
Efficient Approximate Query Processing
in Peer-to-Peer Networks

Benjamin Arai, Student Member, IEEE, Gautam Das, Dimitrios Gunopulos, Member, IEEE, and

Vana Kalogeraki, Member, IEEE

Abstract—Peer-to-peer (P2P) databases are becoming prevalent on the Internet for distribution and sharing of documents,

applications, and other digital media. The problem of answering large-scale ad hoc analysis queries, for example, aggregation queries,

on these databases poses unique challenges. Exact solutions can be time consuming and difficult to implement, given the distributed

and dynamic nature of P2P databases. In this paper, we present novel sampling-based techniques for approximate answering of ad

hoc aggregation queries in such databases. Computing a high-quality random sample of the database efficiently in the P2P

environment is complicated due to several factors: the data is distributed (usually in uneven quantities) across many peers, within each

peer, the data is often highly correlated, and, moreover, even collecting a random sample of the peers is difficult to accomplish. To

counter these problems, we have developed an adaptive two-phase sampling approach based on random walks of the P2P graph, as

well as block-level sampling techniques. We present extensive experimental evaluations to demonstrate the feasibility of our proposed

solution.

Index Terms—Approximation methods, computer networks, distributed databases, distributed database query processing, distributed

estimation, database systems, distributed systems.

Ç

1 INTRODUCTION

1.1 Peer-to-Peer (P2P) Databases

THE P2P network model is quickly becoming the preferred
medium for file sharing and distributing data over the

Internet. A P2P network consists of numerous peer nodes
that share data and resources with other peers on an equal
basis. Unlike traditional client-server models, no central
coordination exists in a P2P system; thus, there is no central
point of failure. P2P networks are scalable, fault tolerant,
and dynamic, and nodes can join and depart the network
with ease. The most compelling applications on P2P systems
to date have been file sharing and retrieval. For example,
P2P systems such as Napster [30], Gnutella [17], KaZaA [22],
and Freenet [15] are principally known for their file sharing
capabilities, for example, the sharing of songs, music, and
so on. Furthermore, researchers have been interested in
extending sophisticated infrared (IR) techniques such as
keyword search and relevance retrieval to P2P databases.

1.2 Aggregation Queries

In this paper, however, we consider a problem on P2P
systems that is different from the typical search and
retrieval applications. As P2P systems mature beyond file
sharing applications and start getting deployed in increas-
ingly sophisticated e-business and scientific environments,

the vast amount of data within P2P databases poses a
different challenge that has not been adequately researched
thus far, that is, how aggregation queries on such databases
can be answered. Aggregation queries have the potential of
finding applications in decision support, data analysis, and
data mining. For example, millions of peers across the
world may be cooperating on a grand experiment in
astronomy, and astronomers may be interested in asking
decision support queries that require the aggregation of
vast amounts of data covering thousands of peers. In
addition, there is real-world value for aggregation queries in
network monitoring scenarios such as temperature and
anomaly detection in sensor networks [39], Intrusion
Detection Systems [26], [29], and application signature
analysis [35] in P2P networks. Sensor networks can directly
benefit from aggregation of traffic analysis data by offering
a more efficient means of computing various network-based
aggregates such as the average message size and maximum
data throughput within the network, with minimal energy
consumption and decreased response times.

We make the problem more precise as follows: Consider
a single table T that is distributed over a P2P system; that is,
the peers store horizontal partitions (of varying sizes) of this
table. An aggregation query such as the following may be
introduced at any peer (this peer is henceforth called the
query node).

Aggregation query

SELECT Agg-Op(Col) FROM T WHERE selection-condition

In the above query, the Agg-Op may be any aggrega-
tion operator such as SUM, COUNT, AVG, and so on,
Col may be any numeric measure column of T or even
an expression involving multiple columns, and the
selection condition decides which tuples should be
involved in the aggregation. Although our main focus
is on the above standard SQL aggregation operators, we
also briefly discuss other interesting statistical estimators

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 7, JULY 2007 919

. B. Arai, D. Gunopulos, and V. Kalogeraki are with the Computer Science
and Engineering Department, University of California, Riverside, River-
side, CA 92507. E-mail: {barai, dg, vana}@cs.ucr.edu.

. G. Das is with the Computer Science and Engineering Department,
University of Texas at Arlington, Arlington, TX 76019.
E-mail: gdas@cse.uta.edu.

Manuscript received 28 Feb. 2006; revised 16 Nov. 2006; accepted 24 Jan.
2007; published online 5 Feb. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0105-0206.
Digital Object Identifier no. 10.1109/TKDE.2007.1064.

1041-4347/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

such as medians, quantiles, histograms, and distinct
values.

Although aggregation queries have been heavily inves-
tigated in traditional databases, it is not clear that these
techniques will easily adapt to the P2P domain. For
example, decision support techniques such as online
analytical processing (OLAP) commonly employ materi-
alized views; however, the distribution and management of
such views appear difficult in such a dynamic and
decentralized domain [21], [13]. In contrast, the alternative
of answering aggregation queries at runtime “from scratch”
by crawling and scanning the entire P2P repository is
prohibitively slow.

1.3 Approximate Query Processing (AQP)

Fortunately, it has been observed that in most typical data
analysis and data mining applications, timeliness and
interactivity are more important considerations than accu-
racy; thus, data analysts are often willing to overlook small
inaccuracies in the answer, provided that the answer can be
obtained fast enough. This observation has been the
primary driving force behind the recent development of
AQP techniques for aggregation queries in traditional
databases and decision support systems [11], [3], [8], [10],
[1], [16], [7], [9], [27]. Numerous AQP techniques have been
developed: The most popular ones are based on random
sampling, where a small random sample of the rows of the
database is drawn, the query is executed on this small
sample, and the results are extrapolated to the whole
database. In addition to simplicity of implementation,
random sampling has the compelling advantage that, in
addition to an estimate of the aggregate, one can also
provide confidence intervals of the error, with high
probability. Broadly, two types of sampling-based ap-
proaches have been investigated: 1) precomputed samples,
where a random sample is precomputed by scanning the
database and the same sample is reused for several queries
and 2) online samples, where the sample is drawn “on the
fly” upon encountering a query.

1.4 Goal of the Paper

In this paper, we also approach the challenges of decision
support and data analysis on P2P databases in the same
manner; that is, we investigate what it takes to enable AQP
techniques on such distributed databases.

Goal of the Paper: Approximating Aggregation Queries in
P2P Networks.

Given an aggregation query and a desired error bound at a query
node peer, compute with “minimum cost” an approximate
answer to this query that satisfied the error bound.

The cost of query execution in traditional databases is
usually a straightforward concept: It is either I/O cost or
CPU cost or a combination of the two. In fact, most AQP
approaches simplify this concept even further by just trying
to minimize the number of tuples in the sample, thus
making the assumption that the sample size is directly
related to the cost of query execution. However, in P2P
networks, the cost of query execution is a combination of
several quantities such as the number of participating peers,
the bandwidth consumed (that is, the amount of data

shipped over the network), the number of messages ex-
changed, the latency (the time to propagate the query across
multiple peers and receive replies), the I/O cost of accessing
data from participating peers, the CPU cost of processing
data at participating peers, and so on. In this paper, we shall
be concerned with latency (the time to propagate the query
across multiple peers and receive replies) as our primary
quantity to minimize though our technique could be easily
extended to deal with other cost metrics.

1.5 Challenges

Let us now discuss what it takes for sampling-based AQP
techniques to be incorporated into P2P systems. We first
observe that two main approaches have emerged for
constructing P2P networks today: structured and unstruc-
tured. Structured P2P networks (such as Pastry [33] and
Chord [37]) are organized in such a way that data items are
located at specific nodes in the network, and nodes
maintain some state information to enable efficient retrieval
of the data. This organization maps data items to particular
nodes and assumes that all nodes are equal in terms of
resources, which can lead to bottlenecks and hot spots. Our
work focuses on unstructured P2P networks, which makes
no assumption about the location of the data items in the
node, and nodes are able to join the system at random times
and depart without a priori notification. Several recent
efforts have demonstrated that unstructured P2P networks
can be used efficiently for multicast distributed object
location and information retrieval [12], [27], [38].

For AQP in unstructured P2P systems, attempting to
adapt the approach of precomputed samples is impractical
for several reasons: 1) It involves scanning the entire P2P
repository, which is difficult, 2) since no centralized storage
exists, it is not clear where the precomputed sample should
reside, and 3) the very dynamic nature of P2P systems
indicates that precomputed samples will quickly become
stale, unless they are frequently refreshed.

Thus, the approach taken in this paper is to investigate
the feasibility of online sampling techniques for AQP on
P2P databases. However, online sampling approaches in
P2P databases pose their own set of challenges. To illustrate
these challenges, consider the problem of attempting to
draw a uniform random sample of n tuples from such a P2P
database containing a total of N tuples. To ensure a true
uniform random sample, our sampling procedure should
be such that each subset of n tuples out of N should be
equally likely to be drawn. However, this is an extremely
challenging problem due to two reasons:

. Picking even a set of uniform random peers is a
difficult problem, as the query node does not have
the Internet Protocol (IP) addresses of all peers in the
network. This is a well-known problem that other
researchers have tackled (in different contexts) by
using random-walk techniques on the P2P graph [16],
[24], [4]. That is, where a Markovian random walk is
initiated from the query node that picks adjacent
peers to visit, with equal probability and under
certain connectivity properties, the random walk is
expected to rapidly reach a stationary distribution. If
the graph is badly clustered with small cuts, then

920 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 7, JULY 2007

this affects the speed at which the walk converges.
Moreover, even after convergence, the stationary
distribution is not uniform; in fact, it is skewed
toward giving higher probabilities to nodes with
larger degrees in the P2P graph.

. Even if we could select a peer (or a set of peers)
uniformly at random, it does not make the problem
of selecting a uniform random set of tuples much easier.
This is because visiting a peer at random has an
associated overhead; thus, it makes sense to select
multiple tuples at random from this peer during the
same visit. However, this may compromise the
quality of the final set of tuples retrieved, as the
tuples within the same peer are likely to be correlated.
For example, if the P2P database contained listings
of, say, movies, then the movies stored on a specific
peer are likely to be of the same genre. This
correlation can be reduced if we select just one tuple
at random from a randomly selected peer; however,
the overheads associated with such a scheme will be
intolerable.

1.6 Our Approach

We briefly describe the framework of our approach.
Essentially, we abandon trying to pick true uniform random
samples of the tuples, as such samples are likely to be
extremely impractical to obtain. Instead, we consider an
approach where we are willing to work with skewed samples,
provided that we can accurately estimate the skew during
the sampling process. To get the accuracy in the query
answer desired by the user, our skewed samples can be
larger than the size of a corresponding uniform random
sample that delivers the same accuracy; however, our
samples are much more cost efficient to generate.

Although we do not advocate any significant preproces-
sing, we assume that certain aspects of the P2P graph are
known to all peers, such as the average degree of the nodes,
a good estimate of the number of peers in the system,
certain topological characteristics of the graph structure,
and so on. Estimating these parameters via preprocessing
are interesting problems in their own right; however, we
omit these details from this paper. The main point that we
make is that these parameters are relatively slow to change
and thus do not have to be estimated at query time: It is the
data contents of peers that changes more rapidly; hence, the
random sampling process that picks a representative
sample of tuples has to be done at runtime.

Our approach has two major phases. In the first phase,
we initiate a fixed-length random walk from the query
node. This random walk should be long enough to ensure
that the visited peers represent a close sample from the
underlying stationary distribution (the appropriate length
of such a walk is determined in a preprocessing step). We
then retrieve certain information from the visited peers,
such as the number of tuples, the aggregate of tuples (for
example, SUM, COUNT, AVG, and so forth) that satisfy the
selection condition, and send this information back to the
query node. This information is then analyzed at the query
node to determine the skewed nature of the data that is
distributed across the network, such as the variance of the
aggregates of the data at peers, the amount of correlation

between tuples that exists within the same peers, the

variance in the degrees of individual nodes in the P2P

graph (recall that the degree has a bearing on the

probability that a node will be sampled by the random

walk), and so on. Once this data has been analyzed at the

query node, an estimation is made on how much more

samples are required (and in what way should these

samples be collected) so that the original query can be

optimally answered within the desired accuracy, with high

probability. For example, the first phase may recommend

that the best way to answer this query is to visit m0 more

peers and, from each peer, randomly sample t tuples. We

mention that the first phase is not overly driven by

heuristics. Instead, it is based on underlying theoretical

principles such as the theory of random walks [16], [24], [4]

as well as statistical techniques such as cluster sampling,

block-level sampling, and cross validation [11], [18].
The second phase is then straightforward: A random

walk is reinitiated, and tuples are collected according to the

recommendations made by the first phase. Effectively, the

first phase is used to “sniff” the network and determine an

optimal-cost “query plan,” which is then implemented in

the second phase. For certain aggregates such as COUNT

and SUM, further optimizations may be achieved by

pushing the selections and aggregations to the peers; that

is, the local aggregates instead of raw samples are returned

to the query node, which are then composed into a final

answer.
In addition, we explore in-network techniques for

dissemination of values throughout the network. We

accomplish this through a hybrid technique building upon

the Gossip protocol. A Gossip protocol is executed in

rounds. For each round, participating peers select adjacent

peers uniformly at random sharing information. The Gossip

protocol exploits a communication mechanism where peers

diffuse local aggregates with adjacent peers. This process

relies heavily upon mass conversation, which describes that

the average of all of the sums of individual peers is the

correct average, and the sum of all of the weights is n [23].

In general, as the number of passes of the Gossip protocol

increases, values of participating peers are increasingly

diffused through the network (in our case, the local groups);

therefore, sampling-diffused values provide a better repre-

sentation of the values contained in the network as opposed

to a single peer.
The contributions of this paper are summarized as

follows:

. We introduce the important problem of AQP in P2P
databases, which is likely to be of increasing
significance in the future.

. The problem is analyzed in detail, and its unique
challenges are comprehensively discussed.

. Hybrid sampling technique maximizes per-peer in-
network computation building upon the Gossip
protocol.

. Adaptive two-phase sampling-based approaches
are proposed based on well-founded theoretical
principles.

ARAI ET AL.: EFFICIENT APPROXIMATE QUERY PROCESSING IN PEER-TO-PEER NETWORKS 921

. We present an adaptive approach for computing
aggregates such as COUNT, SUM, AVERAGE, and
MEDIAN.

. The results of extensive experiments are presented,
which demonstrate the importance of the problem
and the validity of our approaches.

The rest of this paper is organized as follows: In Section 2,
we describe related work. We provide the foundation of our
approach in Section 3, the algorithm in Section 4, and the
hybrid solution to random sampling in Section 5. In
Section 6, we present the experimental results, and we
conclude in Section 7.

2 RELATED WORK

P2P systems are becoming very popular because they
provide an efficient mechanism for building large scalable
systems [28]. Most recent work has focused on Distributed
Hash Tables (DHTs) [32], [33], [37]. Such techniques
provide scalability advantages over unstructured systems
(such as Gnutella); however, they are not flexible enough
for some applications, especially when nodes join or leave
the network frequently or change their connections often.

Recent work has proposed different techniques for
exact query processing in P2P systems. Most proposals
use structured overlay networks (DHTs), such as CAN,
Pastry, and Chord. Such techniques include PIER [19],
DIM [27], or Pastry [33], and since they use DHTs, they
have a different focus and are not directly applicable to
our case. A hybrid system, Mercury [4], using routing
hubs to answer range queries was also recently proposed.
This system is also designed to provide exact answers to
range queries. Exact solutions to OLAP queries have been
considered in [13] and [21].

Methods to sample random peers in P2P networks have
been proposed in [16], [24], and [4]. These techniques use
Markov-chain random walks to select random peers from
the network. Their results show that when certain structural
properties of the graph are known or can be estimated (such
as the second eigenvalue of the graph), the parameters of
the walk can be set so that a representative sample of the
stationary distribution can be collected with high prob-
ability. In [4], it is shown that if the graph is an expander,
then a random walk converges to the stationary distribution
in Oðlog MÞ steps, where M is the number of peers in the
network.

There are known techniques for computing approximate
aggregates in distributed settings (most notably, the Gossip
protocol [5], [6], [23]). The technique works generally as a
preprocessing step where all peers in a network attempt to
mix data among adjacent peers, eventually converging
upon a single value. The inability to contact all nodes in the
network makes it exceedingly difficult to Gossip in the
traditional sense.

Our work also generalizes to the P2P domain and
previous work on AQP in relational databases. Recent
work in [11], [3], [8], [10], [1], [16], [7], [9], and [27] has
developed powerful techniques for employing sampling in
the database engine to approximate aggregation queries
and to estimate database statistics. Recent techniques have
focused on providing formal foundations and algorithms
for block-level sampling and are thus most relevant to our
work. The objective in block-level sampling is to derive a
representative sample by only randomly selecting a set of
disk blocks of a relation [11], [18]. Specifically, [11] presents

a technique for histogram estimation, which uses cross
validation to identify the amount of sampling required for a
desired accuracy level. In addition, [18] considers the
problem of deciding what percentage of a disk block
should be included in the sample, given a cost model.

3 FOUNDATIONS OF OUR APPROACH

In this section, we discuss the principles behind our
approach for AQP on P2P databases. Our actual algorithm
is described in Section 4.

3.1 The Peer-to-Peer Model

We assume an unstructured P2P network represented as a
graph G ¼ ðP;EÞ, with a vertex set P ¼ fp1; p2; . . . ; pMg and
an edge set E. The vertices in P represent the peers in the
network, and the edges in E represent the connections
between the vertices in P . Each peer p is identified by the
processor’s IP address and a port number (IPp and portp).
The peer p is also characterized by the capabilities of the
processor on which it is located, including its CPU speed
pcpu, memory bandwidth pmem, and disk space pdisk. The
node also has a limited amount of bandwidth to the
network, noted by pband. In unstructured P2P networks, a
node becomes a member of the network by establishing a
connection with at least one peer currently in the network.
Each node maintains a small number of connections with its
peers: The number of connections is typically limited by the
resources at the peer. We denote the number of connections
that a peer is maintaining by pconn.

The peers in the network use the Gnutella P2P protocol
to communicate. The Gnutella P2P protocol supports four
message types (Ping, Pong, Query, and Query_Hit), of
which the Ping and Pong messages are used to establish
connections with other peers, and the Query and Query_Hit
messages are used to search in the P2P network. Gnutella,
however, uses a naive Breadth-First Search (BFS) technique
in which queries are propagated to all the peers in the
network and thus consumes excessive network and proces-
sing resources and results in poor performance. Our
approach, on the other hand, uses a probabilistic search
algorithm based on random walks. The key idea is that each
node forwards a query message, called walker, randomly to
one of its adjacent peers. This technique is shown to
improve the search efficiency and reduce unnecessary
traffic in the P2P network.

3.2 Query Cost Measures

As mentioned in Section 1, the cost of the execution of a
query in P2P databases is more complicated than equivalent
cost measures in traditional databases. The primary cost
measure that we consider is latency, which is the time that it
takes to propagate the query across multiple peers and
receive replies at the query node. In our algorithm, latency
can be approximated by the number of peers that
participate in the random walk. This measure is appropriate
for our algorithm because it performs a single random walk
starting from the query node. Thus, latency becomes
proportional to the total number of visited peers in the
random walk.

To see this, we note that the aggregation operator (as
well as the selection filter and IP address of the query node)
can be pushed to each visited peer. Once a peer is visited by
the algorithm, the peer can be instructed to simply execute

922 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 7, JULY 2007

the original query on its local data and send only the
aggregate and the degree of the node back to the query
node, from which the query node can reconstruct the
overall answer. Moreover, this information can be sent
directly without necessitating any intermediate hops, as the
visited peer knows the IP address of the query node from
which the query originated. This is reasonable, considering
that the IP address can be pushed to visited peers along
with the aggregation operator and the P2P networks such as
Kazaa run on top of a TCP/IP layer, making it feasible to
make direct connections with peers. Thus, the bandwidth
requirement of such an approach is uniformly very small
for all visited peers: They are not required to send more
voluminous raw data (for example, all or parts of the local
database) back to the query node.

In approximating latency by the number of peers
participating in the random walk, we also make the implicit
assumption that the overhead of visiting peers dominates
the costs of local computations (such as execution of the
original query on the local database). This is, of course, true
if the local databases are fairly small. To ensure that the
local computations remain small even if local databases are
large, our approach in such cases is to execute the
aggregation query only on a small fixed-sized random
sample of the local data (that is, we subsample from the
peer), scale the result to the entire local database, and send
the scaled aggregate back to the query node. This way, we
ensure that the local computations are uniformly small
across all visited peers.

In contrast, suppose that instead of a fixed sized sample,
we decided on sampling a fixed fraction of a visited peer’s
local database. The main problem with this approach is that
it complicates the query cost model. Now, local processing
costs cannot be ignored and, thus, latency cost of executing
a query cannot be modeled as simply being proportional to
the number of visited peers (or even the overall number of
sampled tuples). The latency now becomes a complex (and,
perhaps, system dependent) function of the cost of visiting
peers and local query processing costs. The consequence of
a complicated latency model is that it now becomes difficult
to have a principled two-phase approach to solving the
problem because the first phase now has the task of
determining how many peers should be sampled in the
second phase so that the target accuracy can be achieved
with minimum latency. Moreover, even if the first phase
can somehow determine the number of peers to visit in the
second phase, the actual latency cost of the second phase is
unpredictable. It depends on the type of peers we visit, as
peers with large databases will increase latency, whereas
peers with small databases will decrease latency.

In summary, for SUM and COUNT aggregates, latency is
shown to be proportional to the number of peers participat-
ing in the random walk. Thus, our goal is to minimize the
number of peers that must be visited in order to arrive at an
approximate answer with the desired accuracy.

3.3 Random Walk in Graphs

In seeking a random sample of the P2P database, we have to
overcome the subproblem of how a random sample of the
peers themselves can be collected. Unrepresentative sam-
ples of peers can quickly skew results, producing erroneous
aggregation statistics. Sampling in a nonhierarchical decen-
tralized P2P network presents several obstacles in obtaining
near-uniform random samples. This is because no peer
(including the query node) knows the IP addresses of all
other peers in the network: They are only aware of their

immediate neighbors. If this were not the case, then, clearly,
the query node could locally generate a random subset of
IP addresses from among all the IP addresses and visit the
appropriate peers directly. We note that this problem is not
encountered in traditional databases, as even if one has to
resort to cluster (or block-level) sampling such as in [11] and
[18], obtaining an efficient sample of the blocks themselves
is straightforward.

This problem has been recognized in other contexts (see
[16] and the references therein), and interesting solutions
based on Markov-chain random walks have been proposed.
We briefly review such approaches here. A Markov-chain
random walk is a procedure that is initiated at the query
node, and for each visited peer, the next peer to visit is
selected with equal probability from among its neighbors
(and itself and, thus, self loops are allowed). It is well
known that if this walk is carried out long enough, then the
eventual probability of reaching any peer p will reach a
stationary distribution. To make this more precise, let P ¼
fp1; p2; . . . ; pMg be the entire set of peers, let E be the entire
set of edges, and let the degree of a peer p be degðpÞ. Then,
the probability of any peer p in the stationary distribution is

probðpÞ ¼ degðpÞ
2jEj :

It is important to note that the above distribution is not
uniform: The probability of each peer is proportional to its
degree. Thus, even if we can efficiently achieve this
distribution, we will have to compensate for the fact that
the distribution is skewed as above if we have to use
samples drawn from it for answering aggregation queries.

The main issue that has concerned researchers has been
the speed of convergence.1 Most results have pointed to certain
broad connectivity properties that the graph should possess
for this to happen. In particular, it has been shown that if the
transition probabilities that govern the random walk on the
P2P graph are modeled as an M �M matrix, then the second
eigenvalue2 plays an important role in these convergence
results. The second eigenvalue describes connectivity prop-
erties of graphs, in particular, whether the graph has a small
cut size,3 which would adversely impact the length of the
walk necessary to arrive at convergence.

As the results in [16] show, if the P2P graph is well
connected (that is, it has a small second eigenvalue, and a
minimum degree of the graph is large), then the random
walk quickly converges as it “loses memory” rapidly. In
fact, under certain specific conditions of connectedness (for
example, expander graphs that are common in P2P net-
works), convergence can be achieved in OðlogMÞ steps.

In our case, recall from Section 1 that we assume that we
are allowed a certain amount of preprocessing to determine
various properties of the P2P graph that will be useful at
query time (under the assumption that the graph topology
changes less rapidly compared to the data content at the
peers). The speed of convergence of a random walk in this
graph is determined in this preprocessing step, in addition
to other useful properties such as the number of nodes M,
the number of edges jEj, and so on. With respect to speed of

ARAI ET AL.: EFFICIENT APPROXIMATE QUERY PROCESSING IN PEER-TO-PEER NETWORKS 923

1. We define speed of convergence as how many hops h are necessary
before one gets close to the stationary distribution.

2. The second eigenvalue tells how well the peers within the network are
connected, that is, expander versus clustered sets of peers.

3. Given a partition of peers in two sets A and B, any edge
crossing from A to be B is crossing the cut. The cut size is sum of
the edges crossing A and B.

convergence, we essentially determine a jump parameter j
that determines how many peers can be skipped between
selections of peers for the sample. As the jump increases,
the correlation between successive peers that are selected
for the sample decreases rapidly.

3.4 Sampling Theorems

In this section, we shall develop the formal sampling
theorems that drive our algorithm. We shall show how the
tuples that are retrieved from the first phase of our
algorithm can be utilized to recommend how the second
phase should be executed, that is, the “query plan” for
answering the query approximately so that a desired error
is achieved.

We focus here on the COUNT aggregate for the purpose
of illustrating our main ideas (our formal results can be
easily extended for the SUM and AVERAGE cases). Finally,
to keep the discussion simple, we assume that all local
databases at peers are small, that is, subsampling is not
required (our results can be extended for the subsampling
case and, in fact, our algorithm in Section 4 does not make
this assumption).

As discussed earlier, our algorithm has two phases. In
the first phase, our algorithm will visit a predefined number
of peers m by using a random walk such that the sample of
visited peers will appear as if they have been drawn from
the stationary distribution of the graph. The query will be
executed locally at each visited peer, and the aggregates
will be sent back to the query node, along with other
information such as the degrees of the visited peers (from
which information such as the peers’ probabilities in the
stationary distribution can be computed). The query node
analyzes this information and then determines how many
more peers need to be visited in the second phase. The
theorems that we develop next provide the foundations on
which the decisions in the first phase are made.

Recall that P ¼ fp1; p2; . . . ; pMg is the set of peers.
For a tuple u, let yðuÞ ¼ 1 if u satisfies the selection

condition, and yðuÞ ¼ 0 otherwise.
Let the aggregate for a peer p be yðpÞ ¼

P
u2p yðuÞ.

Let y be the exact answer for the query, that is,
y ¼

P
p2P yðpÞ.

The query also comes with a desired error threshold �req.
The implication of this requirement is that if y0 is the
estimated count by our algorithm, then

y� y0j j � �req:

Now, consider a fixed-size sample of peers

S ¼ fs1; s2 . . . smg;
where each si is from P . This sample is picked by the
random walk in the first phase. We can approximate this
process as that of picking peers in m rounds, where in each
round, a random peer si is picked from P , with probability
probðsiÞ. We also assume that peers may be picked with
replacement; that is, multiple copies of the same peer may be
added to the sample, as this greatly simplifies the statistical
derivations below.

Consider the quantity y00 defined as follows:

y00 ¼

P
s2S

yðsÞ
probðsÞ

m
: ð1Þ

Theorem 1. E½y00� ¼ y, that is, y00, is an unbiased estimator of y.

Proof. Intuitively, each sampled peer s tries to estimate y as
yðsÞ=probðsÞ, that is, by scaling its own aggregate by the
inverse of its probability of getting picked. The final
estimate y00 is simply the average of the m individual
estimates.

To proceed with the proof, consider the simple case of
only one sampled peer, that is, m ¼ 1. In this case,

E½y00� ¼
X
p2P

yðpÞ
probðpÞ

� �
probðpÞ ¼ y:

To extend to any m, we make use of the linearity of
expectation formula E½X þ Y � ¼ E½X� þE½Y � for random
variables X and Y (that need not even be independent).
Thus, if the expected estimate of any single random peer
is y, then the expected average estimate by m random
peers is also y. tu
We next need to determine the variance of the random

variable y00.

Theorem 2 (Standard Error Theorem).

V ar½y00� ¼

P
p2P

yðpÞ
probðpÞ � y
� �2

probðpÞ

m
:

Proof. To easily derive this variance, let us consider the
simple case of only one sampled peer, that is, m ¼ 1. In
this case, it is easy to see that the variance is defined by
the quantity:

C ¼
X
p2P

yðpÞ
probðpÞ � y
� �2

probðpÞ:

To extend to any m, we make use of the following
formulas for variance: 1) V ar½aX� ¼ a2V ar½X� and
2) V ar½X þ Y � ¼ V ar½X� þ V ar½Y �, where X and Y are
independent random variables, and a is a constant. By
using these formulas, we can easily show that
V ar½y00� ¼ C=m. tu
The above Standard Error Theorem shows that the

variance varies inversely as the sample size. The quantity C
also represents the “badness” of the clustering of the data in
the peers: The larger the C, the more the correlation among
the tuples within peers and, consequently, the more peers
need to be sampled to keep the variance of the estimator y00

small. Notice also that if we divide the variance by N2, then
we will effectively get the square of the error of the relative
count aggregate if y00 was used as an estimator for y.

Our case is actually the reverse; that is, we are given a
desired error threshold �req, and the task is to determine
the appropriate number of peers to sample that will satisfy
this threshold. Of course, we have used a fixed-sized m in
the first phase, so unless we are simply lucky, it is unlikely
that this particular m will satisfy the desired accuracy.
However, we can use the first phase more carefully to
determine the appropriate sample size to draw in the
second phase, say, m0.

The main task is to use the sample drawn in the first
phase to try to estimate C because once we estimate C, we
can determine m0 by using Theorem 2. We suggest a simple
cross-validation procedure as described below to estimate C

924 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 7, JULY 2007

(this procedure is inspired by previous work in a different
context; see [11]).

Consider two random samples of peers of size m, each
drawn from the stationary distribution. Let y001 and y002 be the
two estimates of y by these samples, respectively, according
to (1). We define the cross-validation error (CVError) as
CVError ¼ jy001 � y002 j.
Theorem 3.

E½CVError2� ¼ 2E½ðy00 � yÞ2�:

Proof.

E½CVError2� ¼E y001 � y002
� �2
h i

¼ E y001 � y
� �2
h i

þ E y002 � y
� �2
h i

¼ 2E y00 � yð Þ2
h i

:

ut

This theorem says that the expected value of the square
of the CVError is two times the expected value of the square
of the actual error.

This CVError can be estimated in the first phase by the
following procedure. Randomly divide the m samples into
halves and compute the CVError (for sample size m=2). We
can then determine C by fitting this computed error and the
sample size m=2 into the equation in Theorem 2. To get a
somewhat more robust estimation for C, we can repeat the
random halving of the sample collected in the first phase
several times and take the average value of C. We also note
that since the CVError is larger than the true error, the value
of C is conservatively overestimated.

Once C is determined (that is, the “badness” of the
clustering of data in the peers), we can determine the right
number of peers to sample in the second phase m0 to
achieve the desired accuracy.

4 OUR ALGORITHM

In this section, we present details of our two-phase
algorithm for approximate answering of aggregate queries.
For illustration, we focus on approximating COUNT
queries (it can be easily extended to SUM, AVERAGE,
and MEDIAN queries). The pseudocode of the algorithm is
presented below.

4.1 COUNT

Our approach in the first phase is broken up into the
following main components. First, we perform a random
walk on the P2P network, attempting to avoid skewing due
to graph clustering and vertices of high degree. Our walk
skips j nodes between each selection to reduce the
dependency between consecutive selected peers. As the
jump size increases, our method increases overall band-
width requirements within the database, but for most cases,
small jump sizes suffice for obtaining random samples.

Second, we compute aggregates of the data at the peers
and send these back to the query node.

Note that in Section 3, we had not formally discussed the
issue of subsampling at peers: This was primarily done to
keep the previous discussion simple. In reality, the local
databases at some peers can be quite large, and aggregating
them in their entirety may not be negligible as compared to

the overhead of visiting the peer. In other words, the
simplistic cost model of only counting the number of visited
peers is inappropriate. In such cases, it is preferable to
randomly subsample a small portion of the local database
and apply the aggregation only to this subsample. Thus, the
ideal approach for this problem is to develop a cost model
that takes into account cost of visiting peers, as well as local
processing costs. Moreover, for such cost models, an ideal
two-phase algorithm should determine various parameters
in the first phase, such as how many peers should be visited
in the second phase and how many tuples should be
subsampled from each visited peer. In this paper, we have
taken a somewhat simpler approach in which we fix a
constant t (determined at preprocessing time via experi-
ments) such that if a peer has at most t tuples, then its
database is aggregated in its entirety, whereas if the peer
has more than t tuples, then t tuples are randomly selected
and aggregated. Subsampling can be more efficient than
scanning the entire local database, for example, by block-
level sampling, in which only a small number of disk blocks
are retrieved. If the data in the disk blocks are highly
correlated, then it will simply mean that the number of
peers to be visited will increase, as determined by our cross-
validation approach at query time.

Third, we estimate the CVError of the collected sample
and use that to estimate the additional number of peers that
need to be visited in the second phase. For improving
robustness, steps 2-4 in the cross-validation procedure can
be repeated a few times, as well as the average squared
CVError computed.

Once the first phase has completed, the second phase is
then straightforward. We simply initiate a second random
walk based on the recommendations of the first phase and
compute the final aggregate.

4.2 SUM and AVERAGE

Although the algorithm has been presented for COUNT
queries, it can be easily extended to other aggregates such
as the SUM and AVERAGE by modifying the yðCurrÞ value
specified on line 8, phase 1 of the algorithm. For the SUM,
no changes are required, and for the AVERAGE, (#tuples/
#processTuples) is removed from yðCurrÞ, since no scaling
is required.

4.3 MEDIAN

For more complex aggregates such as estimation of
medians, quantiles, and distinct values, more sophisticated
algorithms are required. In addition to computing COUNT,
SUM, and AVERAGE aggregates, we can also efficiently
estimate more difficult aggregates such as the MEDIAN.
We propose an algorithm for computing the MEDIAN in a
distributed fashion based upon comparing the rank
distances of medians of individual peers. Our algorithm
for computing the MEDIAN is given as follows:

1. Select m peers at random by using random walk.
2. Each peer sj computes its median medj and sends it

to the query node, along with probðsjÞ.
3. The query node randomly partitions the m medians

into two groups of m=2 medians: Group1 and Group2.
4. Let medg1 be the weighted median of Group1, that is,

such that the following is minimized:

ARAI ET AL.: EFFICIENT APPROXIMATE QUERY PROCESSING IN PEER-TO-PEER NETWORKS 925

abs
X

medj2Group1;

medj<medg1

1=probðsjÞ �
X

medj2Group1;

medj>medg1

1=probðsjÞ

0
BB@

1
CCA:

5. Find the error between the median of Group2 (say,
medg2) and the weighted rank of medg1 in Group2.
That is, let

c ¼

abs
X

medj2Group2;

medj<medg1

1=probðsjÞ �
X

medj2Group2;

medj<medg2

1=probðsjÞ

0
BB@

1
CCA=ðm=2Þ:

6. Select additional c2=�2
req peers by using random

walk.
7. Find and return the weighted median of the medians

of the additional peers.

Similar to our COUNT algorithm, our technique for
computing the MEDIAN offers great advantages over the
naive approach of estimating the MEDIAN at the query
node. By computing the MEDIAN at individual peers and
sending these aggregates back to the query node, we reduce
the number of messages sent over the network. This method
can easily be extended to other aggregates such as the
quantiles.

5 HYBRID SOLUTION

In order to further improve the quality of our random
sampling process, we have employed a hybrid sampling
technique by allowing individually selected peers to
perform additional sampling in parallel with the random
sampling phase. We exploit the fact that during a random
walk, previously selected peers can perform further
independent processing while waiting for the final peer to
be selected for sampling during the random-walk phase.
The ability to execute in-network computation is a valuable
tool for maximizing sample quality and reducing the
required jump size for individual queries. Our hybrid
technique can be utilized for many aggregate types
including SUM, AVERAGE, COUNT, and MEDIAN
queries.

Algorithm: COUNT queries

Predefined values

M : total number of peers in network

E : total number of edges in network
m : number of peers to visit in phase 1

j : jump size for random walk

t : max #tuples to be subsampled per peer

Inputs

Q : COUNT query with selection condition

Sink : peer where query is initiated

�req : desired max error

Phase 1

// Perform random walk

1. Curr ¼ Sink; Hops ¼ 1;

2. while ðHops < j �mÞ {

3. if ðHops % jÞ
4. V isitðCurrÞ;
5. Hopsþþ;

6. Curr ¼ random adjacent peer

7. }

// V isit peer

1. V isitðCurrÞ {

2. if ð#tuples of CurrÞ <¼ tÞ {
3. Execute Q on all tuples

4. else

5. Execute Q on t randomly sampled

6. tuples

7. }

8. yðCurrÞ ¼ #tuples
#processedTuples

� �
� ðresult of QÞ

10. Return ðyðCurrÞ; degðCurrÞÞ to Sink

11. }

// Cross validate at sink

1. Let S ¼ fs1; s2; . . . ; smg be the visited peers

2. Partition S randomly into halves: S1 and S2

3. Compute

y001 ¼

P
s2S1

yðsÞ=probðsÞ

m=2 y002 ¼

P
s2S2

yðsÞ=probðsÞ

m=2

where probðsÞ ¼ degðsÞ
2E

4. Compute CVError ¼ y001 � y002
�� ��

5. Return m0 ¼ ðm=2Þ � CVError2

�2
req

� �

Phase 2

1. Visit m0 peers by using random walk

2. Let S0 ¼ fs1; s2; . . . ; s0mg be the visited peers

3. Return y0 ¼

P
s2S0

yðsÞ=probðsÞ

m0

5.1 Hybrid Algorithm

Since each peer is limited to knowledge of adjacent peers,
computing aggregates based upon a single start location
(query node) limits the total number of peers available for
processing. Each peer accessed is aware of the peers that
make up the path from the query node to itself. Most
queries are unable to reach all peers in a network either due
to high per-message cost or query execution time require-
ments. Techniques exist for generating expander P2P
topologies [31]: A fully decentralized approach for comput-
ing random samples is impractical. We address the
possibility of highly connected networks by randomly
selecting adjacent peers as opposed to flooding. Since we
cannot fully exploit a decentralized approach for query
processing, we propose a hybrid solution for random
sampling, focusing on extending our technique with a
hybrid in-network decentralized approach.

Upon selection of a peer pi by the random-walk phase, pi
contains a period pi period where further processing may be
performed to improve the quality of a peer’s local data. The
period pi period is defined as the number of hops remaining in
the random-walk phase before the final peer pm is selected
for sampling. In order to exploit these periods, we propose
an incremental decentralized sampling technique building
upon the Gossip protocol [23]. The number of messages sent

926 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 7, JULY 2007

over the network due to gossiping may be varied based
upon the user-defined parameters ra and rr. Parameter ra is
the number of edges that a peer may randomly select for
gossiping, and rr is the maximum number of hops from pi
that gossiping is permitted. Regardless of the value of ra or
rr, the number of messages sent to the query node remains
constant. These two parameters combined allow the user to
leverage in-network computation, without affecting the
number of messages sent back to the query node, avoiding
possible bottlenecks.

The Gossip protocol works as follows: For each peer in the
path pi, compute the sum of all of the tuples contained in the
peer. For each randomly selected adjacent peer pij of pi, send
the aggregate values sij and an associated weight wij
representing the contributions of the randomly selected
adjacent peers of pi. For each selected peer pi, local sets are
created si1...n and wi1...n from contributed sij and wij values.
From the adjacent peers, these sets are used to revaluate si
and wi for the current peer pi. This process allows adjacent
peers to mix data and allows local data sets to take into
consideration both the local and the contributed values. Each
round of the Gossip algorithm involves a single pass where
neighboring peers contribute local values to adjacent peers.
A single iteration of the Gossip algorithm executes as follows:

1. Each peer pi maintains a local sum si and weight wi.
All weights wi are initialized to 1 for average and 0
for sum.

2. For each peer, let si1...n represent the contributed
sums from all randomly selected adjacent peers and
wi1...n represent the number of tuples contributed
from each respective adjacent peer.

3. Each peer pi randomly selects ra adjacent peer’s
pi1...ra for gossiping.

4. Assuming that the associated weights for each item in
si1...n is 1, our new si value is the sum of the vector
si1...ra, and, similarly,wi is the sum of the vectorwi1...ra:

si ¼
Xm
j¼0

sij; wi ¼
Xm
j¼0

wij:

5. Send ð1=2Þsi and ð1=2Þwi to randomly selected
adjacent peers and pi. By sharing (1/2), peers may
exchange information between peers while still
obeying the mass conservation requirement.

6. With each aggregate replaced with computed si and
wi, the new estimated aggregate is si=wi.

Mixing between peers increases the diffusion of values
through the network. For our purpose, there is no specific
constraint on the number of iterations required before
exiting. Under our hybrid approach, the algorithm attempts
to maximize the amount of mixing per peer pi by exploiting
the period before a peer must send a sample back to the
query node. As stated in [23], the diffusion speed of the
network can be represented as Tðn; "Þ ¼ Oðlognþ log 1="Þ
for expander-type networks. In addition, for very long
walks, convergence may occur before the final peer has
been selected, but we can continue to perform gossiping,
without loss of benefit, since P2P networks such as Gnutella
[17] are, by nature, transient. Where peers are continually
entering and leaving the network, gossiping can continue to
diffuse new values as peers enter the network.

Simply, since we know how many peers remain to be
selected by the random-walk phase, the lower bound for the

period pi period is the remaining number of hops required to
obtain the required sample, given the specified jump size
and sample size. For example, suppose a query is executed
with the following parameters: jump size of 10, tuples per peer
100, and a sample size of 400. After selection of the first peer,
at least 30 hops are required by the random walk before
completion. For the first peer selected p1, the period p1 period

is equal to 30 hops. This determines that for the next
30 hops, further processing can be utilized to improve the
sample quality for the selected peer p1. Thus, for each
consecutive peer selected, the period pi period is bounded as
the (jump size � the number of remaining peers to be
selected).

As shown in Fig. 1, the earlier that a peer is selected for
sampling, the larger is the period available for gossiping. As
additional hops are taken to reach the next peer for
sampling, already selected peers can continue to gossip
(this is represented by the rings around peers for each
period). By combining our knowledge of Gossip and the
pi period for selected peers, we can maximize the quality of
the sample obtained from individual peers. Our hybrid
sampling algorithm executes as follows:

1. Given a random start-location peer p0, the local
group is fp0g.

2. Initialize a group for each selected peer pi:
groupi 2 fpig.

3. For each peer in groupi, randomly select ra adjacent
peers.

4. Extend the local group to include adjacent peers if
and only if (path from pi � rr) groupi 2 groupi [
ffor each peer in groupi add pi1 . . . rag.

5. Perform Gossip on current groupi.
6. Continue steps 2-5 for each peer in groupi until

pi period has been reached.
7. All peers selected by the random sampling phase,

excluding peers selected by the local groups, send
their current mixed values back to the query node.

8. Compute remaining algorithm normally.

Peers near the beginning of the random walk have a
longer period to gossip, whereas peers closer to the end of the
walk contain an incrementally smaller period for gossiping.
This creates an uneven level of mixing among the local
groups of peers, but since all peers obey mass conservation as
previously defined, the number of rounds performed by
each group does not affect the overall results between the
different gossiping groups.

5.2 Benefits and Drawbacks

Our hybrid approach allows a single random walk to
increase the quality of samples from selected peers by
allowing limited diffusing of values with surrounding
neighbors. This technique builds upon our original algo-
rithm by increasing the quality of individual samples,
providing a better representation of the network (spurious/
unrepresentative data is diffused). In addition, our techni-
que requires no additional messages to be sent to the query

ARAI ET AL.: EFFICIENT APPROXIMATE QUERY PROCESSING IN PEER-TO-PEER NETWORKS 927

Fig. 1. Each ring represents the increase in gossiping per period for each

peer.

node. Our goal is not to ensure diffusion at a specific rate
but instead to allow the Gossip protocol to execute online in
conjunction with the random sampling process. This gives
us a performance speedup, with no additional time
requirements for processing beyond the time required by
the original random-walk phase, allowing more individual
peers to be evaluated without increasing the total number of
messages sent back to the query node.

Inversely, our hybrid approach has a high in-network
communication cost as the gossip radius increases: As the
number of peers participating in the gossiping process
increases, the number of messages sent over the network
increases rapidly. The hybrid approach incurs no additional
messages to be sent to the query node, but there are an
increased number of messages sent in-network between
gossiping peers. Combined with two gossip-limiting para-
meters ra and rr, we provide a tunable technique by
providing a powerful trade-off between the number of
messages sent over the network and accuracy.

6 EXPERIMENTAL EVALUATION

In this section, we have provided experimental justification
for our methods. We have implemented our algorithms on
simulated and real-world topologies by using various
degrees of data clustering and topology structures.

6.1 Implementation

Our algorithms and P2P topologies are implemented in
Java 5.0 with the graph generation tool Jung [20] version 1.6.
Our implementation includes both sampled and real-world
Gnutella topology samples. All of our experiments were run
on AMD dual-core Opteron 2.0-GHz processors with
2 Gbytes of RAM.

6.2 Generation of P2P Networks and Databases

6.2.1 Synthetic Topology

The power laws [14] offer insight to the structure of Internet
topologies, and [2] confirms that the power laws extend to
P2P networks. Our synthetic topology is created through
the process of connecting subgraphs by using the graph
generation tool Jung [20]. It consists of 10,000 peers and
100,000 edges. The parameters during graph creation are

. Subgraphs (s). s subgraphs are created, which
follow the power-laws topology [14].

. Edges between subgraphs (e). The size of e
determines the cut size between subgraphs. As the
cut size decreases, the number of edges between
subgraphs decreases.

6.2.2 Real-World Topology

We also experimented with 2001 Gnutella topology data
containing 22,556 peers and 52,321 edges, acquired from the
group of M. Ripeanu at the University of Chicago.

6.3 P2P Databases

Both types of networks were populated with data generated
by a synthetic data generator. We use single-attribute
tuples. The attribute values have a range between 1 and
100. The values follow the Zipf distribution. The parameters
that define the main characteristics of our synthetic data
sets are listed as follows:

. Cluster Level (CL). If the CL is equal to 0, then the
data set is perfectly clustered; that is, it is sorted and
then partitioned across the peers. If the CL is set to 1,
then the data set is randomly permuted then
partitioned across the peers. In-between values
correspond to in-between scenarios.

. Skew (Z). The skew determines the slant in frequency
distribution of distinct values in the data. Low skew
values give the data set an even distribution of
frequencies per value; conversely, high skew values
distort the distribution of frequencies.

We populated the synthetic network with 1,000,000 tuples
and the Gnutella network with 2,200,000 tuples. It is well
known that P2P databases have strong clustering properties;
for example, large networks such as Gnutella contain
subgraphs of peers containing similar music genre, movies,
software, or documents [25]. Thus, while populating the
peers of both networks, we distributed the data in a breadth-
first method in order to obtain reasonable clustering of
synthetic data within the topologies. That is, when loading a
peer, the adjacent peers are also loaded with similarly
clustered data.

6.4 Input Parameters

We evaluate the accuracy, the use of network resources, the
size of sample acquired, and the total number of tuples
sampled from the network. We define each of the user
defined inputs as follows:

1. Required Accuracy (�req). This parameter defines
the maximum allowed error for the estimated
answer.

2. Tuples Sampled per Peer (t). This parameter defines
the number of tuples to be sampled from each
selected peer.

3. Jump Size (j). This parameter defines the number of
peers to be passed over before selecting the next peer
for sampling.

4. Initial Sample Size (rorig). This parameter defines the
initial number of tuples to be acquired from the
database to execute the first phase. (Thus, rorig=t ¼ m,
where m is the number of peers visited in the first
phase. In our experiments, the local databases are
always large enough to ensure that subsampling
always takes place.)

Parameter 1 is provided by the user for each query.
Parameters 2-4 may be provided by the user or may be set
via a preprocessing step.

6.5 Evaluation Metrics: Cost and Accuracy

Our algorithms are evaluated based on the cost of execution
and how close they get to the desired accuracy. As discussed
earlier, we use latency as a measure of our cost, noting that in
our case, it is proportional to the number of peers
participating in the random walk. In fact, if the number of
tuples to be sampled is the same for all peers (which is true in
our experiments), then latency is also proportional to the
total number of sample tuples drawn by the overall
algorithm. Thus, we use the number of sample tuples used
as a surrogate for latency in describing our results.

6.6 Experiments

All of our results were generated from five independent
experiments and averaged for each individual parameter
configurations. Errors are normalized between 0 and 1.

928 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 7, JULY 2007

6.6.1 Accuracy

Figs. 2 and 3 shows representative accuracy results for

COUNT by using synthetic and real data sets. In this case,

we have a query with selectivity of 30 percent, CL ¼ 0:2,

and Z ¼ 0:2. In Fig. 2, we vary the required accuracy. The

figure shows that the algorithm’s result is always within the

required accuracy. In Fig. 3, we set required accuracy to 0.1

and show the resulting accuracy for each query with

different selectivities.

6.6.2 Sample Size

Figs. 4 and 5 show that the required sample size increases

with 1=�2
req. They also show that the required sample size

does not vary much when the initial sample is ranged from

1,000 to 3,000. The selectivity of the query in this

experiment was 30 percent, and the algorithm gave an

answer within the required accuracy in all cases. We note

that the result of our algorithm specifies the number of

peers to be sampled. In the experiments, we convert it to

the number of samples by taking 25 samples per peer. Fig. 6

shows that the improvement by getting more tuples per

peer is small. To minimize the cost of sampling in each

peer, we take 25 samples in each peer.

6.6.3 Comparison with Naive Techniques

Fig. 7 compares our approach with depth-first search (DFS),

where we collect our sample by using a random walk, with

j ¼ 0, and BFS, where we collect our sample from the peers

in the neighborhood of the querying peer. Note that our

method always meets the required accuracy. Our technique

clearly outperforms both techniques.

6.6.4 Effects of Data Clustering and Skew

Figs. 8 and 9 show the effects of different degrees of data

clustering and Figs. 10 and 11 show different degrees of

skew. Figs. 7, 8, 9, 10, 11, and 12 simulate a P2P database

with two subgraphs, each containing similar data within

individual subgraphs but different from others. The results

show that with clustering closer to 0 (data are more

clustered), we need to collect more samples, whereas with

clustering close to 1 (data are less clustered), we need less

samples, since each peer contains a better sample of the

entire data set. Regarding skew, the results show that when

skew increases, we need fewer samples. The reason is that

some values become much more frequent in the data set

and, therefore, easier to estimate their count.

6.6.5 Graph Size versus Jump Size

Fig. 12 illustrates the relationship between jump size and

cut size in a P2P database. As the number of edges

connecting subgraphs or the jump size increases, the

ARAI ET AL.: EFFICIENT APPROXIMATE QUERY PROCESSING IN PEER-TO-PEER NETWORKS 929

Fig. 2. Effects of required accuracy on the error percentage for the

COUNT technique.

Fig. 3. Effects of selectivity on the error percentage for the COUNT
technique.

Fig. 4. Effects of the sample size collected for given required accuracies
and initial sample sizes for the COUNT technique.

Fig. 5. Effects of the sample size collected for given required accuracies
and initial sample sizes for the COUNT technique.

Fig. 6. The number of peers does not make a vast difference in

accuracy.

accuracy of the sample increases. The relationship between

number of edges connecting subgraphs and the jump size

are inversely proportional in determining the quality of the

sample acquired.

6.6.6 Evaluating the SUM Query

Figs. 13 and 14 show that our technique provides similar

accuracy results for SUM. Here, we estimate the SUM of all

tuples in the database (that is, selectivity ¼ 1).

6.6.7 Clustering versus the Number of Tuples Sampled

per Peer

Figs. 15 and 16 illustrate the relationship between the
clustering of data in the network and the number of tuples
selected from each peer. As the clustering of the data
increases, the estimated accuracy of the algorithm de-
creases. In addition, as the number of tuples sampled from
individual peers increases, the accuracy decreases steadily.
This shows that the ability to acquire larger samples from
fewer peers is highly dependent upon the clustering of the
data. As shown in Figs. 17 and 18, there is a direct
relationship between clustering and the number of tuples
sampled from each peer: Highly clustered networks can be
better estimated using smaller sample sizes per peer;
inversely, networks with little or no clustering can be

930 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 7, JULY 2007

Fig. 7. Random walks perform better than BFS and DFS.

Fig. 8. Effects of clustering on the error percentage for the COUNT

technique.

Fig. 9. Effects of clustering on the sample size for the COUNT

technique.

Fig. 10. Effects of skew on the error percentage for the COUNT

technique.

Fig. 11. Effects of skew on the sample size for the COUNT technique.

Fig. 12. Effects of cut size with jump size on error percentage for SUM

technique.

Fig. 13. Effects of clustering on the error percentage for the SUM

technique.

estimated using larger samples sizes per peer, reducing the
total number of messages sent over the network.

6.7 Estimating the MEDIAN

Figs. 19 and 20 illustrate that our technique can be extended
to accurately estimate the MEDIAN. Similarly to SUM and
COUNT aggregates, our technique for computing the
MEDIAN performs well by using various levels of cluster-
ing. In these experiments, we use both the Gnutella and the
synthetic graphs, vary the clustering factor, and set
�req ¼ 0:1. The error that we show in the graph is the
difference between the true rank of the median that the
algorithm returns and N=2.

6.8 Hybrid Random Sampling Technique

Our sampling technique, as shown in Figs. 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20, can be extended to
include in-network sampling, as proposed in Section 5.
Figs. 2, 3, 8, 9, 10, and 11 show that the hybrid approach

achieves good results for (synthetic and real-world topolo-
gies) in a variety of settings including skew, data clustering,
and selectivity. As shown in Figs. 8 and 9, the hybrid solution
is effective for data sets with various levels of clustering. In all
cases, the hybrid approach outperforms the original algo-
rithm, achieving higher accuracy with a lower sample size.
Similar results are shown for the skew in Figs. 10 and 11.

In Figs. 21 and 22, we have included the original
algorithm by setting the radius rr to 0, which represents
the original algorithm without gossiping. As shown in
Fig. 21, as the number of edges that a peer randomly selects
for gossiping rr and the maximum number of hops from pi
that gossiping is permitted ra are increased, the accuracy of
the results increases steadily. As shown in Fig. 21, as rr and
ra are increased, the accuracy increases for the hybrid
approach, obtaining lower error percentage by as much as
19 percent as compared to the original algorithm. In
addition, Fig. 22 illustrates that as rr and ra are increased,
the required sample size decreases. In some cases, the

ARAI ET AL.: EFFICIENT APPROXIMATE QUERY PROCESSING IN PEER-TO-PEER NETWORKS 931

Fig. 15. Effects of clustering with the number of tuples sampled per peer

on the error percentage by using the AVERAGE technique for synthetic

topology.

Fig. 16. Effects of clustering with the number of tuples sampled per peer

on the error percentage by using the AVERAGE technique for real-world

topologies.

Fig. 17. Effects of clustering with the number of tuples sampled per peer

on the sample size by using the AVERAGE technique for synthetic

topologies.

Fig. 18. Effects of clustering with the number of tuples sampled per peer

on the sample size by using the AVERAGE technique for real-world

topologies.

Fig. 19. Effects of clustering on the error percentage for the MEDIAN

technique.

Fig. 14. Effects of clustering on the sample size for the SUM technique.

hybrid approach requires more than 1,000 tuples than the
original approach. As shown in Figs. 21 and 22, small
values for rr and ra achieve improved results.

7 CONCLUSION

In this paper, we present adaptive sampling-based techni-
ques for the approximate answering of ad hoc aggregation
queries in P2P databases. Our approach requires a minimal
number of messages sent over the network and provides
tunable parameters to maximize performance for various
network topologies.

Our approach provides a powerful technique for
approximating aggregates of various topologies and data
clustering but comes with limitations based upon a given
topologies structure and connectivity. For topologies with
very distinct clusters of peers (small cut size), it becomes
increasingly difficult to accurately obtain random samples
due to the inability of random-walk process to quickly reach
all clusters. This can be resolved by increasing the jump size,
allowing a larger number of peers to be considered and

increasing the allowed mixing by our hybrid approach. By
varying a few parameters, our algorithm successfully
computes aggregates within a given required accuracy.
We present extensive experimental evaluations to demon-
strate the feasibility of our solutions for both synthetic and
real-world topologies.

ACKNOWLEDGMENTS

The authors thank Matei Ripeanu of the University of
Chicago for providing us with the Gnutella topology
samples. Real-world topology samples are available at
http://people.cs.uchicago.edu/~matei/GnutellaGraphs.
The work of Gautam Das was supported by unrestricted gifts
from Microsoft Research and start-up funds from the
University of Texas, Arlington. The work of Dimitrios
Gunopulos was supported by IIS-0330481. The work of Vana
Kalogeraki was supported by CNS-0627191 and IIS-0330481.

REFERENCES

[1] S. Acharya, P.B. Gibbons, and V. Poosala, “Aqua: A Fast Decision
Support System Using Approximate Query Answers,” Proc. 25th
Int’l Conf. Very Large Data Bases (VLDB ’99), 1999.

[2] L. Adamic, R. Lukose, A. Puniyani, and B. Huberman, “Search in
Power-Law Networks,” Physical Rev. E, 2001.

[3] B. Babcock, S. Chaudhuri, and G. Das, “Dynamic Sample Selection
for Approximate Query Processing,” Proc. 22nd ACM SIGMOD
Int’l Conf. Management of Data (SIGMOD ’03), pp. 539-550, 2003.

[4] A.R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting
Scalable Multi-Attribute Range Queries,” Proc. ACM Ann. Conf.
Applications, Technologies, Architectures, and Protocols for Computer
Comm. (SIGCOMM ’04), 2004.

[5] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Analysis and
Optimization of Randomized Gossip Algorithms,” Proc. 43rd IEEE
Conf. Decision and Control (CDC ’04), 2004.

[6] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip and
Mixing Times of Random Walks on Random Graphs,” Proc. IEEE
INFOCOM ’05, 2005.

[7] M. Charikar, S. Chaudhuri, R. Motwani, and V. Narasayya,
“Towards Estimation Error Guarantees for Distinct Values,” Proc.
19th ACM Symp. Principles of Database Systems (PODS ’00), 2000.

[8] S. Chaudhuri, G. Das, M. Datar, R. Motwani, and V. Narasayya,
“Overcoming Limitations of Sampling for Aggregation Queries,”
Proc. 17th IEEE Int’l Conf. Data Eng. (ICDE ’01), pp. 534-542, 2001.

[9] S. Chaudhuri, R. Motwani, and V. Narasayya, “Random Sampling
for Histogram Construction: How Much Is Enough,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’98), pp. 436-
447, 1998.

[10] S. Chaudhuri, G. Das, and V. Narasayya, “A Robust Optimization-
Based Approach for Approximate Answering of Aggregate
Queries,” Proc. 20th ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’01), 2001.

[11] S. Chaudhuri, G. Das, and U. Srivastava, “Effective Use of Block-
Level Sampling in Statistics Estimation,” Proc. 23rd ACM SIGMOD
Int’l Conf. Management of Data (SIGMOD ’04), 2004.

[12] Y. Chu, S. Rao, and H. Zhang, “A Case for End System Multicast,”
Proc. ACM Int’l Conf. Measurement and Modeling of Computer
Systems (SIGMETRICS ’00), 2000.

[13] M.M. Espil and A.A. Vaisman, “Aggregate Queries in Peer-to-Peer
OLAP,” Proc. Seventh ACM Int’l Workshop Data Warehousing and
On-Line Analytical Processing (DOLAP ’04), 2004.

[14] C. Faloutsos, P. Faloutsos, and M. Faloutsos, “On Power-Law
Relationships of the Internet Topology,” Proc. ACM Ann. Conf.
Applications, Technologies, Architectures, and Protocols for Computer
Comm. (SIGCOMM ’99), 1999.

[15] Freenet Homepage, http://freenet.sourceforge.net, 2006.
[16] C. Gkantsidis, M. Mihail, and A. Saberi, “Random Walks in Peer-

to-Peer Networks,” Proc. IEEE INFOCOM ’04, 2004.
[17] Gnutella Homepage, http://rfc-gnutella.sourceforge.net, 2006.
[18] P. Haas and C. K}onig, “A Bilevel Bernoulli Scheme for Database

Sampling,” Proc. 23rd ACM SIGMOD Int’l Conf. Management of
Data (SIGMOD ’04), 2004.

932 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 7, JULY 2007

Fig. 20. Effects of clustering on the sample size for the MEDIAN

technique.

Fig. 21. Effects of Gossip radius with number of adjacent peers on error

percentage for the AVERAGE technique.

Fig. 22. Effects of Gossip radius with number of adjacent peers on error

percentage for the AVERAGE technique.

[19] R. Heubsch, J. Hellerstein, N. Lanhan, B.T. Loo, S. Shenker, and I.
Stoica, “Querying the Internet with PIER,” Proc. 29th Int’l Conf.
Very Large Data Bases (VLDB ’03), 2003.

[20] JUNG Web Site, http://jung.sourceforge.net, 2006.
[21] P. Kalnis, W.S. Ng, B.C. Ooi, D. Papadias, and K.-L. Tan, “An

Adaptive Peer-to-Peer Network for Distributed Caching of OLAP
Results,” Proc. 21st ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’02), 2002.

[22] Kazaa Homepage, http://www.kazaa.com, 2006.
[23] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-Based Computation

of Aggregate Information,” Proc. 44th Ann. IEEE Symp. Foundations
of Computer Science (FOCS ’03), 2003.

[24] V. King and J. Saia, “Choosing a Random Peer,” Proc. 23rd Ann.
ACM Symp. Principles of Distributed Computing (PODC ’04), 2004.

[25] F. Le Fessant, S. Handurukande, A.-M. Kermarrec, and L.
Massoulié, “Clustering in Peer-to-Peer File Sharing Workloads,”
Proc. Third Int’l Workshop Peer-to-Peer Systems (IPTPS ’04), 2004.

[26] W. Lee, S.J. Stolfo, and K.W. Mok, “A Data Mining Framework for
Building Intrusion Detection Models,” Proc. IEEE Symp. Security
and Privacy, p. 0120, 1999.

[27] X. Li, Y.J. Kim, R. Govindan, and W. Hong, “Multi-Dimensional
Range Queries in Sensor Networks,” Proc. First ACM Int’l Conf.
Embedded Networked Sensor Systems (SENSYS ’03), 2003.

[28] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B.
Richard, S. Rollins, and Z. Xu, “Peer-to-Peer Computing,”
HP Technical Report HPL-2002-57, 2002.

[29] B. Mukherjee, L. Heberlein, and K. Levitt, “Network Intrusion
Detection,” IEEE Network, vol. 8, no. 3, pp. 26-41, May/June 1994.

[30] Napster Homepage, http://www.napster.com, 2006.
[31] G. Pandurangan, P. Raghavan, and E. Upfal, “Building Low-

Diameter P2P Networks,” Proc. 42nd Ann. IEEE Symp. Foundations
of Computer Science (FOCS ’01), 2001.

[32] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content-Addressable Network,” Proc. ACM Ann. Conf.
Applications, Technologies, Architectures, and Protocols for Computer
Comm. (SIGCOMM ’01), 2001.

[33] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems,” Proc.
IFIP/ACM Int’l Conf. Distributed Systems Platforms (Middleware ’01),
2001.

[34] O.D. Sahin, A. Gupta, D. Aggrawal, and A. El Abbadi, “A Peer-to-
Peer Framework for Caching Range Queries,” Proc. 20th IEEE Int’l
Conf. Data Eng. (ICDE ’04), 2004.

[35] S. Sen, O. Spatscheck, and D. Wang, “Accurate, Scalable In-
Network Identification of P2P Traffic Using Application Signa-
tures,” Proc. 13th Int’l World Wide Web Conf., 2004.

[36] J.L. Simon, Resampling: The New Statistics, second ed., Oct. 1997.
[37] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,

“Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” Proc. ACM Ann. Conf. Applications, Technologies,
Architectures, and Protocols for Computer Comm. (SIGCOMM ’01),
2001.

[38] D. Zeinalipour-Yazti, V. Kalogeraki, and D. Gunopulos, “Exploit-
ing Locality for Scalable Information Retrieval in Peer-to-Peer
Networks,” Information System, vol. 30, no. 4, pp. 277-298, 2005.

[39] J. Zhao, R. Govindan, and D. Estrin, “Computing Aggregates for
Monitoring Wireless Sensor Networks,” Proc. First IEEE Int’l
Workshop Sensor Network Protocols and Applications (SNPA ’03),
2003.

Benjamin Arai received the BSc degree in
computer science from the University of Califor-
nia, Riverside, in 2004. He is a PhD candidate in
the Department of Computer Science and
Engineering, University of California, Riverside.
His research interests include data mining and
knowledge discovery, databases, peer-to-peer
networks, top-k retrieval, and sensor networks.
He is a student member of the IEEE.

Gautam Das received the PhD degree in
computer science from the University of Wiscon-
sin, Madison, in 1990. He has been an associate
professor in the Department of Computer
Science and Engineering Department, University
of Texas, Arlington, since 2004. He has held
positions at the University of Memphis, Compaq
Corp., and, most recently, Microsoft Research. In
addition, he has held visiting positions at the Max-
Planck-Institut for Informatics, Germany, the

University of Helsinki, and the Indian Institute of Science, Bangalore,
India. He has served on numerous program committees and was the
program committee cochair of the First International Workshop on
Ranking in Databases (DBRank ’07) and the Ninth ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery
(DMKD ’04). He is currently a guest editor of the ACM Transactions on
Knowledge Discovery from Data. His research interests include data
mining and knowledge discovery, databases, algorithms, and computa-
tional geometry. His research has been supported by the US National
Science Foundation (NSF), the US Office of Naval Research (ONR),
Microsoft, Cadence Design Systems, and Apollo Data Technologies.

Dimitrios Gunopulos received the PhD degree
from Princeton University in 1995, and since
then, he has been a postdoctoral fellow at the
Max-Planck-Institut for Informatics, Germany,
and a research associate at the IBM Almaden
Research Center. He has been a professor in the
Department of Computer Science and Engineer-
ing, University of California, Riverside, since
December 1998. He has served as a program
committee cochair of the 12th ACM International

Conference on Knowledge Discovery and Data Mining (SIGKDD ’06) and
the 15th International Conference on Scientific and Statistical Database
Management (SSDBM ’03) and is currently an associate editor of the
IEEE Transactions on Knowledge and Data Engineering and the ACM
Transactions on Knowledge Discovery from Data. His research interests
include data mining and knowledge discovery, databases, and algo-
rithms. His research has been supported by the US National Science
Foundation (NSF), including a Faculty Early Career Development
(CAREER) award, the US Department of Defense (DoD), the Institute
of Museum and Library Services, the Tobacco Related Disease
Research Program, and AT&T. He is a member of the IEEE.

Vana Kalogeraki received the PhD degree from
the University of California at Santa Barbara in
2000. She is an assistant professor in the
Department of Computer Science and Engineer-
ing, University of California, Riverside. She has
worked as a research scientist in Hewlett-
Packard Laboratories. She has served as the
program cochair of the VLDB International
Workshop on Databases, Informations Systems
and Peer-to-Peer Computing (DBISP2P ’03),

the 13th International Workshop on Parallel and Distributed Real-Time
Systems (WPDRTS ’05), the IEEE International Conference on
Pervasive Services (ICPS ’05), and the 10th IEEE International
Symposium on Object-oriented Real-time distributed Computing
(ISORC ’07) and the general cochair of WPDRTS ’06. She is currently
an associate editor of the Ad Hoc Networks Journal, the Computer
Standards and Interfaces Journal, and the Peer-to-Peer Networking and
Applications Journal. Her research interests include distributed and real-
time systems, peer-to-peer systems, and sensor networks. Her
research is supported by the US National Science Foundation. She
has published many technical papers and given many tutorials. She is a
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ARAI ET AL.: EFFICIENT APPROXIMATE QUERY PROCESSING IN PEER-TO-PEER NETWORKS 933

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

