we
test this subpolygon for weak visibility from its bounding chord. If it is weakly
visible, we return this subpolygon as P, the critical subpolygon not contain-
ing any components. Otherwise, we repeat the above process a second time
for this subpolygon (instead of the subpolygon P as was done above), this
time to detect a necessary condition corresponding to a counterclockwise com-
ponent (Fig. 6(b)), by traversing the polygonal boundary in clockwise order.
The subpolygon returned by this repeat step is the required critical polygon
and is denoted by P;. Since the above process was repeated at most twice,
the time complexity of what has been described so far is only linear in the
length of the processed polygonal chain. This completes the description of the
computation of a critical polygon P; from a subpolygon P| that is not weakly
visible from its bounding chord pp'.

Y
s

Cy

Fig. 8. Two critical polygons and the split-up of the boundary into four chains

Remark 5 We make the following observation, since we will have occasion
to use it later on in this paper. If P] had been weakly visible from pp' to start
with (i.e., P{ does not wholly contain a non-redundant component), and we had
followed the above algorithm to compute the RSP from p to each vertex on P,
then case (C) would never have occurred during the scan from p to p', and we
would have been able to “maintain” RS P..,(p, x), as we traverse with x from p
top' (or fromp' to p) in time linear in the number of nodes on Pcow (p,p'). We
also need the following generalization of the above observation: Given that P is
weakly visible from pp', and a point a anywhere on P along with RSP,.,(a, p),
we can “maintain” RSP, (a,x), as we traverse with x from p to p' in (total)
time linear in the number of nodes on Poow (p,p’) and RSP..y(a,p).

Continuing with step 1 of the algorithm for computing all non-redundant com-
ponents, we have shown how to identify at most two disjoint critical polygons

16



and how to split the polygon boundary into at most four chains, as illustrated
in Fig. 8. We now proceed to check two more conditions that are necessary
for P to be weakly internally visible, i.e., verify that the polygonal chains C}
and C, (if non-empty) do not wholly contain a component. This is achieved
by computing the restricted shortest paths (RSPs) from the endpoints of Cj
to every point on it (as described in Section 5.1.1). We perform a similar pro-
cedure with Cy. If case (C) of the RSP computation does not occur, then
the RSP between the endpoints of C3 (and between the endpoints of Cy)
forms a convex envelope denoted by C4 (and Cj, respectively). The chains Cs
(thick line) and C} (dotted line) are shown in the
figure to the left. If case (C) does occur, then one
of ('3 and Cy must wholly contain a component.
Thus there must exist a critical polygon disjoint
from the two identified earlier (i.e. P; and P,), in
which case, by lemma 4 we can stop and report
that P has three disjoint critical polygons and is
thus not weakly internally visible. We also check
if the chains C} and C} intersect. If they intersect,
then C; and C, are not visible to each other at
all, implying that no segment inside P can touch
both P; and P,. Therefore, we can quit after re-
porting that the polygon is not weakly internally
Fig. 9: Pockets generated vyisible. If C and C} do not intersect, we continue
by the counterclockwise scan with the next step. We point out that if we have
of the chain C3 not quit until now, then for the four chains (C;
through Cj), the RSP’s are identical to the corresponding shortest paths.

It is clear that Step 1 can be implemented in linear time. It may be noted
that in spite of all the checks made so far, P may still be not weakly internally
visible. However, barring any evidence that P is not weakly internally visible,
we proceed to the next step.

5.2 Step 2: Computing a Superset of Non-redundant Components

Unless we have determined that P is not weakly internally visible, we now
proceed to compute a superset of all the non-redundant components. Each
component in this set is generated by a ray shot that emanates from a chain C}
and that terminates on a chain C;. Note that since one or two of the chains may
be empty, the values of 7 and j that need to be considered depend on the actual
situation. Also note that any counterclockwise (clockwise) component that is
reported does not wholly contain a counterclockwise (clockwise, respectively)
inside it with its endpoints on C; and C;. We also remark that whenever
possible, we avoid reporting non-redundant components that wholly contain

17



critical polygons (not just components). However, it would be simple to modify
the algorithm so that such components are also reported.

We differentiate between the case when ¢ # j and when 7 = j. Sections 5.2.1
and 5.2.2 deal with the two cases.

5.2.1 Components with Endpoints on Different Chains
Two types of queries need to be answered to facilitate this computation:

QUERY A: Does the clockwise (respectively, counterclockwise) ray shot from
a reflex vertex v € Cj hit C}?

QUERY B: Given a reflex vertex v € C;, and a point € C;, does the coun-
terclockwise (respectively, clockwise) ray shot from v hit counterclockwise
of x7?

Before explaining in detail how QUERY A and QUERY B are answered, we
note that in order to report a superset of all non-redundant counterclockwise
components that start on C; and terminate on C;, we traverse C; and Cj in
clockwise order. For the first reflex vertex v, € Cj, if the ray shot hits Cj
(QUERY A), we traverse C; until the hit point v; € C; is computed. This
component is then reported, and x marks this hit point v]. As we continue
to traverse C; in clockwise order, for every reflex vertex v € Cj, we check if
the counterclockwise ray shot 7(v, v™) hits counterclockwise of z (QUERY B).
If it is so, then this component is discarded as being redundant. Otherwise,
we compute the actual hit point (by continuing the clockwise traversal of C;),
report this component, reset z to mark this new hit point, and continue the
traversal.

We traverse C; again in counterclockwise order to identify clockwise compo-
nents. It is clear that reporting the components (for pair of chains C; and C;)
takes time that is linear in the length of C; and Cj.

A similar procedure is repeated for all pairs of chains and the resulting col-
lection of minimal components is output as the required superset of the non-
redundant components of P. Also, in the output, all reflex vertices whose
components are in this set have been appropriately flagged, along with a label
of the edge(s) that the ray shot(s) from this vertex hits (hit). In Section 5.3,
we describe a final clean-up pass to output all the non-redundant components
from the given superset of the non-redundant components. Note that redun-
dancies occur because a component obtained for one pair of chains may render
redundant a component obtained for another pair of chains. In fact, even for
a single pair of chains, a clockwise component may render a counterclockwise
component as redundant (or vice versa).

18



Cj
Fig. 10. Different ray shots from v € C;

The example in Fig. 10 suggests how we solve QUERY A. We first compute
RS Ps from the endpoints a, b of the chain C; to each vertex v € Cj. For vertex
v € Cj, any ray shot that is clockwise (resp. counterclockwise) of the first edge
on RSP,.,(v,a) (resp. RSP, (v, b)), as indicated by direction 1 (resp. direction
3) in Fig. 10, will not hit C;; all other ray shots correspond to direction 2 in
Fig. 10 and will hit C;. QUERY A can be easily answered if for each v € Cj
we store the edges of RSP,.,(v,a) and RSP,.,(v,b) that are incident on v
(i.e., only the first edges on the RSPs). Note that we are only interested in
the counterclockwise ray shot along 7(v—, v) and the clockwise ray shot along
7(vT,v). QUERY A can be easily answered by inspecting the directions of
7(v~,v) (F(vt,v)) and the direction of the first edge along RSP, (v, a) (resp.
RSP,.,(v,b)).

To answer QUERY B, we assume that as we traverse with v on chain Cj,
we maintain RSP..,(v,a) and RSP.,(v,b) from the endpoints ¢ and b of
chain C;. We also assume that we maintain RSP,.,(a,z) and RSP,,(b,x)
as we traverse with z along chain C;. Maintaining the RSPs is achieved as
described in Remark 5. Finally, we assume that we maintain RS P,.,(v, )
and RSP,,(v,z). An example of these paths are shown in Fig. 11, in which
RSP,..,(v,a), RSP, (v,b), RSP.c,(v, z) and RSP, (v, x) are shown as dashed
polygonal chains, while RSP,.,(a,z) and RSP,.,(b,x) are shown as dotted
polygonal chains. Note that in the above example, RSP, (v, z) is simply the
line segment joining v and z, while RSP, (v, ) is the polygonal chain that
passes through c.

To answer QUERY B, we assume that as we traverse with v on chain Cj,
we maintain RSP..,(v,a) and RSP.,(v,b) from the endpoints a and b of
chain C;. We also assume that we maintain RSP,.,(a,z) and RSP, (b,x)
as we traverse with z along chain C;. Maintaining the RSPs is achieved as

19



Fig. 11. Processing QUERY B

described in Remark 5. Note that the fact that none of the chains wholly
contain a component is necessary for maintaining the RS Ps. First we check
whether the counterclockwise ray shot from v hits C; by checking whether the
direction is within the wedge formed by directions of the first edges on the
paths RSP..,(v,a) and RSP,,(v,b). If not, then this component is ignored
(since it will be handled for a different pair of values of ¢ and j). Otherwise,
we proceed to decide whether the hit point is counterclockwise of .

Finally, we assume that we also maintain RSP, (v, z) and RSP, (v, x); this
last pair of RS Ps can be maintained because at any one time either we traverse
with v on C; or we traverse with « on Cj, and in either case, the incremental
computations for the two RSPs are exactly the same as for the RSP com-
putations described earlier. Furthermore, the cost is linear in the number of
vertices traversed with v or traversed with z. If v and = are co-visible, then
RSP,..,(v,z) and RSP.,(v,z) are both equal to the straight line joining v
and z. In this case, answering if the hit point is counterclockwise of z is a
simple matter of deciding whether the ray shot is counterclockwise of the ray
from v to z. On the other hand, if v and x are not co-visible, then since C;
does not have any components wholly contained in it, either the first edge
of RSP..,(v,z) or the first edge of RSP, (v, z) will equal the straight line
joining v and z, and the first edge of RSP, (v, z) will be counterclockwise of
the first edge of RSP, (v,z). An example of all the paths required to answer
QUERY B are shown in Fig. 11. If, as is shown in the example, we assume that
the first edge of RSP, (v, x) is equal to straight line joining v and x, then any
ray shot that is directed in between the two first edges will hit RSP, (v, z)
before it hits RSP, (v, z) and, therefore the ray shot will hit counterclock-
wise of x. If, on the other hand, we assume that the first edge of RSP, (v, z)
is equal to straight line joining v and z, then the ray shot will hit clockwise
of z.

20



A final note about finding the actual hit point. Once we have determined that
the ray shot will hit counterclockwise of x, we traverse counterclockwise with
x along P until we locate the edge on which the hit point is located. Finding
the actual hit point is a trivial matter of finding the intersection between the
counterclockwise ray shot from v and the edge in question.

5.2.2  Components with Both Endpoints on Same Chain

At this point we know that C is non-empty and weakly visible from its bound-
ing chord pp'. Therefore, any component with both endpoints on Cy, Cs or C}
will wholly contain the critical polygon corresponding to C'; and need not be
reported. If C'5 or Cy is non-empty, then C'y, must be critical, and by a similar
argument we need not report components with both endpoints on C; either
(in which case, we proceed to step 3). Therefore, we assume that Cs is not
critical.

As usual, we will have two scans (a counterclockwise one and a clockwise one)
of C to report a superset of all non-redundant components. We only describe
the counterclockwise scan. The algorithm involves visiting the reflex vertices
of C} in counterclockwise order and deciding whether or not to report the
corresponding clockwise component at that reflex vertex. In fact, we make
two counterclockwise traversals of C; with two pointers x and y starting from
p. The scan with z visits all the reflex vertices. The scan with y helps to
decide whether the location of the hit point of the clockwise ray shot from the
reflex vertex at x causes a redundant component. For the scan with z, we also
maintain RSP, (p,z), computed in a manner as described earlier.

Initially, we traverse simultaneously with x and y until both reach the first
reflex vertex. After that we go through iterations. In iteration 1, the first reflex
vertex v; encountered along the scan is dealt with differently from the others.
In each iteration, one component is reported or the algorithm stops. We first
describe the processing in iteration 1.

Our first task is to find the hit point of the clockwise ray shot at vy, if it lies in
Pcew (p, p'). Note that the hit point cannot lie on Poew (p, v1) since this would
contradict the assumption that C; does not wholly contain a component. We
traverse with y (x is stationary at v;) along Poow (v1,p') until we reach the
first point of intersection (denoted by v}) of Poow (v, p') with the clockwise
ray shot from v;. If the point does not exist (i.e., we reach p’ without finding it),
then we quit and report no components with both endpoints on C;. However,
if it exists, the point v] must also be the hit point of the clockwise ray shot
from v;. If v} is not the hit point, then it must be due to obstruction from
Poew (v, p'), in which case a reflex vertex from within this obstruction will
necessarily cause a component to wholly lie within C', which is a contradiction.

21



If we have not quit so far, then we can report the component Poow (v1,v]) as
a component with both its endpoints on C;. At this point = is at v; and y is
at v]. We now traverse again with = while maintaining RSP, (v}, x).

We now describe the (k+1)* iteration, which starts just after we have reported
k components having both endpoints on C';. The invariant at the start of the
(k + 1)** iteration is as follows: z is at v, which is the reflex vertex of the
k-th component reported so far; y is at v}, which is the hit point of the k-th
component; we have maintained RSP, (p',x), RS Pu, (v}, ), RS Pee (v}, v}),
and RSP,.,(v;,y); finally, we also maintain the “tangent” point 7(z) where
the common tangent between RSP, (v}, z) and RSP..,(v],v}) touches the
chain RSP, (v}, vy,).

In iteration k41, x moves to the next reflex vertex on Poow (vk, p'). During this
traversal, RSP,,(p',xz) and RSP,, (v}, z) are maintained as described earlier.
Furthermore, we maintain the tangent point 7(x), which will monotonically
move along RSP, (v}, v,). This situation is shown in the example in Fig. 12.
It shows the polygonal chain C} = Pgow(p,p’) with its bounding chord pp/
(thick line). The clockwise components reported in the first & iterations are
shown as the dashed lines vy, ], ..., vk, vi. The three restricted shortest paths
- RSP, (p,x), RSP., (v}, x), and RSP, (v}, v;) are shown as dotted polygo-
nal chains. The common tangent between the polygonal chains RSP, (v}, z),
and RSP, (v],v;) is shown as a thick line. The figure also shows the tan-
gent point 7(z), where the common tangent terminates on RSP, (v}, v}).
The point y traverses on the polygonal chain Peeow (vy,p'). The point y and
RSP,y (v}, y) are not shown in the figure.

At the reflex vertex reached by =z, firstly, if the clockwise ray shot from z is
counterclockwise of the last edge along RSP, (p, z), then it is discarded since
the clockwise component at 2 does not have both its endpoints on C; (and we
move with = to the next reflex vertex). If it does, then if the clockwise ray shot
from z is clockwise of the last edge along RSP, (v}, ), then it is discarded
since it is rendered redundant by the component Pccow (v1,v]). If not, then
if the clockwise ray shot from z is clockwise of the direction of 7(z,7(z)),
then the ray shot hits Poow (v, v,) and it is discarded since it is rendered
redundant by the component Pocow (vk, v;,). Note that if the component at
is discarded, then we move with x to the next reflex vertex and continue with
iteration k + 1. If not, then we need to report a component. In that case, we
label z as vg41, and traverse with y from v;, until we find the hit point v},

on Poow (v, ')-

As we traverse with y, RSPee,(vy,y) is maintained. After reaching v, ,, we
compute RSP, (v}, vy, 1) by merging RS Pe,,(v}, vy,) and RSPyey (v, V), q) in
time that is proportional to the number of nodes on RSP, (v}, v} ;) and the
number of nodes on RSP, (v}, v}) that are not on RSP,.,(vy, v}, ). Finally,

22



RSP,.,(p', x)
Uy

RSP, (v}, v})
7(z)

Common Tangent
RSP, (v, x)

Fig. 12. Components with endpoints on same chain

we update the tangent point 7(vg11) to be the point vj_ ;.

The process is stopped as soon as we reach p’ on the traversal with y. Some
complications may arise here. What if we reach v} with x before we reach p’
with y? Then, let v, be the last reflex vertex from which a component was
reported. If vy is different from v;, then we relabel the vertices vy and v}, as
the vertices vy and v{ and we restart with iteration 2. Note that the invariants
required for iteration 2 are satisfied (i.e., RS P, (v}, ) and RSP, (p', x)) and
we can continue without any more processing. If the last component reported
was from reflex vertex v, then we restart with iteration 1 and identify a new
reflex vertex v; (as described in the processing for iteration 1 above).

To analyze the time complexity, we note that all the RSP computations have
a total time that is linear in the number of nodes on C;. All the tests related
to checking directions only take O(1) time. To see that all the tangent point
computations also take time that is linear in the number of nodes on (1, it is
sufficient to note that for any two points 2’ and z” such that z” € Poow (2', v1),
7(z") cannot lie on the scanned portion of RSP, (v}, v,) between 7(z') and
.

Once again, our discussions imply that the entire Step 2 described above can
be implemented in linear time.

23



5.3 Step 3: Clean-up Phase

This step is described in the LR-visibility algorithm by Das et al. [1997] (see
the start of Section 4 of that paper). We summarize it here for completeness.
The idea is to obtain a sorted list of all the endpoints of the components in
the superset by performing a few simple traversals of the list. Once this is
done, we can think of the output of step 2 as a collection of circular arcs from
which one simple traversal will ensure that all the redundant components are
eliminated.

Suppose we have a set of clockwise components which contains a superset
of non-redundant components. As we traverse P in clockwise order, we en-
counter a beginning point and an ending point of each component. Since the
beginning points are vertices of P, they can be sorted in linear time. Suppose
we traverse P twice counterclockwise. Each time we encounter a beginning
point, we compare the ending point of the component to the ending point
of the previous component; if the current component contains the previous
component, then the current component is redundant and therefore is deleted
from the list of components. We must traverse P twice since one of the first
components considered may be redundant with respect to one of the last ones.
After an analogous procedure is performed for counterclockwise components,
we have two lists of components, each in sorted order, which can be merged
and pruned of redundant components in linear time to obtain a sorted list of
all non-redundant components.

In this section we have described an algorithm to output all non-redundant
components of a polygon in linear time. As per the overview of the entire
algorithm presented in section 4, this can be used to output all LR-visible
pairs of points and all weakly-visible chords of the polygons in linear time.

We point out that the algorithms in Das et al. [1997] (for computing all LR-
visible pairs of points) and Das et al. [1994] (for computing all weakly-visible
chords) use the list of non-redundant components as input and run in linear
time. It is significant to note that the algorithms in the two papers (which we
use here in the following sections), do not require the expensive triangulation
algorithm of Chazelle [1991] or the shortest path algorithm of Guibas et al.
[1987] once they are already supplied with a list of non-redundant components
as input.

24



6 Case 1: Non-tangential weakly-visible segment

As mentioned earlier, this case corresponds to the situation when the short-
est weakly-visible segment does not touch any vertex of the polygon except
possibly at its endpoints. For each i = 1,...,k, let SN; be the shortest non-
tangential weakly-visible segment (if one exists) that joins «; and f; with at
least one endpoint on «o; — ;1 or B; — B;1+1. The shortest of the segments SN,
1 = 1,...,k is the shortest non-tangential weakly-visible segment that joins
(67} and ,Bi, 1= 1,...,]€.

6.1 Structure of o; and fB;

As mentioned earlier «; is the envelope of the intersection of a set of C-polygons
that contain A; and is denoted by C'A;; §; is the envelope of the intersection
of a set of C-polygons that do not contain A; and is denoted by C'B;. Hence
it is clear that both of them are convex polygonal chains. It may be possible
that a; = ;41 = @42 = - -+ = @;4p. This simply means that no component
starts or ends on the portion of P covered by A; 1, Ajyo, ..., Aitp.

We now describe the structural differences between «; and a;41 (in case they
do differ), and the corresponding differences between 3; and $;;1. The main
purpose of studying this structure is to identify the polygonal chains a; — ;11
and 3; — B;11 so that they can be processed in the i-th iteration. Clearly, if
o; = @11, then no processing is required in iteration .

Assume that a; # a;41. From Das et al. [1994] we know that A; and A, are
disjoint line segments. On closer inspection of their algorithm, we observe that
there are various events that trigger the chords algorithm to go from iteration
i to iteration 7 + 1, thus outputting pairs (A;, B;) and pairs (A;;1, Biy1). One
such event occurs if a component starts or ends between A; and A;;; (such
as the point py in Fig. 13(b) where a component starts, or the point p; in
Fig. 13(a) where a component terminates). The other possible events (which
result in «; = a;41) have to do with changes in the points of tangency for
the boundaries of the weakly-visible chords. This happens because one could
obtain a weakly-visible chord that is tangential to the polygon at some vertex.
As we rotate this chord, it could continue to be weakly-visible while remaining
tangential to the polygon at the same vertex. However, as we rotate more, the
point of tangency could change, triggering an event that the chords algorithm
needs to deal with (since the “compact” description of the chords changes
with this event).

The chain «; is different from ;.7 only when a component starts or ends
between A; and A;,;. For the next three paragraphs we will assume that

25



ar M arg P2
Gt

¢ by q2 b

CA; — CAiy CAsiy — CA, . CA;NCApy

Fig. 13. Changes in the structure of «o; and S;

the counterclockwise end for any polygonal chain is the front end, while the
clockwise end is the ta:l end.

If a component c¢ starts between A; and A;,1, the changes from «; to o, are
as shown in Fig. 13(b). Note that the C-polygon corresponding to component
c lies to the left of the segment Pag; and that the component ¢ consists of the
polygonal chain Pcow (pe, g2)- A; lies to the right of ps, while A;,; lies to the
left of ps. ; consists of the chain from a; to sy to ay, while o, consists of
the chain from py to sy to ay, i.e., a portion of the tail of o; gets replaced
by a portion of the ray shot corresponding to the component c. At the same
time, as shown in Fig. 13(b), §; has a portion of its front replaced by a new
polygonal chain. (; consists of the chain from b; to ¢5 to ¢y, while ;1 consists
of the chain from b; to ¢ to by. In other words, C'A; shrinks at its tail end, and
CB; grows at its front end, while both their envelopes remain convex. Note
that a; — a;41 comprises of the polygonal chain from a; to s, while 8; — ;11
comprises of the segment from gy to 5.

Note that in Figs. 13(a) and (b), the region CA;NC A;11 (as well as the region
CB;NCB;y1) have been shown as a filled region. The area occupied by C'A; 1
(but not by C'A;) is indicated as a dot-filled region, while the area occupied

26



by CA; and CB; is left blank.

By a similar argument, if a component ¢ ends between A; and A;,, the portion
of the ray shot corresponding to ¢ at the front (right end or the counterclock-
wise end) of «; gets replaced by a new polygonal chain, causing C'A; to grow
in the front. As shown in Fig. 13(a), §; has a portion of its tail (right end or
counterclockwise end) replaced by a portion of the ray shot corresponding to
¢, thus causing CB; to shrink at its tail end. In this case note that a; — ;41
comprises of the segment from p; to s;, while 3; — 8,11 comprises of the chain
from b; to ¢;.

The above description elucidates the changes that take place to the o and
chains while moving from the i-th iteration to the (i + 1)-st iteration.

6.2 Data structure for storing the o and 3 chains

We now describe the process of constructing the data structure to store all
the chains a; and S;.

We first describe how «; is computed and stored. Let C'A; be the intersec-
tion of the C-polygons Cy,Cs,...,C, (i.e., the C-polygons that contain ba-
sic interval A;) listed in clockwise order of their clockwise endpoints (you
may also use the counterclockwise endpoint). Let C; have I; as its clock-
wise endpoint and m,; as its counterclockwise endpoint. To start with, C;
is a C-polygon whose envelope is a segment consisting of a chord of the poly-
gon. Assume that the intersection of the C-polygons C1, Cs, ..., C;, for some
1 < p has been computed and its envelope is stored as a linked list of seg-
ments, e; = T1Tg, €y = Ty, 73,63 = T3,7T4,...,6q = TgTqr1. Note that ¢ <. We
show how to add the C-polygon C;,;. Note that C;;; is formed by the chord
¢ = liyym;;1. To determine the intersection of C4,...,C;, Ciy1, we find the
intersection of the chain ey, ..., e, with the chord c. This is done by scanning
the sequence ey, ..., e, in reverse order and checking each of the segments for
intersection with c. Let segment e;, 7 < g, intersect chord c at point d. Now the
current linked list ey, ..., e, is updated to e, ..., e; 1,€}, €11, where €} = r;d,

i.e., the subsegment of e; that ends at d, and e;;1 = dm,;1, i.e., the subseg-
ment of the chord c starting from d. The old linked list from e;, ..., e, is not
physically deleted; instead it is pushed to the background. In this sense, this
could be thought of as a persistent structure for linked lists. It is much simpler
than the generalized persistent structure for trees, as presented by Sarnak and
Tarjan [1986], since the set of operations to be performed on this structure are
much simpler (as shown later). Later it will become necessary to delete the
C-polygons Cj41, ..., C, (in precisely the reverse order), in which case, the old
linked list will become the current envelope of the region of intersection of the

27



Fig. 14. An example of the envelope a;

€1 €1 €1
!

€9 €2 /6
! !
e3 €3 egd €

€4 €x 6/64 €5 0/64

(a) (b) (c)

Fig. 15. The changes to the data structure that stores a;s

C-polygons (4, ...,C;. When all the C-polygons C1, ..., C, are processed, o
is stored as a linked list, which is really the leftmost path of a tree structure.
As described later, a; can be thought of as a concatenation of two chains. The
first one is stored as described above, while the second chain is initially empty
and is stored in an empty tree structure; as C' A;, for i > 1 is computed, it may
become non-empty. Note that C'B; is the intersection of all C-polygons not
included in the processing for oy, and thus ; can be computed in a fashion
similar to that of ;.

An example of the computations of «; is shown in Fig. 14. After the first
four C-polygons are processed, a; consists of four segments ey, es, €3, e4, where
€1 = MiiTy, ey = ToT3, €3 = T3T4, and ey = Tgmy. The line with points a and b
is a simplified picture of a subchain of the input polygon P where the relevant
subchain is shown as a straight line edge. The corresponding data structure
at this point is shown in Fig. 15(a). When the fifth C-polygon is processed,
o consists of ey, eq, €5, e5, where e} = 7375 and e; = 73m;. The corresponding
changes to the data structure are reflected in Fig. 15(b), where the leftmost
path stores the current value of a;. After the sixth C-polygon is processed,

28



oy consists of ey, €5, eg, where e, = 757 and eg = Tgmg. Note again that the
leftmost path of the data structure shown in Fig. 15(c) stores the final value
of ;.

For the i-th iteration, we describe how to compute and store ;,; assuming
that «; has been computed. As we move counterclockwise from A; to A; 1,
either: (1) a component that contained A; does not contain A;;; but contains
Bi 1, or (2) a component that did not contain A; now contains A;,; (and may
or may not contain B;). We inductively assume that instead of storing «; as
the leftmost path of a single tree structure, it is stored as the concatenation of
two paths o and o}, which are subpaths of the leftmost path of two different
tree structures denoted by 7" and T". We also separately store their point of
intersection z; (if it exists), thus making it easy to derive the chain «; whenever
necessary.

Let ¢ be the non-redundant component that contains all of the segments
Ay, As, ..., A output by the chords algorithm (see [Das et al., 1994]). The
chain o (resp. o) is defined as the envelope of the region of intersection of
all C-polygons whose corresponding components have their tail (resp. front)
end inside ¢ and within the subchain spanned by Aq, ..., A;.

Every component ¢’ must satisfy one of the following conditions:

(a) ¢ is disjoint from c;

(b) ¢ has only its front endpoint in ¢;
(c) ¢ has only its tail endpoint in ¢;
(d) ¢ has both endpoints in ¢;

Assume that ¢ is the component with an endpoint between A; and A;;; (and,
therefore, encountered in iteration 7). Thus case (a) is impossible. If case (b)
holds, ¢ must have already been considered for the computation of the first
chain «y; it is thus part of o} (initial tree 7"), but is deleted from 7" in
iteration . If case (c) holds, ¢’ is considered for addition to «! in iteration i;
this is achieved by inserting it into 7". Finally if case (d) holds, the front end
of ¢ must be encountered before the tail end, since otherwise it would render
the component ¢ redundant. In this case ¢ must be part of the initial tree 7”;
it is deleted from 7" in iteration ¢ and is finally inserted into 7" when its tail
end is encountered in a later iteration.

Deleting a set of C-polygons from 7" is always done in the reverse order in
which they were added to create the structure for a; — this is because the
right endpoints of the components are encountered in the same order as their
left endpoints. These deletions are easy since they are a simple reversal of the
process described earlier for adding a new C-polygon.

In contrast, adding a C-polygon is handled in a different manner. When adding

29



C-polygons, they are added to 7", which is initially empty. Hence, of = «; and
o4 is empty; thus z; is simply the endpoint of «}. Also, since the additions are
done in counterclockwise order, this process is similar to the additions done
in the computation for ay. The point z; is marked and stored on both the
parallel structures for o} and . The chain «; is simply the concatenation of
two subchains, namely, the subchains of o} and ¢ ending at z;. Both the chains
«; and o are stored in the leftmost path of the two tree structures, 7" and 7".
The tree T" starts with «; stored in its leftmost path, with z; at its leftmost
leaf vertex. The second structure starts out empty, and at any instant has o
stored in its leftmost path. Thereafter, the first structure only has C-polygons
deleted from it, while the second structure only has C-polygons added to it.
Note that in moving from A; to A;,1, only one of the two structures undergoes
change. The idea of the chain o; being a combination of two chains is similar
to a scheme used by Keil [1991] in his algorithm for computing the envelope
of a set of lines.

Note that the computation for f; is no different from that described for «;.
We now discuss the time complexities of the computations described above.
Every time a C-polygon is added to one of the structures, the leftmost path
may change and one of the vertices on that path may acquire a new left
child. Thus each of the O(n) additions involves traversing the current tree
structure from its leftmost leaf, until the intersecting segments are reached.
This pushes a portion of the leftmost path into the background. This portion of
the path remains in the background until the C-polygon added last is deleted,
at which time it once again becomes the current chain. Furthermore, it is easy
to see that the point z;,; can be computed from the point z; by a monotonic
movement in the two tree structures. This is justified as follows. C-polygons
are only added to 7", and only deleted from 7”. In each iteration, there is a
change in either the leftmost path of 7" or of T". If this change takes place
(in say, T") below (farther from the root of the tree) the current location of
zi, then z;,; does not change from z;. If the change in 7" takes place above
(closer to the root) the current location of z;, then a fresh sweep is started
from the new leaf on 7" along its leftmost path (towards the root) until z;; is
located. Also, we sweep from the current location of z; on 7" towards the root
to locate z;,1. Because of the planarity of the two parallel structures, both of
them are of size O(n). Every vertex on both the tree structures is encountered
once when it is created, once when it is pushed into the background, and once
when it is deleted. Clearly, the total amount of processing of each vertex with
regard to the the creation of the data structures is constant. Furthermore,
it is easy to see that the point z;,; can be computed from the point z; by
a monotonic movement in the two parallel tree structures. Finally, the total
change in the envelopes is of size O(n). Hence all the computations described
above can be performed in O(n) time.

30



6.3 Computing SN;

As mentioned earlier, the algorithm goes through £ iterations. In the i-th
iteration, the chains o; — ;41 and [3; — ;11 are identified, and the shortest
segment that joins a; and [3; with one endpoint on a; — ;11 or B; — By is
computed. Let this segment be SN; = s;t;, if it exists. Note that identifying
a; — ;11 simply involves maintaining the point where «; and «; 1 diverge. The
algorithm needs two pointers to store this point since two parallel structures
store the « chains.

Given any two convex polygonal chains o and 3, there is a simple sweep al-
gorithm to find the shortest line segment that joins the two chains. In this
case, o and [ are two chains that form the convex envelope of two disjoint
polygons. The algorithm involves sweeping the two chains, one from its clock-
wise end and in counterclockwise order, the other from its counterclockwise
end in clockwise order. For each vertex on «, the sweep algorithm finds the
closest point on /. Similarly, for each vertex on S, the sweep algorithm finds
the closest point on «. Finally, the closest of the pairs is reported. Informally
speaking, the sweep algorithm works because of three simple facts: (1) for a
fixed point a € «, its distance to visible points b € § is unimodal, (2) as point
a moves monotonically on «, its closest point on S moves monotonically on £,
(3) for points a € «, its shortest distance to 3 (i.e., the distance to its closest
point on f3) is unimodal. Intuitively speaking, fact (3) states that the local
menimum is also the global minimum for that particular iteration.

If SN; has one endpoint on «; — ;11 and the other on 8; — 3;11, then this will
be discovered by the algorithm in iteration 7. If S/N; has neither endpoint on
a; — ;1 and B; — Biy1, then it will be discovered by the algorithm in a later
iteration, i.e., SN; = SN; for some j > i. A subtle complication is introduced
by the possibility that SN; may have one endpoint on 3; — B;;1 and another
endpoint on «o; N ;41 (instead of o; — a;41). An example of such a situation
is shown in Fig. 16. This would be detected by the algorithm since the sweep
algorithm (described at the start of this subsection) for finding the shortest
line segment joining two convex polygonal chains would reach the end of one
of the chains without hitting a local minimum. For example, assume that the
end of a; — a1 is reached before reaching the end of 3; — ;11 and before a
minimum was encountered. In this case, our algorithm continues sweeping on
Bi — Biy1, while continuing the sweep on «; N @;;1. Our algorithm needs to
be modified to ensure that this portion of a; N ;41 is not swept again during
iteration j (for some j > 7). In this case, we claim that SN; cannot have an
endpoint on this portion of o; N ;11 and hence need not be considered in any
later iteration. This claim is proved in Lemma 6 below. The relevant portion
of a; N ;11 is marked wisited so that a sweep in a later iteration can skip over
this portion of the chain. This is simply implemented by storing skip pointers

31



h T z ls

ay a2

by ke k7 ky by

Fig. 16. Monotonic sweeps of the o and 8 chains

in the data structure. The entire arguments in this paragraph could have been
carried out with a replaced by 3 and vice versa.

The above arguments are clarified by the example in Fig. 16. In the example,
let «; and (; be the boundaries of the intersection of the C-polygons that
contain (resp. do not contain) the point z on the polygon. Then, «; is given
by the chain ll, l2, l3, l4, l5 and ﬁz is given by the chain k7, kQ, kg, k4, k5, kﬁ. The
portion of the polygon under «; and (; are simplified as straight line segments
shown in the figure as @iaz and biby,. As we move counterclockwise along the
polygon from z to z’, ; changes to «;,; while §; changes to [;;1. In this
example, o, consists of the chain [y, [5, lg, [7, while §;,1 consists of the chain
ki, ks, k4, ks, kg. Now o; — a; 1 consists of the chain I5, 14,3, lg, while §8; — 811
consists of the chain k7, ko. Also, SN;, which is the shortest line segment joining
a; and f3; with one endpoint on «; — o511 or 8; — B;11 is the line segment s;t;.
The point s; lies on «; — a;11, while ¢; does not lie on 3; — ;11. The algorithm
sweeps the chains «; and f; starting from [5 and k7 respectively. The sweep
along f; reaches ks when it is recognized that SNV; does not join a point on
a; — ;41 and a point on B; — B;41. If the sweep along a; had reached lg, then
the search for SN; would have been abandoned and left for a later iteration.
However, the points s; and ¢; are discovered before reaching I on ;. Note that
the nearest point from a point on o; N ;1 has to lie on the chain t;, k4, k5, kg
due to the monotonicity properties. In other words, point ¢; would be closer
to a «; chain (j > 7) than any point on the subchain from k, to ¢;. Hence
the portion of 3; between ko and ¢; need not be processed in iteration j (for
any j > i) for computing SN;. These arguments are formalized in Lemma 6
below.

32



Lemma 6 If in iteration i, a portion of a; N1 (or Bi N Bir1) was traversed
to compute SN;, then this portion need not be traversed again for any iteration
J > to compute SN;.

PROOF. We use the notation CP(p,a) to denote the point on a convex
polygonal chain « closest to point p.

For iteration i, either o; — ;11 is a straight line segment and 5; — B;41 is a
convex polygonal chain, or oy; — a;41 is a convex polygonal chain and 3; — ;11
is a straight line segment. W.l.o.g. we assume the former, implying that the
component corresponding to some chord /; must terminate between A; and
A;11 (as shown in the example in Fig. 13(a)). Note that the latter case would
have implied that a component started between A; and A;;; (see Fig. 13(b)).
The chord [; may or may not intersect g;. If it does not then either 5;— ;.1 = 5;
or B; — Bix1 is empty. The case of 5; — 5,21 = [B; implies that 5; N 5;11 and
Bir1 are empty, implying that a; N ;1 cannot be repeatedly scanned.

If B; — Biy1 is empty, then the algorithm does nothing in iteration ¢, implying
that the premises of the lemma do not apply. (For the sake of clarity, we remark
that since §; and ;11 must extend between two points on P, if 5; — ;11 is
empty then it must imply that 5; = ;1. But then, since CA; C CA;1, and
since a; — a1 lies in the interior of C'A; 41 (except for one of its endpoints),
for any point p € §;, p must be closer to CP(p, a;;1) than to CP(p, a;). Thus
the results from some iteration j > ¢ would supersede that of iteration ¢ in
any case. Therefore, not doing anything in iteration i is justified.)

So we assume that [; does intersect both «; and ;. Let the two points of
intersection be p'and ¢} respectively. Note that «; — ;1 terminates at p
Due to the convexity of 3;, it is easy to see that for any g € §;, CP(q, a;—i11)
must equal g'implying that the rest of o; — ;4 is irrelevant for the search
for an endpoint of SN;. Let ¢} = CP(y'53;). If ¢, ¢ B; — Bit1, then iteration
i would terminate after having reached ¢;' and without having traversed any
portion of a; N ;11 or B; N B;11. Consequently, the lemma would be trivially
true. If ¢} € B; — Bi+1, then consider the portion of the chain f; between ¢}
and ¢!. Let p!! = CP(q/, &; N ;1 1). Some portion of the chain a; N ;41 from
p'to p! may be traversed in iteration ¢. Our goal now is to prove that this
subchain will not be traversed in a later iteration. Note that for this case, we
may assume that 5; N 5,11 is not traversed in iteration .

This situation is shown by an example in Fig. 17. The dashed polygonal chain

through p'and p! is «a;,1, while portion of the chord /; terminating at p'is
a; — ;1. The chain f; is shown as a dashed chain through ¢; and ¢ and also
includes a portion of another chord /; (j > ¢). Finally, 8,11 — f; is the portion
of [; terminating at ¢; .

33



Fig. 17. Proof of Lemma 6

The point ¢’ is the intersection of two chords, /; and ;. Note that CB;NCB;44
must lie within the intersection of the C-polygons corresponding to the chords
l; and ;. For any point p lying in this region, CP(p, o; N @;11) cannot lie on
the subchain of o; N ;41 from p) to p!. This is because one could construct
a hypothetical convex chain that consists of the subchain of 3; between ¢

¢'p, and then it is easy to see that

and ¢/ concatenated with the segment ¢
CP(p,a; N ;1) cannot lie between p! to p!. We have thus shown that no
repeated traversal of the chains occur between iterations ¢ through j. For any
iteration [ > j, the chain «; does not intersect any portion of «; between p'
and pf, since it is required to lie in the C-polygon corresponding to chord ;.
(Note that chord [;, by assumption, passes through ¢; and has a clockwise
endpoint counterclockwise of the counterclockwise endpoint of /; and thus its

C-polygon cannot intersect any portion of «; between pand p.)
That completes the proof of this lemma. [

Once a local minimum for SN; is found in the i-th iteration with one of
the endpoints of SN; on a; — ;41 or B; — Biy1, the algorithm also verifies
if it is a global minimum for the shortest segment between «; and ;. If the
endpoints of SNV; on o; — ;11 and on §; — ;41 are not the endpoints of either
of a; — ;41 or B; — Biy1, then clearly the global minimum for the shortest
segment between a; and (3; must be the segment SNN;. Otherwise, a simple
test can check whether the global minimum has been reached or not. This can
be done by doing infinitesimal movements (in both directions) on one of the
chains to see if the shortest segment from that point is shorter or longer than
SN;. If it is not a global minimum, then SN; can be ignored since the shortest
segment, between «; and [; connects points that are not on a; — ;11 as well
as [3; — Bir1. Since such a segment would connect «;,; and Sy, it will be

34



encountered in a later iteration. The algorithm with the minor modifications
mentioned above is guaranteed to sweep every portion of the o and S chains
exactly once and hence achieves the claimed linear-time complexity.

As mentioned in the overview in section 4, it is possible that the segment
s;t; discovered by the algorithm in the i-th iteration, may not lie entirely
within P. To identify this situation, we exploit the fact that given a point
x on P, the chords algorithm has already identified which directions from
x give rise to weakly-visible chords. Hence to check whether s;f; lies in P,
the algorithm computes the endpoint of the chord (as described in the next
paragraph) generated when the line segment s;t; is extended towards «;. Let
the endpoints be p; and ¢;. Using the output of the chords algorithm our
algorithm checks whether the chord in the direction p;q; is a weakly-visible
chord. If the chord is not weakly visible, then the segment s;t; is ignored, and
will be handled by the second phase of the algorithm (corresponding to Case
2). Otherwise the segment is returned as SNV;, a potential candidate for the
shortest illuminating line segment.

How is the endpoint p; of the segment s;t; generated? It should be pointed out
that it is possible that p; may not lie on A;, but may lie on some other segment,
A;. Since both j < ¢ and j > 7 are possibilities, we check if the line obtained
by extending segment s;t; intersects A;. If it does, then the intersection point
is the required endpoint p;. This is due to the fact that the subpolygon C'A;
within which p; lies, does not wholly contain a component. If the extension
of s;t; does not intersect A;, then we can easily determine if j < ¢ or j > ¢
by checking whether the endpoints of A; are clockwise or counterclockwise of
the line. Once this direction is determined, the algorithm traverses from A; to
A; along P (in the clockwise or counterclockwise direction, as the case may
be) to locate p;. To understand the O(n) time complexity, we will show that
this portion of P is not traversed again for this purpose. This is proved in
Lemma 7 below. The intuition behind the claim is that if p; lies on A; then
SNj is also the shortest segment between o; and 3; as well as between «; and
B, for all values of [ between 7 and j.

Lemma 7 If SN; = s;t; lies inside P and on the chord Diq; with p; € A; for
some i # j, then SN; = SN (i.e., it is also the shortest segment between «
and B;) for all values of | between i and j.

PROOF. We first prove that under the above assumptions s; lies on «; and
that ¢; lies on ;. It is clear that if p; € A; then ¢; € By, since the chord
P:q; is a weakly-visible chord. Assume for the sake of contradiction that s;
does not lie on «;. Since p;g; is a weakly-visible chord, it must intersect o;.
Let the intersection point be p. Let s be a segment of o;; on which p lies. Let
the corresponding chord be ¢, and the corresponding C-polygon be C. If p

35



lies on p;s;, then C' does not intersect SN;, which contradicts the assumption
that it is a weakly-visible segment. Hence p must lie on §;¢;. s; lies on «;. Let
the segment of a; on which s; lies be s’, with the corresponding chord and
C-polygon being ¢’ and C' respectively. Clearly C’ contains A; but does not
contain p, which is a contradiction, since p is supposed to lie in the intersection
of all C-polygons that contain A;. Hence s; must lie on o, which implies that
s; lies on ¢ for every value of [ between ¢ and j. Similarly we prove that ¢,
lies on ;. Since the o and (3 chains are convex, it is clear that SN; must be
the shortest segment joining o; and £, for all values of [ between ¢ and 5. O

The above lemma guarantees that in each iteration once SN; is computed, it
takes only linear (over all iterations) time to compute the intersection of the
extensions of SN; with the polygon P. The next step is to check whether the
directions specified by p;s; gives rise to a weakly-visible chord. This is done by
scanning through the linear-sized output of the chords algorithm, which again
takes linear time over all iterations.

7 Case 2: Shortest tangential weakly-visible segment

This case occurs when the interior of the shortest weakly-visible segment in
the polygon touches a vertex of the polygon. However, in this case, the cor-
responding weakly-visible chord obtained by extending the segment is also a
tangential chord, i.e., it touches a vertex of the polygon in its interior. The
crucial point to observe is that these are exactly the weakly-visible chords that
are output by the linear-time chords algorithm [Das et al., 1994]. A suitable
modification of the chords algorithm can output all tangential weakly-visible
segments, of which the shortest can be computed.

As is detailed in Das et al. [1994], the chords algorithm uses the following
strategy. It traverses along the polygon in a counterclockwise direction with
a point z. When z is on A;, the points y(x) and z(z) on B; corresponding to
the other endpoints of the two tangential chords from x are computed. The
points y(x) and z(x) move monotonically on P; so do the points of tangency
for the tangential chords, namely s(x) and ¢(z). The points of tangency s(z)
and t(z) lie on the convex envelopes of the side chains D; and E;. Note that
the side chains are the chains left over if A; and B; are removed from P. As
x moves on A;, there are several possible events that can take place, which
would change the description of the tangents: the point y(z) (or z(z)) could
move to a vertex of P; the point s(z) (or ¢(z)) could move to a vertex of P.
These events cause a recomputation of the equations of the tangential chords
as a function of z. In Das et al. [1994] it was shown that the number of these
events are O(n), thus resulting in a linear-time algorithm.

36



Fig. 18. Case 2: Determining tangential shortest weakly-visible segments

The modification for computing the tangential weakly-visible segments is as
follows. During iteration ¢, the chains a; and f; are computed. When the
point x is on A;, the points of intersection of the tangential chords with «;
and f; are also maintained (call them a;(x), as(z), b1(x), ba(z)). The segment
from a;(x) to bi(x) and the segment from as(x) to by(x) are the two tangen-
tial weakly-visible segments with respect to x. The situation is described in
Fig. 18. There are, however, an additional number of events that could cause a
change in the description of the tangential weakly-visible segments: the points
ai(x) or az(z) (bi(z) or be(x)) could move to a vertex of o; (f;). This would
cause additional recomputations of the equations as well as the lengths of the
tangential segments. The crucial point is that in between events, the length of
the tangential segments can be computed in terms of z, from which the min-
imum can be computed for that interval in constant time. Das et al. [1994]
showed that the points s(z) and ¢(z) move monotonically along the envelopes
of the side chains. Consequently, a;(z), b1(z), az(z) and be(z) also move mono-
tonically on the o and S chains. Each event caused by the tangential chord
passing over a vertex of the a and ( chains is such that a particular tangential
chord passes over each vertex of the envelope only once over the entire algo-
rithm. Since there are O(n) vertices on the envelopes overall, the total number
of events encountered is O(n).

This completes the description of all the pieces of the algorithm for computing
in linear time the shortest weakly internally visible line segment of a simple
polygon (if one exists).

37



8 All minimal weakly-visible segments algorithm

One of the by-products of our algorithm is a linear-time algorithm to generate
all minimal weakly-visible segments of a polygon. This algorithm is a modifi-
cation of the algorithm described in section 7 for computing the shortest tan-
gential weakly-visible segment. It outputs a set of pairs (U;,V;),i = 1,...,m.
Here U; and V; are subchains of the polygonal chains « and 8, m = O(n),
and any segment joining points v € U; and v € V; is a minimal weakly-visible
segment. One note of caution is that U; and V; have left and right endpoints
that are linear functions of a parameter x in a spirit similar to that of the
endpoints of the chain B; that is output by the chords algorithm. For a point
x on A;, the polygonal chains o; and (; can be computed along with the points
a1(z),a2(z) € o and by(x),ba(x) € B;. The output of the algorithm consists
of (U, Vi) = ((a1(x), az(x)), (b2(x),b1(x))). The discussion at the end of sec-
tion 7 can also be used to show that the number of these pairs produced is
m = O(n). Lemma 1 can be used to show that these segments are minimal in
the sense that any subsegment of these segments is not weakly visible.

9 Conclusion and open problems

We show optimal linear-time algorithms to compute the shortest weakly-
visible segment and all minimal weakly-visible segments in a given simple
polygon. One extension of this problem that has been solved is that of finding
the shortest watchman route [Carlsson and Jonsson, 1995] in a simple polygon
in polynomial time.

Some interesting open questions are:

e Can the exhaustive sweeping techniques from this paper be used to solve
other weak visibility problems efficiently? For example, are there linear-time
algorithms for the all-pairs version of any of the 2-guard walk problems (see
Das et al. [1997])?

e Ntafos [1991] introduced the notion of d-wvisibility, where an observer’s vis-
ibility is limited to distance d. Can the shortest illuminating segment be
computed efficiently under d—visibility?

Acknowledgements

The authors thank the diligent referees for pointing out many errors in an
earlier draft and for helpful suggestions that made the paper more readable.

38



References

D. Avis and G. T. Toussaint. An optimal algorithm for determining the
visibility of a polygon from an edge. IEEE Transactions on Computers, 30:
910-914, 1981.

B. K. Bhattacharya and A. Mukhopadhyay. Computing in linear time an in-
ternal line segment from which a simple polygon is weakly internally visible.
In Proceedings of the International Symposium on Algorithms and Compu-
tation, Cairns, Australia, pages 22-31, 1995.

B. K. Bhattacharya, A. Mukhopadhyay, and G. T. Toussaint. Computing a
shortest weakly externally visible line segment for a simple polygon. In-
ternational Journal of Computational Geometry and Applications, 9:81-96,
1999.

E. Buchman and F. A. Valentine. External visibility. Pacific Journal of
Mathematics, 64:333-340, 1976.

S. Carlsson and H. Jonsson. Computing a shortest watchman path in a simple
polygon in polynomial-time. In S. Akl, F. Dehne, J. R. Sack, and N. Santoro,
editors, Algorithms and Data Structures: Proceedings of the Fourth WADS,
volume 955 of Lecture Notes in Computer Science, pages 122-134. Springer
Verlag, 1995.

B. Chazelle. Triangulating a simple polygon in linear time. Discrete and
Computational Geometry, 6:485—-524, 1991.

D. Z. Chen. Optimally computing the shortest weakly visible subedge of a
simple polygon. J. Algorithms, 20(3):459-478, 1996.

W. P. Chin and S. Ntafos. Shortest watchman routes in simple polygons.
Discrete and Computational Geometry, 6:9-31, 1991.

G. Das, P. Heffernan, and G. Narasimhan. LR-visibility in polygons. Comput.
Geom. Theory Appl., 7:37-57, 1997.

G. Das, P. J. Heffernan, and G. Narasimhan. Finding all weakly-visible chords
of a polygon in linear time. Nordic J. Comput., 1:433-456, 1994.

G. Das and G. Narasimhan. Optimal linear-time algorithm for the shortest
illuminating line segment in a polygon. In Proceedings of the 10th Annual
ACM Symp. on Computational Geometry, pages 259-268, 1994.

J. Doh and K. Chwa. An algorithm for determining internal line visibility of
a simple polygon. Journal of Algorithms, 14:139-168, 1993.

H. El Gindy and D. Avis. A linear algorithm for computing the visibility
polygon from a point. Journal of Algorithms, 2:186-197, 1981.

L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear time
algorithms for visibility and shortest path problems inside a triangulated
simple polygon. Algorithmica, 2:209-233, 1987.

C. Icking and R. Klein. The two guards problem. Internat. J. Comput. Geom.
Appl., 2(3):257-285, 1992.

Y. Ke. Detecting the weak visibility of a simple polygon and related problems.
Technical report, The Johns Hopkins University, 1987.

M. Keil. A simple algorithm for determining the envelope of a set of lines.

39



Information Processing Letters, 39:121-124, 1991.

P. Pradeep Kumar and C. E. Veni Madhavan. Shortest watchman tours in
weak visibility polygons. In Proceedings of the 5th Canadian Conference on
Computational Geometry, pages 91-96, 1993.

D. T. Lee and F. P. Preparata. An optimal algorithm for finding the kernel
of a polygon. JACM, 26:415-421, 1979.

S. Ntafos. Watchman routes under limited visibility. Computational Geometry:
Theory and Applications, 1:149-170, 1991.

J. O’'Rourke. Art gallery theorems and algorithms. Oxford University Press,
1987.

J. O’'Rourke. Computational geometry column 18. SIGACT News, 24:20-25,
1993.

J. R. Sack and S. Suri. An optimal algorithm for detecting weak visibility.
IEEFE Transactions on Computers, 39:1213-1219, 1990.

N. Sarnak and R. Tarjan. Planar point location using persistent search trees.
CACM, 29:669-679, 1986.

L. H. Tseng, P. Heffernan, and D. T. Lee. Two-guard walkability of simple
polygons. Internat. J. Comput. Geom. Appl., 8(1):85-116, 1998.

F. A. Valentine. Minimal sets of visibility. Proceedings of the Americal Math-
ematical Society, 4:917-921, 1953.

40



