Optimally computing a shortest weakly visible line segment inside a simple polygon *

Binay K. Bhattacharya

School of Comp. Science, Simon Fraser Univ., Burnaby, B.C., Canada, V5A 1S6.

Gautam Das ¹

Mathematical Sciences Department, University of Memphis, Memphis, TN 38152

Asish Mukhopadhyay²

School of Comp. Science, University of Windsor, Ontario, Canada N9B 3P4.

Giri Narasimhan *,3

Mathematical Sciences Department, University of Memphis, Memphis, TN 38152.

Abstract

A simple polygon is said to be weakly internally visible from a line segment lying inside it if every point on the boundary of the polygon is visible from some point on the line segment. In this paper, we present an optimal linear-time algorithm for the following problem: Given a simple polygon, either compute a shortest line segment from which the polygon is weakly internally visible, or report that the polygon is not weakly internally visible.

The algorithm presented is conceptually simple; furthermore, the result settles the long-standing open question of improving the upper bound for the time complexity of this problem from $O(n \log n)$ (due to Ke [1987]) to O(n). This paper also incorporates a significant improvement over the linear-time algorithm for the same problem, presented in a preliminary version [Das and Narasimhan, 1994], in the sense that it eliminates the need for using two complicated preprocessing tools: Chazelle's linear-time triangulation algorithm [Chazelle, 1991], and the algorithm for computing single-source-shortest-paths from a specified vertex in a triangulated polygon [Guibas et al., 1987], thus making the algorithm practical.

1 Introduction

Polygonal visibility problems arise naturally in such diverse areas as robotics (path planning, motion planning), computer graphics (hidden-line and hidden-surface removal), image processing (hamiltonian triangulations). The notion has been extant in the mathematical literature [Valentine, 1953, Buchman and Valentine, 1976] long before it was introduced into Computational Geometry. Research into the *computational aspects* of visibility was initiated by the well-known art-gallery problem, posed by Klee (see [O'Rourke, 1987]), which is the problem of determining the minimum number of guards sufficient to cover the interior of a polygonal art-gallery.

A visibility problem in its most abstract form can be formulated thus:

Given a scene composed of a finite number of geometrical objects, a viewpoint or a set of viewpoints, and a notion of visibility, compute the scene as viewed.

A concrete example of this abstract formulation is the following: Given a point (i.e, viewpoint) lying inside a simple polygon (where the scene consists of only the polygon), compute the part of the polygon visible from this point [El Gindy and Avis, 1981] (where two points are considered visible if the straight line segment joining them lies entirely within this polygon).

When there is a set of viewpoints (instead of a single viewpoint), the appropriate notion of visibility that is useful is that of weak visibility, which was introduced by Avis and Toussaint [1981] (they also introduced other kinds of visibility). An object is said to be weakly visible from a set of viewpoints if every point of the object is visible from some viewpoint. Weak visibility has received much attention from a number of researchers [Avis and Toussaint, 1981, Bhattacharya et al., 1999, Sack and Suri, 1990, Tseng et al., 1998, Das et al., 1997, 1994, Chen, 1996, Doh and Chwa, 1993, Icking and Klein, 1992, Ke, 1987]; also see the survey article by O'Rourke [1993].

^{*} A preliminary version of parts of this paper by the second and fourth authors appeared in the *Proc. of the 10th ACM Symp. on Computational Geometry*, 1994.

^{*} Corresponding author.

Email addresses: binay@cs.sfu.ca (Binay K. Bhattacharya), GautamD@microsoft.com (Gautam Das), asishm@cs.uwindsor.ca (Asish Mukhopadhyay), giri@fiu.edu (Giri Narasimhan).

¹ Current Address: Microsoft Research, One Microsoft Way, Microsoft Corp., Redmond, WA 98052 USA; Supported in part by NSF Grant CCR-930-6822.

² Research supported by NSERC Grant 227693-00

³ Current Address: School of Computer Science, Florida International University, Miami, FL 33199; Supported in part by NSF Grants INT-911-5870 and CCR-940-9752.

This brings us to the notion of interest in this paper, namely that of a weakly visible line segment in the interior of a simple polygon. If we replace a point by a line segment lying inside the polygon we have a set of viewpoints instead. If every point of the polygon is thus visible, it is said to be weakly internally visible (wiv from now on) from this line segment.

The problem we consider in this paper is to find a shortest internal line segment of a given polygon P from which it is wiv or else report that the polygon is not wiv. An appealing reformulation of this problem is in terms of the illumination paradigm: if we think of the line segment as a linear light source, then the problem can be thought of as that of computing the shortest light source that completely illuminates the interior of the polygon, whenever it is possible to do so. A related problem is that of computing the shortest line segment from which the exterior of a simple polygon is weakly visible; an optimal linear-time algorithm was presented for this problem by Bhattacharya et al. [1999].

The shortest illuminating line segment in a polygon can also be thought of as the shortest straight line path that a watchman could patrol along in order to watch over a polygonal art gallery. There have been a number of papers on the *shortest watchman tour* problem [Chin and Ntafos, 1991, Kumar and Madhavan, 1993]. The algorithm in this paper finds the shortest straight-line watchman tour, if one exists.

Earlier attempts to solve this problem include $O(n \log n)$ -time algorithms by Ke [1987] and by Doh and Chwa [1993]. Sack and Suri [1990] presented a linear time solution to determine whether a given polygon is wiv from any edge of the polygon. In this paper we present an optimal linear time algorithm for this problem, thus settling a long-standing open problem of improving the $O(n \log n)$ upper bound due to Ke [1987].

An interesting related problem is that of computing a *single* weakly-visible line segment in a simple polygon. This problem is solved by Das et al. [1994], who presented a linear-time algorithm for this problem. However, an improved linear-time algorithm due to Bhattacharya and Mukhopadhyay [1995] avoids the use of two tools that had rendered the algorithm by Das et al. [1994] impractical: (a) the linear-time triangulation algorithm [Chazelle, 1991], and (b) the linear-time algorithm to compute shortest paths in a triangulated polygon [Lee and Preparata, 1979, Guibas et al., 1987].

In this paper we combine ideas from Bhattacharya and Mukhopadhyay [1995] and from Das and Narasimhan [1994] and present a linear-time algorithm to compute the *shortest* weakly-visible segment in a polygon. The algorithm avoids the two tools mentioned above, thus significantly improving the linear-time algorithm for the same problem presented in a preliminary version of this paper by Das and Narasimhan [1994].

Besides resolving a long-standing open problem, our paper is also interesting because of the techniques used. The results in this paper build on some of our previous work on optimal linear-time algorithms for weak-visibility problems in polygons. The linear-time algorithms for computing all LR-visible pairs of points [Das et al., 1997] and for computing all weakly-visible chords [Das et al., 1994] output a mass of information related to visibility within a polygon. Our present algorithm shows how to exploit this wealth of information to answer more interesting questions related to weak visibility in polygons. We achieve our results by studying the structure of minimal weakly-visible segments and identifying the bounding chords for such segments. As described later, one of the by-products of our algorithm in this paper is a linear-time algorithm to generate all minimal weakly-visible segments. These techniques were also used in Das et al. [1997] to obtain a linear-time recognition of L_2 -convexity of simple polygons.

The paper is organized as follows. In the next two sections we introduce all the preliminaries, geometric and otherwise. Section 4 gives an overview of the algorithm. Sections 5, 6, and 7 provide details of the algorithm. In section 8 we discuss an extension of our algorithm to a slightly more general problem. Finally, we conclude with open problems in the last section.

2 Notations

Let P be a simple polygon on n vertices. We shall denote its interior by int(P) and its boundary by bdy(P). Despite this distinction, we shall sometimes use simply P to refer to a polygon plus its interior. The exact usage should be clear from the context. We also make the usual general position assumptions that no three vertices of P are collinear, and no three of its edges have a common vertex.

The line segment joining two points x and y is denoted by \overline{xy} . Two points $x, y \in P$ are mutually visible (or co-visible) if \overline{xy} lies entirely in P. We let $\overrightarrow{r}(x,y)$ represent the ray rooted at x towards point y. Informally, the ray shot from a point $x \in P$ in direction of point y consists of "shooting" a "bullet" from x towards y. The first point where this shot hits P is called the hit point of the ray shot.

A polygonal chain is a concatenation of line segments. If x and y are points on bdy(P), then $P_{CW}(x,y)$ ($P_{CCW}(x,y)$) is the subchain of bdy(P), obtained by going clockwise (counterclockwise) from x to y. Let v be a reflex vertex of P. Let v^- and v^+ be the vertices that precede and succeed v with respect to a counterclockwise vertex order on P. Let $\vec{r}(v^-,v)$ and $\vec{r}(v^+,v)$ when extended meet the polygon again at v' and v'' respectively. The subchain $P_{CW}(v,v')$ is

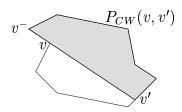


Fig. 1. A clockwise component and its C-polygon

called the clockwise component of v (see Fig. 1), while $P_{CCW}(v, v'')$ is called the counterclockwise component of v. Crucial to our algorithm is the concept of a non-redundant component. A component is redundant if it is a superset of another component. All other components are non-redundant components.

The clockwise component of v also defines a subpolygon called the clockwise C-polygon of v, which is the subpolygon of P bounded by the polygonal chain $P_{CW}(v,v')$ and the chord $\overline{vv'}$. The clockwise C-polygon of v is shown as a shaded region in Fig. 1. The counterclockwise C-polygons are defined in a similar fashion. For a clockwise C-polygon of vertex v, v' will be referred to as its clockwise endpoint (and v its counterclockwise endpoint). Similarly, for a counterclockwise C-polygon of vertex v, v'' will be referred to as its counterclockwise endpoint (this time, v is its clockwise endpoint). Given a C-polygon (or an intersection of a set of C-polygons) denoted by P_A , its envelope is defined as the convex polygonal chain bounding P_A in the interior of P (except for its endpoints) and connecting points u and v, which lie on the boundary of P (and P_A). Note that the envelope of the C-polygon in Fig. 1 is simply the straight-line segment (chord) $\overline{vv'}$. A (clockwise or counterclockwise) C-polygon of some reflex vertex v is called redundant (non-redundant, resp.) if its corresponding component is redundant (non-redundant, resp.).

Two subsets X and Y of P are said to be weakly visible from each other if every point in X is visible from some point of Y, and vice versa. A polygon P is said to be LR-visible with respect to a pair of points x and y on its boundary, if the chains $P_{CW}(x,y)$ and $P_{CCW}(x,y)$ are weakly visible from each other. A polygon is said to be L_2 -convex if for every pair of points in the polygon, there exists another point from which the first two are visible.

3 Preliminaries

A $chord \overline{xy}$ of the polygon P is a line segment connecting two visible points x and y on bdy(P). A weakly-visible chord is a chord from which the polygon is weakly visible. A weakly-visible segment is simply any line segment in P from which P is weakly visible. A $minimal\ weakly$ -visible segment is a weakly-visible line segment, no subsegment of which is weakly visible from P.

In this section we describe some of the geometric properties of a weakly-visible line segment. It was noted in Icking and Klein [1992] that the family of non-redundant components completely determines LR-visibility of P, since a pair of points s and t admits LR-visibility if and only if each non-redundant component of P contains either s or t. A similar result from Das et al. [1994] states that the family of non-redundant components also determines all weakly-visible chords, since a chord \overline{st} is weakly-visible if and only if each non-redundant component of P contains either s or t. We first prove Lemma 1, which describes a simple property satisfied by all weakly-visible segments in P. We then show in Lemma 2 that the family of non-redundant components also determines the family of weakly-visible segments,

Lemma 1 If P is weakly visible from a line segment $l = \overline{uv}$, then the chord l', obtained by extending l in both directions until it hits bdy(P) is a weakly-visible chord; furthermore, the endpoints of l' form a LR-visible pair of points with respect to P.

PROOF. The first part is trivial. The second follows from Lemma 5 of Das et al. [1997]. □

Lemma 2 P is weakly visible from a line segment $l(=\overline{uv})$ iff l intersects every non-redundant C-polygon of P.

PROOF. If l does not intersect a C-polygon, then it cannot see all the points on the edge of P that is used to generate the corresponding component. Hence the only if part is proved.

For the if part, let us assume that there is a point x on P that is not visible from l, i.e., all rays shots emanating from x miss l. This implies that there exists a ray shot from x that is tangent to P at some vertex z and that brings the ray closest to the one of the endpoints of l. But then, there exists a C-polygon associated with the reflex vertex z that does not intersect l. A contradiction! \square

The obvious implication of Lemma 1 is that a polygon has at least one weakly-visible chord iff it has at least one weakly-visible segment and consequently a shortest weakly-visible segment.

Before giving an overview of the algorithm, we describe the peculiar output of the O(n)-time algorithm for computing all weakly-visible chords of a polygon (this algorithm is described in [Das et al., 1994] and will henceforth be referred to as the chords algorithm), since this algorithm is used by our scheme. The chords algorithm generates k = O(n) pairs of the form (A_i, B_i) along with two linear functions $L_i(x)$ and $R_i(x)$. Each A_i is a subedge of P with all A_i 's

being disjoint (except at their endpoints) line segments; each B_i is a subchain of P with the B_i 's possibly overlapping each other. For a given point $p \in A_i$ every line segment joining p and any point on a specified subchain $B_p \subseteq B_i$ forms a weakly-visible chord. In order to describe this succinctly, a parameter $x \in [0,1]$ is used. Let $A_i(x)$, for $x \in [0,1]$, denote the points of A_i . Similarly, let $B_i(x)$, for $x \in [0,1]$, denote the points of B_i . For example, $B_i(0)$ and $B_i(1)$ refer to the left and right endpoints of B_i , and $A_i(0)$ and $A_i(0.5)$ refer to the left endpoint and the mid point of segment A_i . For each value of $x \in [0,1]$, the linear functions $L_i(x)$ and $R_i(x)$ correspond to the endpoints of the polygonal subchain of B_i which form weakly visible chords with $A_i(x)$. In other words, for each value of $x \in [0,1]$, the chord joining $A_i(x)$ and $B_i(y)$ is weakly visible for $y \in [L_i(x), R_i(x)]$. It may be helpful to point out that no component has one of its endpoints in the interior of A_i , for any i.

4 Overview of algorithm

We first compute all the non-redundant components of P or determine that the polygon is not weakly internally visible; this is described in detail in section 5. If the intersection of the C-polygons corresponding to all the non-redundant components is non-empty, then we stop since the smallest weakly-visible segment is simply a point. Note that finding the intersection of the C-polygons is described in detail as part of another step in section 6, after which picking an arbitrary point in this region solves the problem. If the polygon is weakly internally visible, with the non-redundant components as input we run the LR-visibility algorithm of Das et al. [1997]. The third step of our algorithm is to run the chords algorithm. If the polygon has no weakly-visible chords, then the algorithm stops and declares that there are no weakly-visible segments either.

Henceforth by components we shall mean non-redundant components; similarly, by C-polygons we shall mean the C-polygons corresponding to the non-redundant components. For every A_i output by the chords algorithm, let α_i denote the envelope of the intersection of the C-polygons that contain A_i . Let β_i denote the envelope due to the intersection of the remaining C-polygons.

It is clear that any line segment of P that touches both α_i and β_i for some i, must intersect every C-polygon and by Lemma 2 must be a weakly-visible segment. However, the converse is not so obvious. In Lemma 3 below, we establish this for the shortest weakly-visible segment. This vital property is necessary to make our algorithm work in linear time. It is also noteworthy that the components that contain A_i correspond to a subsequence of the sorted (with respect to the order of appearance along the polygon boundary) sequence of components. What Lemma 3 proves is that only such subsequences (and

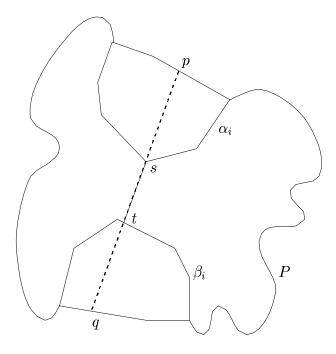


Fig. 2. The endpoints of the shortest weakly-visible segment must lie on the chains α_i and β_i for some $1 \leq i \leq k$

not an arbitrary *subset*) of non-redundant components need be considered for computing the shortest weakly-visible segment.

Lemma 3 If $\overline{st} = l$ is a shortest weakly-visible segment, then s must lie on α_i and t must lie on β_i , for some i = 1, ..., k.

PROOF. Consider the polygon P of Fig. 2, drawn with smooth curves for simplicity. We extend the shortest weakly-visible line segment l to meet bdy(P) at the points p and q. So the chord $l' = \overline{pq}$ contains l.

By Lemma 2, the segment l intersects every C-polygon. Thus every C-polygon completely contains either \overline{ps} or \overline{qt} . Consider the components corresponding to the C-polygons that contain \overline{ps} . From the minimality of l, one of them must contain exactly \overline{ps} or equivalently that s must lie on its bounding chord (or envelope). We conclude that s lies on the envelope of the intersection of all the C-polygons that contain \overline{ps} . A similar argument proves that t lies on the envelope of the intersection of all the C-polygons that contain \overline{qt} . \square

The above lemma suggests the following skeleton for our algorithm, which will be refined later. For every i = 1, ..., k, construct the envelopes α_i and β_i , and then compute the shortest line segment joining a point on α_i and a point on β_i . Then compute the shortest of these segments.

Note that since both α_i and β_i are convex polygonal chains, computing the

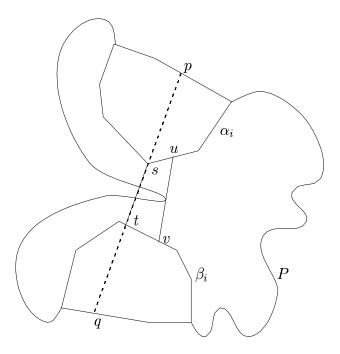


Fig. 3. The shortest line segment connecting α_i and β_i may not lie entirely in P

shortest line segment connecting them can be computed in time $O(|\alpha_i| + |\beta_i|)$, where $|\alpha_i|$ and $|\beta_i|$ are the lengths of the two chains. However, each of the $|\alpha_i|$ and $|\beta_i|$ could be O(n), and thus performing this computation in a naive fashion could take a total time of $O(n^2)$. Fortunately, in general, there may be considerable overlap between α_i and α_{i+1} , as well as between β_i and β_{i+1} . For the *i*-th iteration, instead of simply finding the shortest line segment that joins α_i and β_i , the algorithm finds the shortest line segment that has at least one endpoint on the portion of α_i that is not part of α_{i+1} or on the portion of β_i that is not part of β_{i+1} . The assumption is that the rest of the portions of the two envelopes will be scanned as part of a later iteration. Repetitious scanning of the polygonal chains is thus prevented by delaying the scanning of overlapping portions as much as possible.

In section 6.1, we precisely characterize how α_i changes to become α_{i+1} , and correspondingly, how β_i changes to become β_{i+1} . In section 6.2, we describe a data structure that stores α_i , i = 1, ..., k, and another identical structure that stores β_i , i = 1, ..., k. We also prove that the total size of the union of α_i 's and the total size of the union of β_i 's (for i = 1, ..., k) is O(n).

One problem with the skeleton algorithm described above is that the shortest line segment joining α_i and β_i for some i may not lie entirely within P. In Fig. 3, the segment \overline{st} , which is the shortest illuminating line segment joining α_i and β_i , does not lie entirely within P. This happens because even though the line segment when extended may hit A_i , it might not hit B_i because of obstruction from the rest of P, i.e., the extended line is not a weakly-visible

chord. In this case, if there does exist a weakly-visible chord connecting A_i and B_i , then the shortest weakly-visible segment joining α_i and β_i would touch a vertex of P. In Fig. 3, such a segment is \overline{uv} .

This suggests that our algorithm needs to deal with two main cases. The first case is when the shortest illuminating segment does not touch a vertex of P except possibly at its endpoints; the second case is when it touches a vertex of P in its interior. If the first case occurs, the algorithm briefly described earlier will output the shortest illuminating segment. The details of this case are described in the section 6. The second case is handled separately in section 7. The algorithm for the second case is a modification of our earlier algorithm for computing all weakly-visible chords of a polygon [Das et al., 1994]. If a weakly-visible segment does not touch a vertex of P it is referred to as a non-tangential weakly-visible segment; otherwise it is referred to as a tangential weakly-visible segment.

By putting all the pieces together, we show a linear-time algorithm to obtain the shortest non-tangential weakly-visible segment, and a linear-time algorithm to compute the shortest tangential weakly-visible segment. The shortest of the two segments is the shortest weakly-visible segment in a polygon, thus giving us the desired algorithm.

5 Computing all non-redundant components

In this section we show how to compute the set of all non-redundant components, NR, of P, or report that P is not weakly internally visible. In the former case, the set NR is input to the chords algorithm from Das et al. [1994]. We adopt the following nomenclature: we label the vertices of the polygon from $1 \dots n$ in counterclockwise order, while an edge whose endpoints are i and $i+1 \pmod{n}$ is labeled i. With reflex vertex i, we maintain the ordered triplet (i,j,k), where j and k are respectively the labels of the edges that are hit by ray shots $\vec{r}(i^-i)$ and along $\vec{r}(i^+i)$. We use the special symbol null in place of j or k if the corresponding component has been identified to be redundant. Initially, j and k are set to null for all the reflex vertices.

We also use the concept of a $critical\ polygon$, which is defined as a subpolygon of P enveloped by a chord and the boundary of P that does not wholly contain a component and that every weakly visible segment must penetrate. Note that every non-redundant C-polygon of P is critical; however, the converse is not true as can be seen from the simple example of Fig. 4 in which the shaded subpolygon is critical, but is not a C-polygon.

The overview of the algorithm in this section is as follows:

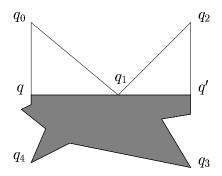


Fig. 4. The shaded polygon is critical but not non-redundant

Step 1 Split the boundary of P into two, three, or four polygonal chains (denoted by C_1, C_2, C_3 , and C_4) such that no component is wholly contained in any one of them. Furthermore, the endpoints of C_1 (and C_2 , if it is non-empty) are co-visible and the corresponding chord envelopes a critical polygon.

Step 2 For each possible value of i and j, compute a superset of all non-redundant components that have endpoints on C_i and C_j . For a given i and j, this superset will not contain any component that is non-redundant with respect to another component of the same orientation (clockwise or counterclockwise) and with endpoints on C_i and C_j . Note that i and j may be equal.

Step 3 At the end, a clean-up phase is carried out to eliminate components that have endpoints on C_i and C_j , but are rendered redundant by components of a different orientation with endpoints on C_i and C_j , or by component that have endpoints on C_k and C_l with either $i \neq k$ or $j \neq l$.

5.1 Step 1: Finding the Polygonal Chains

We now describe how to compute the four polygonal chains C_1, C_2, C_3 , and C_4 required by Step 1 of the algorithm.

Set NR to empty. We search the boundary of P to find a reflex vertex, say p. If none exists, we return NR and quit; else, we consider the clockwise ray shot from this reflex vertex, and determine, by brute force, the first point p' where this ray intersects the boundary of P. This gives us a component $P_{CW}(p, p')$ with a corresponding C-polygon denoted by P'_1 enveloped by the chord $\overline{pp'}$.

Using the algorithm of Avis and Toussaint [1981], we check if P'_1 is weakly visible from the chord $\overline{pp'}$. If it is, then we C_1 is set equal to $P_{CW}(p,p')$ and we proceed to compute the other three chains. If not, we use the procedure described below in Section 5.1.1 to compute a critical polygon inside P'_1 . As defined above, the critical polygon is bounded by a chord. We denote the

critical polygon by P_1 and, for the sake of convenience, we relabel the bounding chord as $\overline{pp'}$. Thus, C_1 is set equal to $P_{CW}(p, p')$ and we proceed to compute the other three chains.

Next we check if $P-P_1$ is weakly visible from $\overline{pp'}$ using the algorithm of Avis and Toussaint [1981]. If it is, then C_2 is set equal to $P_{CCW}(p,p')$, the other two chains C_3 and C_4 are set to empty and we proceed to Step 2 of the algorithm. If not, once again we use the procedure described below in Section 5.1.1 to compute a critical polygon P_2 inside $P-P_1$. The critical polygon is bounded by a chord, which we denote by $\overline{qq'}$. We set C_2 equal to $P_{CW}(q,q')$. C_3 and C_4 are now set equal to the two left over portions of P, namely $P_{CW}(q',p)$ and $P_{CW}(p',q)$, respectively. Note that we are left with checking whether C_3 and C_4 (if non-empty) have any components wholly contained in them. Before proceeding further, we present the procedure to compute a critical polygon inside P'_1 and $P-P_1$.

5.1.1 Finding a Critical Polygon

In what follows, we assume that a given subpolygon (of P) denoted by P'_1 is not weakly visible from its bounding chord $\overline{pp'}$. We show how to compute a critical subpolygon $P_1 \subseteq P'_1$.

By Lemma 2 above, P'_1 contains a non-redundant component of P. By definition, a critical polygon is enveloped by some bounding chord and does not wholly contain a component. As described below, the critical polygon we find may either be a non-redundant C-polygon or may be a subpolygon that is bounded by a chord passing through a reflex vertex and that contains the intersection of the clockwise and the counterclockwise C-polygon of that reflex vertex. Clearly, every line segment from which the polygon P is weakly internally visible must intersect this critical subpolygon. The following lemma is therefore an easy consequence and is stated without proof. We remark that it generalizes Lemma 5 from Das et al. [1997] which states that if a simple polygon has three disjoint components, then it is not LR-visible (and, consequently, cannot have any weakly visible chords and hence cannot have any weakly visible segments).

Lemma 4 If a simple polygon P has three disjoint critical polygons then it is not weakly visible from any line segment.

First, a definition. A clockwise (resp. counterclockwise) Restricted Shortest Path between two vertices u and v of P is the shortest path (not necessarily restricted to remain within P) that only makes left (resp. right) turns and that does not intersect the polygonal chain $P_{CW}(u,v)$ (resp. $P_{CCW}(u,v)$); it is denoted by $RSP_{cw}(u,v)$ (resp. $RSP_{ccw}(u,v)$). Note that $RSP_{cw}(u,v)$ (resp. $RSP_{ccw}(u,v)$) may be different from the actual shortest path between u and v

inside P because it ignores any obstructions from the rest of the polygon, i.e., it ignores obstructions from $P_{CCW}(u, v)$ (resp. $P_{CW}(u, v)$). Another way to think of $RSP_{cw}(u, v)$ is that it is the shortest path between u and v assuming that the initial and final edges of the polygonal chain from u to v is extended indefinitely.

Next we incrementally compute the RSP's from the endpoints of P_1' (p and p') to all the intermediate vertices of P_1' and use them to compute a critical polygon in P_1' . We now take a closer look at the way the (counterclockwise) restricted shortest paths are constructed as we make a counterclockwise sweep starting from p. The counterclockwise scan is reminiscent of the linear-time "Graham scan" for computing convex hulls, in that we move forward with right turns and backtrack on left turns. This is a standard procedure employed in several algorithms (for example, see Bhattacharya et al. [1999] and Bhattacharya and Mukhopadhyay [1995]). It can be implemented in time linear in the number of nodes of P_1' because every vertex of P_1' is inserted in some RSP from p exactly once and is deleted exactly once. Thus, incrementally computing the counterclockwise RSP to the next counterclockwise vertex on P_1' is straightforward. However, as we compute the RSPs, our goal is to compute a critical polygon.

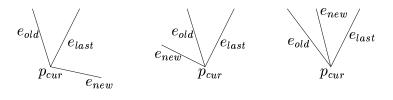
Suppose that $RSP_{ccw}(p,q)$ has been computed for all vertices $q \in P_{CCW}(p,p_{cur})$, where p_{cur} denotes the current vertex. Note that $P_{CCW}(p,p_{cur})$ consists of only right turns. The invariant maintained by the scan is that there are no clockwise components contained in $P_{CCW}(p,p_{cur})$. Let e_{last} be the last edge on this path, while $e_{new}(=\overline{p_{cur}p_{next}})$ and e_{old} are the two edges of P_1' incident on p_{cur} . Assuming that e_{old} and e_{last} are distinct, one of the following three situations can arise when we try to extend the path to p_{next} .

- (A) e_{new} makes up a left turn with e_{last} (Fig. 5(A))
- (B) e_{new} makes up a right turn with both e_{old} and e_{last} (Fig. 5(B))
- (C) e_{new} makes up a left turn with e_{old} and a right turn with e_{last} (Fig. 5(C))

To see that all cases are covered, note that e_{new} can make a right turn or left turn with e_{last} and a right turn or a left turn with e_{old} . Two of these possibilities are covered by case (A), while the other two are covered by cases (B) and (C).

In case (A), we scan backwards from p_{cur} until we find the point of tangency (call it p_t) from p_{next} to the path $RSP_{ccw}(p, p_{cur})$. Now $RSP(p, p_{next})$ is obtained by concatenating edge (p_t, p_{next}) to the portion of the path $RSP_{ccw}(p, p_{cur})$ until p_t . We then continue on the counterclockwise sweep. No critical polygon is located yet, but the invariant is clearly maintained.

In case (B), since e_{new} makes a right turn with e_{last} and $RSP_{ccw}(p, p_{cur})$ only involves right turns, the clockwise ray shot along e_{new} cannot hit the traversed



(A) left and left (B) right and right (C) left and right

Fig. 5. Turns of e_{new} at p_{cur} with respect to e_{old} and e_{last}

part of P'_1 (i.e., $P_{CCW}(p, p_{cur})$) and hence cannot generate a clockwise component wholly contained in P'_1 . Now $RSP_{ccw}(p, p_{next})$ is computed easily by simply augmenting $RSP_{ccw}(p, p_{cur})$ with the edge $e_{last} = (p_{cur}, p_{next})$. Thus the invariant that there are no clockwise components completely contained in $P_{CCW}(p, p_{cur})$ is maintained and we continue on the counterclockwise sweep without locating a critical polygon.

Case (C) guarantees that the clockwise ray shot along e_{new} hits the polygon inside P'_1 since otherwise e_{new} would not have a right turn with e_{last} . Assuming that the vertex p_{next} that follows p_{cur} is a reflex vertex, case (C) captures a necessary condition for the generation of a clockwise component (wholly contained in P'_1) by a clockwise ray shot along e_{new} . Fig. 6(a) shows an example where case (C) is satisfied and results in a clockwise component. (Fig. 6(b) shows an example of a counterclockwise component that may be generated on a symmetric clockwise sweep starting from p'.) This condition is only a necessary one because p_{next} need not be a reflex vertex, and, even when it is, the clockwise ray shot along e_{new}) can be obstructed by the as yet unexamined part of the boundary chain $P_{CCW}(p_{next}, p')$. Also, even when p_{next} is reflex and the ray shot along e_{new} is unobstructed, the component may be redundant by way of containing a counterclockwise component. Notwithstanding, for all the possibilities that may be true when case (C) is detected, we can compute a critical polygon or a non-redundant component.

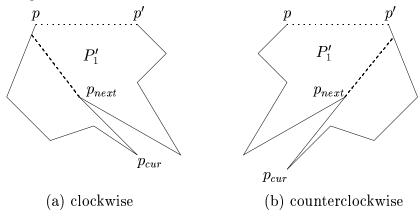


Fig. 6. The subpolygon P_1' can contain a non-redundant component

If case (C) is detected at p_{cur} , then the ray shot $\vec{r}(p_{cur}, p_{next})$ hits the chain

 $P_{CCW}(p, p_{cur})$ if it is not obstructed by $P_{CCW}(p_{next}, p')$. We denote the chain $P_{CCW}(p, p_{cur})$ by C_{tail} and the chain $P_{CCW}(p_{next}, p')$ by C_{front} . We first find the point, p'_{next} where the ray shot along edge e_{new} hits C_{tail} if unobstructed by $P_{CCW}(p_{next}, p')$. We then proceed to test if the ray shot $\vec{r}(p_{cur}, p_{next})$ is obstructed by $P_{CCW}(p_{next}, p')$. The polygon defined by the polygonal chain $P_{CW}(p_{next}, p'_{next})$ and the segment $p_{next}p'_{next}$ will be referred to as a "pocket" and will be denoted by pkt. Next, we traverse C_{front} (traversal may be clockwise or counterclockwise) to determine if this chain dips into the pocket, pkt. Simultaneously, we keep track of the vertex p_v that causes the largest angle between the segments $p_{next}p_v$ and $p_{next}p'_{next}$. In particular, note that in the event that p_{next} is not a reflex vertex, then C_{front} clearly dips into the pocket (at p_{next} itself), and we proceed by keeping track of p_v in exactly the same way. This takes care of one of the possibilities in case (C) mentioned previously.

Our immediate goal is to check if C_{front} dips into the pocket. If C_{front} has not dipped into pkt, then pkt is the required subpolygon of P'_1 that does not wholly contain another clockwise component (because of the invariant). If it does dip into pkt, then we argue that pkt (and consequently, P'_1) is guaranteed to completely contain a clockwise component (i.e., the clockwise component at v), in which case we compute a critical polygon inside pkt. If C_{front} has dipped into the pocket then p_v lies in that pocket (see Fig. 7), and we find the two consecutive intersection points p_1 and p_2 of the ray $\vec{r}(p_{next}, p_v)$ with C_{tail} that are separated by p_v . (Note that an entire edge may be supported; however, there is no loss of generality in assuming that a support point exists). The chord $\overline{p_1p_2}$, together with $P_{CW}(p_2, p_1)$ gives us a subpolygon which is input to the next step (in order to verify that it does not wholly contain a counterclockwise component). Fig. 7 illustrates this situation.

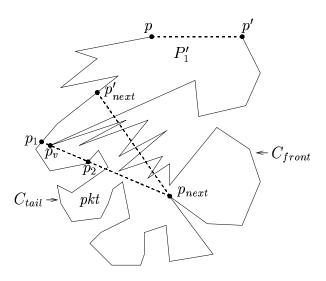


Fig. 7. Finding a critical subpolygon

The subpolygon obtained from the above description may yet contain a counterclockwise component (although it cannot contain a clockwise one). So, we test this subpolygon for weak visibility from its bounding chord. If it is weakly visible, we return this subpolygon as P_1 , the critical subpolygon not containing any components. Otherwise, we repeat the above process a second time for this subpolygon (instead of the subpolygon P'_1 as was done above), this time to detect a necessary condition corresponding to a counterclockwise component (Fig. 6(b)), by traversing the polygonal boundary in clockwise order. The subpolygon returned by this repeat step is the required critical polygon and is denoted by P_1 . Since the above process was repeated at most twice, the time complexity of what has been described so far is only linear in the length of the processed polygonal chain. This completes the description of the computation of a critical polygon P_1 from a subpolygon P'_1 that is not weakly visible from its bounding chord $\overline{pp'}$.

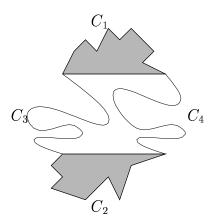


Fig. 8. Two critical polygons and the split-up of the boundary into four chains

Remark 5 We make the following observation, since we will have occasion to use it later on in this paper. If P'_1 had been weakly visible from $\overline{pp'}$ to start with (i.e., P'_1 does not wholly contain a non-redundant component), and we had followed the above algorithm to compute the RSP from p to each vertex on P'_1 , then case (C) would never have occurred during the scan from p to p', and we would have been able to "maintain" $RSP_{ccw}(p,x)$, as we traverse with x from p to p' (or from p' to p) in time linear in the number of nodes on $P_{CCW}(p,p')$. We also need the following generalization of the above observation: Given that P'_1 is weakly visible from $\overline{pp'}$, and a point a anywhere on P along with $RSP_{ccw}(a,p)$, we can "maintain" $RSP_{ccw}(a,x)$, as we traverse with x from p to p' in (total) time linear in the number of nodes on $P_{CCW}(p,p')$ and $RSP_{ccw}(a,p)$.

Continuing with step 1 of the algorithm for computing all non-redundant components, we have shown how to identify at most two disjoint critical polygons

and how to split the polygon boundary into at most four chains, as illustrated in Fig. 8. We now proceed to check two more conditions that are necessary for P to be weakly internally visible, i.e., verify that the polygonal chains C_3 and C_4 (if non-empty) do not wholly contain a component. This is achieved by computing the restricted shortest paths (RSPs) from the endpoints of C_3 to every point on it (as described in Section 5.1.1). We perform a similar procedure with C_4 . If case (C) of the RSP computation does not occur, then the RSP between the endpoints of C_3 (and between the endpoints of C_4) forms a convex envelope denoted by C_3' (and C_4' , respectively). The chains C_3

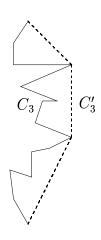


Fig. 9: Pockets generated by the counterclockwise scan of the chain C_3

(thick line) and C'_3 (dotted line) are shown in the figure to the left. If case (C) does occur, then one of C_3 and C_4 must wholly contain a component. Thus there must exist a critical polygon disjoint from the two identified earlier (i.e. P_1 and P_2), in which case, by lemma 4 we can stop and report that P has three disjoint critical polygons and is thus not weakly internally visible. We also check if the chains C_3' and C_4' intersect. If they intersect, then C_1 and C_2 are not visible to each other at all, implying that no segment inside P can touch both P_1 and P_2 . Therefore, we can quit after reporting that the polygon is not weakly internally visible. If C_3' and C_4' do not intersect, we continue with the next step. We point out that if we have not quit until now, then for the four chains (C_1)

through C_4), the RSP's are identical to the corresponding shortest paths.

It is clear that **Step 1** can be implemented in linear time. It may be noted that in spite of all the checks made so far, P may still be not weakly internally visible. However, barring any evidence that P is not weakly internally visible, we proceed to the next step.

5.2 **Step 2**: Computing a Superset of Non-redundant Components

Unless we have determined that P is not weakly internally visible, we now proceed to compute a superset of all the non-redundant components. Each component in this set is generated by a ray shot that emanates from a chain C_i and that terminates on a chain C_j . Note that since one or two of the chains may be empty, the values of i and j that need to be considered depend on the actual situation. Also note that any counterclockwise (clockwise) component that is reported does not wholly contain a counterclockwise (clockwise, respectively) inside it with its endpoints on C_i and C_j . We also remark that whenever possible, we avoid reporting non-redundant components that wholly contain

critical polygons (not just components). However, it would be simple to modify the algorithm so that such components are also reported.

We differentiate between the case when $i \neq j$ and when i = j. Sections 5.2.1 and 5.2.2 deal with the two cases.

5.2.1 Components with Endpoints on Different Chains

Two types of queries need to be answered to facilitate this computation:

QUERY A: Does the clockwise (respectively, counterclockwise) ray shot from a reflex vertex $v \in C_i$ hit C_i ?

QUERY B: Given a reflex vertex $v \in C_i$, and a point $x \in C_j$, does the counterclockwise (respectively, clockwise) ray shot from v hit counterclockwise of x?

Before explaining in detail how QUERY A and QUERY B are answered, we note that in order to report a superset of all non-redundant counterclockwise components that start on C_i and terminate on C_j , we traverse C_i and C_j in clockwise order. For the first reflex vertex $v_1 \in C_i$, if the ray shot hits C_j (QUERY A), we traverse C_j until the hit point $v'_1 \in C_j$ is computed. This component is then reported, and x marks this hit point v'_1 . As we continue to traverse C_i in clockwise order, for every reflex vertex $v \in C_i$, we check if the counterclockwise ray shot $\vec{r}(v, v^-)$ hits counterclockwise of x (QUERY B). If it is so, then this component is discarded as being redundant. Otherwise, we compute the actual hit point (by continuing the clockwise traversal of C_j), report this component, reset x to mark this new hit point, and continue the traversal.

We traverse C_i again in counterclockwise order to identify clockwise components. It is clear that reporting the components (for pair of chains C_i and C_j) takes time that is linear in the length of C_i and C_j .

A similar procedure is repeated for all pairs of chains and the resulting collection of minimal components is output as the required superset of the non-redundant components of P. Also, in the output, all reflex vertices whose components are in this set have been appropriately flagged, along with a label of the edge(s) that the ray shot(s) from this vertex hits (hit). In Section 5.3, we describe a final clean-up pass to output all the non-redundant components from the given superset of the non-redundant components. Note that redundancies occur because a component obtained for one pair of chains may render redundant a component obtained for another pair of chains. In fact, even for a single pair of chains, a clockwise component may render a counterclockwise component as redundant (or vice versa).

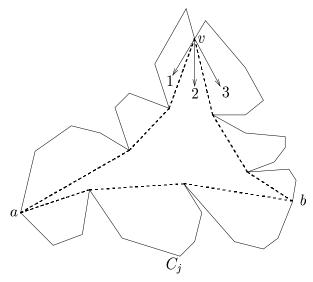


Fig. 10. Different ray shots from $v \in C_i$

The example in Fig. 10 suggests how we solve Query A. We first compute RSPs from the endpoints a, b of the chain C_j to each vertex $v \in C_i$. For vertex $v \in C_i$, any ray shot that is clockwise (resp. counterclockwise) of the first edge on $RSP_{ccw}(v,a)$ (resp. $RSP_{cw}(v,b)$), as indicated by direction 1 (resp. direction 3) in Fig. 10, will not hit C_j ; all other ray shots correspond to direction 2 in Fig. 10 and will hit C_j . Query A can be easily answered if for each $v \in C_i$ we store the edges of $RSP_{ccw}(v,a)$ and $RSP_{cw}(v,b)$ that are incident on v (i.e., only the first edges on the RSPs). Note that we are only interested in the counterclockwise ray shot along $\vec{r}(v^-,v)$ and the clockwise ray shot along $\vec{r}(v^+,v)$. Query A can be easily answered by inspecting the directions of $\vec{r}(v^-,v)$ ($\vec{r}(v^+,v)$) and the direction of the first edge along $RSP_{ccw}(v,a)$ (resp. $RSP_{cw}(v,b)$).

To answer Query B, we assume that as we traverse with v on chain C_i , we maintain $RSP_{ccw}(v,a)$ and $RSP_{cw}(v,b)$ from the endpoints a and b of chain C_j . We also assume that we maintain $RSP_{ccw}(a,x)$ and $RSP_{cw}(b,x)$ as we traverse with x along chain C_j . Maintaining the RSPs is achieved as described in Remark 5. Finally, we assume that we maintain $RSP_{ccw}(v,x)$ and $RSP_{cw}(v,x)$. An example of these paths are shown in Fig. 11, in which $RSP_{ccw}(v,a)$, $RSP_{cw}(v,b)$, $RSP_{ccw}(v,x)$ and $RSP_{cw}(v,x)$ are shown as dashed polygonal chains, while $RSP_{ccw}(a,x)$ and $RSP_{cw}(b,x)$ are shown as dotted polygonal chains. Note that in the above example, $RSP_{ccw}(v,x)$ is simply the line segment joining v and x, while $RSP_{cw}(v,x)$ is the polygonal chain that passes through c.

To answer Query B, we assume that as we traverse with v on chain C_i , we maintain $RSP_{ccw}(v,a)$ and $RSP_{cw}(v,b)$ from the endpoints a and b of chain C_j . We also assume that we maintain $RSP_{ccw}(a,x)$ and $RSP_{cw}(b,x)$ as we traverse with x along chain C_j . Maintaining the RSPs is achieved as

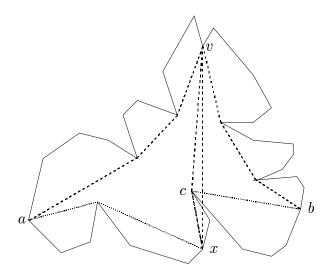


Fig. 11. Processing Query B

described in Remark 5. Note that the fact that none of the chains wholly contain a component is necessary for maintaining the RSPs. First we check whether the counterclockwise ray shot from v hits C_j by checking whether the direction is within the wedge formed by directions of the first edges on the paths $RSP_{ccw}(v,a)$ and $RSP_{cw}(v,b)$. If not, then this component is ignored (since it will be handled for a different pair of values of i and j). Otherwise, we proceed to decide whether the hit point is counterclockwise of x.

Finally, we assume that we also maintain $RSP_{ccw}(v,x)$ and $RSP_{cw}(v,x)$; this last pair of RSPs can be maintained because at any one time either we traverse with v on C_i or we traverse with x on C_i , and in either case, the incremental computations for the two RSPs are exactly the same as for the RSP computations described earlier. Furthermore, the cost is linear in the number of vertices traversed with v or traversed with x. If v and x are co-visible, then $RSP_{ccw}(v,x)$ and $RSP_{cw}(v,x)$ are both equal to the straight line joining v and x. In this case, answering if the hit point is counterclockwise of x is a simple matter of deciding whether the ray shot is counterclockwise of the ray from v to x. On the other hand, if v and x are not co-visible, then since C_i does not have any components wholly contained in it, either the first edge of $RSP_{ccw}(v,x)$ or the first edge of $RSP_{cw}(v,x)$ will equal the straight line joining v and x, and the first edge of $RSP_{ccw}(v,x)$ will be counterclockwise of the first edge of $RSP_{cw}(v,x)$. An example of all the paths required to answer QUERY B are shown in Fig. 11. If, as is shown in the example, we assume that the first edge of $RSP_{ccw}(v,x)$ is equal to straight line joining v and x, then any ray shot that is directed in between the two first edges will hit $RSP_{cw}(v,x)$ before it hits $RSP_{ccw}(v,x)$ and, therefore the ray shot will hit counterclockwise of x. If, on the other hand, we assume that the first edge of $RSP_{cw}(v,x)$ is equal to straight line joining v and x, then the ray shot will hit clockwise of x.

A final note about finding the actual hit point. Once we have determined that the ray shot will hit counterclockwise of x, we traverse counterclockwise with x along P until we locate the edge on which the hit point is located. Finding the actual hit point is a trivial matter of finding the intersection between the counterclockwise ray shot from v and the edge in question.

5.2.2 Components with Both Endpoints on Same Chain

At this point we know that C_1 is non-empty and weakly visible from its bounding chord $\overline{pp'}$. Therefore, any component with both endpoints on C_2 , C_3 or C_4 will wholly contain the critical polygon corresponding to C_1 and need not be reported. If C_3 or C_4 is non-empty, then C_2 must be critical, and by a similar argument we need not report components with both endpoints on C_1 either (in which case, we proceed to step 3). Therefore, we assume that C_2 is not critical.

As usual, we will have two scans (a counterclockwise one and a clockwise one) of C_1 to report a superset of all non-redundant components. We only describe the counterclockwise scan. The algorithm involves visiting the reflex vertices of C_1 in counterclockwise order and deciding whether or not to report the corresponding clockwise component at that reflex vertex. In fact, we make two counterclockwise traversals of C_1 with two pointers x and y starting from p. The scan with x visits all the reflex vertices. The scan with y helps to decide whether the location of the hit point of the clockwise ray shot from the reflex vertex at x causes a redundant component. For the scan with x, we also maintain $RSP_{cw}(p',x)$, computed in a manner as described earlier.

Initially, we traverse simultaneously with x and y until both reach the first reflex vertex. After that we go through iterations. In iteration 1, the first reflex vertex v_1 encountered along the scan is dealt with differently from the others. In each iteration, one component is reported or the algorithm stops. We first describe the processing in iteration 1.

Our first task is to find the hit point of the clockwise ray shot at v_1 , if it lies in $P_{CCW}(p, p')$. Note that the hit point cannot lie on $P_{CCW}(p, v_1)$ since this would contradict the assumption that C_1 does not wholly contain a component. We traverse with y (x is stationary at v_1) along $P_{CCW}(v_1, p')$ until we reach the first point of intersection (denoted by v'_1) of $P_{CCW}(v_1, p')$ with the clockwise ray shot from v_1 . If the point does not exist (i.e., we reach p' without finding it), then we quit and report no components with both endpoints on C_1 . However, if it exists, the point v'_1 must also be the hit point of the clockwise ray shot from v_1 . If v'_1 is not the hit point, then it must be due to obstruction from $P_{CCW}(v'_1, p')$, in which case a reflex vertex from within this obstruction will necessarily cause a component to wholly lie within C_1 , which is a contradiction.

If we have not quit so far, then we can report the component $P_{CCW}(v_1, v'_1)$ as a component with both its endpoints on C_1 . At this point x is at v_1 and y is at v'_1 . We now traverse again with x while maintaining $RSP_{cw}(v'_1, x)$.

We now describe the $(k+1)^{st}$ iteration, which starts just after we have reported k components having both endpoints on C_1 . The invariant at the start of the $(k+1)^{st}$ iteration is as follows: x is at v_k , which is the reflex vertex of the k-th component reported so far; y is at v'_k , which is the hit point of the k-th component; we have maintained $RSP_{cw}(p',x)$, $RSP_{cw}(v'_1,x)$, $RSP_{ccw}(v'_1,v'_k)$, and $RSP_{ccw}(v'_k,y)$; finally, we also maintain the "tangent" point $\tau(x)$ where the common tangent between $RSP_{cw}(v'_1,x)$ and $RSP_{ccw}(v'_1,v'_k)$ touches the chain $RSP_{ccw}(v'_1,v'_k)$.

In iteration k+1, x moves to the next reflex vertex on $P_{CCW}(v_k, p')$. During this traversal, $RSP_{cw}(p',x)$ and $RSP_{cw}(v'_1,x)$ are maintained as described earlier. Furthermore, we maintain the tangent point $\tau(x)$, which will monotonically move along $RSP_{ccw}(v'_1,v'_k)$. This situation is shown in the example in Fig. 12. It shows the polygonal chain $C_1 = P_{CCW}(p,p')$ with its bounding chord $\overline{pp'}$ (thick line). The clockwise components reported in the first k iterations are shown as the dashed lines $\overline{v_1,v'_1,\ldots,v_k,v'_k}$. The three restricted shortest paths $-RSP_{cw}(p',x)$, $RSP_{cw}(v'_1,x)$, and $RSP_{ccw}(v'_1,v'_k)$ are shown as dotted polygonal chains. The common tangent between the polygonal chains $RSP_{cw}(v'_1,x)$, and $RSP_{ccw}(v'_1,v'_k)$ is shown as a thick line. The figure also shows the tangent point $\tau(x)$, where the common tangent terminates on $RSP_{ccw}(v'_1,v'_k)$. The point y traverses on the polygonal chain $P_{CCW}(v'_k,p')$. The point y and $RSP_{ccw}(v'_k,y)$ are not shown in the figure.

At the reflex vertex reached by x, firstly, if the clockwise ray shot from x is counterclockwise of the last edge along $RSP_{cw}(p',x)$, then it is discarded since the clockwise component at x does not have both its endpoints on C_1 (and we move with x to the next reflex vertex). If it does, then if the clockwise ray shot from x is clockwise of the last edge along $RSP_{cw}(v'_1,x)$, then it is discarded since it is rendered redundant by the component $P_{CCW}(v_1,v'_1)$. If not, then if the clockwise ray shot from x is clockwise of the direction of $\vec{r}(x,\tau(x))$, then the ray shot hits $P_{CCW}(v'_1,v'_k)$ and it is discarded since it is rendered redundant by the component $P_{CCW}(v_k,v'_k)$. Note that if the component at x is discarded, then we move with x to the next reflex vertex and continue with iteration k+1. If not, then we need to report a component. In that case, we label x as v_{k+1} , and traverse with y from v'_k until we find the hit point v'_{k+1} on $P_{CCW}(v'_k, p')$.

As we traverse with y, $RSP_{ccw}(v'_k, y)$ is maintained. After reaching v'_{k+1} , we compute $RSP_{ccw}(v'_1, v'_{k+1})$ by merging $RSP_{ccw}(v'_1, v'_k)$ and $RSP_{ccw}(v'_k, v'_{k+1})$ in time that is proportional to the number of nodes on $RSP_{ccw}(v'_k, v'_{k+1})$ and the number of nodes on $RSP_{ccw}(v'_k, v'_{k+1})$. Finally,

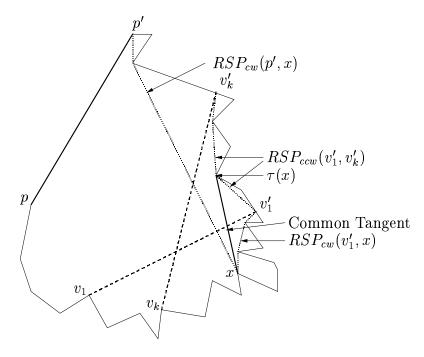


Fig. 12. Components with endpoints on same chain

we update the tangent point $\tau(v_{k+1})$ to be the point v'_{k+1} .

The process is stopped as soon as we reach p' on the traversal with y. Some complications may arise here. What if we reach v'_1 with x before we reach p' with y? Then, let v_k be the last reflex vertex from which a component was reported. If v_k is different from v_1 , then we relabel the vertices v_k and v'_k as the vertices v_1 and v'_1 and we restart with iteration 2. Note that the invariants required for iteration 2 are satisfied (i.e., $RSP_{ccw}(v'_1, x)$ and $RSP_{ccw}(p', x)$) and we can continue without any more processing. If the last component reported was from reflex vertex v_1 , then we restart with iteration 1 and identify a new reflex vertex v_1 (as described in the processing for iteration 1 above).

To analyze the time complexity, we note that all the RSP computations have a total time that is linear in the number of nodes on C_1 . All the tests related to checking directions only take O(1) time. To see that all the tangent point computations also take time that is linear in the number of nodes on C_1 , it is sufficient to note that for any two points x' and x'' such that $x'' \in P_{CCW}(x', v_1)$, $\tau(x'')$ cannot lie on the scanned portion of $RSP_{ccw}(v'_1, v'_k)$ between $\tau(x')$ and v'_k .

Once again, our discussions imply that the entire **Step 2** described above can be implemented in linear time.

5.3 Step 3: Clean-up Phase

This step is described in the LR-visibility algorithm by Das et al. [1997] (see the start of Section 4 of that paper). We summarize it here for completeness. The idea is to obtain a sorted list of all the endpoints of the components in the superset by performing a few simple traversals of the list. Once this is done, we can think of the output of step 2 as a collection of circular arcs from which one simple traversal will ensure that all the redundant components are eliminated.

Suppose we have a set of clockwise components which contains a superset of non-redundant components. As we traverse P in clockwise order, we encounter a beginning point and an ending point of each component. Since the beginning points are vertices of P, they can be sorted in linear time. Suppose we traverse P twice counterclockwise. Each time we encounter a beginning point, we compare the ending point of the component to the ending point of the previous component; if the current component contains the previous component, then the current component is redundant and therefore is deleted from the list of components. We must traverse P twice since one of the first components considered may be redundant with respect to one of the last ones. After an analogous procedure is performed for counterclockwise components, we have two lists of components, each in sorted order, which can be merged and pruned of redundant components in linear time to obtain a sorted list of all non-redundant components.

In this section we have described an algorithm to output all non-redundant components of a polygon in linear time. As per the overview of the entire algorithm presented in section 4, this can be used to output all LR-visible pairs of points and all weakly-visible chords of the polygons in linear time.

We point out that the algorithms in Das et al. [1997] (for computing all LR-visible pairs of points) and Das et al. [1994] (for computing all weakly-visible chords) use the list of non-redundant components as input and run in linear time. It is significant to note that the algorithms in the two papers (which we use here in the following sections), do not require the expensive triangulation algorithm of Chazelle [1991] or the shortest path algorithm of Guibas et al. [1987] once they are already supplied with a list of non-redundant components as input.

6 Case 1: Non-tangential weakly-visible segment

As mentioned earlier, this case corresponds to the situation when the shortest weakly-visible segment does not touch any vertex of the polygon except possibly at its endpoints. For each $i=1,\ldots,k$, let SN_i be the shortest nontangential weakly-visible segment (if one exists) that joins α_i and β_i with at least one endpoint on $\alpha_i - \alpha_{i+1}$ or $\beta_i - \beta_{i+1}$. The shortest of the segments SN_i , $i=1,\ldots,k$ is the shortest non-tangential weakly-visible segment that joins α_i and β_i , $i=1,\ldots,k$.

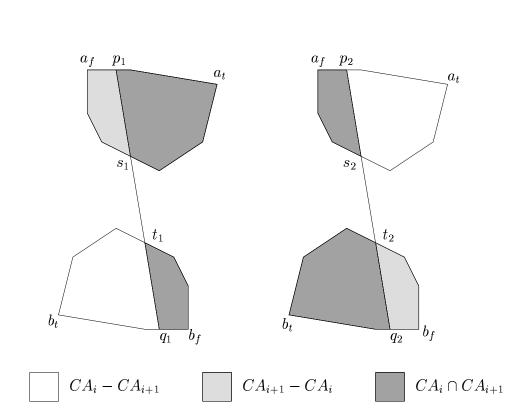
6.1 Structure of α_i and β_i

As mentioned earlier α_i is the envelope of the intersection of a set of C-polygons that contain A_i and is denoted by CA_i ; β_i is the envelope of the intersection of a set of C-polygons that do not contain A_i and is denoted by CB_i . Hence it is clear that both of them are convex polygonal chains. It may be possible that $\alpha_i = \alpha_{i+1} = \alpha_{i+2} = \cdots = \alpha_{i+p}$. This simply means that no component starts or ends on the portion of P covered by $A_{i+1}, A_{i+2}, \ldots, A_{i+p}$.

We now describe the structural differences between α_i and α_{i+1} (in case they do differ), and the corresponding differences between β_i and β_{i+1} . The main purpose of studying this structure is to identify the polygonal chains $\alpha_i - \alpha_{i+1}$ and $\beta_i - \beta_{i+1}$ so that they can be processed in the *i*-th iteration. Clearly, if $\alpha_i = \alpha_{i+1}$, then no processing is required in iteration *i*.

Assume that $\alpha_i \neq \alpha_{i+1}$. From Das et al. [1994] we know that A_i and A_{i+1} are disjoint line segments. On closer inspection of their algorithm, we observe that there are various events that trigger the chords algorithm to go from iteration i to iteration i+1, thus outputting pairs (A_i, B_i) and pairs (A_{i+1}, B_{i+1}) . One such event occurs if a component starts or ends between A_i and A_{i+1} (such as the point p_2 in Fig. 13(b) where a component starts, or the point p_1 in Fig. 13(a) where a component terminates). The other possible events (which result in $\alpha_i = \alpha_{i+1}$) have to do with changes in the points of tangency for the boundaries of the weakly-visible chords. This happens because one could obtain a weakly-visible chord that is tangential to the polygon at some vertex. As we rotate this chord, it could continue to be weakly-visible while remaining tangential to the polygon at the same vertex. However, as we rotate more, the point of tangency could change, triggering an event that the chords algorithm needs to deal with (since the "compact" description of the chords changes with this event).

The chain α_i is different from α_{i+1} only when a component starts or ends between A_i and A_{i+1} . For the next three paragraphs we will assume that



(b)

(a)

Fig. 13. Changes in the structure of α_i and β_i

the counterclockwise end for any polygonal chain is the *front* end, while the clockwise end is the *tail* end.

If a component c starts between A_i and A_{i+1} , the changes from α_i to α_{i+1} are as shown in Fig. 13(b). Note that the C-polygon corresponding to component c lies to the left of the segment $\overline{p_2q_2}$ and that the component c consists of the polygonal chain $P_{CCW}(p_2, q_2)$. A_i lies to the right of p_2 , while A_{i+1} lies to the left of p_2 . α_i consists of the chain from a_t to s_2 to a_f , while α_{i+1} consists of the chain from p_2 to p_2 to p_3 to p_4 , i.e., a portion of the tail of p_4 gets replaced by a portion of the ray shot corresponding to the component p_4 . At the same time, as shown in Fig. 13(b), p_4 has a portion of its front replaced by a new polygonal chain. p_4 consists of the chain from p_4 to p_4 shrinks at its tail end, and p_4 grows at its front end, while both their envelopes remain convex. Note that p_4 comprises of the segment from p_4 to p_4

Note that in Figs. 13(a) and (b), the region $CA_i \cap CA_{i+1}$ (as well as the region $CB_i \cap CB_{i+1}$) have been shown as a filled region. The area occupied by CA_{i+1} (but not by CA_i) is indicated as a dot-filled region, while the area occupied

by CA_i and CB_i is left blank.

By a similar argument, if a component c ends between A_i and A_{i+1} , the portion of the ray shot corresponding to c at the front (right end or the counterclockwise end) of α_i gets replaced by a new polygonal chain, causing CA_i to grow in the front. As shown in Fig. 13(a), β_i has a portion of its tail (right end or counterclockwise end) replaced by a portion of the ray shot corresponding to c, thus causing CB_i to shrink at its tail end. In this case note that $\alpha_i - \alpha_{i+1}$ comprises of the segment from p_1 to s_1 , while $\beta_i - \beta_{i+1}$ comprises of the chain from b_t to t_1 .

The above description elucidates the changes that take place to the α and β chains while moving from the *i*-th iteration to the (i + 1)-st iteration.

6.2 Data structure for storing the α and β chains

We now describe the process of constructing the data structure to store all the chains α_i and β_i .

We first describe how α_1 is computed and stored. Let CA_1 be the intersection of the C-polygons C_1, C_2, \ldots, C_p (i.e., the C-polygons that contain basic interval A_1) listed in clockwise order of their clockwise endpoints (you may also use the counterclockwise endpoint). Let C_i have l_i as its clockwise endpoint and m_i as its counterclockwise endpoint. To start with, C_1 is a C-polygon whose envelope is a segment consisting of a chord of the polygon. Assume that the intersection of the C-polygons C_1, C_2, \ldots, C_i , for some i < p has been computed and its envelope is stored as a linked list of segments, $e_1 = \overline{r_1 r_2}, e_2 = \overline{r_2, r_3}, e_3 = \overline{r_3, r_4}, \dots, e_q = \overline{r_q r_{q+1}}$. Note that $q \leq i$. We show how to add the C-polygon C_{i+1} . Note that C_{i+1} is formed by the chord $c = l_{i+1}m_{i+1}$. To determine the intersection of $C_1, \ldots, C_i, C_{i+1}$, we find the intersection of the chain e_1, \ldots, e_q with the chord c. This is done by scanning the sequence e_1, \ldots, e_q in reverse order and checking each of the segments for intersection with c. Let segment e_j , $j \leq q$, intersect chord c at point d. Now the current linked list e_1, \ldots, e_q is updated to $e_1, \ldots, e_{j-1}, e'_j, e_{i+1}$, where $e'_j = r_j d$, i.e., the subsegment of e_i that ends at d, and $e_{i+1} = \overline{dm_{i+1}}$, i.e., the subsegment of the chord c starting from d. The old linked list from e_i, \ldots, e_q is not physically deleted; instead it is pushed to the background. In this sense, this could be thought of as a persistent structure for linked lists. It is much simpler than the generalized persistent structure for trees, as presented by Sarnak and Tarjan [1986], since the set of operations to be performed on this structure are much simpler (as shown later). Later it will become necessary to delete the C-polygons C_{i+1}, \ldots, C_p (in precisely the reverse order), in which case, the old linked list will become the current envelope of the region of intersection of the

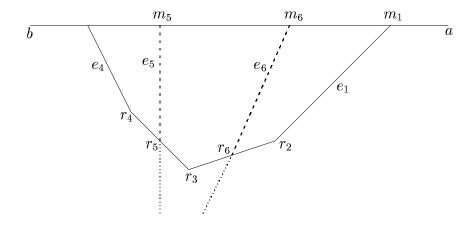


Fig. 14. An example of the envelope α_1

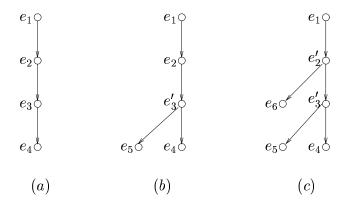


Fig. 15. The changes to the data structure that stores α_i s

C-polygons C_1, \ldots, C_i . When all the C-polygons C_1, \ldots, C_p are processed, α_1 is stored as a linked list, which is really the leftmost path of a tree structure. As described later, α_1 can be thought of as a concatenation of two chains. The first one is stored as described above, while the second chain is initially empty and is stored in an empty tree structure; as CA_i , for i > 1 is computed, it may become non-empty. Note that CB_1 is the intersection of all C-polygons not included in the processing for α_1 , and thus β_1 can be computed in a fashion similar to that of α_1 .

An example of the computations of α_1 is shown in Fig. 14. After the first four C-polygons are processed, α_1 consists of four segments e_1 , e_2 , e_3 , e_4 , where $e_1 = \overline{m_1 r_2}$, $e_2 = \overline{r_2 r_3}$, $e_3 = \overline{r_3 r_4}$, and $e_4 = \overline{r_4 m_4}$. The line with points a and b is a simplified picture of a subchain of the input polygon P where the relevant subchain is shown as a straight line edge. The corresponding data structure at this point is shown in Fig. 15(a). When the fifth C-polygon is processed, α_1 consists of e_1 , e_2 , e_3' , e_5 , where $e_3' = \overline{r_3 r_5}$ and $e_5 = \overline{r_5 m_5}$. The corresponding changes to the data structure are reflected in Fig. 15(b), where the leftmost path stores the current value of α_1 . After the sixth C-polygon is processed,

 α_1 consists of e_1, e_2', e_6 , where $e_2' = \overline{r_2 r_6}$ and $e_6 = \overline{r_6 m_6}$. Note again that the leftmost path of the data structure shown in Fig. 15(c) stores the final value of α_1 .

For the *i*-th iteration, we describe how to compute and store α_{i+1} assuming that α_i has been computed. As we move counterclockwise from A_i to A_{i+1} , either: (1) a component that contained A_i does not contain A_{i+1} but contains B_{i+1} , or (2) a component that did not contain A_i now contains A_{i+1} (and may or may not contain B_i). We inductively assume that instead of storing α_i as the leftmost path of a single tree structure, it is stored as the concatenation of two paths α'_i and α''_i , which are subpaths of the leftmost path of two different tree structures denoted by T' and T''. We also separately store their point of intersection z_i (if it exists), thus making it easy to derive the chain α_i whenever necessary.

Let c be the non-redundant component that contains all of the segments A_1, A_2, \ldots, A_k output by the chords algorithm (see [Das et al., 1994]). The chain α'_i (resp. α''_i) is defined as the envelope of the region of intersection of all C-polygons whose corresponding components have their tail (resp. front) end inside c and within the subchain spanned by A_1, \ldots, A_i .

Every component c' must satisfy one of the following conditions:

- (a) c' is disjoint from c;
- (b) c' has only its front endpoint in c;
- (c) c' has only its tail endpoint in c;
- (d) c' has both endpoints in c;

Assume that c' is the component with an endpoint between A_i and A_{i+1} (and, therefore, encountered in iteration i). Thus case (a) is impossible. If case (b) holds, c' must have already been considered for the computation of the first chain α_1 ; it is thus part of α'_1 (initial tree T'), but is deleted from T' in iteration i. If case (c) holds, c' is considered for addition to α''_i in iteration i; this is achieved by inserting it into T''. Finally if case (d) holds, the front end of c' must be encountered before the tail end, since otherwise it would render the component c redundant. In this case c' must be part of the initial tree T'; it is deleted from T' in iteration i and is finally inserted into T'' when its tail end is encountered in a later iteration.

Deleting a set of C-polygons from T' is always done in the reverse order in which they were added to create the structure for α_1 – this is because the right endpoints of the components are encountered in the same order as their left endpoints. These deletions are easy since they are a simple reversal of the process described earlier for adding a new C-polygon.

In contrast, adding a C-polygon is handled in a different manner. When adding

C-polygons, they are added to T'', which is initially empty. Hence, $\alpha'_1 = \alpha_1$ and α''_1 is empty; thus z_1 is simply the endpoint of α'_1 . Also, since the additions are done in counterclockwise order, this process is similar to the additions done in the computation for α_1 . The point z_i is marked and stored on both the parallel structures for α'_i and α''_i . The chain α_i is simply the concatenation of two subchains, namely, the subchains of α'_i and α''_i ending at z_i . Both the chains α'_i and α''_i are stored in the leftmost path of the two tree structures, T' and T''. The tree T' starts with α_1 stored in its leftmost path, with z_1 at its leftmost leaf vertex. The second structure starts out empty, and at any instant has α''_i stored in its leftmost path. Thereafter, the first structure only has C-polygons deleted from it, while the second structure only has C-polygons added to it. Note that in moving from A_i to A_{i+1} , only one of the two structures undergoes change. The idea of the chain α_i being a combination of two chains is similar to a scheme used by Keil [1991] in his algorithm for computing the envelope of a set of lines.

Note that the computation for β_i is no different from that described for α_i . We now discuss the time complexities of the computations described above. Every time a C-polygon is added to one of the structures, the leftmost path may change and one of the vertices on that path may acquire a new left child. Thus each of the O(n) additions involves traversing the current tree structure from its leftmost leaf, until the intersecting segments are reached. This pushes a portion of the leftmost path into the background. This portion of the path remains in the background until the C-polygon added last is deleted, at which time it once again becomes the current chain. Furthermore, it is easy to see that the point z_{i+1} can be computed from the point z_i by a monotonic movement in the two tree structures. This is justified as follows. C-polygons are only added to T'', and only deleted from T'. In each iteration, there is a change in either the leftmost path of T'' or of T'. If this change takes place (in say, T') below (farther from the root of the tree) the current location of z_i , then z_{i+1} does not change from z_i . If the change in T' takes place above (closer to the root) the current location of z_i , then a fresh sweep is started from the new leaf on T' along its leftmost path (towards the root) until z_{i+1} is located. Also, we sweep from the current location of z_i on T'' towards the root to locate z_{i+1} . Because of the planarity of the two parallel structures, both of them are of size O(n). Every vertex on both the tree structures is encountered once when it is created, once when it is pushed into the background, and once when it is deleted. Clearly, the total amount of processing of each vertex with regard to the treation of the data structures is constant. Furthermore, it is easy to see that the point z_{i+1} can be computed from the point z_i by a monotonic movement in the two parallel tree structures. Finally, the total change in the envelopes is of size O(n). Hence all the computations described above can be performed in O(n) time.

6.3 Computing SN_i

As mentioned earlier, the algorithm goes through k iterations. In the i-th iteration, the chains $\alpha_i - \alpha_{i+1}$ and $\beta_i - \beta_{i+1}$ are identified, and the shortest segment that joins α_i and β_i with one endpoint on $\alpha_i - \alpha_{i+1}$ or $\beta_i - \beta_{i+1}$ is computed. Let this segment be $SN_i = \overline{s_i t_i}$, if it exists. Note that identifying $\alpha_i - \alpha_{i+1}$ simply involves maintaining the point where α_i and α_{i+1} diverge. The algorithm needs two pointers to store this point since two parallel structures store the α chains.

Given any two convex polygonal chains α and β , there is a simple sweep algorithm to find the shortest line segment that joins the two chains. In this case, α and β are two chains that form the convex envelope of two disjoint polygons. The algorithm involves sweeping the two chains, one from its clockwise end and in counterclockwise order, the other from its counterclockwise end in clockwise order. For each vertex on α , the sweep algorithm finds the closest point on β . Similarly, for each vertex on β , the sweep algorithm finds the closest point on α . Finally, the closest of the pairs is reported. Informally speaking, the sweep algorithm works because of three simple facts: (1) for a fixed point $\alpha \in \alpha$, its distance to visible points $\alpha \in \beta$ is unimodal, (2) as point α moves monotonically on α , its closest point on β moves monotonically on β , (3) for points $\alpha \in \alpha$, its shortest distance to β (i.e., the distance to its closest point on β) is unimodal. Intuitively speaking, fact (3) states that the local minimum is also the global minimum for that particular iteration.

If SN_i has one endpoint on $\alpha_i - \alpha_{i+1}$ and the other on $\beta_i - \beta_{i+1}$, then this will be discovered by the algorithm in iteration i. If SN_i has neither endpoint on $\alpha_i - \alpha_{i+1}$ and $\beta_i - \beta_{i+1}$, then it will be discovered by the algorithm in a later iteration, i.e., $SN_i = SN_j$ for some j > i. A subtle complication is introduced by the possibility that SN_i may have one endpoint on $\beta_i - \beta_{i+1}$ and another endpoint on $\alpha_i \cap \alpha_{i+1}$ (instead of $\alpha_i - \alpha_{i+1}$). An example of such a situation is shown in Fig. 16. This would be detected by the algorithm since the sweep algorithm (described at the start of this subsection) for finding the shortest line segment joining two convex polygonal chains would reach the end of one of the chains without hitting a local minimum. For example, assume that the end of $\alpha_i - \alpha_{i+1}$ is reached before reaching the end of $\beta_i - \beta_{i+1}$ and before a minimum was encountered. In this case, our algorithm continues sweeping on $\beta_i - \beta_{i+1}$, while continuing the sweep on $\alpha_i \cap \alpha_{i+1}$. Our algorithm needs to be modified to ensure that this portion of $\alpha_i \cap \alpha_{i+1}$ is not swept again during iteration j (for some j > i). In this case, we claim that SN_j cannot have an endpoint on this portion of $\alpha_i \cap \alpha_{i+1}$ and hence need not be considered in any later iteration. This claim is proved in Lemma 6 below. The relevant portion of $\alpha_i \cap \alpha_{i+1}$ is marked visited so that a sweep in a later iteration can skip over this portion of the chain. This is simply implemented by storing skip pointers

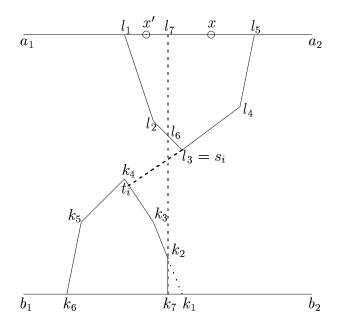


Fig. 16. Monotonic sweeps of the α and β chains

in the data structure. The entire arguments in this paragraph could have been carried out with α replaced by β and vice versa.

The above arguments are clarified by the example in Fig. 16. In the example, let α_i and β_i be the boundaries of the intersection of the C-polygons that contain (resp. do not contain) the point x on the polygon. Then, α_i is given by the chain l_1, l_2, l_3, l_4, l_5 and β_i is given by the chain $k_7, k_2, k_3, k_4, k_5, k_6$. The portion of the polygon under α_i and β_i are simplified as straight line segments shown in the figure as $\overline{a_1a_2}$ and $\overline{b_1b_2}$. As we move counterclockwise along the polygon from x to x', α_i changes to α_{i+1} while β_i changes to β_{i+1} . In this example, α_{i+1} consists of the chain l_1, l_2, l_6, l_7 , while β_{i+1} consists of the chain k_1, k_3, k_4, k_5, k_6 . Now $\alpha_i - \alpha_{i+1}$ consists of the chain l_5, l_4, l_3, l_6 , while $\beta_i - \beta_{i+1}$ consists of the chain k_7 , k_2 . Also, SN_i , which is the shortest line segment joining α_i and β_i with one endpoint on $\alpha_i - \alpha_{i+1}$ or $\beta_i - \beta_{i+1}$ is the line segment $\overline{s_i t_i}$. The point s_i lies on $\alpha_i - \alpha_{i+1}$, while t_i does not lie on $\beta_i - \beta_{i+1}$. The algorithm sweeps the chains α_i and β_i starting from l_5 and k_7 respectively. The sweep along β_i reaches k_2 when it is recognized that SN_i does not join a point on $\alpha_i - \alpha_{i+1}$ and a point on $\beta_i - \beta_{i+1}$. If the sweep along α_i had reached l_6 , then the search for SN_i would have been abandoned and left for a later iteration. However, the points s_i and t_i are discovered before reaching l_6 on α_i . Note that the nearest point from a point on $\alpha_i \cap \alpha_{i+1}$ has to lie on the chain t_i, k_4, k_5, k_6 due to the monotonicity properties. In other words, point t_i would be closer to a α_i chain (j > i) than any point on the subchain from k_2 to t_i . Hence the portion of β_i between k_2 and t_i need not be processed in iteration j (for any j > i) for computing SN_i . These arguments are formalized in Lemma 6 below.

Lemma 6 If in iteration i, a portion of $\alpha_i \cap \alpha_{i+1}$ (or $\beta_i \cap \beta_{i+1}$) was traversed to compute SN_i , then this portion need not be traversed again for any iteration j > i to compute SN_i .

PROOF. We use the notation $CP(p, \alpha)$ to denote the point on a convex polygonal chain α closest to point p.

For iteration i, either $\alpha_i - \alpha_{i+1}$ is a straight line segment and $\beta_i - \beta_{i+1}$ is a convex polygonal chain, or $\alpha_i - \alpha_{i+1}$ is a convex polygonal chain and $\beta_i - \beta_{i+1}$ is a straight line segment. W.l.o.g. we assume the former, implying that the component corresponding to some chord l_i must terminate between A_i and A_{i+1} (as shown in the example in Fig. 13(a)). Note that the latter case would have implied that a component started between A_i and A_{i+1} (see Fig. 13(b)). The chord l_i may or may not intersect β_i . If it does not then either $\beta_i - \beta_{i+1} = \beta_i$ or $\beta_i - \beta_{i+1}$ is empty. The case of $\beta_i - \beta_{i+1} = \beta_i$ implies that $\beta_i \cap \beta_{i+1}$ and β_{i+1} are empty, implying that $\alpha_i \cap \alpha_{i+1}$ cannot be repeatedly scanned.

If $\beta_i - \beta_{i+1}$ is empty, then the algorithm does nothing in iteration i, implying that the premises of the lemma do not apply. (For the sake of clarity, we remark that since β_i and β_{i+1} must extend between two points on P, if $\beta_i - \beta_{i+1}$ is empty then it must imply that $\beta_i = \beta_{i+1}$. But then, since $CA_i \subseteq CA_{i+1}$, and since $\alpha_i - \alpha_{i+1}$ lies in the interior of CA_{i+1} (except for one of its endpoints), for any point $p \in \beta_i$, p must be closer to $CP(p, \alpha_{i+1})$ than to $CP(p, \alpha_i)$. Thus the results from some iteration j > i would supersede that of iteration i in any case. Therefore, not doing anything in iteration i is justified.)

So we assume that l_i does intersect both α_i and β_i . Let the two points of intersection be p'and q_i'' respectively. Note that $\alpha_i - \alpha_{i+1}$ terminates at p' Due to the convexity of β_i , it is easy to see that for any $q \in \beta_i$, $CP(q, \alpha_i - \alpha_{i+1})$ must equal p' implying that the rest of $\alpha_i - \alpha_{i+1}$ is irrelevant for the search for an endpoint of SN_i . Let $q_i' = CP(p'\beta_i)$. If $q_i' \notin \beta_i - \beta_{i+1}$, then iteration i would terminate after having reached q_i'' and without having traversed any portion of $\alpha_i \cap \alpha_{i+1}$ or $\beta_i \cap \beta_{i+1}$. Consequently, the lemma would be trivially true. If $q_i' \in \beta_i - \beta_{i+1}$, then consider the portion of the chain β_i between q_i' and q_i'' . Let $p_i'' = CP(q_i'', \alpha_i \cap \alpha_{i+1})$. Some portion of the chain $\alpha_i \cap \alpha_{i+1}$ from p'to p_i'' may be traversed in iteration i. Our goal now is to prove that this subchain will not be traversed in a later iteration. Note that for this case, we may assume that $\beta_i \cap \beta_{i+1}$ is not traversed in iteration i.

This situation is shown by an example in Fig. 17. The dashed polygonal chain through p'and p''_i is α_{i+1} , while portion of the chord l_i terminating at p'is $\alpha_i - \alpha_{i+1}$. The chain β_i is shown as a dashed chain through q'_i and q''_i and also includes a portion of another chord l_j (j > i). Finally, $\beta_{i+1} - \beta_i$ is the portion of l_j terminating at q''_i .

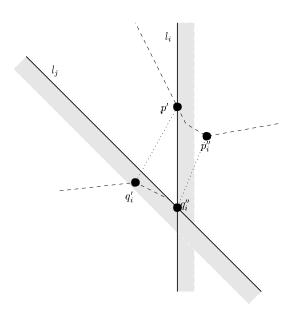


Fig. 17. Proof of Lemma 6

The point q_i'' is the intersection of two chords, l_i and l_j . Note that $CB_i \cap CB_{i+1}$ must lie within the intersection of the C-polygons corresponding to the chords l_i and l_j . For any point p lying in this region, $CP(p, \alpha_i \cap \alpha_{i+1})$ cannot lie on the subchain of $\alpha_i \cap \alpha_{i+1}$ from p_i' to p_i'' . This is because one could construct a hypothetical convex chain that consists of the subchain of β_i between q_i' and q_i'' concatenated with the segment $q_i''p$, and then it is easy to see that $CP(p, \alpha_i \cap \alpha_{i+1})$ cannot lie between p_i' to p_i'' . We have thus shown that no repeated traversal of the chains occur between iterations i through j. For any iteration i > j, the chain α_i does not intersect any portion of α_i between p' and p_i'' , since it is required to lie in the C-polygon corresponding to chord l_j . (Note that chord l_j , by assumption, passes through q_i'' and has a clockwise endpoint counterclockwise of the counterclockwise endpoint of l_i and thus its C-polygon cannot intersect any portion of α_i between p' and p_i'' .)

That completes the proof of this lemma. \Box

Once a local minimum for SN_i is found in the *i*-th iteration with one of the endpoints of SN_i on $\alpha_i - \alpha_{i+1}$ or $\beta_i - \beta_{i+1}$, the algorithm also verifies if it is a global minimum for the shortest segment between α_i and β_i . If the endpoints of SN_i on $\alpha_i - \alpha_{i+1}$ and on $\beta_i - \beta_{i+1}$ are not the endpoints of either of $\alpha_i - \alpha_{i+1}$ or $\beta_i - \beta_{i+1}$, then clearly the global minimum for the shortest segment between α_i and β_i must be the segment SN_i . Otherwise, a simple test can check whether the global minimum has been reached or not. This can be done by doing infinitesimal movements (in both directions) on one of the chains to see if the shortest segment from that point is shorter or longer than SN_i . If it is not a global minimum, then SN_i can be ignored since the shortest segment between α_i and β_i connects points that are not on $\alpha_i - \alpha_{i+1}$ as well as $\beta_i - \beta_{i+1}$. Since such a segment would connect α_{i+1} and β_{i+1} it will be

encountered in a later iteration. The algorithm with the minor modifications mentioned above is guaranteed to sweep every portion of the α and β chains exactly once and hence achieves the claimed linear-time complexity.

As mentioned in the overview in section 4, it is possible that the segment $\overline{s_it_i}$ discovered by the algorithm in the *i*-th iteration, may not lie entirely within P. To identify this situation, we exploit the fact that given a point x on P, the chords algorithm has already identified which directions from x give rise to weakly-visible chords. Hence to check whether $\overline{s_it_i}$ lies in P, the algorithm computes the endpoint of the chord (as described in the next paragraph) generated when the line segment $\overline{s_it_i}$ is extended towards α_i . Let the endpoints be p_i and q_i . Using the output of the chords algorithm our algorithm checks whether the chord in the direction $\overline{p_iq_i}$ is a weakly-visible chord. If the chord is not weakly visible, then the segment $\overline{s_it_i}$ is ignored, and will be handled by the second phase of the algorithm (corresponding to Case 2). Otherwise the segment is returned as SN_i , a potential candidate for the shortest illuminating line segment.

How is the endpoint p_i of the segment $\overline{s_it_i}$ generated? It should be pointed out that it is possible that p_i may not lie on A_i , but may lie on some other segment A_j . Since both j < i and $j \ge i$ are possibilities, we check if the line obtained by extending segment $\overline{s_it_i}$ intersects A_i . If it does, then the intersection point is the required endpoint p_i . This is due to the fact that the subpolygon CA_i within which p_i lies, does not wholly contain a component. If the extension of $\overline{s_it_i}$ does not intersect A_i , then we can easily determine if j < i or j > i by checking whether the endpoints of A_i are clockwise or counterclockwise of the line. Once this direction is determined, the algorithm traverses from A_i to A_j along P (in the clockwise or counterclockwise direction, as the case may be) to locate p_i . To understand the O(n) time complexity, we will show that this portion of P is not traversed again for this purpose. This is proved in Lemma 7 below. The intuition behind the claim is that if p_i lies on A_j then SN_i is also the shortest segment between α_j and β_j as well as between α_l and β_l for all values of l between i and j.

Lemma 7 If $SN_i = \overline{s_i t_i}$ lies inside P and on the chord $\overline{p_i q_i}$ with $p_i \in A_j$ for some $i \neq j$, then $SN_i = SN_l$ (i.e., it is also the shortest segment between α_l and β_l) for all values of l between i and j.

PROOF. We first prove that under the above assumptions s_i lies on α_j and that t_i lies on β_j . It is clear that if $p_i \in A_j$ then $q_i \in B_j$, since the chord $\overline{p_iq_i}$ is a weakly-visible chord. Assume for the sake of contradiction that s_i does not lie on α_j . Since $\overline{p_iq_i}$ is a weakly-visible chord, it must intersect α_j . Let the intersection point be p. Let s be a segment of α_j on which p lies. Let the corresponding chord be c, and the corresponding C-polygon be C. If p

lies on $\overline{p_i s_i}$, then C does not intersect SN_i , which contradicts the assumption that it is a weakly-visible segment. Hence p must lie on $\overline{s_i q_i}$. s_i lies on α_i . Let the segment of α_i on which s_i lies be s', with the corresponding chord and C-polygon being c' and C' respectively. Clearly C' contains A_j but does not contain p, which is a contradiction, since p is supposed to lie in the intersection of all C-polygons that contain A_j . Hence s_i must lie on α_j , which implies that s_i lies on α_l for every value of l between i and j. Similarly we prove that t_i lies on β_l . Since the α and β chains are convex, it is clear that SN_i must be the shortest segment joining α_l and β_l , for all values of l between i and j. \square

The above lemma guarantees that in each iteration once SN_i is computed, it takes only linear (over all iterations) time to compute the intersection of the extensions of SN_i with the polygon P. The next step is to check whether the directions specified by $\overline{p_i s_i}$ gives rise to a weakly-visible chord. This is done by scanning through the linear-sized output of the chords algorithm, which again takes linear time over all iterations.

7 Case 2: Shortest tangential weakly-visible segment

This case occurs when the interior of the shortest weakly-visible segment in the polygon touches a vertex of the polygon. However, in this case, the corresponding weakly-visible chord obtained by extending the segment is also a tangential chord, i.e., it touches a vertex of the polygon in its interior. The crucial point to observe is that these are exactly the weakly-visible chords that are output by the linear-time chords algorithm [Das et al., 1994]. A suitable modification of the chords algorithm can output all tangential weakly-visible segments, of which the shortest can be computed.

As is detailed in Das et al. [1994], the chords algorithm uses the following strategy. It traverses along the polygon in a counterclockwise direction with a point x. When x is on A_i , the points y(x) and z(x) on B_i corresponding to the other endpoints of the two tangential chords from x are computed. The points y(x) and z(x) move monotonically on P; so do the points of tangency for the tangential chords, namely s(x) and t(x). The points of tangency s(x) and t(x) lie on the convex envelopes of the side chains D_i and E_i . Note that the side chains are the chains left over if A_i and B_i are removed from P. As x moves on A_i , there are several possible events that can take place, which would change the description of the tangents: the point y(x) (or z(x)) could move to a vertex of P; the point s(x) (or t(x)) could move to a vertex of P. These events cause a recomputation of the equations of the tangential chords as a function of x. In Das et al. [1994] it was shown that the number of these events are O(n), thus resulting in a linear-time algorithm.

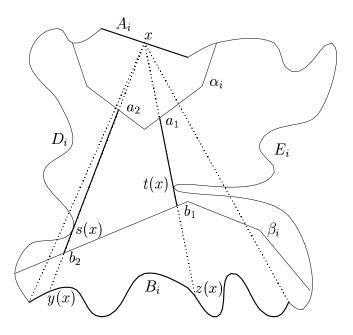


Fig. 18. Case 2: Determining tangential shortest weakly-visible segments

The modification for computing the tangential weakly-visible segments is as follows. During iteration i, the chains α_i and β_i are computed. When the point x is on A_i , the points of intersection of the tangential chords with α_i and β_i are also maintained (call them $a_1(x), a_2(x), b_1(x), b_2(x)$). The segment from $a_1(x)$ to $b_1(x)$ and the segment from $a_2(x)$ to $b_2(x)$ are the two tangential weakly-visible segments with respect to x. The situation is described in Fig. 18. There are, however, an additional number of events that could cause a change in the description of the tangential weakly-visible segments: the points $a_1(x)$ or $a_2(x)$ $(b_1(x)$ or $b_2(x))$ could move to a vertex of α_i (β_i) . This would cause additional recomputations of the equations as well as the lengths of the tangential segments. The crucial point is that in between events, the length of the tangential segments can be computed in terms of x, from which the minimum can be computed for that interval in constant time. Das et al. [1994] showed that the points s(x) and t(x) move monotonically along the envelopes of the side chains. Consequently, $a_1(x)$, $b_1(x)$, $a_2(x)$ and $b_2(x)$ also move monotonically on the α and β chains. Each event caused by the tangential chord passing over a vertex of the α and β chains is such that a particular tangential chord passes over each vertex of the envelope only once over the entire algorithm. Since there are O(n) vertices on the envelopes overall, the total number of events encountered is O(n).

This completes the description of all the pieces of the algorithm for computing in linear time the shortest weakly internally visible line segment of a simple polygon (if one exists).

8 All minimal weakly-visible segments algorithm

One of the by-products of our algorithm is a linear-time algorithm to generate all minimal weakly-visible segments of a polygon. This algorithm is a modification of the algorithm described in section 7 for computing the shortest tangential weakly-visible segment. It outputs a set of pairs (U_i, V_i) , $i = 1, \ldots, m$. Here U_i and V_i are subchains of the polygonal chains α and β , m = O(n), and any segment joining points $u \in U_i$ and $v \in V_i$ is a minimal weakly-visible segment. One note of caution is that U_i and V_i have left and right endpoints that are linear functions of a parameter x in a spirit similar to that of the endpoints of the chain B_i that is output by the chords algorithm. For a point x on A_i , the polygonal chains α_i and β_i can be computed along with the points $a_1(x), a_2(x) \in \alpha_i$ and $b_1(x), b_2(x) \in \beta_i$. The output of the algorithm consists of $(U_i, V_i) = ((a_1(x), a_2(x)), (b_2(x), b_1(x)))$. The discussion at the end of section 7 can also be used to show that the number of these pairs produced is m = O(n). Lemma 1 can be used to show that these segments are minimal in the sense that any subsegment of these segments is not weakly visible.

9 Conclusion and open problems

We show optimal linear-time algorithms to compute the shortest weakly-visible segment and all minimal weakly-visible segments in a given simple polygon. One extension of this problem that has been solved is that of finding the shortest watchman route [Carlsson and Jonsson, 1995] in a simple polygon in polynomial time.

Some interesting open questions are:

- Can the *exhaustive* sweeping techniques from this paper be used to solve other weak visibility problems efficiently? For example, are there linear-time algorithms for the *all-pairs* version of any of the 2-guard walk problems (see Das et al. [1997])?
- Ntafos [1991] introduced the notion of d-visibility, where an observer's visibility is limited to distance d. Can the shortest illuminating segment be computed efficiently under d-visibility?

Acknowledgements

The authors thank the diligent referees for pointing out many errors in an earlier draft and for helpful suggestions that made the paper more readable.

References

- D. Avis and G. T. Toussaint. An optimal algorithm for determining the visibility of a polygon from an edge. *IEEE Transactions on Computers*, 30: 910–914, 1981.
- B. K. Bhattacharya and A. Mukhopadhyay. Computing in linear time an internal line segment from which a simple polygon is weakly internally visible. In *Proceedings of the International Symposium on Algorithms and Computation, Cairns, Australia*, pages 22–31, 1995.
- B. K. Bhattacharya, A. Mukhopadhyay, and G. T. Toussaint. Computing a shortest weakly externally visible line segment for a simple polygon. *International Journal of Computational Geometry and Applications*, 9:81–96, 1999.
- E. Buchman and F. A. Valentine. External visibility. *Pacific Journal of Mathematics*, 64:333–340, 1976.
- S. Carlsson and H. Jonsson. Computing a shortest watchman path in a simple polygon in polynomial-time. In S. Akl, F. Dehne, J. R. Sack, and N. Santoro, editors, *Algorithms and Data Structures: Proceedings of the Fourth WADS*, volume 955 of *Lecture Notes in Computer Science*, pages 122–134. Springer Verlag, 1995.
- B. Chazelle. Triangulating a simple polygon in linear time. Discrete and Computational Geometry, 6:485-524, 1991.
- D. Z. Chen. Optimally computing the shortest weakly visible subedge of a simple polygon. J. Algorithms, 20(3):459–478, 1996.
- W. P. Chin and S. Ntafos. Shortest watchman routes in simple polygons. Discrete and Computational Geometry, 6:9–31, 1991.
- G. Das, P. Heffernan, and G. Narasimhan. LR-visibility in polygons. *Comput. Geom. Theory Appl.*, 7:37–57, 1997.
- G. Das, P. J. Heffernan, and G. Narasimhan. Finding all weakly-visible chords of a polygon in linear time. *Nordic J. Comput.*, 1:433–456, 1994.
- G. Das and G. Narasimhan. Optimal linear-time algorithm for the shortest illuminating line segment in a polygon. In *Proceedings of the 10th Annual ACM Symp. on Computational Geometry*, pages 259–268, 1994.
- J. Doh and K. Chwa. An algorithm for determining internal line visibility of a simple polygon. *Journal of Algorithms*, 14:139–168, 1993.
- H. El Gindy and D. Avis. A linear algorithm for computing the visibility polygon from a point. *Journal of Algorithms*, 2:186–197, 1981.
- L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear time algorithms for visibility and shortest path problems inside a triangulated simple polygon. *Algorithmica*, 2:209–233, 1987.
- C. Icking and R. Klein. The two guards problem. *Internat. J. Comput. Geom.* Appl., 2(3):257–285, 1992.
- Y. Ke. Detecting the weak visibility of a simple polygon and related problems. Technical report, The Johns Hopkins University, 1987.
- M. Keil. A simple algorithm for determining the envelope of a set of lines.

- Information Processing Letters, 39:121–124, 1991.
- P. Pradeep Kumar and C. E. Veni Madhavan. Shortest watchman tours in weak visibility polygons. In *Proceedings of the 5th Canadian Conference on Computational Geometry*, pages 91–96, 1993.
- D. T. Lee and F. P. Preparata. An optimal algorithm for finding the kernel of a polygon. *JACM*, 26:415–421, 1979.
- S. Ntafos. Watchman routes under limited visibility. Computational Geometry: Theory and Applications, 1:149–170, 1991.
- J. O'Rourke. Art gallery theorems and algorithms. Oxford University Press, 1987.
- J. O'Rourke. Computational geometry column 18. SIGACT News, 24:20–25, 1993.
- J. R. Sack and S. Suri. An optimal algorithm for detecting weak visibility. *IEEE Transactions on Computers*, 39:1213–1219, 1990.
- N. Sarnak and R. Tarjan. Planar point location using persistent search trees. *CACM*, 29:669–679, 1986.
- L. H. Tseng, P. Heffernan, and D. T. Lee. Two-guard walkability of simple polygons. *Internat. J. Comput. Geom. Appl.*, 8(1):85–116, 1998.
- F. A. Valentine. Minimal sets of visibility. *Proceedings of the Americal Mathematical Society*, 4:917–921, 1953.