
Probabilistic Information Retrieval Approach
for Ranking of Database Query Results

SURAJIT CHAUDHURI

Microsoft Research

GAUTAM DAS

University of Texas at Arlington

VAGELIS HRISTIDIS

Florida International University

and

GERHARD WEIKUM

Max Planck Institut fur Informatik

We investigate the problem of ranking the answers to a database query when many tuples are

returned. In particular, we present methodologies to tackle the problem for conjunctive and range

queries, by adapting and applying principles of probabilistic models from information retrieval for

structured data. Our solution is domain independent and leverages data and workload statistics

and correlations. We evaluate the quality of our approach with a user survey on a real database.

Furthermore, we present and experimentally evaluate algorithms to efficiently retrieve the top

ranked results, which demonstrate the feasibility of our ranking system.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information

Search and Retrieval; H.2.4 [Database Management]: Systems

General Terms: Experimentation, Performance, Theory

Additional Key Words and Phrases: Probabilistic information retrieval, user survey, experimenta-

tion, indexing, automatic ranking, relational queries, workload

V. Hristidis has been partially supported by NSF grant IIS-0534530.

Part of this work was performed while G. Das was a researcher, V. Hristidis was an intern, and

G. Weikum was a visitor at Microsoft Research.

A conference version of this article titled “Probabilistic Ranking of Database Query Results.” ap-

peared in Proceedings of VLDB 2004.

Authors’ current addresses: S. Chaudhuri, Microsoft Research, One Microsoft Way, Redmond,

WA 98052; email: surajitc@microsoft.com; G. Das, Department of Computer Science and En-

gineering, The University of Texas at Arlington, Arlington, TX 76019; email: gdas@cse.uta.edu;

V. Hristidis, School of Computing and Information Sciences, Florida International University,

Miami, FL 33199; email: vageli@cis.fiu.edu; G. Weikum, Max Planck Institut für Informatik,

Building 46-1, Stuhlsatzbrücken 85, 66123 Saarbrücken, Germany, email: weikum@mpi-sb.mpg.de.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0362-5915/06/0900-1134 $5.00

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006, Pages 1134–1168.

Probabilistic Information Retrieval Approach • 1135

1. INTRODUCTION

Database systems support a simple Boolean query retrieval model, where a
selection query on a SQL database returns all tuples that satisfy the conditions
in the query. This often leads to the Many-Answers Problem: when the query is
not very selective, too many tuples may be in the answer. We use the following
running example throughout the article:

Example: Consider a realtor database consisting of a single table with
attributes such as (TID, Price, City, Bedrooms, Bathrooms, LivingArea,
SchoolDistrict, View, Pool, Garage, BoatDock . . .). Each tuple represents a home
for sale in the US.

Consider a potential home buyer searching for homes in this database. A
query with a not very selective condition such as “City=Seattle and View=
Waterfront” may result in too many tuples in the answer, since there are many
homes with waterfront views in Seattle.

The Many-Answers Problem has also been investigated in information re-
trieval (IR), where many documents often satisfy a given keyword-based query.
Approaches to overcome this problem range from query reformulation tech-
niques (e.g., the user is prompted to refine the query to make it more selective),
to automatic ranking of the query results by their degree of “relevance” to the
query (though the user may not have explicitly specified how) and returning
only the top-k subset.

It is evident that automated ranking can have compelling applications in the
database context. For instance, in the earlier example of a homebuyer searching
for homes in Seattle with waterfront views, it may be preferable to first return
homes that have other desirable attributes, such as good school districts, boat
docks, etc. In general, customers browsing product catalogs will find such func-
tionality attractive.

In this article we propose an automated ranking approach for the Many-
Answers Problem for database queries. Our solution is principled, comprehen-
sive, and efficient. We summarize our contributions below.

Any ranking function for the Many-Answers Problem has to look beyond the
attributes specified in the query, because all answer tuples satisfy the specified
conditions.1 However, investigating unspecified attributes is particularly tricky
since we need to determine what the user’s preferences for these unspecified
attributes are. In this article we propose that the ranking function of a tuple
depends on two factors: (a) a global score which captures the global importance
of unspecified attribute values, and (b) a conditional score which captures the
strengths of dependencies (or correlations) between specified and unspecified
attribute values. For example, for the query “City = Seattle and View = Water-
front” (we also consider IN queries, e.g., City IN (Seattle, Redmond)), a home
that is also located in a “SchoolDistrict = Excellent” gets high rank because
good school districts are globally desirable. A home with also “BoatDock = Yes”

1In the case of document retrieval, ranking functions are often based on the frequency of occurrence

of query values in documents (term frequency, or TF). However, in the database context, especially

in the case of categorical data, TF is irrelevant as tuples either contain or do not contain a query

value. Hence ranking functions need to also consider values of unspecified attributes.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1136 • S. Chaudhuri et al.

gets high rank because people desiring a waterfront are likely to want a boat
dock. While these scores may be estimated by the help of domain expertise
or through user feedback, we propose an automatic estimation of these scores
via workload as well as data analysis. For example, past workload may re-
veal that a large fraction of users seeking homes with a waterfront view have
also requested boat docks. We extend our framework to also support numeric
attributes (e.g., age), in addition to categorical, by exploiting state-of-the-art
bucketing methods based on histograms.

The next challenge is: how do we translate these basic intuitions into prin-
cipled and quantitatively describable ranking functions? To achieve this, we
develop ranking functions that are based on probabilistic information re-
trieval (PIR) ranking models. We chose PIR models because we could extend
them to model data dependencies and correlations (the critical ingredients of
our approach) in a more principled manner than if we had worked with al-
ternative IR ranking models such as the Vector-Space model. We note that
correlations are sometimes ignored in IR data—important exceptions are rel-
evance feedback-based IR systems—because they are very difficult to capture
in the very high-dimensional and sparsely populated feature spaces of text
whereas there are often strong correlations between attribute values in rela-
tional data (with functional dependencies being extreme cases), which is a much
lower-dimensional, more explicitly structured, and densely populated space
that our ranking functions can effectively work on. Furthermore, we exploit
possible functional dependencies in the database to improve the quality of the
ranking.

The architecture of our ranking has a preprocessing component that col-
lects database as well as workload statistics to determine the appropriate
ranking function. The extracted ranking function is materialized in an inter-
mediate knowledge representation layer, to be used later by a query processing
component for ranking the results of queries. The ranking functions are encoded
in the intermediate layer via intuitive, easy-to-understand “atomic” numerical
quantities that describe (a) the global importance of a data value in the ranking
process, and (b) the strengths of correlations between pairs of values (e.g., “if
a user requests tuples containing value y of attribute Y , how likely is she to
be also interested in value x of attribute X ?”). Although our ranking approach
derives these quantities automatically, our architecture allows users and/or do-
main experts to tune these quantities further, thereby customizing the ranking
functions for different applications.

We report on a comprehensive set of experimental results. We first demon-
strate through user studies on real datasets that our rankings are superior in
quality to previous efforts on this problem. We also demonstrate the efficiency
of our ranking system. Our implementation is especially tricky because our
ranking functions are relatively complex, involving dependencies/correlations
between data values. We use interesting precomputation techniques which
reduce this complex problem to a problem efficiently solvable using top-k
algorithms.

The rest of this article is organized as follows. In Section 2 we discuss related
work. In Section 3 we define the problem. In Section 4 we discuss our approach

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Probabilistic Information Retrieval Approach • 1137

to ranking based on probabilistic models from information retrieval, along with
various extensions and special cases. In Section 5 we describe an efficient im-
plementation of our ranking system. In Section 6 we discuss the results of our
experiments, and we conclude in Section 7.

2. RELATED WORK

A preliminary version of this article appeared in Chaudhuri et al. [2004], where
we presented the basic principles of using probabilistic information retrieval
models to answer database queries. However, our earlier article only handled
point queries (see Section 3). In this work, we show how IN and range queries
can be handled and how this makes the algorithms to produce efficiently the top
results more challenging (Sections 4.4.1 and 5.4). Furthermore Chaudhuri et al.
[2004] focused on only categorical attributes, whereas we have a complete study
of numerical attributes as well (Section 4.4.2). Chaudhuri et al. [2004] also
ignored functional dependencies, which as we show can improve the quality of
the results (Section 4.2.2). In this work, we also present specialized solutions for
cases where no workload is available (Section 4.3.1), and no dependencies exist
between attributes (Section 4.3.2). We also generalize to the case where the data
resides on multiple tables (Section 4.4.3). Finally, we extend Chaudhuri et al.
[2004] with a richer set of quality and performance experiments. On the quality
level, we show results for IN queries and also compare them to the results of a
“random” algorithm. On the performance level, we include experiments on how
the number k of requested results affects the performance of the algorithms.

Ranking functions have been extensively investigated in information re-
trieval. The vector space model as well as probabilistic information retrieval
(PIR) models [Baeza-Yates and Ribeiro-Neto 1999; Grossman and Frieder
2004; Sparck Jones et al. 2000a, 2000b] and statistical language models [Croft
and Lafferty 2003; Grossman and Frieder 2004] are very successful in prac-
tice. Feedback-based IR systems (e.g., relevance feedback [Harper and Van
Rijsbergen 1978], pseudorelevance feedback [Xu and Croft 1996]) are based on
inferring term correlations and modeling term dependencies, which are related
to our approach of inferring correlations within workloads and data. While our
approach has been inspired by PIR models, we have adapted and extended them
in ways unique to our situation, for example, by leveraging the structure as well
as correlations present in the structured data and the database workload.

In database research, there has been significant work on ranked retrieval
from a database. The early work of Motro [1988] considered vague/imprecise
similarity-based querying of databases. Probabilistic databases have been ad-
dressed in Barbara et al. [1992], Cavallo and Pittarelli [1987], Dalvi and Suciu
[2005], and Lakshmanan et al. [1997]. Recently, a broader view of the needs for
managing uncertain data has been evolving (see, e.g., Widom [2005]).

The challenging problem of integrating databases and information retrieval
systems has been addressed in a number of seminal papers [Cohen 1998a,
1998b; Fuhr 1990, 1993; Fuhr and Roelleke 1997, 1998] and has gained much
attention lately Amer-Yahia et al. [2005a]. More recently, information
retrieval-based approaches have been extended to XML retrieval [Amer-Yahia
et al. 2005b; Chinenyanga and Kushmerick 2002; Carmel et al. 2003; Fuhr

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1138 • S. Chaudhuri et al.

and Grossjohann 2004; Guo et al. 2003; Hristidis et al. 2003b; Lalmas and
Roelleke 2004; Theobald and Weikum 2002; Theobald et al. 2005]. The articles
Chakrabarti et al.[2002], Ortega-Binderberger et al. [2002], Rui et al. [1997],
and Wu et al. [2000] employed relevance-feedback techniques for learning
similarity in multimedia and relational databases. Our approach of leveraging
workloads is motivated by and related to IR models that aim to leverage query-
log information (e.g., see Radlinski and Joachims [2005] and Shen et al. [2005]).
Keyword-query-based retrieval systems over databases have been proposed in
Agrawal et al. [2002], Bhalotia et al. [2002], Hristidis and Papakonstantinou
[2002], and Hristidis et al. [2003a]. In Kiessling [2002] and Nazeri et al. [2001],
the authors proposed SQL extensions in which users can specify ranking
functions via soft constraints in the form of preferences. The distinguishing
aspect of our work from the above is that we espouse automatic extraction of
PIR-based ranking functions through data and workload statistics.

The work most closely related to our article is Agrawal et al. [2003], which
briefly considered the Many-Answers Problem (although its main focus was
on the Empty-Answers Problem, which occurs when a query is too selective,
resulting in an empty answer set). It too proposed automatic ranking methods
that rely on workload as well as data analysis. In contrast, however, our article
has the following novel strengths: (a) we use more principled probabilistic PIR
techniques rather than ad hoc techniques “loosely based” on the vector-space
model, and (b) we take into account dependencies and correlations between
data values, whereas Agrawal et al. [2003] only proposed a form of global score
for ranking.

Ranking is also an important component in collaborative filtering research
[Breese et al. 1998]. These methods require training data using queries as well
as their ranked results. In contrast, we require workloads containing queries
only.

A major concern of this article is the query processing techniques for support-
ing ranking. Several techniques have been previously developed in database
research for the top-k problem [Bruno et al. 2002a, 2002b; Fagin 1998; Fagin
et al. 2001; Wimmers et al. 1999]. We adopt the Threshold Algorithm of Fagin
et al. [2001] Güntzer et al. [2000], and Nepal and Ramakrishna [1999] for our
purposes, and develop interesting precomputation techniques to produce a very
efficient implementation of the Many-Answers Problem. In contrast, an efficient
implementation for the Many-Answers Problem was left open in Agrawal et al.
[2003].

3. PROBLEM DEFINITION

In this section, we formally define the Many-Answers Problem in ranking
database query results and its different variants. We start by defining the
simplest problem instance, which we later extend to more complex scenarios.

3.1 The Many-Answers Problem

Consider a database table D with n tuples {t1, . . . , tn} over a set of m categorical
attributes A = {A1, . . . , Am}. Consider a “SELECT ∗ FROM D” query Q with
a conjunctive selection condition of the form “WHERE X 1=x1 AND · · · AND

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Probabilistic Information Retrieval Approach • 1139

X s=xs,” where each X i is an attribute from A and xi is a value in its domain.
The set of attributes X = {X 1, . . . , X s} ⊆ A is known as the set of attributes
specified by the query, while the set Y = A – X is known as the set of unspecified
attributes. Let S ⊆ {t1, . . . , tn} be the answer set of Q. The Many-Answers Prob-
lem occurs when the query is not too selective, resulting in a large S. The focus
in this article is on automatically deriving an appropriate ranking function such
that only a few (say top-k) tuples can be efficiently retrieved.

3.2 The Empty-Answers Problem

If the selection condition of a query is very restrictive, it may happen that very
few tuples, or even no tuples, will satisfy the condition—that is, S is empty
or very small. This is known as the Empty-Answers Problem. In such cases, it
is of interest to derive an appropriate ranking function that can also retrieve
tuples that closely (though not completely) match the query condition. We do
not consider the Empty-Answers Problem any further in this article.

3.3 Point Queries Versus Range/IN Queries and other Generalizations

The scenario in Section 3.1 only represents the simplest problem instance. For
example, the type of queries described above are fairly restrictive; we refer to
them as point queries because they specify single-valued equality conditions on
each of the specified attributes. In a more general setting, queries may contain
range/IN conditions. IN queries contain selection conditions of the form “ X 1

IN (x1,1 · · · x1,r1) AND · · · AND X s IN (xs,1 · · · xs,rs).” Such queries are a very
convenient way of expressing alternatives in desired attribute values which
are not possible to express using point queries.

Also, databases may be multitabled, and may contain a mix of categorical
and numeric data. In this article, we develop techniques to handle the ranking
problem for all these generalizations, though for the sake of simplicity of ex-
position, our focus in the earlier part of the article is on point queries over a
single categorical table.

3.4 Evaluation Measures

We evaluate our ranking functions both in terms of quality as well as perfor-
mance. Quality of the results produced is measured using the standard IR
measures of precision and recall. We also evaluate the performance of our
ranking functions, especially what time and space is necessary for preprocess-
ing as well as for query processing.

4. RANKING FUNCTIONS: ADAPTATION OF PIR MODELS
FOR STRUCTURED DATA

In this section we first review probabilistic information retrieval (PIR) tech-
niques in IR (Section 4.1). We then show in Section 4.2 how they can be adapted
for structured data for the special case of ranking the results of point queries
over a single categorical table. In Section 4.3 we present two interesting special
cases of these ranking functions, while in Section 4.4 we extend our techniques
to handle IN queries, numeric attributes, and other generalizations.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1140 • S. Chaudhuri et al.

4.1 Review of Probabilistic Information Retrieval

Much of the material of this subsection can be found in textbooks on information
retrieval, such as those by Baeza-Yates and Ribeiro-Neto [1999] (see also Sparck
Jones et al. [2000a; 2000b]). Probabilistic Information Retrieval (PIR) makes
use of the following basic formulae from probability theory:

Bayes’ rule: p(a | b) = p(b | a)p(a)

P (b)
,

Product rule: p(a, b | c) = p(a | c)p(b | a, c).

Consider a document collection D. For a (fixed) query Q , let R represent
the set of relevant documents, and R̄=D– R be the set of irrelevant documents.
In order to rank any document t in D, we need to find the probability of the
relevance of t for the query given the text features of t (e.g., the word/term
frequencies in t), that is, p (R|t).More formally, in probabilistic information re-
trieval, documents are ranked by decreasing order of their odds of relevance,
defined as the following score:

Score(t) = p(R|t)

p(R̄|t)
=

p(t|R)p(R)

p(t)

p(t|R̄)p(R̄)

p(t)

∝ p(t|R)

p(t|R̄)
.

The final simplification in the above equation follows from the fact that
p(R)and p(R̄)are the same for every document t and thus mere constants that
do not influence the ranking of documents. The main issue now is: how are
these probabilities computed, given that R and R̄are unknown at query time?
The usual techniques in IR are to make some simplifying assumptions, such as
estimating R through user feedback, approximating R̄ as D (since R is usually
small compared to D), and assuming some form of independence between query
terms (e.g., the Binary Independence Model, theLinked Dependence Model, or
theTree Dependence Model [Yu and Meng 1998; Baeza-Yates and Ribeiro-Neto
1999; Grossman and Frieder 2004]).

In the next subsection we show how we adapt PIR models for structured
databases, in particular for conjunctive queries over a single categorical table.
Whereas the Binary Independence Model makes an independence assumption
over all terms, we apply in the following a limited independence assumption,
that is, we consider two dependent conjuncts, and view the atomic events of
each conjunction to be independent.

4.2 Adaptation of PIR Models for Structured Data

In our adaptation of PIR models for structured databases, each tuple in a single
database table D is effectively treated as a “document.” For a (fixed) query Q ,
our objective is to derive Score(t) for any tuple t, and use this score to rank the
tuples. Since we focus on the Many-Answers problem, we only need to concern
ourselves with tuples that satisfy the query conditions. Recall the notation from
Section 3, where X is the set of attributes specified in the query, and Y is the
remaining set of unspecified attributes. We denote any tuple t as partitioned

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Probabilistic Information Retrieval Approach • 1141

into two parts, t(X) and t(Y), where t(X) is the subset of values corresponding to
the attributes in X , and t(Y) is the remaining subset of values corresponding
to the attributes in Y . Often, when the tuple t is clear from the context, we
overload notation and simply write t as consisting of two parts, X and Y (in
this context, X and Y are thus sets of values rather than sets of attributes).

Replacing t with X and Y (and R̄ as D, as mentioned in Section 4.1, is
commonly done in IR), we get

Score(t) ∝ p(t|R)

p(t|d)
= p(X , Y |R)

p(X , Y |D)
= p(Y |R)

p(Y |D)
· p(X |Y , R)

p(X |Y , D)
,

where the last equality is obtained by applying Bayes’ Theorem. Then, because
R ⊆ X (i.e., all relevant tuples have the same X values specified in the query),
we obtain P (X |Y , R) = 1 which leads to

Score(t) ∝ p(Y |R)

p(Y |D)
· 1

p(X |Y , D)
. (1)

Let us illustrate Equation (1) with an example. Consider a query with
condition “City=Kirkland and Price=High” (Kirkland is an upper-class sub-
urb of Seattle close to a lake). Such buyers may also ideally desire homes
with waterfront or greenbelt views, but homes with views looking out into
streets may be somewhat less desirable. Thus, p(View=Greenbelt |R) and
p(View=Waterfront |R) may both be high, but p(View=Street |R) may be
relatively low. Furthermore, if in general there is an abundance of selected
homes with greenbelt views as compared to waterfront views, (i.e., the
denominator p(View=Greenbelt | City=Kirkland, Price=High, D) is larger
than p(View=Waterfront | City=Kirkland, Price=High, D), our final rankings
would be homes with waterfront views, followed by homes with greenbelt
views, followed by homes with street views. For simplicity, we have ignored
the remaining unspecified attributes in this example.

4.2.1 Limited Independence Assumptions. One possible way of continu-
ing the derivation of Score(t) would be to make independence assumptions be-
tween values of different attributes, like in the Binary Independence Model
in IR. However, while this is reasonable with text data (because estimating
model parameters like the conditional probabilities p(Y |X) poses major accu-
racy and efficiency problems with sparse and high-dimensional data such as
text), we have earlier argued that, with structured data, dependencies between
data values can be better captured and would more significantly impact the
result ranking. An extreme alternative to making sweeping independence as-
sumptions would be to construct comprehensive dependency models of the data
(e.g., probabilistic graphical models such as Markov Random Fields or Bayesian
Networks [Whittaker 1990]), and derive ranking functions based on these mod-
els. However, our preliminary investigations suggested that such approaches
have unacceptable preprocessing and query processing costs.

Consequently, in this article we espouse an approach that strikes a middle
ground. We only make limited forms of independence assumptions—given a
query Q and a tuple t, the X (and Y) values within themselves are assumed to be

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1142 • S. Chaudhuri et al.

independent, though dependencies between the X and Y values are allowed. More
precisely, we assume limited conditional independence, that is, p(X |C) (respec-
tively p(Y |C)) may be written as (

∏
x∈X p(x|C)respectively

∏
y∈Y p(y |C)), where

C is any condition that only involves Y values (respectively X values), R, or D.
While this assumption is patently false in many cases (for instance, in the

example early in Section 4.2 this assumes that there is no dependency between
homes in Kirkland and high-priced homes), nevertheless the remaining de-
pendencies that we do leverage, that is, between the specified and unspeci-
fied values, prove to be significant for ranking. Moreover, as we shall show in
Section 5, the resulting simplified functional form of the ranking function en-
ables the efficient adaptation of known top-k algorithms through novel data
structuring techniques.

We continue the derivation of a tuple’s score under the above assumptions
and obtain

Score(t) ∝ p(Y |R)

p(Y |D)
· 1

p(X |Y , D)
(2)

=
∏
y∈Y

p(y |R)

p(y |D)
·
∏
x∈X

∏
y∈Y

1

p(x| y , D)
.

4.2.2 Presence of Functional Dependencies. To reach Equation (2), we as-
sumed limited conditional independence. In certain special cases such as for
attributes related through functional dependencies, we can derive the equation
without having to make this assumption. In the realtor database, an exam-
ple of a functional dependency may be “Zipcode → City.” Note that functional
dependencies only apply to the data, since the workload does not have to satisfy
them. For example, a query Q of the workload that specifies a requested zipcode
may not have specified the city, and vice versa. Thus functional dependencies af-
fect the denominator but not the numerator of Equation (2). The key property
used to remove the independence assumption between attributes connected
through functional dependencies is the following.

We first consider functional dependencies between attributes in Y . Assume
that yi → y j is a functional dependency between a pair of attributes yi, y j in
Y . This means that {t | t. yi = ai ∧ t. y j = aj } = {t|t. yi = ai} for all attribute
values ai, aj . In this case an expression such as p(yi, y j | D) can be simplified
asp(yi|D)p(y j | yi, D) = p(yi|D). More generally, the expression in Equation (1)

may be simplified
∏

y∈Y ′
1

p(y |D)
, where Y ′ = { y ∈ Y |¬∃ y ′ ∈ Y , FD : y ′ → y}.

Functional dependencies may also exist between attributes in X . Thus, the
expression 1

p(X |Y ,D)
in Equation (1) may be simplified to

∏
y∈Y ′

∏
x∈X ′

1
p(x| y ,D)

,

where X ′ = {x ∈ X |¬∃x ′ ∈ X , F D : x ′ → x}.
Applying these derivations to Equation (1), we get the following modification

to Equation (2) (where X ′ and Y ′ are defined as above):

Score(t) ∝
∏
y∈Y

p(y |R)
∏
y∈Y ′

1

p(y |D)

∏
y∈Y ′

∏
x∈X ′

1

p(x| y , D)
. (3)

Notice that before applying the above formula, we need to first compute
the transitive closure of functional dependencies, for the following reason.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Probabilistic Information Retrieval Approach • 1143

Assume there are functional dependencies x ′ → y and y → x where x, x ′ ∈ X
and y ∈ Y . Then, if we do not calculate the closure of functional dependen-
cies, there would be no x ′ ∈ X with functional dependency x ′ → x, and hence
Equation (3) would be the same as Equation (2). Notice that Equations (2) and
(3) are equivalent if there are no functional dependencies or the only functional
dependencies (in the closure) are of the form x → y or y → x, where x ∈ X
and y ∈ Y .

Although Equations (2) and (3) represent simplifications over Equation (1),
they are still not directly computable, as R is unknown. We discuss how to
estimate the quantities p(y |R) next.

4.2.3 Workload-Based Estimation of p(y|R). Estimating the quantities
p(y |R) requires knowledge of R, which is unknown at query time. The usual
technique for estimating R in IR is through user feedback (relevance feed-
back) at query time, or through other forms of training. In our case, we provide
an automated approach that leverages available workload information for
estimatingp(y |R). Our approach is motivated by and related to IR models that
aim to leverage query-log information (e.g., see Radlinski and Joachims [2005]
and Shen et al. [2005]). For example, if the multikeyword queries “a b c d,” “a b,”
and “a b c” constitute a (short) query log, then we could estimate p(a |c, queries)
= 2/3.

We assume that we have at our disposal a workload W , that is, a collection
of ranking queries that have been executed on our system in the past. We first
provide some intuition of how we intend to use the workload in ranking. Con-
sider the example in Section 4.2 where a user has requested for high-priced
homes in Kirkland. The workload may perhaps reveal that in the past a large
fraction of users that had requested for high-priced homes in Kirkland had
also requested for waterfront views. Thus for such users, it is desirable to rank
homes with waterfront views over homes without such views. The IR equiva-
lent would be to have many past queries including all of the terms “Kirkland,”
“high-priced,” and “waterfront view,” and a new query “Kirkland high-priced”
arrives.

We note that this dependency information may not be derivable from the data
alone, as a majority of such homes may not have waterfront views (i.e., data
dependencies do not indicate user preferences as workload dependencies do).
Of course, the other option is for a domain expert (or even the user) to provide
this information (and in fact, as we shall discuss later, our ranking architecture
is generic enough to allow further customization by human experts).

More generally, the workload W is represented as a set of “tuples,” where each
tuple represents a query and is a vector containing the corresponding values of
the specified attributes. Consider an incoming query Q which specifies a set X
of attribute values. We approximate R as all query “tuples” in W that also request
for X. This approximation is novel to this article, that is, that all properties of
the set of relevant tuples R can be obtained by only examining the subset of
the workload that contains queries that also request for X . So for a query such
as “City=Kirkland and Price=High,” we look at the workload in determining
what such users have also requested for often in the past.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1144 • S. Chaudhuri et al.

We can thus write, for query Q , with specified attribute set X , p(y |R) as
p(y |X , W). Making this substitution in Equation (2), we get

Score(X , Y) ∝ P (Y |X , W)

P (Y |D)
· 1

P (X |Y , D)
.

Applying Bayes’ rule for P (Y |X , W) we get

P (Y |X , W) = P (X , W, Y)

P (X , W)
= P (W) · P (Y |W) · P (X |Y , W)

P (X , W)
.

Then by dropping the constant P (W)
P (X ,W)

we get

Score(X , Y) ∝ P (Y |W)

P (Y |D)
· P (X |Y , W)

P (X |Y , D)
=

∏
y∈Y

p(y |W)

p(y |D)

∏
y∈Y

∏
x∈X

p(x| y , W)

p(x| y , D)
. (4)

Equation (4) is the final ranking formula, assuming no functional
dependencies. If we also consider functional dependencies then we have

Score(X , Y) ∝
∏
y∈Y

p(y |W)
∏
y∈Y ′

1

p(y |D)

∏
y∈Y

∏
x∈X

p(x| y , W)
∏
y∈Y ′

∏
x∈X ′

1

p(x| y , D)
,

(5)

where X
′
, Y

′
are defined as in Equation (3).

Note that unlike Equations (2) and (3), we have effectively eliminated R from
the formulas in Equations (4) and (5), and are only left with having to compute
quantities such as p(y |W),p(x| y , W),p(y |D), andp(x| y , D). In fact, these are
the “atomic” numerical quantities referred to at various places earlier in this
article. Also, note that Equations (4) and (5) have been derived for point queries;
the formulas get more involved when we allow IN/range conditions, as discussed
in Section 4.4.1.

Also note that the score in Equations (4) and (5) is composed of two large
factors. The first factor (first product in Equations (4) and two first products
in Equation (5)) may be considered as the global part of the score, while the
second factor may be considered as the conditional part of the score. Thus, in
the example in Section 4.2, the first part measures the global importance of
unspecified values such as waterfront, greenbelt, and street views, while the
second part measures the dependencies between these values and the specified
values “City=Kirkland” and “Price=High.”

4.2.4 Computing the Atomic Probabilities. This section explains how to
calculate the atomic probabilities for categorical attributes. Section 4.4.2
explains how numerical attributes can be split into ranges which are then ef-
fectively treated as categorical attributes. Our strategy is to precompute each
of the atomic quantities for all distinct values in the database. The quantities
p(y |W)and p(y |D) are simply the relative frequencies of each distinct value y
in the workload and database, respectively (the latter is similar to IDF, or the
inverse document frequency concept in IR), while the quantities p(x| y , W) and
p(x| y , D) may be estimated by computing the confidences of pairwise associ-
ation rules [Agrawal et al. 1995] in the workload and database, respectively.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Probabilistic Information Retrieval Approach • 1145

Once this precomputation has been completed, we store these quantities as
auxiliary tables in the intermediate knowledge representation layer. At query
time, the necessary quantities may be retrieved and appropriately composed for
performing the rankings. Further details of the implementation are discussed
in Section 5.

While the above is an automated approach based on workload analysis, it is
possible that sometimes the workload may be insufficient and/or unreliable. In
such instances, it may be necessary for domain experts to be able to tune the
ranking function to make it more suitable for the application at hand. That is,
our framework allows both informative (e.g., set by domain expert) as well as
noninformative (e.g., inferred by query workload) prior probability distributions
to be used in the preference function. In this article, we focus on noninformative
priors, which are inferred by the query workload and the data.

4.3 Special Cases

In this subsection we present two important special cases for which our ranking
function can be further simplified: (a) ranking in the absence of workloads, and
(b) ranking assuming no dependencies between attributes.

4.3.1 Ranking Function in the Absence of a Workload. We first consider
Equation (4), which describes our ranking function assuming no functional
dependencies—we shall consider Equation (5) later. So far we have assumed
that there exists a workload, which is used to approximate the set R of relevant
tuples. If no workload is available, then we can assume that p(x|W) is the same
for all distinct values x,and correspondinglyp(x | y, W) is the same for all pairs
of distinct values x and y . Hence, as constants, they do not affect the ranking.
Thus, Equation (4) reduces to

Score(t) ∝ 1

p(Y |D)
· 1

p(X |Y , D)
=

∏
y∈Y

1

p(y |D)

∏
y∈Y

∏
x∈X

1

p(x| y , D)
. (6)

The intuitive explanation of Equation (6) is similar to the idea of inverse doc-
ument frequency (IDF) in information retrieval. In particular, the first product
assigns a higher score to tuples whose unspecified attribute values y are infre-
quent in the database. The second product is similar to a “conditional” version of
the IDF concept. That is, tuples with low correlations between the specified and
the unspecified attribute values are ranked higher. This means, that tuples with
infrequent combinations of values are ranked higher. For example, if the user
searches for low-priced houses, then a house with high square footage is ranked
high since this combination of values (low price and high square footage) is in-
frequent. Of course this ranking can potentially also lead to unintuitive results,
for example, looking for high-priced houses may return low-square-footage ones.

Equation (6) can be extended in a straightforward manner to account for the
presence of functional dependencies (similarley to the way Equation (4) was
extended to Equation (5)).

4.3.2 Ranking Function Assuming No Dependencies Between Attributes.
As mentioned in Section 4.2.1, a simpler approach to the ranking problem would
be to make independence assumptions between all attributes (e.g., as is done

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1146 • S. Chaudhuri et al.

in the binary independence model in IR). Whereas, in Section 4.2, we viewed
X and Y as dependent events, we show here the special case of viewing X and
Y as independent events. Then the linked independence assumption holds for
both, the workload W and the database D. We obtain

Score(t) = p(Y |W)

p(Y |D)
· p(X |Y , W)

p(X |Y , D)
= p(Y |W)

p(Y |D)
· p(X |W)

p(X |D)
.

Here, the fraction p(X|W)/p(X|D) is constant for all query result tuples; hence:

Score(t) ∝ p(Y |W)

p(Y |D)
=

∏
y∈Y

p(y |W)

p(y |D)
. (7)

Intuitively, the numerator describes the absolute importance of the unspec-
ified attribute values in the workload, while the denominator resembles the
IDF concept in IR. This formula is similar to the ranking formula for the Many-
Answers problem developed in Agrawal et al. [2003] based on the vector-space
model. The main difference between this formula and the corresponding for-
mula in Agrawal et al. [2003] is that the latter did not have the denominator
quantities, and also expressed the score in terms of logarithms. This provides
formal credibility to the intuition behind the development of the algorithm in
Agrawal et al. [2003].

4.4 Generalizations

In this subsection we present several important generalizations of our rank-
ing techniques. In particular, we show how our techniques can be extended to
handle IN queries, numeric attributes, and multitable databases.

4.4.1 IN Queries. IN queries are a generalization of point queries, in which
selection conditions have the form “X 1 IN (x1,1. . . x1,r1) AND . . . AND X s IN
(xs,1· · · xs,rs)”. As an example, consider a query with a selection condition such
as “City IN (Kirkland, Redmond) AND Price IN (High, Moderate).” This might
represent the desire of a homebuyer who is interested in either moderate or
high-priced homes in either Kirkland or Redmond. Such queries are a very
convenient way of expressing alternatives in desired attribute values which
are not possible to express using point queries.

Accommodating IN queries in our ranking infrastructure presents the
challenge of automatically determining which of the alternatives are more
relevant to the user—this knowledge can then be incorporated into a suitable
ranking function. (This concept is related to work on vague/fuzzy predicates
[Fuhr 1990, 1993; Fuhr and Roelleke 1997, 1998]. In our case, the objective
is essentially to determine the probability function that can assign different
weights to the different alternative values.)

First the ranking function derived in Equation (4) (and Equation (5)) have to
be modified to allow IN conditions in the specified attributes. The complication
stems from the fact that two tuples that satisfy the query condition may differ
in their specific X values. In the above example, a moderate-priced home in
Redmond will satisfy the query, as will an expensive home in Kirkland. How-
ever, since the specific X values of the two homes are different, this prevents

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Probabilistic Information Retrieval Approach • 1147

us from factoring out the X as we so successfully did in the derivation of
Equation (4). This requires nontrivial extensions to the execution algorithms,
as shown in Section 5. Second, the existence of IN queries complicates the
generation of the association rules in the workload, as we discuss later in this
subsection.

4.4.1.1 IN Conditions in the Query. For simplicity, let us assume the case
where there are no functional dependencies and the workload has point queries,
but the query may have IN conditions. Later we will extend the discussion to
the case where the workload also has IN conditions.

Consider a query that specifies conditions C, where C is a conjunction of IN
conditions such as “City IN (Bellevue, Carnation) AND SchoolDistrict IN(Good,
Excellent).” Note that we distinguish C from X ; the latter are atomic values of
specified attributes in a specific tuple, whereas the former refers to the query
and contains a set of values for each specified attribute. Recall from Section 4.2
that

Score(t) ∝ p(t|R)

p(t|D)
= p(X , Y |R)

p(X , Y |D)

∝ p(X |R) p(Y |X , R)

p(X |D) p(Y |X , D)
.

In what follows, we shall assume that R = C, W, that is, R is the set of tuples in
W that specify C. This is in tune with the corresponding assumption in Section
4.2.3 for the case of point queries, and intuitively means that R is represented
by all queries in the workload that also request for C. Of course, since here we
are assuming that the workload only has point queries, we need to figure out
how to evaluate this in a reasonable manner.

Consider the second part of the above formula for Score(t), that is, p(Y|X,
R)/p(Y|X, D). This can be rewritten as p(Y|X, C,W)/p(Y|X,C, D). Since we are
considering the Many-Answers problem, if X is true, C is also true (recall that X
is the set of attribute values of a result-tuple for the query-specified attributes).
Thus this part of the formula can be simplified as p(Y|X, W)/p(Y|X, D). Conse-
quently, it can be further simplified in exactly the same way as the derivations
described earlier for point queries, that is, in Equations (1) through (4).

Now consider the first part of the formula, p(X|R)/p(X|D). Unlike the point
query case, however, we cannot assume p(X|R)/p(X|D) is a constant for all
tuples. In what follows, we shall assume that x is a variable that varies over
the set X , and c is a variable that varies over the set C. When x and c refer to
the same attribute, it is clear that, if x is true, then c is also true. We have the
following sequence of derivations:

p(X |R)

p(X |D)
= p(X |C, W)

p(X |D)
=

∏
x∈X

p(x|C, W)

p(x|D)
∝

∏
x∈X

p(C, W |x)p(x)

p(x|D)

=
∏
x∈X

p(W |x)p(x)p(C|x, W)

p(x|D)
∝

∏
x∈X

p(x|W)

p(x|D)

∏
c∈C

p(c|x, W).

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1148 • S. Chaudhuri et al.

Recall that we assume limited conditional independence, that is, that
dependency exists only between the X and Y attributes, and not within the
X attributes (recall that X and C specify the same set of attributes). Let
A(x) (respectively A(c)) refer to the attribute of x (respectively c). Then p(c|x,
W) is equal to p(c|W) when A(x)<>A(c), and is equal to 1 otherwise. Let
c(x) represent the IN condition in C corresponding the attribute of x, that is,
A(c(x)) =A(x). Consequently, we have

∏
c∈C

p(c|x, W) =
∏
c∈C

p(c|W)

p(c(x)|W)
.

Hence, continuing with the above derivation, we have p(X |R)/p(X |D)
proportional to

∏
x∈X

p(x|W)
∏
c∈C

p(c|W)

p(x|D)p(c(x)|W)
=

(∏
x∈X

p(x|W)

p(x|D)

) ⎛
⎝∏

x∈X

∏
c∈C

p(c|W)

p(c(x)|W)

⎞
⎠ ∝

∏
x∈X

p(x|W)

p(x|D)
.

This is the extra factor that needs to be multiplied to the score derived in
Equation (4). Hence, the equivalent of Equation (4) for IN queries is

Score(t) ∝
∏
z∈t

p(z|W)

p(z|D)

∏
y∈Y

∏
x∈X

p(x| y , W)

p(x| y , D)
. (8)

Equation (8) differs from Equation (4) in the global part. In particular, we now
need to consider all attribute values of each result-tuple t, because they may be
different, whereas, in Equation (4), only the unspecified values of t were used
for the global part. Notice that Equation (8) can be used for point queries as
well since in this case the specified values of t are common for all result-tuples
and hence would only multiply the score by a common factor. However, as we
explain in Section 5.4, it is more complicated to efficiently evaluate Equation
(8) for IN queries than for point queries because of the fact that all result-tuples
share the same specified (X) values in point queries.

We note that Equation (8) can be generalized in a straightforward manner
to allow for the presence of functional dependencies.

4.1.1.2 IN Conditions in the Workload. We had assumed above that the
query at runtime was allowed to have IN conditions, but that the workload
only had point queries. We now tackle the problem of exploiting IN queries
in the workload as well. This is reduced to the problem of precomputing
atomic probabilities such as p(z |W) and p(x |y, W) from such a workload. These
atomic probabilities are necessary for computing the ranking function derived
in Equation (8).

Our approach is to “conceptually expand” the workload by splitting each IN
query into sets of appropriately weighted point queries. For example, a query
with IN conditions such as “City IN (Bellevue, Redmond, Carnation) AND Price
IN (High, Moderate)” may be split into 3 × 2 = 6 point queries, each representing
specific combinations of values from the IN conditions. In this example, each
such point query is given a weight of 1/6; this weighting is necessary to make

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Probabilistic Information Retrieval Approach • 1149

sure that queries with large IN conditions do not dominate the calculations of
the atomic probabilities.

Atomic probabilities may now be computed as follows: p(z|W) is the
(weighted) fraction of the queries in the expanded workload that refer to z,
while p(x|y, W) is the (weighted) fraction of all queries that refer to x from all
queries that refer to y in the expanded workload. Of course, the workload is not
literally expanded; these probabilities can be easily computed from the original
workload that contain the IN queries.

4.4.2 Numeric Attributes. Thus far in the article we have only been con-
sidering categorical data. We now extend our results to the case when the data
also has numeric attributes. For example, in the homes database, we may have
numeric attributes such as square footage, age, etc. Queries may now have
range conditions, such as “Age BETWEEN (5, 10) AND Sqft BETWEEN (2500,
3000).”

One obvious way of handling numeric data and queries is to simply treat
them as categorical data—to consider every distinct numerical value in the
database as a categorical value. Queries with range conditions can be then con-
verted to queries with corresponding IN conditions, and we can then apply the
methods outlined in Section 4.4.1. However, the main problem arising with such
an approach is that the sheer size of the numeric domain ensures that many, in
fact most, distinct values are not adequately represented in the workload. For
example, perhaps numerous workload queries have requested for homes be-
tween 3000 and 4000 sqft. However, there may be one or two 2995-sqft homes
in the database, but unfortunately these homes would be considered far less
popular by the ranking algorithm.

A simple strategy for overcoming this problem is to discretize the numerical
domain into buckets, which can then be treated as categorical data. However,
most simple bucketing techniques are errorprone because inappropriate choices
of bucket boundaries may separate two values that are otherwise close to each
other. In fact, complex bucketing techniques for numeric data have been ex-
tensively studied in other domains, such as in the construction of histograms
for approximating data distributions (see Poosala et al. [1996; Jagadish et al.
1998]) and in earlier database ranking algorithms (see Agrawal et al. [2003]),
as well as in discretization methods in classification studies (see Martinez et al.
[2004]). In this article too, we investigate the bucketing problem that arises in
our context in a systematic manner, and present principled solutions that are
adaptations of well-known methods for histogram construction.

Let us consider where exactly the problem of numeric attributes arises in
our case. Given a query Q , the problem arises when we attempt to compute
the score of a tuple t based on the ranking formula in Equation (8). We need
accurate estimations of the atomic probabilities p(z | W), p(z | D), p(x | y, W), and
p(x | y, D) when some of these values are numeric. What is really needed is a
way of “smoothening” the computations of these atomic probabilities, so that, for
example, if p(z | W) is high for a numeric value (i.e., z has been referenced many
times in the workload), p(z+ε| W) should also be high for nearby values z+ε.
Similar smoothening techniques should be applied to the other types of atomic

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1150 • S. Chaudhuri et al.

probabilities, p(z | D), p(x | y, W) and p(x | y, D). Furthermore, these probabilities
have to be precomputed earlier, and should only be “looked up” at query time.
In the following we discuss our solutions in more detail.

4.4.2.1 Estimating p(z | D) and p(x | y, D). We first discuss how to estimate
p(z | D). Let z be a value of some numeric attribute, say A. As mentioned ear-
lier, the naı̈ve but inaccurate way of estimating p(z | D) would be to simply treat
A as a categorical attribute—thus p(z | D) would be the relative frequency of
the occurrence of z in the database. Instead, our approach is to assume that
p(z | D) is the density, at point z, of a continuous probability density function
(pdf) p(z | D) over the domain of A. We therefore use standard density estima-
tion techniques—in our case, histograms—to approximate this pdf using the
values of A occurring in the database. There are a wide variety of histogram
techniques for density estimation, such as equiwidth histograms, equidepth
histograms, and even “optimal” histograms where bucket boundaries are set
such that the squared error between the actual data distribution and the dis-
tribution represented by the histogram is minimized (see Poosala et al. [1996];
Jagadish et al. [1998] for relevant results on histogram construction). In our
case, we use the popular and efficient technique of equidepth histograms, where
the range is divided into a set of nonoverlapping buckets such that each bucket
contains the same number of values.2 Once this histogram has been precom-
puted, the density p(z | D) at any point z is looked up at runtime by determining
the bucket to which z belongs.

We next discuss how to estimate p(x | y, D). Intuitively, our approach is to
compute a two-dimensional histogram that represents the distribution of all
(x, y) pairs that occur in the database. At runtime, we look up this histogram
to determine the density, at point x, of the marginal distribution p(x | y, D).

Consider first the case where the attribute A of x is numeric, but the attribute
B of y is categorical. Our approach for this problem is to compute, for each
distinct value y of B, the histogram over all values of A that cooccur with y in
the database. Each such histogram represents the marginal probability density
function p(x | y, D). One issue that arises is if there are numerous distinct values
for B, which may result in too many histograms. We circumvent this problem
by only building histograms for those y values for which the corresponding
number of A values occurring in the database is larger than a given threshold.

We next consider the case where A is categorical whereas B is numeric. We
first compute the histogram of the distribution p(y | D) as explained above. We
then compute pairwise association rules of the form b → x where b is any bucket
of p(y | D) and x is any value of A. Then the density p(x | y, D) is approximated
as the confidence of the association rule b → x where b is the bucket to which
y belongs.

Finally, consider the case where A and B are both numeric. As above, we first
compute the histogram for p(y | D). Then, for each bucket b of the histogram
corresponding to p(y | D), we compute the histogram over all values of A that
cooccur with b in the database. Each such histogram represents the marginal

2In our approach, we set the number of buckets to 50.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Probabilistic Information Retrieval Approach • 1151

probability density function p(x | y, D). As before, if there are numerous buckets
of p(y | D), this may result in too many histograms, so we only build histograms
for those buckets for which the corresponding number of A values occurring in
the database is larger than a given threshold.

4.4.2.2 Estimating p(z | W) and p(x | y, W). The estimation of these quanti-
ties is similar to the corresponding methods outlined above, except that the var-
ious histograms have to be built using the workload rather than the database.
The further complication is that, unlike the database where histograms are
built over sets of point data, the workload contains range queries, and thus
the histograms have to be built over sets of ranges. We outline the extensions
necessary for the estimation of p(z | W); the extensions for estimating p(x | y, W)
are straightforward and omitted.

Let z be a value of a numeric attribute A. As before, our approach is to
assume that p(z | W) is the density, at point z, of a continuous probability density
function p(z | W) over the domain of A. However, we cannot directly use standard
density estimation techniques such as histograms because, unlike the database,
the workload specifies a set of ranges over the domain of A, rather than a set
of points over the domain of A.

We extend the concept of equidepth histograms to sets of ranges as follows.
Let query Qi in the workload specify the range (zLi, zRi). If this is the only
query in the workload, we can view this as a probability density function over
the domain of A, where the density is 1/(zRi − zLi) for all points zLi≤ z ≤
zRi, and 0 for all other points. The pdf for the entire workload is computed by
averaging these individual distributions at all points over all queries—thus the
pdf for the workload will resemble a histogram with a potentially large number
of buckets (proportional to the number of queries in the workload).

We now have to approximate this “raw” histogram using an equidepth
histogram with far fewer buckets. The bucket boundaries of the equidepth
histogram should be selected such that the probability mass within each bucket
is the same. Construction of this equidepth histogram is straightforward and
is omitted. At runtime, given a value z, the density can be easily looked up by
determining the bucket to which z belongs.

4.4.3 Multitable Databases. Another aspect to consider is when the
database spans across more than one table. Important multitable scenarios are
star/snowflake schemas where fact tables are logically connected to dimension
tables via foreign key joins. For example, while the actual homes for sale may be
recorded in a fact table, various properties of each home, such as demographics
of neighborhood, builder characteristics, etc., may be found in corresponding
dimension tables. In this case, we create a logical view representing the join of
all these tables—thus this view contains all the attributes of interest—and ap-
ply our ranking methodology on this view. As shall be evident later, if we follow
the precomputation method of Section 5.2, then there is no need to materialize
the logical view, since the execution is then based on the precomputed lists
and the logical view would only be accessed at the final stage to output the top
results.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1152 • S. Chaudhuri et al.

Fig. 1. Architecture of ranking system.

5. IMPLEMENTATION

In this section we discuss the architecture and the implementation of our
database ranking system.

5.1 General Architecture of our Approach

Figure 1 shows the architecture of our proposed system for enabling ranking of
database query results. As mentioned in the introduction, the main components
are the preprocessing component, an intermediate knowledge representation
layer in which the ranking functions are encoded and materialized, and a query
processing component. The modular and generic nature of our system allows
for easy customization of the ranking functions for different applications.

5.2 Preprocessing

This component is divided into several modules. First, the Atomic Probabili-
ties Module computes the quantities p(y |W), p(y |D), p(x| y , W), andp(x| y , D)
for all distinct values x and y . These quantities are computed by scanning
the workload and data, respectively. While the latter two quantities for cat-
egorical data can be computed by running a general association rule mining
algorithm such as that given in Agrawal et al. [1995] on the workload and data,
we instead chose to directly compute all pairwise cooccurrence frequencies by
a single scan of the workload and data, respectively. The observed probabilities
are then smoothened using the Bayesian m-estimate method [Cestnik 1990].
(We note that more sophisticated Bayesian methods that use an informa-
tive prior may be employed instead.) For numeric attributes, we compute

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Probabilistic Information Retrieval Approach • 1153

p(y |W), p(y |D), p(x| y , W), andp(x| y , D) as histograms, as described in
Section 4.4.2.

These atomic probabilities are stored as database tables in the intermediate
knowledge representation layer, with appropriate indexes to enable easy re-
trieval. In particular, p(y |W) and p(y |D) are, respectively, stored in two tables,
each with columns {AttName, AttVal, Prob} and with a composite B+ tree index
on (AttName, AttVal), while p(x| y , W)andp(x| y , D), respectively, are stored
in two tables, each with columns {AttNameLeft, AttValLeft, AttNameRight,
AttValRight, Prob} and with a composite B+ tree index on (AttNameLeft,
AttValLeft, AttNameRight, AttValRight). For numeric quantities, attribute
values are essentially the ranges of the corresponding buckets. These atomic
quantities can be further customized by human experts if necessary.

This intermediate layer now contains enough information for computing the
ranking function, and a naı̈ve query processing algorithm (henceforth referred
to as the Scan algorithm) can indeed be designed, which, for any query, first
selects the tuples that satisfy the query condition, then scans and computes the
score for each such tuple using the information in this intermediate layer, and
finally returns the top-k tuples. However, such an approach can be inefficient
for the Many-Answers problem, since the number of tuples satisfying the query
condition can be very large. At the other extreme, we could precompute the top-
k tuples for all possible queries (i.e., for all possible sets of values X), and,
at query time, simply return the appropriate result set. Of course, due to the
combinatorial explosion, this is infeasible in practice.

We thus pose the question: how can we appropriately trade off between
preprocessing and query processing, that is, what additional yet reasonable
precomputations are possible that can enable faster query-processing algo-
rithms than Scan? (We note that tradeoffs between preprocessing and query
processing techniques are common in IR systems [Grossman and Frieder 2004].)

The high-level intuition behind our approach to the above problem is as
follows. Instead of precomputing the top-k tuples for all possible queries, we
precompute ranked lists of the tuples for all possible atomic queries—each
distinct value x in the table defines an atomic query Qx that specifies the single
value {x}. For example, “SELECT ∗ FROM HOMES WHERE CITY=Kirkland”
is an atomic query. Then at query time, given an actual query that specifies a
set of values X , we “merge” the ranked lists corresponding to each x in X to
compute the final top-k tuples.

This high-level idea is conceptually related to the merging of inverted lists in
IR. However, our main challenge is to be able to perform the merging without
having to scan any of the ranked lists in its entirety. One idea would be to try
and adapt well-known top-k algorithms such as the Threshold Algorithm (TA)
and its derivatives [Bruno et al. 2002b; Fagin 1998; Fagin et al. 2001; Güntzer
et al. 2000; Nepal and Ramakrishna 1999] for this problem. However, it is not
immediately obvious how a feasible adaptation can be easily accomplished. For
example, it is especially critical to keep the number of sorted streams (an access
mechanism required by TA) small, as it is well known that TA’s performance
rapidly deteriorates as this number increases. Upon examination of our ranking
function in Equation (4) (which involves all attribute values of the tuple, and not

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1154 • S. Chaudhuri et al.

Fig. 2. The Index Module.

just the specified values), the number of sorted streams in any naı̈ve adaptation
of TA would depend on the total number of attributes in the database, which
would cause major performance problems.

In what follows, we show how to precompute data structures that indeed
enable us to efficiently adapt TA for our problem. At query time, we do a
TA-like merging of several ranked lists (i.e., of sorted streams). However, the
required number of sorted streams depends only on s and not on m (s is the
number of specified attribute values in the query, while m is the total number
of attributes in the database). We emphasize that such a merge operation is
only made possible due to the specific functional form of our ranking function
resulting from our limited independence assumptions, as discussed in Section
4.2.1. It is unlikely that TA can be adapted, at least in a feasible manner, for
ranking functions that rely on more comprehensive dependency models of the
data.

We next give the details of these data structures. They are precomputed by
the Index Module of the preprocessing component. This module (see Figure 2 for
the algorithm) takes as inputs the association rules and the database, and, for
every distinct value x, creates two lists Cx and Gx , each containing the tuple-ids
of all data tuples that contain x, ordered in specific ways. These two lists are
defined as follows:

(1) Conditional list Cx : This list consists of pairs of the form <TID,CondScore>,
ordered by descending CondScore, where TID is the tuple-id of a tuple t that
contains x and

CondScore =
∏
z∈t

p(x|z, W)

p(x|z, D)
,

where z ranges over all attribute values of t.
(2) Global list Gx : This list consists of pairs of the form <TID, GlobScore>,

ordered by descending GlobScore, where TID is the tuple-id of a tuple t

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Probabilistic Information Retrieval Approach • 1155

that contains x and

GlobScore =
∏
z∈t

p(z|W)

p(z|D)
.

These lists enable efficient computation of the score of a tuple t for any query
as follows: given query Q specifying conditions for a set of attribute values, say
X = {x1,.., xs}, at query time we retrieve and multiply the scores of t in the lists
Cx1, . . . ,Cxs and in one of Gx1,. . . ,Gxs. This requires only s + 1 multiplications
and results in a score3 that is proportional to the actual score. Clearly this
is more efficient than computing the score “from scratch” by retrieving the
relevant atomic probabilities from the intermediate layer and composing them
appropriately.

We need to enable two kinds of access operations efficiently on these lists.
First, given a value x, it should be possible to perform a GetNextTID operation
on lists Cx and Gxin constant time, that is, the tuple-ids in the lists should be ef-
ficiently retrievable one by one in order of decreasing score. This corresponds to
the sorted stream access of TA. Second, it should be possible to perform random
access on the lists, that is, given a TID, the corresponding score (CondScore or
GlobScore) should be retrievable in constant time. To enable these operations
efficiently, we materialize these lists as database tables—all the conditional
lists are maintained in one table called CondList (with columns {AttName,
AttVal, TID, CondScore}), while all the global lists are maintained in another
table called GlobList (with columns {AttName, AttVal, TID, GlobScore}). The
tables have composite B+ tree indices on (AttName, AttVal, CondScore) and
(AttName, AttVal, GlobScore), respectively. This enables efficient performance
of both access operations. Further details of how these data structures and their
access methods are used in query processing are discussed in Section 5.3.

5.2.1 Presence of Functional Dependencies. If we consider functional
dependencies, then the content of the conditional and global lists is changed as
follows.

CondScore =
⎧⎨
⎩

∏
z∈t

p(x|z, W)
∏

z∈t ′

1
p(x|z,D)

, x ∈ A
′
,∏

z∈t
p(x|z, W), otherwise,

and

GlobScore =
∏
z∈t

p(z|W)
∏
z∈t ′

1

p(z|D)
,

whereA
′ = {Ai ∈ A|¬∃Aj ∈ A, F D : Aj → Ai}and t′ is the subset of the

attribute values of t that belong to A
′
.

3This score is proportional, but not equal, to the actual score because it contains extra factors of the

form p(x|z, W)
/

p(x|z, D), where z ∈ X . However, these extra factors are common to all selected

tuples; hence the rank order is unchanged.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1156 • S. Chaudhuri et al.

Fig. 3. The List Merge Algorithm.

5.3 Query Processing

In this subsection we describe the query processing component. The naı̈ve Scan
algorithm has already been described in Section 5.2, so our focus here is on
the alternate List Merge algorithm (see Figure 3). This is an adaptation of TA,
whose efficiency crucially depends on the data structures pre-computed by the
Index Module.

The List Merge algorithm operates as follows. Given a query Q specifying
conditions for a set X = {x1, .., xs} of attributes, we execute TA on the following
s+1 lists: Cx1, . . . ,Cxs, and Gxb, where Gxb is the shortest list among Gx1,. . . ,Gxs

(in principle, any list from Gx1, . . . ,Gxs would do, but the shortest list is likely
to be more efficient). During each iteration, the TID with the next largest score
is retrieved from each list using sorted access. Its score in every other list
is retrieved via random access, and all these retrieved scores are multiplied
together, resulting in the final score of the tuple (which, as mentioned in Section
5.2, is proportional to the actual score derived in Equation 4). The termination
criterion guarantees that no more GetNextTID operations will be needed on any
of the lists. This is accomplished by maintaining an array T which contains the
last scores read from all the lists at any point in time by GetNextTID operations.
The product of the scores in T represents the score of the very best tuple we
can hope to find in the data that is yet to be seen. If this value is no more than
the tuple in the top-k buffer with the smallest score, the algorithm successfully
terminates.

5.3.1 Limited Available Space. So far we have assumed that there is
enough space available to build the conditional and global lists. A simple

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Probabilistic Information Retrieval Approach • 1157

analysis indicates that the space consumed by these lists is O(mn) bytes (m
is the number of attributes and n the number of tuples of the database table).
However, there may be applications where space is an expensive resource (e.g.,
when lists should preferably be held in memory and compete for that space or
even for space in the processor cache hierarchy). We show that, in such cases,
we can store only a subset of the lists at preprocessing time, at the expense of
an increase in the query processing time.

Determining which lists to retain/omit at preprocessing time may be accom-
plished by analyzing the workload. A simple solution is to store the conditional
lists Cx and the corresponding global lists Gx only for those attribute values
x that occur most frequently in the workload. At query time, since the lists of
some of the specified attributes may be missing, the intuitive idea is to probe the
intermediate knowledge representation layer (where the “relatively raw” data
is maintained, i.e., the atomic probabilities) and directly compute the missing
information. More specifically, we use a modification of TA described in Bruno
et al. [2002b], where not all sources have sorted stream access.

5.4 Evaluating IN and Range Queries

As mentioned in Section 4.4.1, executing IN queries is more involved because
each result tuple has possibly different specified values. This makes the appli-
cation of the List Merge algorithm more challenging, since the Scan algorithm
computes the score of each result tuple from the information in this intermedi-
ate layer. In particular, List Merge is complicated in two ways:

(a) We cannot use a single conditional list for a specified attribute with an
IN condition, since a single conditional list only contains tuples containing
a single attribute values. For example, for the query “City IN (Redmond,
Bellevue)” we must merge the conditional lists CRedmond and CBellevue.

(b) More seriously, we can no longer use a single conditional Cx list for a spec-
ified attribute X i (with or without an IN condition), if there is another
specified attribute X j with an IN condition. The reason is that the prod-

uct
∏
z∈t

p(x|z,W)
p(x|z,D)

stored in Cx (x is an attribute value for attribute X i) spans

across all attribute values of t and not only across the unspecified attribute
values Y as required by Equation (8). This was not a problem for the case
of point queries (Equations (4) and (5)) because the factors p(x|z,W)

p(x|z,D)
, where

z ∈ X of the above product, are common for all result-tuples, and hence
the scores are multiplied by a common constant. On the other hand, if
there is an attribute X j with IN condition, then the factor p(x|z,W)

p(x|z,D)
, where z

is an attribute value for X j , is not common and hence cannot be ignored.

To overcome these challenges, we split each IN query to a set of point queries,
which are evaluated as usual and then their results are merged. In particular,
suppose we have the IN query Q : “X 1 IN (x1,1. . . x1,r1) and . . . and X s IN (xs,1

· · · xs,rs).” First we split Q into r1 ·r2 · . . . ·rs point queries, one for each combina-
tion of selecting a single value from each specified attribute. Then these point
queries are evaluated separately and their results (along with their scores) are
merged. To see that such a splitting approach yields the correct results, note

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1158 • S. Chaudhuri et al.

that the first (global) part of the ranking function in Equation (8) is the same
for both the point and the IN query and is equal to the scores in the Global
Lists. The conditional part of Equation (8) only depends on the values of the
tuple tand the set of specified attributes but not on the particular conditions of
the query. Hence, the point queries will assign the same scores as the IN query.
Finally, it should be clear that the same set of tuples is returned as results in
both cases.

The splitting method is efficient only if a relatively small number of point
queries results from the split, that is, if r1·r2· . . . ·rs is small. The key advan-
tage of this approach is that no additional conditional lists need to be created
to support IN queries. An alternate approach described next is preferable when
the IN conditions frequently involve the same small set of attributes. We illus-
trate this idea through an example. Suppose queries specifying IN condition
only on the City attribute are popular. Then, we create a new conditional list

C¬City
x for every attribute value x not in the City attribute, using the formula

CondScore = ∏
z∈{t−t.City}

p(x|z,W)
p(x|z,D)

, and use these conditional lists whenever a

query with an IN condition only on City is submitted.
Finally, note that range queries—that is, queries with ranges on numeric

attributes—may be evaluated using techniques similar to queries with IN con-
ditions. For example, if a condition such as “A BETWEEN (x1, x2)” is specified,
then this condition is discretized into an IN condition by replacing the range
with buckets from the precomputed histogram p(x|W) that overlap with the
range. In case the range only partially overlaps with the leading/trailing buck-
ets, the retrieved tuples that do not satisfy the query condition are discarded
in a final filtering phase.

6. EXPERIMENTS

In this section we report on the results of an experimental evaluation of our
ranking method as well as some of the competitors. We evaluated both the
quality of the rankings obtained, as well as the performance of the various
approaches. We mention at the outset that preparing an experimental setup for
testing ranking quality was extremely challenging, as unlike IR, there are no
standard benchmarks available, and we had to conduct user studies to evaluate
the rankings produced by the various algorithms.

For our evaluation, we used real datasets from two different do-
mains. The first domain was the MSN HomeAdvisor database (http://
houseandhome.msn.com/), from which we prepared a table of homes for sale in
the U.S., with a mix of categorical as well as numeric attributes such as Price,
Year, City, Bedrooms, Bathrooms, Sqft, Garage, etc. The original database
table also had a text column called Remarks, which contained descriptive
information about the home. From this column, we extracted additional
Boolean attributes such as Fireplace, View, Pool, etc. To evaluate the role of
the size of the database, we also performed experiments on a subset of the
HomeAdvisor database, consisting only of homes sold in the Seattle area.

The second domain was the Internet Movie Database (http://www.
imdb.com), from which we prepared a table of movies, with attributes such

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Probabilistic Information Retrieval Approach • 1159

Table I. Sizes of Datasets

Table NumTuples Database Size (MB)

Seattle Homes 17463 1.936

U.S. Homes 1380762 140.432

Movies 1446 Less than 1

as Title, Year, Genre, Director, FirstActor, SecondActor, Certificate, Sound,
Color, etc. We first selected a set of movies by the 30 most prolific actors for
our experiments. From this we removed the 250 most well-known movies, as
we did not wish our users to be biased with information they already might
know about these movies, especially information that is not captured by the
attributes that we had selected for our experiments.

The sizes of the various (single-table) datasets used in our experiments are
shown in Table I. The quality experiments were conducted on the Seattle Homes
and Movies tables, while the performance experiments were conducted on the
Seattle Homes and the U.S. Homes tables—we omitted performance experi-
ments on the Movies table on account of its small size. We used Microsoft SQL
Server 2000 RDBMS on a P4 2.8-GHz PC with 1 GB of RAM for our exper-
iments. We implemented all algorithms in C#, and connected to the RDBMS
through DAO. We created single-attribute indices on all table attributes, to be
used during the selection phase of the Scan algorithm. Note that these indices
are not used by the List Merge algorithm.

6.1 Quality Experiments

We evaluated the quality of three different ranking methods: (a) our ranking
method, henceforth referred to as Conditional; (b) the ranking method described
in Agrawal et al. [2003], henceforth known as Global; and (c) a baseline Random
algorithm, which simply ranks and returns the top-k tuples in arbitrary order.
This evaluation was accomplished using surveys involving 14 employees of
Microsoft Research.

For the Seattle Homes table, we first created several different profiles of
home buyers, for example, young dual-income couples, singles, middle-class
family who like to live in the suburbs, rich retirees, etc. Then, we collected a
workload from our users by requesting them to behave like these home buy-
ers and post queries against the database—for example, a middle-class home-
buyer with children looking for a suburban home would post a typical query
such as “Bedrooms=4 and Price=Moderate and SchoolDistrict=Excellent.”
We collected several hundred queries by this process, each typically speci-
fying two to four attributes. We then trained our ranking algorithm on this
workload.

We prepared a similar experimental setup for the Movies table. We first
created several different profiles of moviegoers, for example, teenage males
wishing to see action thrillers, people interested in comedies from the 1980s,
etc. We disallowed users from specifying the movie title in the queries, as the
title is a key of the table. As with homes, here too we collected several hundred
workload queries, and trained our ranking algorithm on this workload.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1160 • S. Chaudhuri et al.

We first describe a few sample results informally, and then present a more
formal evaluation of our rankings.

6.1.1 Examples of Ranking Results. For the Seattle Homes dataset, both
Conditional as well as Global produced rankings that were intuitive and
reasonable. There were interesting examples where Conditional produced rank-
ings that were superior to Global. For example, for a query with condition
“City=Seattle and Bedroom=1,” Conditional ranked condos with garages the
highest. Intuitively, this is because private parking in downtown is usually
very scarce, and condos with garages are highly sought after. However, Global
was unable to recognize the importance of garages for this class of homebuy-
ers, because most users (i.e., over the entire workload) do not explicitly request
for garages since most homes have garages. As another example, for a query
such as “Bedrooms=4 and City=Kirkland and Price=Expensive,” Conditional
ranked homes with waterfront views the highest, whereas Global ranked homes
in good school districts the highest. This is as expected, because for very rich
homebuyers a waterfront view is perhaps a more desirable feature than a good
school district, even though the latter may be globally more popular across all
homebuyers.

Likewise, for the Movies dataset, Conditional often produced rankings that
were superior to Global. For example, for a query such as “Year=1980s and
Genre=Thriller,” Conditional ranked movies such as Indiana Jones and the
Temple of Doom higher than Commando, because the workload indicated that
Harrison Ford was a better-known actor than Arnold Schwarzenegger during
that era, although the latter actor was globally more popular over the entire
workload.

As for Random, it produced quite irrelevant results in most cases.

6.1.2 Ranking Evaluation. We now present a more formal evaluation of
the ranking quality produced by the ranking algorithms. We conducted two
surveys; the first compared the rankings against user rankings using standard
precision/recall metrics, while the second was a simpler survey that asked users
to rate which algorithm’s rankings they preferred.

6.1.2.1 First Survey. Since requiring users to rank the entire database for
each query for the first survey would have been extremely tedious, we used
the following strategy. For each dataset, for each test query Qi we generated
a set Hi of 30 tuples likely to contain a good mix of relevant and irrelevant
tuples to the query. We did this by mixing the top-10 results of both the Con-
ditional and Global ranking algorithms, removing ties, and adding a few ran-
domly selected tuples. Finally, we presented the queries along with their cor-
responding Hi ’s (with tuples randomly permuted) to each user in our study.
Each user’s responsibility was to mark 10 tuples in Hi as most relevant to the
query Qi. We then measured how closely the 10 tuples marked as relevant
by the user (i.e., the “ground truth”) matched the 10 tuples returned by each
algorithm.

We used the formal precision/recall metrics to measure this overlap. Preci-
sion is the ratio of the number of retrieved tuples that are relevant to the total

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Probabilistic Information Retrieval Approach • 1161

Fig. 4. Average p2recision.

number of retrieved tuples, while Recall is the ratio of the fraction of the num-
ber of retrieved tuples that are relevant to the total number of relevant tuples
(see Baeza-Yates and Ribeiro-Neto [1999]). In our case, the total number of
relevant tuples was 10, so Precision and Recall were equal. (We reiterate that
this is only an artefact of our experimental setu—the “true” Recall can be mea-
sured only if the user is able to mark the entire dataset, which was unfeasible
in our case).

We experimented with several sets of queries in this survey. We first present
the results for the following four IN/Range queries for the Seattle Homes
dataset:

Q1: Bedrooms=4 AND City IN{Redmond, Kirkland, Bellevue};
Q2: City IN {Redmond, Kirkland, Bellevue} AND Price BETWEEN ($700K,

$1000K);
Q3: Price BETWEEN ($700K, $1000K);
Q4: School=1 AND Price BETWEEN ($100K, $200K).

The precision (averaged over these queries) of the different ranking meth-
ods is shown in Figure 4 (a). As can be seen, the quality of Conditional
ranking was superior to Global, while Random was significantly worse than
either.

We next present our survey results for the following five point queries for
the Movies dataset (where precision was measured as described above for the
Seattle Homes dataset):

Q1: Genre=thriller AND Certificate=PG-13;
Q2: YearMade=1980 AND Certificate=PG-13;
Q3: Certificate=G AND Sound=Mono;
Q4: Actor1=Dreyfuss, Richard;
Q5: Genre=Sci-Fi.

The results are shown in Figure 4 (b). The quality of Conditional ranking
was superior to Global, while Random was worse than either.

6.1.2.2 Second Survey. In addition to the above precision/recall
experiments, we also conducted a simpler survey in which users were

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1162 • S. Chaudhuri et al.

Fig. 5. Percent of users preferring each algorithm.

given the top-5 results of the three ranking methods for five queries (different
from the previous survey), and were asked to choose which rankings they
preferred.

We used the following IN/Range queries for the Seattle Homes dataset:

Q1: Bedrooms=4 AND City IN (Redmond, Kirkland, Bellevue);
Q2: City IN (Bellevue, Kirkland) AND Price BETWEEN ($700K, $1000K);
Q3: Price BETWEEN ($500K, $700K) AND Bedrooms=4 AND Year >

1990;
Q4: City=Seattle AND Year > 1990;
Q5: City=Seattle AND Bedrooms=2 AND Price=500K.

We also used the following point queries for the Movies dataset:

Q1: YearMade=1980 AND Genre=Thriller;
Q2: Actor1=De Niro, Robert;
Q3: YearMade=1990 AND Genre=Thriller;
Q4: YearMade=1995 AND Genre=Comedy;
Q5: YearMade=1970 AND Genre=Western.

Figure 5 shows the percent of users that prefer the results of each algorithm:
The results of the above experiments show that Conditional generally pro-

duces rankings of higher quality compared to Global, especially for the Seattle
Homes dataset. While these experiments indicate that our ranking approach
has promise, we caution that much larger-scale user studies are necessary to
conclusively establish findings of this nature.

6.2 Performance Experiments

In this subsection we report on experiments that compared the performance
of the various implementations of the Conditional algorithm: List Merge,
its space-saving variants, and Scan. We do not report on the corresponding
implementations of Global as they had similar performance. We used the
Seattle Homes and U.S. Homes datasets for these experiments. We report
performance results of our algorithms on point queries—we do not report re-
sults for IN/range queries, as each such query is split into a collection of point

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Probabilistic Information Retrieval Approach • 1163

Table II. Time and Space Consumed by Index Module

Datasets List Building Time List Size

Seattle Homes 1500 ms 7.8 MB

U.S. Homes 80,000 ms 457.6 MB

queries whose results are then merged in a straightforward manner as de-
scribed in Section 5.4.

6.2.1 Preprocessing Time and Space. Since the preprocessing performance
of the List Merge algorithm is dominated by the Index Module, we omit
reporting results for the Atomic Probabilities Module. Table II shows the space
and time required to build all the conditional and global lists. The time and
space scale linearly with table size, which is expected. Notice that the space
consumed by the lists is three times the size of the data table. While this may
seemingly appear excessive, note that a fair comparison would be against a
Scan algorithm that has B+ tree indices built on all attributes (so that all
kinds of selections can be performed efficiently). In such a case, the total space
consumed by these B+ tree indices would rival the space consumed by these
lists.

If space is a critical issue, we can adopt the space-saving variation of the List
Merge algorithm as discussed in Section 5.3. We report on this next.

6.2.2 Space-Saving Variations. In this experiment, we showed how the
performance of the algorithms changes when only a subset of the set of global
and conditional lists are stored. Recall from Section 5.3 that we only retain lists
for the values of the frequently occurring attributes in the workload. For this
experiment, we considered top-10 queries with selection conditions that specify
two attributes (queries generated by randomly picking a pair of attributes and
a domain value for each attribute), and measured their execution times. The
compared algorithms were

—LM: List Merge with all lists available;

—LMM: List Merge where lists for one of the two specified attributes are miss-
ing, halving space;

—Scan.

Figure 6 shows the execution times of the queries over the Seattle Homes
database as a function of the total number of tuples that satisfy the selection
condition. The times are averaged over 10 queries.

We first note that LM is extremely fast when compared to the other algo-
rithms (its times are less than 1 s for each run, and consequently its graph is
almost along the x-axis). This is to be expected as most of the computations
were accomplished at preprocessing time. The performance of Scan degraded
when the total number of selected tuples increased, because the scores of more
tuples need to be calculated at runtime. In contrast, the performance of LM
and LMM actually improved slightly. This interesting phenomenon occurred
because, if more tuples satisfy the selection condition, smaller prefixes of the
lists need to be read and merged before the stopping condition is reached.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1164 • S. Chaudhuri et al.

Fig. 6. Execution times of different variations of list merge and scan for seattle homes dataset.

Table III. Execution Times of List Merge for U.S. Homes Dataset

NumSelected Tuples LM Time (ms) Scan Time (ms)

350 800 6515

2000 700 39,234

5000 600 11,5282

30000 550 56,6516

80000 500 3,806,531

Thus, List Merge and its variations are preferable if the number of tuples
satisfying the query condition is large (which is exactly the situation we are in-
terested in, i.e., the Many-Answers problem). This conclusion was reconfirmed
when we repeated the experiment with LM and Scan on the much larger U.S.
Homes dataset with queries satisfying many more tuples (see Table III).

6.2.3 Varying Number of Specified Attributes. Figure 7 shows how the
query processing performance of the algorithms varies with the number of
attributes specified in the selection conditions of the queries over the U.S.
Homes database (the results for the other databases are similar). The times are
averaged over 10 top-10 queries. Note that the times increase sharply for both
algorithms with the number of specified attributes. The LM algorithm becomes
slower because more lists need to be merged, which delays the termination
condition. The Scan algorithm becomes slower because the selection time in-
creased with the number of specified attributes. This experiment demonstrates
the criticality of keeping the number of sorted streams small in our adaptation
of TA.

6.2.4 Varying K in Top-k. This experiment showed how the performance of
the algorithms decreases with the number K of requested results. The graphs
are shown in Figures 8(a) and 8(b) for the Seattle and the U.S. databases re-
spectively. For both datasets, we selected queries with two attributes, which
returned about 500 results. Notice that the performance of Scan was not af-
fected by K , since it is not a top-k algorithm. In contrast, LM degraded with K
because a longer prefix of the lists needed to be processed. Also notice that Scan

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Probabilistic Information Retrieval Approach • 1165

Fig. 7. Varying number of specified atributes for U.S. Homes dataset.

Fig. 8. Varying number K of requested results.

took about the same time for both datasets because the number of the results
returned by the selection was the same (500).

7. CONCLUSIONS AND FUTURE WORK

We propose a completely automated approach for the Many-Answers Problem
which leverages data and workload statistics and correlations. Our ranking
functions are based upon the probabilistic IR models, judiciously adapted
for structured data. We presented results of preliminary experiments which
demonstrate the efficiency as well as the quality of our ranking system.

Our work brings forth several intriguing open problems. For example, many
relational databases contain text columns in addition to numeric and categor-
ical columns. It would be interesting to see whether correlations between text
and nontext data can be leveraged in a meaningful way for ranking. Second,
rather than just query strings present in the workload, can more comprehensive
user interactions be leveraged in ranking algorithms—for example, tracking the
actual tuples that the users select in response to query results? Finally, compre-
hensive quality benchmarks for database ranking need to be established. This
would provide future researchers with a more unified and systematic basis for
evaluating their retrieval algorithms.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1166 • S. Chaudhuri et al.

ACKNOWLEDGMENTS

We thank the anonymous referees for their extremely useful comments on an
earlier draft of this article.

REFERENCES

AGRAWAL, S., CHAUDHURI, S., AND DAS, G. 2002. DBXplorer: A system for keyword based search

over relational databases. In proceedings of ICDE.

AGRAWAL, S., CHAUDHURI, S., DAS, G., AND GIONIS, A. 2003. Automated ranking of database query

results. In proceedings of CIDR.

AMER-YAHIA, S., CASE, P., ROELLEKE, T., SHANMUGASUNDARAM, J., AND WEIKUM. G. 2005a. Report on

the DB/IR panel at SIGMOD 2005. ACM SIGMOD Rec. 34, 4, 71–74.

AMER-YAHIA, S., KOUDAS, N., MARIAN, A., SRIVASTAVA, D., AND TOMAN, D. 2005b. Structure and content

scoring for XML. In proceedings of VLDB.

AGRAWAL, R., MANNILA, H., SRIKANT, R., TOIVONEN, H., AND VERKAMO, A. I. 1995. Fast discovery of

association rules. In proceedings of KDD.

BARBARA, D., GARCIA-MOLINA, H., AND PORTER, D. 1992. The management of probabilistic data.

IEEE Trans. Knoual. Data Eng. 4, 5, 487–502.

BRUNO, N., GRAVANO, L., AND CHAUDHURI, S. 2002a. Top-k selection queries over relational

databases: Mapping strategies and performance evaluation. ACM Trans. Database Syst.
BRUNO, N., GRAVANO, L., AND MARIAN, A. 2002b. Evaluating top-k queries over Web-accessible

databases. In proceedings of ICDE.

BREESE, J., HECKERMAN, D., AND KADIE, C. 1998. Empirical analysis of predictive algorithms for col-

laborative filtering. In proceedings of the 14th Conference on Uncertainty in Artificial Intelligence.

BHALOTIA, G., NAKHE, C., HULGERI, A., CHAKRABARTI, S., AND SUDARSHAN, S. 2002. Keyword searching

and browsing in databases using BANKS. In Proceedings of ICDE.

BAEZA-YATES, R. AND RIBEIRO-NETO, B. 1999. Modern Information Retrieval, 1st ed. Addison-

Wesley, Reading, MA.

CESTNIK, B. 1990. Estimating probabilities: A crucial task in machine learning. In Proceedings
of the European Conference on artificial Intelligence.

CAVALLO, R. AND PITTARELLI, M. 1987. The theory of probabilistic databases. In Proceedings of
VLDB.

CHAUDHURI, S., DAS, G., HRISTIDIS, V., AND WEIKUM, G. 2004. Probabilistic ranking of database

query results. In Proceedings of VLDB.

CHINENYANGA, T. T. AND KUSHMERICK, N. 2002. An expressive and efficient language for XML

information retrieval. J. Amer. Soc. Inform. Sci. Tech. 53, 6, 438–453.

CROFT, W. B. AND LAFFERTY, J. 2003. Language Modeling for Information Retrieval. Kluwer,

Norwell, MA.

CARMEL, D, MAAREK, Y. S. , MANDELBROD, M., MASS, Y., AND SOFFER, A. 2003. Searching XML docu-

ments via XML fragments. In Proceedings of SIGIR.

COHEN, W. 1998a. Integration of heterogeneous databases without common domains using

queries based on textual similarity. In Proceedings of SIGMOD.

COHEN, W. 1998b. Providing database-like access to the Web using queries based on textual

similarity. In Proceedings of SIGMOD.

CHAKRABARTI, K., PORKAEW, K., AND MEHROTRA, S. 2000. Efficient query references in multimedia

databases. In Proceedings of ICDE.

DALVI, N. N. AND SUCIU, D. 2005. Answering queries from statistics and probabilistic Views. In

Proceedings of VLDB.

FAGIN, R. 1998. Fuzzy queries in multimedia database systems. In Proceedings of PODS.

FAGIN, R., LOTEM, A., AND NAOR, M. 2001. Optimal aggregation algorithms for middleware. In

Proceedings of PODS.

FUHR, N. 1990. A probabilistic framework for vague queries and imprecise information in

databases. In Proceedings of VLDB.

FUHR, N. 1993. A probabilistic relational model for the integration of IR and databases. In Pro-
ceedings of ACM SIGIR Conference on Research and Development in Information Retrieval.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Probabilistic Information Retrieval Approach • 1167

FUHR, N. AND GROSSJOHANN, K. 2004. XIRQL: An XML query language based on information

retrieval concepts. ACM Trans. Inform. Syst. 22, 2, 313–356.

FUHR, N. AND ROELLEKE, T. 1997. A probabilistic relational algebra for the integration of informa-

tion retrieval and database systems. ACM Trans. Inform. Syst. 15, 1, 32–66.

FUHR, N. AND ROELLEKE, T. 1998. HySpirit—a probabilistic inference engine for hypermedia re-

trieval in large databases. In Proceedings of EDBT.

GROSSMAN, D. AND FRIEDER, O. 2004. Information Retrieval—Algorithms and Heuristics. Springer,

Berlin, Germany.

GÜNTZER, U., BALKE, W.-T., AND KIESSLING, W. 2000. Optimizing multi-feature queries for image

databases. In Proceedings of VLDB.

GUO, L., SHAO, F., BOTEV, C., AND SHANMUGASUNDARAM. J. 2003. XRANK: Ranked keyword search

over XML documents. In Proceedings of SIGMOD.

HARPER, D. AND VAN RIJSBERGEN, C. J. 1978. An evaluation of feedback in document retrieval using

co-occurrence data. J. Document. 34, 3, 189–216.

HRISTIDIS, V. AND PAPAKONSTANTINOU, Y. 2002. DISCOVER: Keyword search in relational databases.

In Proceedings of VLDB.

HRISTIDIS, V., GRAVANO, L., AND PAPAKONSTANTINOU, Y. 2003a. Efficient IR-style keyword search over

relational databases. In Proceedings of VLDB.

HRISTIDIS, V., PAPAKONSTANTINOU, Y., AND BALMIN, A. 2003b. Keyword proximity search on XML

graphs. In Proceedings of ICDE.

JAGADISH, H. V., POOSALA, V., KOUDAS, N., SEVCIK, K., MUTHUKRISHNAN, S., AND SUEL, T. 1998. Optimal

histograms with quality guarantees. In Proceedings of VLDB.

KIESSLING, W. 2002. Foundations of preferences in database systems. In Proceedings of VLDB.

LAKSHMANAN, L. V. S., LEONE, N., ROSS, R., AND SUBRAHMANIAN, V. S. 1997. ProbView: A flexible

probabilistic database system. ACM Trans. Database Syst. 22, 3, 419–469.

LALMAS, M. AND ROELLEKE, T. 2004. Modeling vague content and structure querying in XML re-

trieval with a probabilistic object-relational framework. In Proceedings of FQAS.

MARTINEZ, W., MARTINEZ, A., AND WEGMAN, E. 2004. Document classification and clustering using

weighted text proximity matrices. In Proceedings of Interface.

MOTRO, A. 1988. VAGUE: A user interface to relational databases that permits vague queries.

ACM Trans. Informat. Syst. 6, 3 (July), 187–214.

NAZERI, Z., BLOEDORN, E., AND OSTWALD, P. 2001. Experiences in mining aviation safety data. In

Proceedings of SIGMOD.

NEPAL, S. AND RAMAKRISHNA, M. V. 1999. Query processing issues in image (multimedia) databases.

In Proceedings of ICDE.

ORTEGA-BINDERBERGER, M., CHAKRABARTI, K., AND MEHROTRA, S. 2002. An approach to integrating

query refinement in SQL. In Proceedings of EDBT. 15–33.

POOSALA, V., IOANNIDIS, Y. E., HAAS, P. J., AND SHEKITA, E. J. 1996. Improved histograms for selec-

tivity estimation of range predicates. In Proceedings of SIGMOD. 294–305.

RADLINSKI, F. AND JOACHIMS, T. 2005. Query chains: Learning to rank from implicit feedback. In

Proceedings of KDD.

RUI, Y., HUANG, T. S., AND MEHROTRA, S. 1997. Content-based image retrieval with relevance feed-

back in MARS. In Proceedings of the IEEE Conference on Image Processing.

SHEN, X., TAN, B. AND ZHAI, C. 2005. Context-sensitive information retrieval using implicit feed-

back. In Proceedings of SIGIR.

SPARCK JONES, K., WALKER, S., AND ROBERTSON, S. E. 2000a. A probabilistic model of information

retrieval: Development and comparative experiments—Part 1. Inf. Process. Man. 36, 6, 779–808.

SPARCK JONES, K., WALKER, S., AND ROBERTSON, S. E. 2000a. A probabilistic model of information

retrieval: Development and comparative experiments—Part 2. Inf. Process. Man. 36, 6, 809–

840.

THEOBALD, A. AND WEIKUM, G. 2002. The index-based XXL search engine for querying XML data

with relevance ranking. In Proceedings of EDBT.

THEOBALD, M., SCHENKEL, R., AND WEIKUM, G. 2005. An efficient and versatile query engine for

topX search. In Proceedings of VLDB.

WU, L., FALOUTSOS, C., SYCARA, K., AND PAYNE, T. 2000. FALCON: Feedback adaptive loop for

content-based retrieval. In Proceedings of VLDB.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1168 • S. Chaudhuri et al.

WHITTAKER, J. 1990. Graphical Models in Applied Multivariate Statistics. Wiley, New York, NY.

WIDOM, J. 2005. Trio: A system for integrated management of data, accuracy, and lineage. CIDR.

WIMMERS, L., HAAS, L. M. , ROTH, M . T., AND BRAENDLI, C. 1999. Using Fagin’s algorithm for

merging ranked results in multimedia middleware. In Proceedings of CoopIS.

XU, J. AND CROFT, W. B. 1996. Query expansion using local and global document analysis, In

Proceedings of SIGIR. 4–11.

YU, C.T. AND MENG, W. 1998. Principles of Database Query Processing for Advanced Applications.

Morgan Kaufmann, San Francisco, CA.

Received November 2005; revised June 2006; accepted June 2006

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

