
Optimal Linear-Time Algorithm for the Shortest Illuminating Line

Segment in a Polygon

(Extended Abstract)

Gautam Das “1

Abstract

Given a simple polygon, we present an optimal

linear-time algorithm that computes the shortest il-

luminating line segment, if one exists; else it reports

that none exists. This solves an intriguing open

problem by improving the O(n log n)-time algorithm

[Ke87] for computing such a segment.

1 Introduction

In this paper we present an optimal linear-time al-

gorithm to do the following: given a simple polygon

with n vertices, it computes in O(n) time the short-

est illuminating line segment inside the polygon, if

one exists; otherwise it reports that no such seg-

ment exists. In other words, it computes the short-

est line segment within a polygon that needs to be

illuminated in order for the interior of the polygon

to be lit. The algorithm solves an outstanding open

problem by improving the O(n log n)-time algorithm

presented by Ke [Ke87] for this problem.

The concept of weak visibility in polygons was in-

troduced by Avis and Toussaint [AT]. Since then it

has received much attention from researchers [AT,

BMT, SS, TL, DHN1, DHN2, Che, DC, IK, Ke87];

also see the survey article by J, O’Rourke [0’ R].

Two sets of points are weakly visible from each other

if every point in either set is visible from some point

in the other set. Thus, our algorithm computes the

shortest line segment that is weakly visible from a

given simple polygon.

* Supported in part by NSF Grant CCR-930-6822

t Math Sciences Dept., Memphis State University, Mem-
phis, TN 38152. e-mail: dasg/giri@nextl .msci.memst.edu

Permission to copy without fee all or pati of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

10th Computational Geometry 94-6/94 Stony Brook, NY, USA
0 1994 ACM 0-89791 -648-4/94/0006..$3.50 259

Giri Narasimhant

An interesting related result due to Bhattacharya

and Mukhopadhyay [BM] is a linear-time algo-

rithm to compute a single weakly-visible line seg-

ment in a polygon. Although a linear-time aJgo-

rithm was presented for this problem in [D HN2], the

strength of their result lies in the fact that, their

algorithm does not use the linear-time triangula-

tion algorithm [Cha], or the linear-time algorithm

to compute shortest paths in a triangulated polygon

[LP, GHLST]. The present algorithm, in contrast,

uses both the triangulation as well as the shortest

path algorithms, but manages to compute more; it

computes the shortest weakly-visible segment in a

polygon. Another related result is an optimal linear-

time algorithm due to Bhattacharya et al. [BMT]

for computing the shortest line segment from which

the exterior of a simple polygon is weakly visible. It

may be noted that we are concerned with internal

weak visibility.

Besides resolving a long-standing open problem,

our paper is also interesting because of the tech-

niques used. The results in this paper build on

some of our previous work on optimal linear-time

algorithms for weak-visibility problems in polygons.

The linear-time algorithms for computing all LR-

visible pairs of points [DHN1] and for computing all

weakly-visible chords [DHN2] output a mass of infor-

mation related to visibility within a poly,gon. Our

present algorithm shows how to exploit this wealth

of information to answer more interesting questions

related to weak visibility in polygons. We achieve

our results by studying the structure of minima!

weakly-visible segments and identifying the bound-

ing chords for such segments. As described later,

one of the by-products of our algorithm in this pa-

per is a linear-time algorithm to generate ali minimal

weakly-visible segments, These techniques were also

used in [DHN2] to obtain a linear-time recognition

of L2-convezity of simple polygons.

The shortest illuminating line segment in a poly-

gon can also be thought of as the shortest straight

line path that a watchman could patrol along in or-

der to watch over a polygonal art gallery. There have

been a number of papers on the ghorte$t watchman

tour problem [CN, PV]. Our algorithm finds the

shortest straight-line watchman tour, if one exists.

2 Notation
Figure 1: A clockwise component and its C-polygon

We define notation for this paper. A polygonal chain

is a concatenation of line segments. The endpoints

of the segments are called vertices} and the segments

themselves are edges, If the segments intersect only

at the endpoints of adjacent segments, then the

chain is simple, and if a polygonal chain is closed

we call it a polygon. In this paper, we deal with

a simple polygon P of n vertices, and its interior,

int(P).The segment between two points z and y is

denoted ~, and int(~) = ~ \ {x, y}. Two points

z, y = P are visible (or co-visible) if~ c PUint(P).

Two sets of points A and B are said to be weakly

visible from each other if every point in .4 is visible

from some point of B, and vice versa. A polygon is

said to be L2–convex if for every pair of points in the

polygon, there exists another point from which the

first two are visible. The (Euclidean) distance be-

tween two points x and y is denoted dist(x, y). We

assume that the input is in general position, which

means that no three vertices are collinear, and no

three lines defined by edges intersect in a common

point.

If z and y are points of P, then PCW(Z, y)

(PCCW(Z, Y)) is the subchain obtained by travers-

ing P clockwise (counterclockwise) from z to y. The

subchains Pcw(z, y) and Pccw(z, y) includes their

endpoints z and y. A polygon P is said to be LR-

visible with respect to a pair of points x and y, if

Pcw (z, y) is weakly visible from PCCW (z, y).

We let F(zI a) represent the ray rooted at z in

direction a. For a vertex z of P, let z+ be the ver-

tex adjacent to z in the clockwise direction, and Z-

the vertex adjacent in the counterclockwise direc-

tion. Informally, the ray shot from a point z ~ P in

direction a consists of “shooting” a “bullet” from z

in direction a which travels until it hits a point of P,

The first point where this shot hits P is called the

hit point of the ray shot. The line segment from a

shooting point z to its hit point z’ is called a chord

of the polygon. A weakly-visible chord is a chord

that is weakly visible from the rest of the polygon.

A weakly-visible segment is simply any line segment

in P U int(P) that is weakly visible from the rest of

the polygon.

Each reflex vertex v defines two special ray shots

as follows. If a is the direction from v– to v, we let

FCW(V) = T~v, Q) represent the clockwise ray shot

from v. If v’ is the hit point of the clockwise ray

shot, then the subchain Pcw(v, v’) is the clockwise

component of v (see Fig. 1). Counterclockwise ray

shots and components are defined in the same way.

A component is redundant if it is a superset of an-

other component.

The clockwise component of v also defines a sub-

polygon called the clockwise C-polygon of v, which

is the subpolygon of P bounded by the polygonal

chain Pcw(v, v’) and the chord VV’. The clock-

wise C-polygon of v is shown as a shaded region

in Fig. 1. The counterclockwise C-polygons are de-

fined in a similar fashion. We define the envelope of

a C-polygon to be the boundary (in the interior of

P) of the C-polygon of v. Note that the envelope

of a C-polygon is simply the straight-line segment

(chord) consisting of the ray shot from v. Later, we

will refer to the envelope of an intersection of a set

of C-polygons, which is the boundary (inside of P)

of the intersection of the set of C-polygons.

3 Preliminaries

In this section we describe some of the geometric

properties of a weakly-visible line segment.

It was noted in (IK] that the family of non-

redundant components completely determines LR-

visibility of P, since a pair of points s and t ad-

mits LR-visibility if and only if each non-redundant

component of P contains either s or t. A similar

result from [DHN2] states that the family of non-

redundant components also determines all weakly-

visible chords, since a chord ~ is a weakly-visible

chord if and only if each non-redundant component

of P contains either s or t. Lemma 1 below shows

that the family of non-redundant components also

determines the family of weakly-visible segments,

while lemma 2 describes another property satisfied

260

by all weakly-visible segments in P.

Lemma 3.1 A line segment iiii = 1 is weakly visible

from P ifl the segment 1 intersects the C-polygon

corresponding to every non-redundant component of

P.

Lemma 3.2 If a line segment ~ = 1 is weakly vis-

ible from P, then the chord 11, which is obtained by

extending 1 in both directions until it hits P, is a

weakly-visible chord, and the endpoints of 11 form a

LR-visible pair of points with Fespect to P.

The obvious implication of Lemma 3.2 is that a

polygon has at least one weakly-visible chord iff it

has at leaat one weakly-visible segment and conse-

quently a shortest weakly-visible segment.

Before giving an overview of the algorithm, we

describe the peculiar output of the O(n)-time algo-

rithm for computing all weakly-visible chords of a

polygon [DHN2] (the chords algorithm, in short),

since this algorithm is used by our scheme. The

chords algorithm generates k = O(n) pairs of the

form (A~, Bi). Note that for the rest of the paper k

will be used to denote the number of pairs output by

the chords algorithm. Here Ai is a line segment on

P that is described in terms of a parameter z (for

example, z = O (1) refers to the left (resp, right)

endpoint of A~). B; is a polygonal chain on P such

that every line segment joining a point on A; and

a point on Bi forms a weakly-visible chord. How-

ever, Bi has endpoints that are linear functions of

the parameter z. It may also be noted that each of

the A~s are disjoint line segments, while the Bis are

possibly overlapping polygonal chains.

4 Overview of algorithm

The first step of our algorithm is to run the chords

algorithm. If the polygon has no weakly-visible

chords, then the algorithm stops and declares that

there are no weakly-visible segments either.

Note that for the rest of the paper all refer-

ences to the term components are references to non-

redundant components. For every Ai output by the

chords algorithm, let SAi be the set of components

that contain Ai, and let CAi be the intersection of

the C-polygons corresponding to the components in

SAi. Let the envelope of CA, be denoted by ~i. Let

SBi be the set of all components not in SA,, and

let CBi be the intersection of the C-polygons of all

the components in SBi. Let pi denote the envelope

of CBi.

Figure 2:

It is clear that any line segment insicle P that

touches both a~ and ,@ must intersect every C-

polygon and by lemma 3.1 must be a weakly-visible

segment. However, the converse is not so obvi-

ous. Lemma 4.1 below, which implies the con-

verse, proves that the shortest weakly -v’isible seg.

ment must join a point on cit and a point on ~t, for

some i. This vital property is necessary to make our

algorithm work in linear time. Note that SAi cor-

responds to a subsequence of the sorted sequence of

components. What lemma 4.1 proves is that only

such subsequences (and not an arbitrary subset) of

non-redundant components need to be considered

for computing the shortest weakly-visible segment.

Lemma 4.1 If ~ = 1 is the shortest weakly-visible

segment, then s must lie on ~i and t must, lie on fii,

fo?’somei=lj..., k.

Proof:

Extend the line segment 1 = Z until it hits P at

points p and q as shown in Fig. 2. By Lemma, 3.1,

segment 1 must intersect every C-polygon. This im-

plies that for every C-polygon C, one of the two line

segments ~ and @ must lie completely in C. Also,

if the envelope of C intersects 1’, it must include

precisely one of the two segments w and ~.

By the minimality of 1, it is clear that the point

s (t) Les on the envelope of one or two C-PolYgon5.

Ifs (resp. t)lies on the envelope of some (C-polygon

C, (resp. Ct), then since the envelope of C, (rcsp.

Ct) intersects l’, C. (resp. Ct) includes the point p

(resp. q), and does not include q (resp. p).

Let 1’ = ~. By Lemma 3.2, 1’ is a weakly-visible

chord. Consider the output of the chords algorithm.

Let p c Ai. By the correctness of the chords al-

gorithm, q c 13i. Note that C, must include all of

Ai because of the way the chords algorithm works.

Thus, C$ must be a C-polygon that determines cYi,

and Ct must be a C-polygon that determines @i.

Hence s must lie on CY{ and t must lie on @ thus

concluding the proof. 0

The above lemma suggests the following skeleton

for our algorithm. For every i = 1}. . . . k, con-

struct the envelopes ai and @i, and then compute

the shortest line segment joining a point on cxi and

a point on @. The shortest of these is the shortest

weakly-visible segment.

Note that since both cq and pi are convex polygo-

nal chains, computing the shortest line segment con-

necting them can be computed in time O(lail + Ifk [),
where l~i I and lpi I are the lengths of the two chains.

However, in general there may be considerable over-

lap between cq and CYi+l, as well as between & and

~i+l. For the i-th iteration, instead of simply find-

ing the shortest line segment that joins ~i and ~~,

the algorithm only scans the portion of ~i that is not

part of~i+l (and the portion of~i that is not part of

@i+l), and finds the shortest segment between those

parts. The assumption is that the rest of the por-

tions of the two polygonal chains will be scanned as

part of a later iteration. Repetitious scanning of the

polygonal chains is thus prevented by delaying the

scanning of overlapping portions as much as possi-

ble.

In section 5.1, we precisely characterize how cq

changes to become ffi+ 1, and correspondingly how

/3i changes to become /3i+l. In section 5.2, we de-

scribe a data structure that stores ai, i = 1, k,

and another identical structure that stores pi, i =

1 ,. ... k. The planarity of these data structures is

sufficient proof that the size of the union of ~i and

the size of the union of fli for i = 1,.. ., k is O(n).

The problem with the skeleton algorithm de-

scribed above is that the shortest line segment join-

ing ~i and pi for some i may not lie entirely within

P. This happens because even though the line seg-

ment when extended may hit Ai, it might not hit Bi

because of obstruction from the rest of P, i.e., the

extended line is not a weakly-visible chord. In this

case, if there is a weakly-visible chord connecting

Ai and Bi, then the shortest weakly-visible segment

joining ~i and pi would touch a vertex of the P.

This suggests that our algorithm needs to deal with

two main cases, The first case is when the short-

est illuminating segment does not touch a vertex of

P except at its endpoints; the second case is when

it touches a vertex of P in its interior. If the first

case occurs, the algorithm briefly described earlier

will output the shortest illuminating segment. The

details of this case are described in the next section.

The second case is handled separately in section 6.

The algorithm for the second case is a modification

of our earlier algorithm for computing all weakly-

visible chords of a polygon [D HN2]. If a weakly-

visible segment touches a vertex of P it is referred

to as a non-tangential weakly-visible segmenfi oth-

erwise it is referred to as a tangential weakly-visible

segment.

By putting all the pieces together, we show a

linear-time algorithm to obtain the shortest non-

tangential weakly-visible segment, and a linear-

time algorithm to compute the shortest tangential

weakly-visible segment. The shortest of the two

segments is the shortest weakly-visible segment in

a polygon, thus giving us the desired algorithm.

5 Case 1: Non-tangential

weakly-visible segment

As mentioned earlier, this case corresponds to the

situation when the shortest weakly-visible segment

does not touch any vertex of the polygon except pos-

sibly at its endpoints. For eachi= 1,. ... k, let

SNi be the shortest non-tangential weakly-visible

segment that joins ai and ,@ with at least one end-

point on a~ – CYt+l or ~, — /3i+1. It can be shown

that the shortest of the segments SIVi, i = 1, k

must be the shortest non-tangential weakly-visible

segment that joins at and ~z, i = 1, k.

5.1 Structure of ai and pi

AS mentioned earlier both ~i and pi are the bound-

aries (internal to P) of the intersection of a set of

C-polygons. Hence it is clear that both of them are

convex polygonal chains. It may be possible that

~; = CY~l = ~iz = . . . = ~iP. This simply means

that no component starts or ends on the portion of

P covered by AZ,, Ai2, A,,.

We now describe the structural differences be-

tween a, and CXi+l (in case they do differ), and the

corresponding differences between p, and f?+l. The

main purpose of studying this structure is to iden-

tify the polygonal chains a, – ai+l and & – ~i+l

so that they can be processed in the z-th iteration.

Clearly, if a~ = ai+l, then no processing is required

in iteration i.

Assume that a; # ai+l. From [DHN2] we know

262

that Ai and Ai+l are disjoint line segments. There

are various events that trigger the chords algorithm

to go from iteration i to iteration i + 1, thus out-

putting pairs (Ai, Bi) and pairs (Ai+l, Q+l). An

event occurs if a component starts or ends between

Ai or Ai+l. The other possible events have to

do with changes in the points of tangency for the

boundaries of the weakly-visible chords. The chain

~i is different from ~i+l only when a component

starts or ends between A~ and Ai+l. For the next

three paragraphs we will assume that the counter-

clockwise end for any polygonal chain is the front

end, while the clockwise end is the tailend.

If a component c starts between Ai and Ai+l, the

changes from ai to ~i+l are as shown in Fig. 3(b).

Note that the C-polygon corresponding to compo-

nent c lies to the left of the line and that the compo-

nent c consists of the polygonal chain PCW (pz, qz).

Ai lies to the right of pz, while Ai+l lies to the left

of p2. ~i consists of the chain from at to 32 to af,

while cq+l consists of the chain from pz to S2 to aj,

i.e., a portion of the tail of ai gets replaced by a por-

tion of the ray shot corresponding to the component

c. At the same time, as shown in Fig. 3(b) & has

a portion of its front replaced by a new polygonal

chain. fli consists of the chain from bt to LZ to q2,

while fli+l consists of the chain from bt tot2to bj,

In other words, CAi shrinks at its tail end, and CBi

grows at its front end, while both their boundaries

remain convex. Note that ai – a~+l comprises of

the polygonal chain from at to 52, while pi – ~1+1

comprises of the segment from q2 to tz.

Note that in the Figs. 3(a) and (b), the region

CAi n CAi+l (as well as the region CBi n CBi+l)

have been shown as a filled region. The area oc-

cupied by CAi+l (but not by CAi) is indicated as

a dot-filled region, while the area occupied by CAi

and CBi is left blank.

By a similar argument, if a component c ends

between Ai and Ai+l, the portion of the ray shot

corresponding to c at the front (right end or the

counterclockwise end) of ~i gets replaced by a new

polygonal chain, causing CAi to grow in the front.

As shown in figure 2(a), pi has a portion of its tail

(right end or counterclockwise end) replaced by a

portion of the ray shot corresponding to c, thus caus-

ing CBi to shrink at its tail end. In this case note

that ~i – ~i+l comprises of the segment from pl to

Sl, while pi —~i+l comprises of the chain from bt to

tl.

The above description describes the changes that

take place to the a and ~ chains while moving from

the i-th iteration to the (i + 1)-st iteration.

(a)

\

(b)

\

92 b,

n CA, – CA,+I

n,,,GA,+l – CA,

Figure 3: Changes in the structure of a, and /3,

263

5.2 Data structure for storing the CY

and @ chains

The union of all the chains ai (pi) form a tree. We

claim here without elaborating that both the sets

of chains a; and pi can be stored in simple linear-

ized data structures that are similar to the persis-

tent search trees of Sarnak and Tarjan [ST]. The

data structure will be detailed in a full version of

this paper.

5.3 Computing SNi

As described in the previous section, the algorithm

goes through k iterations. In the i-th iteration, the

chains ai – CZi+l and fi~ – ~i+l are identified, and

the shortest segment that joins ffi and @ with one

endpoint on CYf– ~i+l or pi – fli+l is computed. Let

this segment be Sfli = Si ti.

Given any two convex polygonal chains a and P,

there is a simple sweep algorithm to find the shortest

line segment that joins the two chains. In this case,

a and O are two convex chains that form part of the

boundary of two disjoint convex polygons. The al-

gorithm involves sweeping the two chains, one from

its clockwise end and in counterclockwise order, the

other from its counterclockwise end in clockwise or-

der. Informally speaking, the sweep algorithm works

because of three simple facts: (1) for a fixed point

a E ci, its distance to visible points b < @ is uni-

modal, (2) as point a moves monotonically on cr, its

closest point on @ moves monotonically on ~, (3)

for points a E a, its shortest distance to @ (i.e.,

the distance to its closest point on ,B) is unimodal.

Intuitively speaking, fact (3) states that the local

minimum is also the global minimum.

In the i-th iteration, it is possible that the seg-

ment ~ may not lie entirely within P. To identify

this situation, we exploit the fact that given a point

x on P, the chords algorithm has already identified

which directions from z give rise to weakly-visible

chords. Hence to check whether Slfi lies in P, the

algorithm computes the endpoint of the chord gen-

erated when the line segment is extended. Call this

point Pi. Using the output of the chords algorithm

our algorithm checks whether the chord in the di-

rection ~ is a weakly-visible chord. It should be

pointed out that it is possible that Pi may not lie on

Ai, but on some other segment Aj. To identify Aj,

the algorithm traverses from Ai to Aj along P. It

is non-trivial to show that this portion of P is not

traversed again for this purpose (and hence does not

contradict the claimed O(n) time complexity). The

intuition behind the claim is that if pi lies on AJ

then SIV~ is also the shortest segment between al

and ~j as well as between al and ~i for all values of

1 between i and j. On the other hand, if the chord

is not weakly visible, then the segment s;t~ is ig-

nored, and will be handled by the second phase of

the algorithm (corresponding to Case 2).

Another subtle complication is introduced by the

possibility that SNi may have one endpoint on

Pi –~i+l and another endpoint on ~i II CYi+I (instead

of ~i — cq+l). This could happen if the sweep algo-

rithm (described at the start of this subsection) for

finding” the shortest line segment joining two convex

polygonal chains reaches the end of one of the chains

without hitting a local minimum. For example, as-

sume that the end of cq — ~i+l is reached before

reaching the end of fli — ~i+l and before a minimum

was encountered. In this case, our algorithm con-

tinues sweeping on ~i – fli+l, while continuing the

sweep on cq nai+l. Our algorithm needs to be mod-

ified to ensure that this portion of ai n CY,+l is not

swept again in iteration i + 1 (or later). In this case,

it can be shown that SNJ cannot have an endpoint

on this portion of a, n a,+l and hence need not be

considered in any later iteration. The relevant por-

tion of ~i n ai+l is marked visiied so that a sweep

in a later iteration can skip over this portion of the

chain. The entire arguments in this paragraph could

have been carried out with a replaced by /3 and vice

versa.

Once a local minimum is found for the i-th itera-

tion, the algorithm also verifies if it is a global min-

imum for the shortest segment between Oi and fli.

If the point on ai – ~i+l or pi – ~i+l is not the end-

point of that subchain, then the global minimum for

the shortest segment between ~i and pi must have

been reached. Otherwise, a simple test can check

whether the global minimum has been reached or

not. If it is not a global minimum, then SN, can be

ignored since the shortest segment between CYi and

pi connects points that are not on ~i – crz+l as well

as pi – fli+l. Since such a segment would connect

~i+l and ~i+l it will be encountered in a later iter-

ation. The algorithm with the minor modifications

mentioned above is guaranteed to sweep every por-

tion of the CYand @ chains exactly once and hence

achieves the claimed linear-time complexity,

6 Case 2: Shortest tangential

weakly-visible segment

This case occurs when the interior of the shortest

weakly-visible segment in the polygon touches a ver-

tex of the’ polygon. However, in this case, the corre-

sponding weakly-visible chord obtained by extend-

ing the segment is also a tangential chord, i.e., it

touches a vertex of the polygon in its interior. The

crucial point to observe is that these are exactly the

weakly-visible chords that are output by the linear-

time chords algorithm [DHN2]. A suitable modifica-

tion of the chords algorithm can output all tangen-

tial weakly-visible segments, of which the shortest

can be computed.

The chords algorithm uses the following strategy.

It traverses along the polygon in a counterclockwise

direction with a point x. When x is on Ai, the points

y(z) and Z(Z) corresponding to the other endpoints

of the two tangential chords from z are computed.

The points y(z) and Z(Z) move monotonically on

P; so do the points of tangency for the tangential

chords, namely S(W) and i!(z). As z moves on A~,

there are several possible events that can take place,

which would change the description of the tangents:

the point y(z) (or z(z)) could move to a vertex of

P; the point s(a) (or i!(z)) could move to a vertex

of P. These events cause a recomputation of the

equations of the tangential chords as a function of z.

In [DHN2] we show that the number of these events

are O(n), thus giving us a linear-time algorithm.

The modification for computing the tangential

weakly-visible segments is as follows. During iter-

ation i, the chains aj and pi are computed. When

the point z is on Ai, the points of intersection of the

tangential chords with ai and fli are also maintained

(call them al(z), az(z), bl(z), bz(z)), The segment

from al(z) to bl(z) and the segment from az(z)

to IIz(z) are the two tangential weakly-visible seg-

ments with respect to z. The situation is described

in Fig. 4. There are, however, an additional number

of events that could cause a change in the descrip-

tion of the tangential weakly-visible segments: the

points al(z) or a2(z) (61(z) or bz(z)) could move to

a vertex of ai (/li). This would cause additional re-

computations of the equations as well as the lengths

of the tangential segments. The crucial point is that

in between events, the length of the tangential seg-

ments can be computed in terms of z, from which

the minimum can be computed for that interval in

constant time. It can also be shown that the total

number of events that will be encountered is O(n)

and that al(z), bl(z), a2(z), b2(z) move monotoni-

cally on the a and f? chains.

Figure 4: Case 2: Determining tangential shortest

weakly-visible segments

7 All minimal weakly-visible

segments algorithm

One of the by-products of our algorithm is a linear-

time algorithm to generate all minimal weakly -

visible segments of a polygon. This algorithm is

a modification of the algorithm described in sec-

tion 6 for computing the shortest tangential wea.kly -

visible segment. It outputs a set of pairs (U,, Vt), z =

1, m. Here U, and V, are subchains of the polyg-

onal chains a and /3, m = O(n), and any segment

joining points u e Ui and v ~ Vi is a minimal

weakly-visible segment. One note of caution is that

Ui and Vi have left and right endpoints that are

linear functions of a parameter z in a spirit simi-

lar to that of the endpoints of the chain Bi that

is output by the chords algorithm. For a point

x on Ai, the polygonal chains ~i and pi can be

computed along with the points al (cc), a:!(z) c ai

and bl(z), 152(z) c ,6,. The output of the algorithm

consists Of (Ui, Vi) = ((a~(z), az(cc)), (bz(z), bl(z))).

The discussion at the end of section 6 can also be

used to show that the number of these pairs pro-

duced is m = O(rz). Lemma 1 can be used to show

that these segments are minimal in the sense that

any subsegment of these segments is not weakly vis-

ible.

8 Conclusion and open prob-

lems

We show optimal linear-time algorithms to compute

the shortest weakly-visible segment and all minimal

weakly-visible segments in a given simple polygon.

Some interesting open questions are:

● Can the exhaustive sweeping techniques from

this paper be used to solve other weak visi-

bility problems efficiently? For example, are

there linear-time algorithms for the all-pairs

version of any of the 2-guard walk problems (see

[DHN1])?

● Can the algorithm from this paper be designed

without using the triangulation or the shortest

path algorithm as a subroutine?

● Ntafos [Nt] introduced the notion of d–visibility,

where an observer’s visibility is limited to dis-

tance d. Can the shortest illuminating segment

be computed efficiently under d–visibility?

References

[AT] D. Avis and G.T. Toussaint, “An optimal al-

gorithm for determining the visibility of a polygon

from an edge,” IEEE Transactions on ComputeTs,

30 (1981), pp. 910-914.

[BMT] B. K. Bhattacharya, A. Mukhopadhyay, and

G.T. Toussaint, “A linear-time algorithm for com-

puting the shortest line segment from which a

polygon is weakly externally visible,” in Proc. of

2nd WADS, 1991, pp. 412-424.

[BM] B. K. Bhattacharya, and A. Mukhopadhyay,

“Computing in linear time an internal line seg-

ment from which a simple polygon is weakly in-

ternally visible,” Personal Communication, 1993.

[Cha] B, Chazelle, “Triangulating a simple polygon

in linear time,” Discrete and Computational Ge-

omeiTy, 6 (1991), pp. 485-524.

[GHLST] L. Guibas, J. Hershberger, D. Leven, M.

Sharir and R. Tarjan, “Linear time algorithms for

visibility and shortest path problems inside trian-

gulated simple polygons,” A/gorithmica, 2 (1987),

pp. 209-233.

[Che] D.Z. Chen, “Optimally computing the short-

est weakly visible subedge of a simple polygon,”

Tech. Report No. 92-028, Dept. of Computer Sci-

ences, Purdue University, May 1992.

[CN] W.P. Chin, and S. Ntafos, “Shortest Watch-

man Routes in Simple polygons, ” DiscTete and

Computational Geometry, 6 (1991), pp. 9-31.

[DHN1] G. Das, P. Heffernan and G. Narasimhan,

“LR-visibility in polygons,”, PTOC, 5th Canadian

conference on computational Geomet?’y, (1993),

pp. 303-308.

[DHN2] G. Das, P. Heffernan and G. Narasimhan,

“Finding all weakly-visible chords of a polygon in

linear time,” manuscript, 1993.

[DC] J. Doh and K. Chwa, “An algorithm for de-

termining internal line visibility of a simple poly-

gon,” .J. of A~goTiihms, 14 (1993), pp. 139-168.

[H] P. J. Heffernan, “An optimal algorithm for

the two-guard problem, ” PTOC. Ninth Annual

ACM Symp. on Computational GeometTy, 1993,

pp. 348-358; to appear in Inter. J. on Computa-

tional Geometry and Appiicatzons.

[IK] C. Icking and R. Klein, “The two guards prob-

lem,” Inte?’. J. on Computational Geometry and

Applications, 2 (1992), pp. 257-285.

[Ke87] Y. Ke, “Detecting the weak visibility of a

simple polygon and related problems, ” Tech. Re-

port, The Johns Hopkins University, (1987).

[LP] D. T. Lee and F. P. Preparata. “An optimal

algorithm for finding the kernel of a polygon, ”

JACM, 26(3), (1979), pp. 415-421.

[Nt] S. Ntafos, “Watchman Routes Under Limited

Visibility,” Computational GeomeiTy: Theory and

Applications, 1(3) (1991), pp. 149-170.

[0’R] J. O’Rourke, “Computational geometry col-

umn 18, ” SIGACT News, 24 (1993), pp. 20-25.

[PV] P. Pradeep Kuma.r, and C. E,Veni Madhavan,

“Shortest watchman tours in weak visibility poly-

gons,”, Proc. 5th Canadian Conference on, Com,-

putationa~ Geomet?’y, (1993), pp. 91-96.

[SS] J.-R. Sack and S. Suri, “An optimal algorithm

for detecting weak visibility, ” IEEE T?’ansactions

on Computers, 39 (1990), pp. 1213-1219.

[ST] Sarnak and R. Tarjan, “Planar Point Loca-

tion Using Persistent Search Trees”, CA CM, 29,

(1986).

[TL] L.H. Tseng and D.T. Lee, “Two-guard talka-

bility of simple polygons,” manuscript, 1993.

