
Effective Use of Block-Level Sampling in Statistics
Estimation

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

Gautam Das
Microsoft Research

gautamd@microsoft.com

Utkarsh Srivastava∗

Stanford University

usriv@stanford.edu

ABSTRACT
Block-level sampling is far more efficient than true uniform-random
sampling over a large database, but prone to significant errors if
used to create database statistics. In this paper, we develop prin-
cipled approaches to overcome this limitation of block-level sam-
pling for histograms as well as distinct-value estimations. For his-
togram construction, we give a novel two-phase adaptive method
in which the sample size required to reach a desired accuracy is de-
cided based on a first phase sample. This method is significantly
faster than previous iterative methods proposed for the same prob-
lem. For distinct-value estimation, we show that existing estimators
designed for uniform-random samples may perform very poorly if
used directly on block-level samples. We present a key technique
that computes an appropriate subset of a block-level sample that
is suitable for use with most existing estimators. This, to the best
of our knowledge, is the first principled method for distinct-value
estimation with block-level samples. We provide extensive experi-
mental results validating our methods.

1. INTRODUCTION
Building database statistics by a full scan of large tables can be

expensive. To address this problem, building approximate statistics
using a random sample of the data is a natural alternative. There has
been a lot of work on constructing statistics such as histograms and
distinct values through sampling [1, 2, 7]. Most of this work deals
with uniform-random sampling. However, true uniform-random
sampling can be quite expensive . For example, suppose that there
are 50 tuples per disk block and we are retrieving a 2% uniform-
random sample. Then the expected number of tuples that will be
chosen from each block is 1. This means that our uniform-random
sample will touch almost every block of the table. Thus, in this
case, taking a 2% uniform-random sample will be no faster than
doing a full scan of the table.

Clearly, uniform-random sampling is impractical except for very
small sample sizes. Therefore, most commercial relational database
systems provide the ability to do block-level sampling, in which to

∗This work was done while the author was visiting Microsoft Re-
search

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004 June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . . $5.00.

sample a fraction of q tuples of a table, a fraction q of the disk-
blocks of the table are chosen uniformly at random, and all the
tuples in these blocks are returned in the sample. Thus, in contrast
to uniform-random sampling, block-level sampling requires signif-
icantly fewer block accesses for the same sample size (blocks are
typically quite large, e.g., 8K bytes).

The caveat is that a block-level sample is no longer a uniform
sample of the table. The accuracy of statistics built over a block-
level sample depends on the layout of the data on disk, i.e., the
way tuples are grouped into blocks. In one extreme, a block-level
sample may be just as good as a uniform-random sample, for ex-
ample, when the layout is random, i.e., if there is no statistical de-
pendence between the value of a tuple and the block in which it
resides. However, in other cases, the values in a block may be fully
correlated (e.g., if the table is clustered on the column on which the
histogram is being built). In such cases, the statistics constructed
from a block-level sample may be quite inaccurate as compared to
those constructed from a uniform-random sample of the same size.

Given the high cost of uniform-random sampling, we contend
that most previous work on statistics estimation through uniform-
random sampling is of theoretical significance, unless robust and
efficient extensions of those techniques can be devised to work with
block-level samples. Surprisingly, despite the widespread use of
block-level sampling in relational products, there has been limited
progress in database research in analyzing impact of block-level
sampling on statistics estimation. An example of past work is [2];
however it only addresses the problem of histogram construction
from block-level samples, and the suggested scheme carries a sig-
nificant performance penalty.

In this paper, we take a comprehensive look at the significant im-
pact of block-level sampling on statistics estimation. To effectively
build statistical estimators with block-level sampling, the challenge
is to leverage the sample as efficiently as possible, and still be ro-
bust in the presence of any type of correlations that may be present
in the sample. Specifically, we provide a foundation for develop-
ing principled approaches that leverage block-level samples for his-
togram construction as well as distinct-value estimation.

For histogram construction, the main challenge is in determin-
ing the required sample size to construct a histogram with a desired
accuracy: if the layout is fairly random then a small sample will
suffice, whereas if the layout is highly correlated, a much larger
sample is needed. We propose a 2-phase sampling algorithm that
is significantly more efficient (200% or more) than what was pro-
posed in [2]. In the first phase, our algorithm uses an initial block-
level sample to determine “how much more to sample” by using
cross-validation techniques. This phase is optimized so that the
cross-validation step can piggyback on a standard sort-based algo-
rithm for building histograms. In the second and final phase, the al-

gorithm uses block-level sampling to gather the remaining sample,
and build the final histogram. This is in sharp contrast to the algo-
rithm in [2] that blindly doubles the sample size iteratively until the
desired accuracy is reached— thus increasing sample size signifi-
cantly, and paying significant overheads at each iteration. We back
up our rationale for 2-phase histogram construction with a formal
analytical model, and demonstrate its overwhelming superiority ex-
perimentally.

Distinct-value estimation is fundamentally different from his-
togram construction. To the best of our knowledge, despite a very
large body of work on many distinct-value estimators for uniform-
random sampling [1, 7, 11, 15], no past work has analyzed the
impact of block-level sampling on such estimators. We formally
show that using such estimators directly on the entire block-level
sample may yield significantly worse estimates compared to those
obtained by using them on an “appropriate subset” of the block-
level sample. Our experiments confirm that our procedure for se-
lecting such an appropriate subset does indeed result in distinct-
value estimates that are almost as accurate as estimates obtained
from uniform-random samples of similar size, and often vastly bet-
ter than the estimates obtained by the naïve approach of applying
the estimator on the entire block-level sample.

Finally, our study led to the identification of novel measures that
quantify the “degree of badness” of the layout for block-level sam-
pling for statistics estimation. Interestingly, these measures are
found to be different for histograms and distinct-values, thus em-
phasizing the fundamental differences between the two problems.

The rest of the paper is organized as follows. In Section 2, we
survey related work. In Section 3, we investigate the problem of
histogram construction, and in Section 4, the problem of distinct-
value estimation, with block-level samples. We have prototyped
our algorithms using Microsoft SQL Server. We present the exper-
imental results in Section 5, and conclude in Section 6.

2. RELATED WORK
Random sampling has been used for solving many database prob-

lems. In statistics literature, the concept of cluster sampling is simi-
lar to block-level sampling being considered here [3]. A large body
of work addresses the problem of estimating query-result sizes by
sampling [8, 9, 10, 12]. The idea of using cluster sampling to im-
prove the utilization of the sampled data, was first proposed for
this problem by Hou et. al. [10]. However, they focus on de-
veloping consistent and unbiased estimators for COUNT queries,
and the approach is not error driven. For distinct-value estimation
with block-level samples, they simply use the Goodman’s estima-
tor [6] directly on the block-level sample, recognizing that such an
approach can lead to a significant bias. The use of two-phase, or
double sampling was first proposed by Hou et. al. [9], also in the
context of COUNT query evaluation. However, their work consid-
ers uniform-random samples instead of block-level samples, and
does not directly apply to histogram construction.

The use of random sampling for histogram construction was first
proposed by Piatetsky-Shapiro et. al. [13]. In this context, the
problem of deciding how much to sample for a desired error, has
been addressed in [2, 5]. However, these derivations assume uni-
form random sampling. Only Chaudhuri et. al. [2] consider the
problem of histogram construction through block-level sampling.
They propose an iterative cross-validation based approach to arrive
at the correct sample size for the desired error. However, in con-
trast to our two-phase approach, their approach often goes through
a large number of iterations to arrive at the correct sample size, con-
sequently incurring much higher overhead. Also, their approach
frequently samples more than required for the desired error.

The problem of distinct value-estimation through uniform ran-
dom sampling has received considerable attention [1, 6, 7, 11, 15].
The Goodman’s estimator [6] is the unique unbiased distinct-value
estimator for uniform random samples. However, it is unusable in
practice [7] due to its extremely high variance. The hardness of
distinct-value estimation has been established by Charikar et. al.
in [1]. Most estimators that work well in practice do not give any
analytical error guarantees. For the large sampling fractions that
distinct-value estimators typically require, uniform-random sam-
pling is impractical. Haas et. al. note in [7] that their estimators
are useful only when the relation is laid out randomly on disk (so
that a block-level random sample is as good as a uniform-random
sample). However, distinct value estimation through block-level
sampling has remained unaddressed. To the best of our knowledge,
our work is the first to address this problem in a principled manner.

3. HISTOGRAM CONSTRUCTION
3.1 Preliminaries

Almost all query-optimization methods rely on the availability of
statistics on database columns to choose efficient query plans. His-
tograms have traditionally been the most popular means of storing
these statistics compactly, and yet with reasonable accuracy. Any
type of histogram can essentially be viewed as approximation of
the underlying data distribution, and is a partitioning of the domain
into disjoint buckets and storing the counts of the number of tuples
belonging to each bucket. These counts are often augmented with
density information, i.e., the average number of duplicates for each
distinct value. To estimate density, a knowledge of the number of
distinct values in the relevant column is required. Bucket counts
help in cardinality estimation of range queries while density infor-
mation helps for equality queries.

Histogram algorithms differ primarily in how the bucket sepa-
rators are selected to reduce the error in approximating the under-
lying data distribution. For example, an equi-width bucketing al-
gorithm forms buckets with equal ranges, an equi-depth bucketing
algorithm forms buckets with equal number of tuples, a maxdiff
bucketing algorithm places separators where tuple frequencies on
either side differ the most, while the optimal v-opt algorithm places
separators such that this error is minimized [14].

3.1.1 Error-Metrics
We distinguish between two types of errors of histograms. The

first type of error measures how accurately a histogram captures
the underlying data distribution. The second type of error arises
when the histogram is constructed through sampling. This error
measures to what degree a histogram constructed over a sample,
approximates a histogram constructed by a full scan of the data
(i.e., a perfect histogram). In this paper, we are concerned with the
second type of error.

Various metrics have been proposed for the second type of error.
We first develop some notation. Consider a table with n tuples,
containing an attribute X over a totally ordered domain D. An ap-
proximate k-bucket histogram over the table is constructed through
sampling as follows. Suppose a sample of r tuples is drawn. A
bucketing algorithm uses the sample to decide a sequence of sep-
arators s1, s2, . . . , sk−1 ∈ D. These separators partition D into k
buckets B1, B2, . . . , Bk where Bi = {v ∈ D|si−1 < v ≤ si}
(We take s0 = −∞ and sk = ∞). Let ñi be the size of (i.e., num-
ber of tuples contained in) Bi in the sample, and ni be the size of
Bi in the table. The histogram estimates ni as n̂i = n

r
· ñi. The

histogram is perfect if ni = n̂i for i = 1, 2, . . . , k.
The variance-error metric [5] measures the mean squared error

across all buckets, normalized with respect to the mean bucket size:

∆var =
k

n

√

√

√

√

1

k

k
∑

i=1

(n̂i − ni)2 (1)

For the special case of equi-depth histograms, the problem of de-
riving the uniform-random sample size required to reach a given
variance-error with high probability has been considered in [5].

The max-error metric [2] measures the maximum error across all
buckets:

∆max = max
i

{

|n̂i − ni|
(n/k)

}

(2)

For equi-depth histograms, the uniform-random sample size needed
to reach a desired max-error with high probability is derived in [2].

Although the methods developed in our paper can work for both
kinds of metrics, in practice we observed that the max-error met-
ric was overly conservative: a single bad bucket unduly penal-
izes a histogram whose accuracy is otherwise tolerable in practice.
Conversely, an unreasonably large sample size is often required to
achieve a desired error bound. This was especially true when the
layout was “bad” for block-level sampling (see Section 3.1.2). Due
to these difficulties with the max-error metric, in the rest of this
paper we chose to describe our results only for the variance-error
metric.

3.1.2 Problem Formulation
The layout of a database table (i.e., the way the tuples are grouped

into blocks) can significantly affect the error in a histogram con-
structed over a block-level sample. This point was recognized in
[2], and is illustrated by the following two extreme cases:

• Random Layout: For a table in which the tuples are grouped
randomly into blocks, a block-level sample is equivalent to a
uniform-random sample. In this case, a histogram built over
a block-level sample will have the same error as a histogram
built over a uniform-random sample of the same size.

• Clustered Layout: For a table in which all tuples in a block
have the same value in the relevant attribute, sampling a full
block is equivalent to sampling a single tuple from the table
(since the contents of the full block can be determined given
one tuple of the block). In this case, a histogram built over
a block-level sample will have a higher error as compared to
one built over a uniform-random sample of the same size.

In practice, most real layouts fall somewhere in between. For
example, suppose a relation was clustered on the relevant attribute,
but at some point in time the clustered index was dropped. Now
suppose inserts to the relation continue to happen. This results
in the table becoming “partially clustered” on this attribute. As
another example, consider a table which has columns Age and
Salary, and is clustered on the Age attribute. Since an older age
usually (but not always) implies a higher salary, the table shall be
“almost clustered” on Salary too.

Suppose, we have to construct a histogram with a desired er-
ror bound. The above arguments show that the block-level sample
size required to reach the desired error depends significantly on the
layout of the table. In this section, we consider the problem of con-
structing a histogram with the desired error bound through block-
level sampling, by adaptively determining the required block-level
sample size according to the layout.

The rest of this section is organized as follows. In the next sub-
section we briefly describe an iterative cross-validation based ap-
proach (previously developed in [2]) for this problem, and discuss

its shortcomings. In Section 3.3, we provide the formal analysis
which motivates our solution to the problem. Our proposed algo-
rithm 2PHASE is given in Section 3.4.

3.2 Cross-Validation Based Iterative Approach
The idea behind cross-validation is the following. First, a block-

level sample S1 of size r is obtained, and a histogram H is con-
structed on it. Then another block-level sample S2 of the same size
is drawn. Let ñi (resp. m̃i) be the size of the ith bucket of H in
S1 (resp. S2). Then, the cross-validation error according to the
variance error-metric is given by:

∆CV
var =

k

r

√

√

√

√

1

k

k
∑

i=1

(ñi − m̃i)2 (3)

Intuitively, the cross-validation error measures the similarity of
the two samples in terms of the value distribution. Cross-validation
error is typically higher than the actual variance error [2]: it is un-
likely for two independent samples to resemble each other in distri-
bution, but not to resemble the original table. Based on this fact, a
straightforward algorithm has been proposed in [2] to arrive at the
required block-level sample size for a desired error. Let runf (resp.
rblk) be the uniform-random sample size (resp. block-level sample
size) required to reach the desired error. The algorithm starts with
an initial block-level sample of size runf . The sample size is re-
peatedly doubled and cross-validation performed, until the cross-
validation error reaches the desired error target. Henceforth, we
shall refer to this algorithm as DOUBLE. The major limitation of
DOUBLE is that it always increases the sample size by a factor of
two. This blind step factor hurts in both the following cases:

• Each iteration of the algorithm incurs considerable fixed over-
heads of drawing a random block-level sample, sorting the
incremental sample, constructing a histogram, and perform-
ing the cross-validation test. For significantly clustered data
where rblk is much larger than runf , the number of iterations
becomes a critical factor in the performance.

• If at some stage in the iterative process, the sample size is
close to rblk, the algorithm is oblivious of this, and samples
more than required. In fact in the worst case, the total sample
drawn maybe four times rblk, because an additional sample
of the same size is required for the final cross-validation.

To remedy these limitations, the challenge is to develop an ap-
proach which (a) goes through a much smaller number of iterations
(ideally one or two) so that the effect of the overhead per iteration is
minimized, and (b) does not overshoot the required sample size by
much. Clearly, these requirements can be met only if our algorithm
has a knowledge of how the cross-validation error decreases with
sample size. We formally develop such a relationship in the fol-
lowing subsection, which provides the motivation for our eventual
algorithm, 2PHASE.

3.3 Motivating Formal Analysis
In this subsection we formally study the relationship between

cross-validation error and sample size. To keep the problem ana-
lyzable, we adopt the following simplified model: we assume that
the histogram construction algorithm is such that the histograms
produced over any two different samples have the same bucket sep-
arators, and differ only in the estimated counts of the correspond-
ing buckets. For example, an equi-width histogram satisfies this as-
sumption. This assumption is merely to motivate our analysis of the
proposed algorithm. However, our algorithm itself can can work

with any histogram construction algorithm, and does not actually
fix bucket boundaries. Indeed, our experimental results (Section 5)
demonstrate the effectiveness of our approach for both equi-depth
histograms and maxdiff histograms, neither of which satisfies the
above assumption of same bucket separators. Of course, it is an in-
teresting open problem whether these histograms can be formally
analyzed for sampling errors without making the above simplifying
assumption.

Recall the notation introduced in Section 3.1.1. Let there be n
tuples and N blocks in the table with b tuples per block (N = n/b).
Given a histogram H with k buckets, consider the distribution of
the tuples of bucket Bi among the blocks. Let a fraction aij of the
tuples in the jth block belong to bucket Bi (ni = b ·∑N

j=1 aij).

Let σ2
i denote the variance of the numbers {aij |j = 1, 2, . . . , N}.

Intuitively, σ2
i measures how evenly the tuples of bucket Bi are

distributed among the blocks. If they are fairly evenly distributed,
σ2

i will be small. On the other hand, if they are concentrated in
relatively few blocks, σ2

i will be large.
Let S1 and S2 be two independent block-level samples of r tu-

ples each. We assume blocks are sampled with replacement. For
large tables, this closely approximates the case of sampling with-
out replacement. Suppose we construct a histogram H over S1, and
cross-validate it against S2. Let ∆CV

var be the cross-validation error
obtained.

THEOREM 1. E[(∆CV
var)

2] = 2kb
r

∑

i σ2
i

PROOF. Let ñi (resp. m̃i) be the size of Bi in S1 (resp. S2). For
fixed bucket separators, both ñi and m̃i have the same distribution.
We first find the mean and variance of these variables. The mean is
independent of the layout, and is given by

µñi
= µm̃i

=
r

n
· ni

The expression for the variance is more involved and depends on
the layout. A block-level sample of r tuples consists of r/b blocks
chosen uniformly at random. If block j is included in the block-
level sample, it contributes baij tuples to the size of Bi. Thus,
ñi (or m̃i) is equal to b times the sum of r/b independent draws
with replacement from the aij’s. Hence, by the standard sampling
theorem [3],

σ2
ñi

= σ2
m̃i

=
r

b
· b2 · σ2

i = rbσ2
i

By Equation 3 for the cross-validation error:

E[(∆CV
var)

2] =
k

r2

k
∑

i=1

E[(ñi − m̃i)
2]

=
k

r2

k
∑

i=1

E[(ñi − µñi
)2] + E[(m̃i − µm̃i

)2]

=
k

r2

k
∑

i=1

σ2
ñi

+ σ2
m̃i

(4)

=
2kb

r

k
∑

i=1

σ2
i

There are three key conclusions from this analysis:

1. The expected squared cross-validation error is inversely pro-
portional to the sample size. This forms the basis of a more
intelligent step factor than the blind factor of two in the iter-
ative approach of [2].

2. In Equation 4, the first term inside the summation represents
the actual variance-error. Since both terms are equal in ex-
pectation, the cross-validation error can be expected to be
about

√
2 times the actual variance-error. Thus it is sufficient

to stop sampling when the cross-validation error has reached
the desired error target.

3. The quantity
∑k

i=1 σ2
i represents a quantitative measure of

the “badness” of a layout for constructing the histogram H.
If this quantity is large, the cross-validation error (and also
the actual variance-error) is large, and we need a bigger block-
level sample for the same accuracy. Besides the layout, this
measure also naturally depends on the bucket separators of
H. Henceforth we refer to this quantity as Hist Badness.

We next describe our 2PHASE algorithm for histogram construc-
tion, which is motivated by the above theoretical analysis.

3.4 The 2PHASE Algorithm
Suppose we wish to construct a histogram with a desired error

threshold. For simplicity, we assume that the threshold is speci-
fied in terms of the desired cross-validation error ∆req (since the
actual error is typically less). Theorem 1 gives an expression for
the expected squared cross-validation error, i.e., it is proportional
to Hist Badness and inversely proportional to the block-level sam-
ple size. Since in general we do not know Hist Badness (such in-
formation about the layout is almost never directly available), we
propose a 2-phase approach: draw an initial block-level sample in
the first phase and use it to try and estimate Hist Badness (and con-
sequently the required block-level sample size), then draw the re-
maining block-level sample and construct the final histogram in the
second phase. The performance of this overall approach critically
depends on how accurate the first phase is in determining the re-
quired sample size. An accurate first phase would ensure that this
approach is much superior to the cross-validation approach of [2]
because (a) there are far fewer iterations and therefore significantly
fewer overheads, (b) the chance of overshooting the required sam-
ple size is reduced, and (c) there is no final cross-validation step to
check whether the desired accuracy has been reached.

A straightforward implementation of the first phase might be as
follows. We pick an initial block-level sample of size 2runf (where
runf is the theoretical sample size that achieves an error of ∆req

assuming uniform-random sampling). We divide this initial sample
into two halves, build a histogram on one half and cross-validate
this histogram using the other half. Suppose the observed cross-
validation error is ∆obs. If ∆obs ≤ ∆req we are done, otherwise
the required block-level sample size rblk can be derived from The-

orem 1 to be (∆obs

∆req)2 · runf . However, this approach is not very
robust. Since Theorem 1 holds only for expected squared cross-
validation error, using a single estimate of the cross-validation er-
ror to predict rblk may be very unreliable. Our prediction of rblk

should ideally be based on the mean of a number of trials.
To overcome this shortcoming, we propose our 2PHASE algo-

rithm, in which the first phase performs many cross-validation tri-
als for estimating rblk accurately. However, the interesting aspect
of our proposal is that this robustness comes with almost no per-
formance penalty. A novel scheme is employed in which multiple
cross-validations are piggybacked on sorting, so that the resulting
time complexity is comparable to that of a single sorting step. Since
most histogram construction algorithms require sorting anyway1,

1Equi-depth histograms are exceptions because they can be con-
structed by finding quantiles. However, in practice equi-depth his-
tograms are often implemented by sorting [2].

Algorithm 2PHASE
Input:

∆req : Desired maximum cross-validation error in histogram
r1 : Input parameter for setting initial sample size
lmax : Number of points needed to do curve-fitting

Phase I:
1. A[1 . . . 2r1] = block-level sample of 2r1 tuples
2. sortAndValidate(A[1 . . . 2r1], 0)
3. rblk = getRequiredSampleSize()

Phase II:
4. A[2r1 + 1 . . . rblk] = block-level sample of rblk − 2r1 tuples
5. sort(A[2r1 + 1 . . . rblk])
6. merge(A[1 . . . 2r1], A[2r1 + 1 . . . rblk])
7. createHistogram(A[1 . . . rblk])

sortAndValidate(A[1 . . . r], l)
1. if (l = lmax)
2. sort(A[1 . . . r])
3. else
4. m = br/2c
5. sortAndValidate(A[1 . . . m], l + 1)
6. sortAndValidate(A[m + 1 . . . r], l + 1)
7. lh = createHistogram(A[1 . . . m])
8. rh = createHistogram(A[m + 1 . . . r])
9. sqErr[l] += getSquaredError(lh, A[m + 1 . . . r])
10. sqErr[l] += getSquaredError(rh, A[1 . . . m])
11. merge(A[1 . . . m], A[m + 1 . . . r])

getRequiredSampleSize()
1. if (sqErr[0]/2 ≤ (∆req)2)
2. return 2r1

3. else
4. Fit a curve of the form y = c/x through the

points (r1/2i, sqErr[i]/2i+1) for i = 0, 1, . . . , lmax − 1
5. return c

(∆req)2

Figure 1: 2-Phase approach to sampling for histogram con-
struction

this sharing of cross-validation and sorting leads to a very robust
yet efficient approach.

The pseudo-code for 2PHASE is shown in Figure 1. We assume
merge, sort, createHistogram and getSquaredError are externally
supplied methods. The first two have their standard functionality.
The function createHistogram can be any histogram construction
algorithm such as the equi-depth algorithm, or the maxdiff algo-
rithm [14]. The function getSquaredError cross-validates the given
histogram against the given sample, and returns the squared cross-
validation error (∆CV

var)
2, according to Equation 3.

In Phase I, the algorithm picks an initial block-level sample of
size 2r1 where r1 is an input parameter. This parameter can be
set as runf , however in practice we found that a setting that is 2
to 3 times larger yields much more robust results. Then, cross-
validation is performed on different size subparts of the initial sam-
ple, where the task of cross-validation is combined with that of
sorting. This piggybacking idea is illustrated in Figure 2, and is im-
plemented by the sortAndValidate procedure in Figure 1. We use an
in-memory merge-sort for sorting the sample (the sample sizes used
in the first phase easily fit in memory). To sort and cross-validate
a sample of size r, it is divided into two halves. Each of these are
recursively sorted and cross-validated. Then, histograms are built

r

r/2

r/4

cross
validate

l=0

l=1

l=2
sort sort sort

cross
validate

cross
validate

Merge

Merge Merge

Figure 2: Combining cross-validation with sorting for lmax = 2

on the left and right halves. Each histogram is tested against the
other half, and two estimates of (∆CV

var)
2 for a sample of size r/2

are obtained. Note that the recursive cross-validation of the two
halves will give several (∆CV

var)
2 estimates for each sample size

r/4, r/8 . . . etc. Effectively, we are reusing subparts of the sample
to get several different cross-validation error estimates. We note
that the standard statistical technique of bootstrap is also based
upon reusing different subparts of a sample [4], and it would be
interesting to explore its connections with our technique. However,
the approach of piggybacking on merge-sort is very specific to our
technique, and is motivated by efficiency considerations.

Although quick-sort is typically the fastest in-memory sort (and
is the method of choice in traditional in-memory histogram con-
struction algorithms), merge-sort is not much slower. Moreover, it
allows us to combine cross-validation with sorting. The merge-sort
is parameterized to not form its entire recursion tree, but to truncate
after the number of levels has increased to a threshold (lmax). This
reduces the overall overhead of cross-validation. Also, at lower
sample sizes, error estimates lose statistical significance. Usually
a small number such as lmax = 3 suffices for our purposes. At
the leaves of the recursion tree, we perform quick-sort rather than
continuing with merge-sort.

Once this sorting phase is over, we have several (∆CV
var)

2 esti-
mates corresponding to each sample size r1, r1/2, . . . , r1/2lmax−1.
We compute the mean of these estimates for each of these sample
sizes. We then find the best fitting curve of the form ∆2 = c/r
(justified by Theorem 1) to fit our observed points, where c is a
constant, and ∆2 is the average squared cross-validation error ob-
served for a sample of size r. This curve fitting is done using the
standard method of least-squares. The best-fit curve yields a value
of c which is used to predict rblk by putting ∆ = ∆req . This is
done in the procedure getRequiredSampleSize.

Finally, once we have an estimate for rblk, we enter Phase II.
The additional sample required (of size rblk − 2r1) is obtained and
sorted. It is merged with the (already sorted) first-stage sample, a
histogram is built on the total sample, and returned.

In summary, the 2PHASE algorithm is significantly more effi-
cient than DOUBLE, mainly because it uses a more intelligent step
factor that enables termination after only two phases. Note that
2PHASE seeks to reach the cross-validation error target in the ex-
pected sense, thus there is a theoretical possibility that the error
target may not be reached after the second phase. One way to
avoid this problem would be to develop a high probability bound on
the cross-validation error (rather than just an expected error bound
as in Theorem 1), and modify the algorithm accordingly so that it
reaches the error target with high probability. Another alternative
would be to extend 2PHASE to a potentially multi-phase approach,
where the step size is decided as in 2PHASE, but the termination
criterion is based on a final cross-validation step as in DOUBLE.
Although this will reduce the number of iterations as compared to
DOUBLE, it will still not solve the problem of oversampling due to
the final cross-validation step. However, neither of these extensions
seem to be necessary since 2PHASE in its present form almost al-

ways reaches the cross-validation error target in practice. Even in
the few cases in which it fails, the actual variance-error (which is
typically substantially smaller than the cross-validation error) is al-
ways well below the error target.

4. DISTINCT VALUE ESTIMATION

4.1 Problem Formulation
The number of distinct-values is a popular statistic commonly

maintained by database systems. Distinct-value estimates often ap-
pear as part of histograms, because in addition to tuple counts in
buckets, histograms also maintain a count of the number of distinct
values in each bucket. This gives a density measure for each bucket,
which is defined as the average number of duplicates per distinct
value. The bucket density is returned as the estimated cardinality
of any query with a selection predicate of the form X = a, where
a is any value in the range of the bucket, and X is the attribute over
which the histogram has been built. Thus, any implementation of
histogram construction through sampling must also solve the prob-
lem of estimating the number of distinct values in each bucket.

There has been a large body of work on distinct-value estimation
using uniform-random sampling [1, 6, 7, 11, 15]. Here we address
the different problem of distinct-value estimation through block-
level sampling. To the best of our knowledge, this problem has
not been addressed in a principled manner in previous work. We
shall only consider the problem of estimating the number of dis-
tinct values on the entire column X through block-level sampling.
The most straightforward way to extend it to histogram buckets is
to use the distinct value estimators on subparts of the sample corre-
sponding to each bucket.

We clarify that this problem is different in flavor compared to
the one we addressed for histogram construction. Here we focus
on developing the best distinct-value estimator to use with block-
level samples. The problem of deciding how much to sample to
reach a desired accuracy (which we had addressed for histograms),
remains open for future work. This seems to crucially depend on
analytical error guarantees, which are unavailable for most distinct-
value estimators even with uniform-random sampling [1, 7].

Let D be the number of distinct values in the column, and let D̂
be the estimate returned by an estimator. We distinguish between
the bias and error of the estimator:

Bias = |E[D̂] − D|
Error = max{D̂/D, D/D̂}

Our definition of error is according to the ratio-error metric defined
in [1]. A perfect estimator shall have error = 1. Notice that it is
possible for an estimator to be unbiased (i.e. E[D̂] = D), but still
have high expected error.

Most prior work has been to develop estimators with small bias
for uniform-random sampling. Getting a bound on the error is con-
siderably harder [1, 7]. In fact, there are no known estimators that
guarantee error bounds even for uniform-random sampling 2. Ide-
ally, we would like to leverage existing estimators which have been
designed for uniform-random samples and make them work for
block-level samples. Moreover, we seek to use these estimators
with block-level samples in such a way, that the bias and error are
not much larger than when these estimators are used with uniform-
random samples of the same size.

The rest of this section is organized as follows. In the next sub-
section, we show that if existing distinct-value estimators are used

2The formal result for the GEE estimator in [1] is a proof of the
bias being bounded, not error.

naïvely with block-level samples, highly inaccurate estimates may
be produced. Then, in Section 4.3, we develop an exceedingly
simple yet novel technique called COLLAPSE. Using formal ar-
guments, we show that COLLAPSE allows us to use a large class
of existing estimators on block-level samples instead of uniform-
random samples such that the bias remains small. Finally, in Sec-
tion 4.4, we study the performance of COLLAPSE in terms of the
ratio-error metric. As with histograms, we identify a novel measure
that quantifies the “degree of badness” of the layout for block-level
sampling for distinct-value estimation. Interestingly, this measure
is found to be different from the corresponding measure for his-
tograms, thus emphasizing the fundamental differences between
the two problems.

4.2 Failure of Naive Approach
Consider the following naive approach (called TAKEALL) for

distinct-value estimation with block-level sampling:

TAKEALL: Take a block-level sample Sblk with sampling fraction
q. Use Sblk with an existing estimator as if it were a uniform-
random sample with sampling fraction q.

We show that many existing estimators may return very poor
estimates if used with TAKEALL. Our arguments apply to most
estimators which have been experimentally evaluated, and found to
perform well on uniform-random samples, e.g., the HYBSKEW es-
timator [7], the smoothed jackknife estimator [7, 11], the Shlosser
estimator [15], the GEE estimator [1], and the AE estimator [1].

Let d be the number of distinct values in the sample. Let there be
fi distinct values which occur exactly i times in the sample. All the
estimators mentioned above have the common form D̂ = d+K ·f1,
where K is a constant chosen adaptively according to the sample
(or fixed according to the sampling fraction as in GEE). The ratio-
nale behind this form of the estimators is as follows. Intuitively, f1

represents the values which are “rare” in the entire table (have low
multiplicity), while the higher frequency elements in the sample
represent the values which are “abundant” in the table (have high
multiplicity). A uniform-random sample is expected to have missed
only the rare values, and none of the abundant values. Hence we
need to scale-up only the rare values to get an estimate of the total
number of distinct values.

However, this reasoning does not apply when these estimators
are used with TAKEALL. Specifically, consider a table in which the
multiplicity of every distinct value is at least 2. Further, consider a
layout of this table such that for each distinct value, its multiplicity
in any block is either 0 or at least 2. For this layout, in any block-
level sample (of any size), f1 = 0. Thus, in this case, all the above
estimators will return D̂ = d. Effectively, no scaling is applied,
and hence the resulting estimate may be highly inaccurate.

More generally, the reason why these estimators fail when used
with TAKEALL, is as follows. When a particular occurrence of a
value is included in a block-level sample, any more occurrences of
the value in that block are also picked up— but by virtue of being
present in that block, and not because that value is frequent. Thus,
multiplicity across blocks is a good indicator of abundance, but
multiplicity within a block is a misleading indicator of abundance.

4.3 Proposed Solution: COLLAPSE
In this section, we develop a very simple yet novel approach

called COLLAPSE which enables us to use existing estimators on
block-level samples instead of uniform-random samples.

The reasons for the failure of TAKEALL given in the previous
subsection, suggest that to make the existing estimators work, a
value should be considered abundant only if it occurs in multiple
blocks in the sample, while multiple occurrences within a block

Algorithm COLLAPSE
Input: q: Block-level sampling fraction

1. Sampling Step: Take a block-level sample Sblk with
sampling fraction q.

2. Collapse Step: In Sblk, collapse all multiple occurrences
of a value within a block into one
occurrence. Call the resulting sample Scoll.

3. Estimation Step: Use Scoll with an existing estimator as if it
were a uniform-random sample with
sampling fraction q.

Figure 3: Distinct-value estimation with block-level samples

should be considered as only a single occurrence. We refer to this
as the collapsing of multiplicities within a block.

In fact, we can show that such a collapsing step is necessary, by
the following adversarial model: If our estimator depends on the
multiplicities of values within blocks, an adversary might adjust the
multiplicities within the sampled block so as to hurt our estimate
the most, while still not changing the number of distinct values
in the table. For example, if our estimate scales only f1 (as most
existing estimators), the adversary can give a multiplicity of at least
2 to as many of the values in the block as possible. Thus, our
estimator should be independent of the multiplicities of the values
within blocks.

This leads us to develop a very simple approach called COL-
LAPSE shown in Figure 3. Essentially, multiplicities within blocks
of a block-level sample are first collapsed, and then existing esti-
mators are directly run on the collapsed sample, i.e., the collapsed
sample is simply treated as if it were a uniform-random sample
with the same sampling fraction as the block-level sample.

We now provide a formal justification of COLLAPSE. Let T be
the table on which we are estimating the number of distinct values.
Let vj denote the jth distinct value. Let nj be the tuple-level mul-
tiplicity of vj , i.e., the number of times it occurs in T , and Nj be
the block-level multiplicity of vj , i.e., the number of blocks of T in
which it occurs. Let Sblk be a block-level sample from T with sam-
pling fraction q, and Scoll be the sample obtained after applying the
collapse step to Sblk. Let Tcoll be an imaginary table obtained from
T by collapsing multiple occurrences of values within every block
into a single occurrence. Let Sunf be a uniform-random sample
from Tcoll with the same sampling fraction q. Notice that Tcoll

may have variable-sized blocks, but this does not affect our anal-
ysis. As before, let fi denote the number of distinct values which
occur exactly i times in a sample.

LEMMA 1. For the Bernoulli sampling model, E[fi in Scoll] =
E[fi in Sunf] for all i.

PROOF. In the Bernoulli sampling model, for picking a sample
with sampling fraction q, each item is included with probability q
independent of other items. This closely approximates uniform-
random sampling for large table sizes.

A particular distinct value vj contributes to fi in Scoll iff exactly
i blocks in which it occurs are chosen in Sblk. Since vj occurs in
Nj blocks, it contributes to fi(i ≤ Nj) in Scoll with probability
(

Nj

i

)

qi(1 − q)Nj−i. Thus,

E[fi in Scoll] =
∑

j|Nj≥i

(

Nj

i

)

qi(1 − q)Nj−i

Now, in Tcoll, the tuple-level multiplicity of vj is Nj . Thus, vj

contributes to fi in Sunf iff exactly i occurrences out of its Nj

occurrences are chosen in Sunf . Since the sampling fraction is q,
the probability that vj contributes to fi in Sunf is the same as in
the above. Hence the expected value of fi in Sunf is the same as in
Scoll.

Now consider any distinct-value estimator E of the form D̂ =
∑r

i=1 aifi (where ai’s are constants depending on the sampling
fraction). We can show that for use with estimator E , Scoll is as
good as Sunf (in terms of bias). Let B(Tcoll, q) be the bias of E
when applied to uniform-random samples from Tcoll with sampling
fraction q. Let Bcoll(T, q) be the bias of E when applied to block-
level samples from T with sampling fraction q, and which have
been processed according to the collapse step.

THEOREM 2. B(Tcoll, q) = Bcoll(T, q).

PROOF. First note that Tcoll and T have the same number of dis-
tinct values. Further, by Lemma 1, E[fi in Scoll] = E[fi in Sunf].
E is just a linear combination of fi’s, and the coefficients depend
only on the sampling fraction which is the same for Scoll and Sunf .
Thus, by linearity of expectations, the result follows.

The above theorem enables us to leverage much of previous work
on distinct-value estimation with uniform-random samples. Most
of this work [1, 7] tries to develop estimators with small bias on
uniform-random samples. By Theorem 2, we reduce the problem
of distinct-value estimation using block-level samples to that of
distinct-value estimation using uniform-random samples of a mod-
ified (i.e., collapsed) table. For example, GEE [1] is an estima-
tor which has been shown to have a bias of at most O(

√

1/q) on
uniform-random samples with sampling fraction q. Moreover, GEE
is of the form as required by Theorem 2 (D̂GEE =

∑r

i=2 fi +
1√
q
f1). Thus, if we use GEE with COLLAPSE, our estimate also

will be biased by at most O(
√

1/q) for a block-level sampling
fraction of q. Other estimators like HYBSKEW and AE do not
exactly satisfy the conditions of Theorem 2 since the ai’s them-
selves depend on the fi’s. However, these estimators are heuris-
tic anyway. Hence we experimentally compare the performance
of COLLAPSE with these estimators, against using these estima-
tors on uniform-random samples. The experimental results given
in Section 5 demonstrate the superiority of COLLAPSE against
TAKEALL with these estimators.

4.4 Studying Error for COLLAPSE
In this subsection we discuss the impact of COLLAPSE on the

ratio-error of estimators. However, unlike bias, formal analysis of
the ratio-error is extremely difficult even for uniform-random sam-
pling [1, 7]. Consequently, much of the discussion in this subsec-
tion is limited to qualitative arguments. The only quantitative result
we give is a lower bound on the error of any estimator with block-
level sampling, thus illustrating the difficulty of getting estimators
with good error bounds.

Charikar et. al. give a negative result in [1], where they show that
for a uniform-random sample of r tuples from a table of n tuples,
no distinct-value estimator can guarantee a ratio error < O(

√

n/r)
with high probability on all inputs. We show that with block-level
sampling, the guarantees that can be given are even weaker. For a
block-level sample of r tuples, this lower bound can be strength-
ened to O(

√

nb/r) where b is the number of tuples per block.

THEOREM 3. Any distinct-value estimator that examines at most
R blocks from a table of N blocks, cannot guarantee a ratio error
< O(

√

Nb/R) with high probability on all inputs, where b is the
number of tuples per block.

2 3 4 ... k+1

1 1 1 1 1 1

n 1’s

Distribution B

1 1 . . . 1 1 1 . . . 1 . . . kb+1

1 1 . . . 1 1 1 . . . 1 1 1 . . . 1... ...

1 1 1 1 ...
k distinct values

Distribution A

n−k 1’s

2 3
k Type II blocks

Distribution C

Distribution D

N−k Type I blocks

N Type I blocks

Figure 4: Negative result for distinct-value estimation

PROOF. We first review the proof of the negative result in [1].
Consider two different attribute-value distributions A and B as
shown in Figure 4. Consider any distinct-value estimator that ex-
amines at most r out of the n tuples. For distribution B, the estima-
tor shall always obtain r copies of value 1. It is shown in [1] that
for distribution A, with probability at least γ, the estimator shall
obtain r copies of value 1 provided:

k ≤ n − r

2r
ln

1

γ
(5)

In this case, the estimator cannot distinguish between distributions
A and B. Let α be the value returned by the estimator in this case.
This gives an error of (k + 1)/α for distribution A, and α for dis-
tribution B. Irrespective of α, the error is at least

√
k + 1 for one

of the distributions. Choose k according to Equation 5. Then, with
probability at least γ, the error is at least O(

√

n/r).
To extend this argument to block-level sampling, consider dis-

tributions C and D, and their layouts as shown in Figure 4. Type
I blocks contain b duplicates of the value 1, while Type II blocks
contain b new distinct values. Consider a distinct-value estimator
that examines at most R out of N blocks. For distribution D, it
always obtains R type I blocks. For distribution C, using the same
argument as above, if k ≤ N−R

2R
ln 1

γ
, then with probability at least

γ, the estimator shall obtain R type I blocks. Thus, the estimator
cannot distinguish between distributions C and D in this case, and
must have an error of at least

√
kb + 1 for one of the distributions.

Thus, with probability at least γ, the error is at least O(
√

Nb/R).
Hence, it is not possible to guarantee an error < O(

√

Nb/R) with
high probability on all inputs.

The above lower-bound notwithstanding, it is still instructive to
evaluate the performance of estimators for more general layouts
in terms of the ratio-error metric. We give a qualitative evalua-
tion of the performance of COLLAPSE by comparing it with the
approach of estimating distinct values using Sunf , i.e., a uniform-
random sample of the collapsed table Tcoll. We assume that the
same distinct-value estimator is used in each case, and is of the
form D̂ = d + K · f1 as in Section 4.2. Theorem 2 says that both
approaches will have the same bias. However, the error of COL-
LAPSE may be higher. This is because although the expected value
of f1 is the same in both Scoll and Sunf (recall Lemma 1), the vari-
ance of f1 in Scoll may be higher than in Sunf . For example, for
the layout C shown in Figure 4, f1 in Scoll can only take on values
which are multiples of b (assuming > 1 Type I blocks are picked
up in the sample). On the other hand, f1 in Sunf can take on any
value from 0 to kb. This larger variance leads to a higher average
error for COLLAPSE.

The layouts in which the variance of f1 in Scoll (and hence the
average error of COLLAPSE) is higher, are those in which the num-
ber of distinct values in blocks varies widely across blocks. Based
on this intuition, we introduce a quantitative measure for the “bad-
ness” of a layout for distinct-value estimation with block-level sam-
ples. We denote this measure as DV Badness. Let dj be the number
of distinct values in the jth block. Let µ be the mean, and σ be the

standard deviation of dj’s (j = 1, . . . , N). We define DV Badness
as the coefficient of variation of the dj’s, i.e., σ/µ. The higher the
value of DV Badness, the higher the error of COLLAPSE.

Notice that Hist Badness and DV Badness are different mea-
sures. Hence the layouts which are bad for histogram construc-
tion are not necessarily bad for distinct-value estimation, and vice-
versa. For example, while Hist Badness is maximized when the
table is fully clustered, it is not so with DV Badness. In fact, even
when the table is fully clustered, COLLAPSE may perform very
well, as long as the number of distinct values across blocks does
not vary a lot (so that DV Badness is still small).

5. EXPERIMENTS
In this section, we provide experimental validation of our pro-

posed approaches. We have prototyped and experimented with our
algorithms on Microsoft SQL Server running on an Intel 2.3 GHz
processor with 1GB RAM.

For histogram construction, we compare our adaptive two-phase
approach 2PHASE, against the iterative approach DOUBLE. We
experimented with both the maxdiff bucketing algorithm (as im-
plemented in SQL Server) as well as the equi-depth bucketing al-
gorithm. The version of DOUBLE which we use for comparison is
not exactly the same as described in [2], but an adaption of the basic
idea therein to work with maxdiff as well as equi-depth histograms,
and uses the variance-error metric instead of the max-error metric.

For distinct-value estimation, we compare our proposed approach
COLLAPSE, with the naïve approach TAKEALL, and the ideal
(but impractical) approach UNIFORM. For UNIFORM, we used a
uniform-random sample of the same size as the block-level sam-
ple used by COLLAPSE. We experimented using both the HYB-
SKEW [7], and the AE [1] estimators.

Our results demonstrate for varying data distributions and lay-
outs:

• For both maxdiff and equi-depth histograms, 2PHASE accu-
rately predicts the sample size required, and is considerably
faster than DOUBLE.

• For distinct value estimation, COLLAPSE produces much
more accurate estimates than those given by TAKEALL, and
almost as good as those given by UNIFORM.

• Our quantitative measures Hist Badness and DV Badness,
accurately reflect the performance of block-level sampling
as compared to uniform-random sampling for histogram con-
struction and distinct-value estimation respectively.

We have experimented with both synthetic and real databases.

Synthetic Databases: To generate synthetic databases with a wide
variety of layouts, we adopt the following generative model: A
fraction C between 0 and 1 is chosen. Then, for each distinct value
in the column of interest, a fraction C of its occurrences are given
consecutive tuple-ids, and the remaining (1−C) fraction are given
random tuple-ids. The resulting relation is then clustered on tuple-
id. We refer to C as the “degree of clustering”. Different values
of C give us a continuum of layouts, ranging from a random lay-
out for C = 0, to a fully clustered layout for C = 1. This is the
model which was experimented with in [2]. Besides, this model
captures many real-life situations in which correlations can be ex-
pected to exist in blocks, such as those described in Section 3.1.2.
Our experimental results demonstrate the relationship of the degree
of clustering according to our generative model (C), with the mea-
sures of badness Hist Badness and DV Badness.

We generated tables with different characteristics along the fol-
lowing dimensions: (1) Degree of clustering C varied from 0 to 1

Figure 5: Effect of table size on sample size for maxdiff his-
tograms

according to our generative model, (2) Number of tuples n varied
from 105 to 107, (3) Number of tuples per block b varied from 50 to
200, and (4) Skewness parameter Z varied from 0 to 2, according
to the Zipfian distribution [16].

Real Databases: We also experimented with a portion of a Home
database obtained from MSN (http://houseandhome.msn.com/). The
table we obtained contained 667877 tuples, each tuple representing
a home for sale in the US. The table was clustered on the neigh-
borhood column. While the table had numerous other columns,
we experimented with the zipcode column, which is expected to be
strongly correlated with the neighborhood column. The number of
tuples per block was 25.

5.1 Results on Synthetic Data

5.1.1 Histogram Construction
We compared 2PHASE and DOUBLE. In both approaches, we

used a client-side implementation of maxdiff and equi-depth his-
tograms [14]. We used block-level samples obtained through the
sampling feature of the DBMS. Both DOUBLE and 2PHASE were
started with the same initial sample size.

In our results, all quantities reported are those obtained by av-
eraging five independent runs of the relevant algorithm. For each
parameter setting, we report a comparison of the total amount sam-
pled by 2PHASE, against that sampled by DOUBLE. We also re-
port, the actual amount (denoted by ACTUAL) to be sampled to
reach the desired error. This was obtained by a very careful itera-
tive approach, in which the sample size was increased iteratively by
a small amount until the error target was met. This actual size does
not include the amount sampled for cross-validation. This approach
is impractical due to the huge number of iterations, but reported
here only for comparison purposes. We also report a comparison
of the time taken by 2PHASE, against that taken by DOUBLE.
The reported time3 is a sum of the server-time spent in executing
the sampling queries, and the client time spent in sorting, merging,
cross-validation, and histogram construction.

We experimented with various settings of all parameters. How-
ever, due to lack of space we only report a subset of the results.
We report the cases where we set the cross-validation error tar-
get at ∆req = 0.25, the number of buckets in the histogram at
k = 100, and the number of tuples per block at b = 132. For each
experiment, we provide results for only one of either maxdiff or
equi-depth histograms, since the results were similar in both cases.

3All reported times are relative to the time taken to sequentially
scan 10MB of data from disk.

Figure 6: Effect of table size on total time for maxdiff his-
tograms

Figure 7: Effect of clustering on sample size for equi-depth his-
tograms

Effect of n: Figure 5 shows a comparison of the amount sampled,
and Figure 6 shows a time comparison for varying n, for the case
of maxdiff histograms. It can be seen that the amount sampled
by each approach is roughly independent of n. Also, DOUBLE
substantially overshoots the required sample size (due to the last
cross-validation step), whereas 2PHASE does not overshoot by as
much. For n=5E5, the total amount sampled by DOUBLE exceeds
the table size, but this is possible since the sampling is done in steps
until the error target is met.

In terms of time, 2PHASE is found to be considerably faster than
DOUBLE. Interestingly, the total time for both 2PHASE and DOU-
BLE increases with n even though the amount sampled is roughly
independent of n. This shows that there is a substantial, fixed over-
head associated with each sampling step which increases with n.
This also explains why the absolute time gain of 2PHASE over
DOUBLE increases with n. DOUBLE incurs the above overhead
in each iteration, whereas 2PHASE incurs it only twice. Conse-
quently, 2PHASE is much more scalable than DOUBLE.

Effect of degree of clustering: Figure 7 shows the amount sam-
pled, and Figure 8 gives a time comparison for varying degree of
clustering (C) for equi-depth histograms. Figure 8 also shows (by
the dotted line) the badness measure Hist Badness on a secondary
axis. Hist Badness was measured according to the bucket separa-
tors of the perfect histogram. Since Hist Badness is maximized
when the table is fully clustered, we have normalized the mea-
sure with respect to Hist Badness for C = 1. As C increases,
both Hist Badness, and the required sample size increase. Thus,
Hist Badness is a good measure of the badness of the layout.

Figure 8: Effect of clustering on time for equi-depth histograms

Figure 9: Effect of skew on sample size for maxdiff histograms

For C = 0.5, DOUBLE overshoots the required sample size
almost by a factor of 4 (which is the worst case for DOUBLE).
Hence, the total amount sampled becomes almost the same as that
for C = 0.75. This is a consequence of the fact that DOUBLE
picks up samples in increasingly large chunks. The time gain of
2PHASE over DOUBLE increases with C, since the latter has to
go through a larger number of iterations when the required sample
size is larger. The results for maxdiff histograms were similar.

Effect of Z: Figure 9 compares the amount sampled for vary-
ing skew (Z) of the distribution, for maxdiff histograms. As the
skew increases, some buckets in the maxdiff histogram become
very large. Consequently, a smaller sample size is required to es-
timate these bucket counts accurately. Thus, the required sample
size decreases with skew. However, 2PHASE continues to predict
the required sample size more accurately than DOUBLE. A time
comparison for this experiment is omitted, as the gains of 2PHASE
over DOUBLE were similar to that observed in previous exper-
iments. Also, we omit results for equi-depth histograms, which
showed very little dependence on skew.

Due to space constraints, we omit results of experimenting with
varying b, k and ∆req . The results in these experiments were as
expected. As b increases, or k increases, or ∆req decreases, the re-
quired sample size goes up (by Theorem 1). The amount by which
DOUBLE overshoots 2PHASE increases. So does the time gain of
2PHASE over DOUBLE.

5.1.2 Distinct-Value Estimation
For distinct value estimation, we use the two contending estima-

tors AE [1] and HYBSKEW [7], which have been shown to work
best in practice with uniform-random samples. We consider each of

Figure 10: Variation of error with the sampling fraction for
HYBSKEW

Figure 11: Variation of error with the sampling fraction for AE

these estimators with each of the three approaches— COLLAPSE,
TAKEALL, and UNIFORM. We use AE COLLAPSE to denote
the COLLAPSE approach being used with the AE estimator. Other
estimates are named similarly. The usability of a distinct-value es-
timator depends on its average ratio-error rather than on its bias
(since it possible to have an unbiased estimator with arbitrarily high
ratio-error). Thus, we only report the average ratio-error for each of
the approaches. The average was taken over ten independent runs.
In most cases, we report results only with the AE estimator, and
omit those with HYBSKEW, as the trends were similar.

For the following experiments, we added another dimension to
our data generation process— the duplication factor (dup). This
is the multiplicity assigned to the rarest value in the Zipfian dis-
tribution. Thus, increasing dup increases the multiplicity of each
distinct value, keeping the number of distinct values constant. The
number of tuples per block was again fixed at b = 132.

Effect of sampling fraction: Figures 10 and 11 show the error
of the HYBSKEW and AE estimators respectively with the three
approaches, for varying sampling fractions. With both estimators,
TAKEALL leads to very high errors (as high as 200 for low sam-
pling fractions), while COLLAPSE performs almost as well as UNI-
FORM for all sampling fractions.

Effect of degree of clustering: Figure 12 shows the average ratio-
error of the AE estimator with the three approaches, for a fixed
sampling fraction, and for varying degrees of clustering (C). As
expected, the performance of UNIFORM is independent of the de-
gree of clustering. The performance of TAKEALL degrades with
increasing clustering. However, COLLAPSE continues to perform
almost as well as UNIFORM even in the presence of clustering. In

Figure 12: Effect of clustering on error for the AE estimator

Figure 13: Effect of skew on the error for the AE estimator

Figure 12, we also show (by the dotted line) the measure of badness
of the layout (DV Badness), on the secondary y-axis. It can be seen
that the trend in DV Badness accurately reflects the performance
of COLLAPSE against UNIFORM. Thus, DV Badness is a good
measure of the badness of the layout.

Note that unlike Hist Badness (Figure 8), DV Badness is not
maximized when the table is fully clustered. In fact, for C = 1,
COLLAPSE outperforms UNIFORM. This is because when the ta-
ble is fully clustered (ignoring the values which occur in multiple
blocks, since there are few of them), the problem of distinct-value
estimation through block-level sampling can be viewed as an ag-
gregation problem — each block has a certain number of distinct
values, and we want to find the sum of these numbers by sampling
a subset. Moreover, the variance of these numbers is small, as in-
dicated by a small Hist Badness. This leads to a very accurate esti-
mate being returned by COLLAPSE. We omit the results with the
HYBSKEW estimator, which were similar.

Effect of skew: Figure 13 shows the average error of AE with
the three approaches, for a fixed sampling fraction, and for varying
skew (Z). Here again, COLLAPSE performs consistently better
than TAKEALL. We again show DV Badness by the dotted line on
the secondary axis. The trend in DV Badness accurately reflects
the error of COLLAPSE against that of UNIFORM.

Although we do not report results with HYBSKEW here, it was
found that for high skew, HYB TAKEALL actually performed con-
sistently better than HYB COLLAPSE or HYB UNIFORM. This
seems to violate our claim of COLLAPSE being a good strategy.
However, at high skew, the HYBSKEW estimator itself is not very
accurate, and overestimates the number of distinct values. This,
combined with the tendency of TAKEALL to underestimate (due

Figure 14: Effect of duplication factor on the error for the AE
estimator

to its failure to recognize rare values), produced a more accurate fi-
nal estimate than either COLLAPSE or UNIFORM. Thus, the good
performance of HYB TAKEALL for this case was coincidental, re-
sulting from the inaccuracy of the HYBSKEW estimator.

Effect of bounded domain scaleup: For this experiment, the ta-
ble size was increased while keeping the number of distinct values
constant (by increasing dup). Figure 14 shows the average error
of AE with the three approaches for a fixed sampling fraction, and
for various values of dup. It can be seen that at low values of
dup, TAKEALL performs very badly. However, as dup increases,
almost all distinct values are picked up in the sample, and the esti-
mation problem becomes much easier. Thus, at high values of dup,
TAKEALL begins to perform well. COLLAPSE performs consis-
tently almost as well, or better than UNIFORM.

For low values of dup, the superior performance of COLLAPSE
against UNIFORM is only because the underlying AE estimator is
not perfect. For low values of dup, there are a large number of dis-
tinct values in the table, and AE UNIFORM tends to underestimate
the number of distinct values. However, for AE COLLAPSE, the
value of f1 is higher due to the collapse step. Hence the overall
estimate returned is higher.

Effect of unbounded domain scaleup: For this experiment, the ta-
ble size was increased while proportionately increasing the number
of distinct values (keeping dup constant). Similar to the observa-
tion in [1], for a fixed sampling fraction, the average error remained
almost constant for all the approaches (charts omitted due to lack
of space). This is because when dup is constant, the estimation
problem remains equally difficult with increasing table size.

5.2 Results on Real Data
Histogram Construction: We experimented with 2PHASE and
DOUBLE on the Home database. The number of buckets in the
histogram was fixed at k = 100. Figure 15 shows the amount
sampled by both approaches for various error targets (∆req) for
maxdiff histograms. Again, 2PHASE predicts the required size ac-
curately while DOUBLE significantly oversamples. Note that for
this database the number of tuples per block is only 25, for higher
b we expect 2PHASE to perform even better than DOUBLE. Also,
in this case, the sampled amounts are large fractions of the origi-
nal table size (e.g., 13% sampled by 2PHASE for ∆req = 0.2).
However, our original table is relatively small (about 0.7 million
rows). Since required sample sizes are generally independent of
original table sizes (e.g., see Figure 5), for larger tables the sam-
pled fractions will appear much more reasonable. We omit the time
comparisons as the differences were not substantial for this small
table. Also, the results for equi-depth histograms were similar.

Figure 15: Variation of Sample Size with Error Target for
maxdiff histograms on the Home database

Figure 16: Distinct values estimations on the Home database

Distinct Value Estimation: The results of our distinct-value esti-
mation experiments on the Home database are summarized in Fig-
ure 16. As expected, AE COLLAPSE performs almost as well as
AE UNIFORM, while AE TAKEALL performs very poorly.

6. CONCLUSIONS
In this paper, we have developed effective techniques to use block-

level sampling instead of uniform-random sampling for building
statistics. For histogram construction, our approach is significantly
more efficient and scalable than previously proposed approaches.
To the best of our knowledge, our work also marks the first prin-
cipled study of the effect of block-level sampling on distinct-value
estimation. We have demonstrated that in practice, it is possible
to get almost the same accuracy for distinct-value estimation with
block-level sampling, as with uniform-random sampling. Our re-
sults here may be of independent interest to the statistics commu-
nity for the problem of estimating the number of classes in a popu-
lation through cluster sampling.

Acknowledgements
We thank Peter Zabback and other members of the Microsoft SQL
Server team for several useful discussions.

7. REFERENCES
[1] M. Charikar, S. Chaudhuri, R. Motwani, and V. Narasayya.

Towards estimation error guarantees for distinct values. In
Proc. of the ACM Symp. on Principles of Database Systems,
2000.

[2] S. Chaudhuri, R. Motwani, and V. Narasayya. Random
sampling for histogram construction: How much is enough?
In Proc. of the 1998 ACM SIGMOD Intl. Conf. on
Management of Data, pages 436–447, 1998.

[3] W. G. Cochran. Sampling Techniques. John Wiley & Sons,
1977.

[4] B. Efron and R. Tibshirani. An Introduction to the Bootstrap.
Chapman and Hall, 1993.

[5] P. Gibbons, Y. Matias, and V. Poosala. Fast incremental
maintenance of approximate histograms. In Proc. of the 1997
Intl. Conf. on Very Large Data Bases, pages 466–475, 1997.

[6] L. Goodman. On the estimation of the number of classes in a
population. Annals of Math. Stat., 20:572–579, 1949.

[7] P. Haas, J. Naughton, P. Seshadri, and L. Stokes.
Sampling-based estimation of the number of distinct values
of an attribute. In Proc. of the 1995 Intl. Conf. on Very Large
Data Bases, pages 311–322, Sept. 1995.

[8] P. Haas and A. Swami. Sequential sampling procedures for
query size estimation. In Proc. of the 1992 ACM SIGMOD
Intl. Conf. on Management of Data, pages 341–350, 1992.

[9] W. Hou, G. Ozsoyoglu, and E. Dogdu. Error-Constrained
COUNT Query Evaluation in Relational Databases. In Proc.
of the 1991 ACM SIGMOD Intl. Conf. on Management of
Data, pages 278–287, 1991.

[10] W. Hou, G. Ozsoyoglu, and B. Taneja. Statistical estimators
for relational algebra expressions. In Proc. of the 1988 ACM
Symp. on Principles of Database Systems, pages 276–287,
Mar 1988.

[11] K. Burnham and W. Overton. Robust estimation of
population size when capture probabilities vary among
animals. Ecology, 60:927–936, 1979.

[12] R. Lipton, J. Naughton, and D. Schneider. Practical
selectivity estimation through adaptive sampling. In Proc. of
the 1990 ACM SIGMOD Intl. Conf. on Management of Data,
pages 1–11, 1990.

[13] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of
the number of tuples satisfying a condition. In Proc. of the
1984 ACM SIGMOD Intl. Conf. on Management of Data,
pages 256–276, 1984.

[14] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita.
Improved histograms for selectivity estimation of range
predicates. In Proc. of the 1996 ACM SIGMOD Intl. Conf. on
Management of Data, pages 294–305, 1996.

[15] Shlosser A. On estimation of the size of the dictionary of a
long text on the basis of a sample. Engrg. Cybernetics,
19:97–102, 1981.

[16] G. E. Zipf. Human Behavior and the Principle of Least
Effort. Addison-Wesley Press, Inc., 1949.

