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Abstract .  A chord of a simple polygon P is weaidy-uiaibleffevery point on P is 
visible from some point on the chord. We give an optimal lineex-time algorithm 
which computea a/l weakly-visible chords of a es polygon P with n vertices. 

1 Introduction 

In this paper we present an optimal-time algorithm which computes all ~eakly-~isible 
chords of a simple polygon. For a simple polygon P with n vertices, our algorithm 
requires time O(n). Previous results [3, 9] require O(nlogn) time and compute only 
one weakly-visible chord. We also consider the case of rectilinear simple polygons, and 
show a much simpler linear-time algorithm to compute all weakly-visible chords of the 
polygon. 

Two sets of points are said to be weahly-~isible if e~erlt point in either set is visible 
from ~ome point in the other set. A weakly-vlsible chord c of a polygon P is one such 
that  c and P are weakly-visible. We state four versions of the weakly-visible chords 
problem for a polygon P :  (1) determine whether a given chord c is weakly-vlslble; (2) 
determine whether there exists a weakly-visible chord; (3) return a weakly-visible chord 
c, if indeed such a chord exists; and (4) return a/l weakly-visible chords. Version 4 is the 
strongest, and an algorithm for it also solves the first three versions. In this paper we 
solve to optimality version 4 and prove the theorem given below. Although a polygon 
can have an infinite number of weakly-visible chords, the output can be described in 
a piece-wise manner using only O(n) space as described later in the paper. In earlier 
papers [3, 9], version 3 has been solved in O(nlogn) time. 

T h e o r e m  1 Given a simple polygon P, there ezists a line,r-time algorithm ihc~t com- 
pu~ea 611 ~oe~kll/-~iJible cltords of P. 

The question of weakly-visible chords falls in the larger area of weak-visibility in 
polygons, which has received much attention by r exa t~e r s .  A simple polygon P is 
weakly-visible from an edge �9 if �9 and P \ �9 are weakly-visible. Any two points z and 
y of a polygon P partition P into two chains, which we call L and R, for left and right 
chains. A polygon is LR.~isible for z and y if L and R are weakly-visible. A weakly- 
visible chord c of P is one such that  c and P are weak]y-vlslble. Weak-vislbility of a 

�9 e-rnai~ dMgOnextl.mscl.memst.edu; Supported in part by NSF Grant CCR-930-6822 
�9 * e-mail: giri@nextl.mscl.memst.edu; Supported in part by NSF Grant INT-911-5870 



120 

polygon from an edge was first studied in [1], and Sack and Suri [11] subsequently gave 
a linear-time algorithm which computes all weakly-visible edges of a simple polygon. 
Chen [2] gave a linear-time algorithm that finds the shortest weakly-visible edge, if 
one exists. An O(n log n)-time algorithm that computes all LR-visible pairs z and !/is 
given by Tseng and Lee [12], and Das, Heffernan and Narasimhan [4] subsequently gave 
a linear-time algorithm that computes all LR-visible pairs s and t. The weakly-visible 
chords problem was studied in [3, 9], and algorithms were developed which require 
O(nlogn) time and compute only one weakly-visible chord. In this paper we present 
a linear-time algorithm which computes all weakly-visible chords. 

This paper is of interest not only because we present an optimal result for an 
intriguing problem in polygonal visibility, but also on account of the techniques we em- 
ploy, and because of the relationship between weakly-visible chords and other problems 
in polygonal visibility, such as LR-vlsibility. LR-visibility is a subproblem of weakly- 
visible chords, for it can be shown that two points z and 1/of P are the endpoints of 
a weakly-visible chord of P if and only if zTY is a chord of P and P is LR-visible with 
respect to z and II. In the current paper, the linear-time algorithm for computing all 
LR-visible pairs in [4] is used as a subprocedure. 

What is interesting about the techniques used here and in [4] is that both the 
linear-time algorithms output a mass of information, which when sifted appropriately 
can provide a wealth of visibility information for a simple polygon. Furthermore, the 
result and techniques reported here were used effectively by Das and Narasimhan [5] 
to solve to optimality the problem of finding the shortest weakly-visible segment (if 
one exists) in the interior of a simple polygon. 

Another problem which is closely related to weak-vlslbillty problems is the tz0o- 
guard problem. While the two-guard problem has many formulations, we will state just 
one for the sake of illustration: a polygon P is waikable from point z to point ~ if 
one "guard ~ can traverse the left chain L and the other the right chain R from z to 
1/ while always remaining co-visible. Other formulations require the guards to move 
monotonically or that one guard traverses from ~ to z. For the two-guard problem, 
currently there exist optimal linear-time algorithms for various formulations for fixed 
z and y (version 1) [7], and O(nlogn)-time algorithms which find all pairs z and 1/ 
(version 4) for various formulations [12]. The authors are currently working to develop 
optimal solutions for the all-pairs version (version 4) of various formulations of the 
two-guard problem, and we feel that our recent efforts are important steps towards 
this goal. 

2 P r e l i m i n a r i e s  

In this section we define notation for this paper, and summarize the LR-visihillty 
algorithm in [4], which will be used as a subprocedure. A polT/gonal chain in the plane 
is a concatenation of line segments or edges that connect ~erticea. If the segments 
intersect only at the endpoints of adjacent segments, then the chain is simple, and if 
a polygonal chain is closed we call it a polF9on. In this paper, we deal with a simple 
polygon P,  and its interior, int(P). Two points z, y E P are r~ible if ~ C P U int(P), 
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i.e., ~TY is a chord of P .  For =, 3/E P ,  P e w ( f ,  Y) (Pccw(=, Y)) is the subchain obtained 
by traversing P clockwise (counterclockwise) from = to I/. 

The ray shot from a vertex v in direction d consists of =shooting ~ a =bullet ~ from 
in direction d which travels until it hits a point of P .  Formally, if r is the ray rooted at 

in direction d, then the hit pain./, of this ray shot is the point of (P \ {u}) n r closest 
to s. Each reflex vertex defines two special ray shots as follows. Let u be a reflex vertex 
and v" the vertex adjacent to v in the clockwise direction. Then the ray shot from ~ in 
the direction from u" to v is called the clockudse ~zTI ahot of ~. If  v~ is the hit point of 
the clockwise ray shot, then the subchain Pcw(~, ~)  is the clockwise component of u. 
Counterclockwise ray shots and components are defined in the same way. A component 
is redundsnt if it is a superset of another component. 

We assume that  the input is in general position, which means that no three vertices 
are collinear, and no three lines defined by edges intersect at a common point. As noted 
in [8], the family of components completely determines LR-vislbility of P ,  since a pair 
of points z and l / admi t s  LR-vlsibility if and only if each component of P contains 
either z or y. The definition of redundant gives the following. 

L e m m a  1 A polllgo,~ P is I,R-vlsible l#ith respect to s and t if and o~l~/ if each non- 
redundant component of P co,fairys either s or t. 

If  a polygon has more than two disjoint components, this lemma shows that it is 
not LR-visible. The LR-visibility algorithm in [4] outputs O(n) pairs of subchains of 
the form (Ai, Bi) such that  any point a on a subchain A~ is LR-vlslble to any point 
on the corresponding subchaln Bi. We now describe A~ and Bi more rigorously. The 
endpoints of non-redundant components partition P into a collection of intervals that  
we call basic intervals, and denote A I , ' " ,  A~, ordered counterclockwise. (In the rest of 
the paper, we use the term inteeva/to denote a subchain of the polygon's boundary). 
A basic interval may or may not contain either of its endpoints. It is possible for a 
degenerate basic interval consisting of a single point to exist. By lemma 1, all points 
of a basic interval form LR-visible pairs with the same collection of partners. Thus, we 
denote as B~ the set of points such that  (z, ~) is s LR-visible pair for all z E A~ and 

E Bi. The following two lemmas are proved in [4]. 

L e m m a  2 Bi is a connec,ted set; O~st is, it is either O~e entire pol~gor, P, or the empt~l 
set, or a non~empt|/ s=b/,n'/.erva,/ of P compozed of O~e union of adjacent boric intervals. 

L e m m a  3 Also, if A~ N Bi ~ 0, t~en B~ = P. 

In [4], we gave a linear-time algorithm that  constructs all LR-visihle pairs of inter- 
vats (A1, B I ) , . . . ,  (A~, Bk). The intervals A I , - " ,  Ak are disjoint and ordered counter- 
clockwise on P.  The intervals B1 , . . . ,  B~ are also ordered counterclockwise but are not 
necessarily disjoint. As one moves counterclockwise from A~ to A~+I, one either leaves 
or enters a non-redundant component, which may result in either the starting or end- 
ing endpoint of B~ to move counterclockwise in order to form Bi+l. In the remaining 
sections we develop the algorithm for constructing weakly-visible chords. Additional 
notation is introduced where required. 
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3 Geometr i c  Propert ies  of  the  Prob lem 

In this section we present the important geometric properties on which the algorithm 
depends. The actual algorithm is presented in the next section. The following lemma 
relates weakly-visible chords to LR-visibility and has a trivial proof. 

L e m m a  4 For points z and y on P, the segment ~ is a weakly-visible chord of P if 
a~d o,,~ ~f (I)  ~ is a ~ o , ~  of P and (~) P is z~.~,~e for .. and ~. 

The lemma suggests the algorithm: first compute LR-visibility using the algorithm 
in [4], then compute all chords ~yy such that z E .4 /and  y E B~. 

We now develop further properties of basic intervals necessary for this task. The 
kerne/, K,  of a polygon P is defined as the collection of points in P u int(P) which are 
visible from all points of P .  The kernel is a convex set and a polygon with a non-empty 
kernel is called star-sl~aped. The points of P in the kernel are exactly those which 
intersect all components. It is clear that  a point z E K n P forms a weakly-visible 
chord with every other point of P .  This means that the set of weakly-visible chords 
containing a kernel point as an endpoint can be succinctly represented as the set Kf~P. 

L e m m a  5 For a b~ie interval A~, B~ = P i/ and only if  Ai is contained in K.  

Proof. Let z E A~. If  Bi = P then (z, z) is an LR-visible pair, so z intersects all 
components and thus is in the kernel. Suppose A~ C K. Let z E A~. Then z intersects 
all components, so (z, z) is an LR-visible pair; thus z E B~, and since Ai n B~ ~ 0 we 
have B~ = P.  [] 

We know that  each basic interval consists entirely of points in K or points not 
in K, and we call a basic interval that  consists of kernel points a kernel interval A 
basic interval A~ which is not a kernel interval is disjoint from B~; for such a case we 
define D~ as the interval of points encountered as one traverses counterclockwise from 
the ending point of A~ to the starting point of B~, and E~ as the interval encountered 
counterclockwise from the ending point of B~ to the starting point of A~. We call D~ 
and Ei the side inte~'va~ of A~. The side intervals either contain or do not contain their 
endpoints in such a manner that the four intervals A~, B~, D~ and E~ partition P.  It is 
possible for D~ and/or  E~ to be empty. 

As shown in [7], if w and v are points of P ,  and SP(w,v)  is the shortest path 
inside P directed from ~ to v, then any vertex of SP(tu, v) that  lies on P c w ( w , v )  
(Pccw(w,v) )  is a left (right) turn. We say that an interval F is well-behaved if the 
shortest path between its endpoints inside P only touches points of F and not the rest 
of the polygon. Thus if Pccw(w,  v) is a well-behaved interval then SP(w,  v) contains 
no left turns. This is a stronger statement than simply saying that  that  SP(w, v) is 
a convex chain, since it specifies the direction of any turns. The following lemmas 
prove that the Ais, Dis, and E~s are well-behaved, which is useful in their ef~cient 
computation as shown later. 

L e m m a  6 Each no~-kernel bamic inte~al A~ is well-behaved. 
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Fig. 1. Proof of lemma 6 

Proof. Each basic interval is contained in some non-redundant component. Let A~ = 
Pccw(vJ, v), and let F be the non-redundant component containing it. Suppose SP(w, ~) 
contains a point z of P c w ( w , r )  \ {,~,~}. Let z (y) be the first point of Pccw(~,~) 
preceding (succeeding) z on SP(~, v) (see Figure 1). The chord that  forms F partitions 
P into two subpolygons, and since ~0 and u are in the same subpolygon, any point on 
SP(uJ, ~) must also be in this subpolygon; thus z E F .  Since z is on S P ( ~ ,  r) it is 
a reflex vertex of P and therefore generates two components. The hit points of these 
components must both be on Pccw(z, ~/), as one can see by considering that the ray 
shots are contained in the suhpolygon formed by Pccw(z, ~) and SP(z, !/). Since z 
and its two hit points all lie on F,  one of the two components generated by z is strictly 
contained in F,  a contradiction of the fact that  F is non-redundant. [] 

We next show that  even the side intervals D~ and Fi are well-behaved. We first 
consider the case where P does not have two disjoint components. 

L e m m a  7 Let P be a polygon with no two disjoint component. Then for each non- 
kernel A~, the corresponding Di and El are well-behaved. 

Proof. We first prove that  any non-redundant chord is a weakly-vislble chord. Suppose 
we have a non-redundant component F.  Since no two components are disjoint, F 
intersects every other component. Furthermore, at least one endpoint of F intersects 
another component G unless G is nested inside F,  which is not possible since F is 
non-redundant. Therefore the chord that  forms F has endpoints which intersect every 
component of P ,  and thus by lemmas 1 and 4 this is a weakly-visible chord of P .  

Thus there are (at least two) weakly-visible chords between each non-kernel A~ and 
its corresponding B~. Any one of these weakly-visible chords has one endpoint on A~ 
and the other on Bi, and therefore separates D~ and E~ into different subpolygons. 
Thus, if D~ is not well-behaved it is because the shortest path between its endpoints 
contains a point of A~ or of B~. Say it contains a point z of Ai that  is not an endpoint of 
A~. By an argument similar to that in the proof of lemma 6, z must be a reflex vertex 
whose hit points lie inside D~. Thus z generates a component H that  intersects both 
A~ and Dr yet contains neither. H does not intersect B~, and does not contain the first 
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point of A / i n  counterclockwise order. This contradicts the fact that each point of Ai 
is LR-vislble with each point of B~. B 

We now consider the case where P has at least two disjoint components. The fol- 
lowing lemma is similar to the above, except that it somewhat less general. 

Lernrna 8 Let P be a polygon with at least two disjoint components. I / there  ezists a 
weakJy-eisible chord in P ,  or i f  there is more than one basic inteeuaJ Ai with non-empty 
Bi,  then each Di and E~ is well-beha~ed. 

Proof. The proof of this 1emma is more involved than lamina 7. In the proof we first 
show that if Di (Ei) is not well-behaved, then it cannot be because of A~ or Bi. Then 
we show that if Di (El) is not well-behaved due to obstruction by E~ (Di), then the 
LR-visible pairs of points axe not visible from each other, and consequently no weakly- 
visible chords exist. Details of the proof can be found in a full version of the paper. [] 

We introduce the following notation. Let b(F) (e(F))  be the starting point (ending 
point) of an interval F encountered in the counterclockwise direction. The following 
lemma states that the visibility restrictions between points on A~ and points on Bi are 
imposed only by the side intervals. 

L e m m a  9 Let z be a point on Ai and y a point on Bi. I f  the line ~ intersects the 
polygon at a point w G P c c w ( z , e ( A , ) )  U Pccw(b(B,) ,~),  then it also crosses D~. 
Similarly, iY'zT intersects the polygon at a point w E Pc c w  ( y, e( Bi ) ) U Pc  c w  ( b( Ai ) , z ) , 
then it also crosses Ei.  

By "crosses," we mean intersects such that there are points of Di (Ei) on either 
side of the ray. The lemma essentially says that, if a point z E A~ cannot see a point 
y E Bi, its visibility is blocked by Di or Ei. The proof uses techniques similar to ones 
used in the previous lemmw, and we omit details in this version. 

4 Computing Weakly-Visible Chords 

4.1 Overv iew 

We first give an overview of the algorithm. There are several preliminary steps. Our 
algorithm first constructs the kernel K using the linear time method of [10] and then 
constructs K N P. This latter step is easily accomplished since the algorithm of [10] 
can return the vertices of K which lie on P. If this is not empty, the algorithm outputs 
(K N P, P)  which describes all weakly-visible chords with one endpoint in the kernel. 

Then the LR-visibility algorithm in [4] is run, which gives us the non-redundant 
components with endpoints in counterclockwise order, as well as the (A~, Bi) pairs. 
If  there is only one pair, we check if Dx and E1 are well-behaved, by running the 
shortest-path algorithm of [6] from their endpoints. If one of them is not well-behaved, 
the algorithm halts and reports that there are no weakly-visible chords. 

We next determine in linear time whether there exist two disjoint components. 
Suppose we find that P does have a pair of disjoint components F and G. Any LR- 
visible pair of points must have one point on F and the other on G, so for any basic 
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interval .4/ in F we know that B~ is contained in G. It  suffices to look only at A/ in  F 
(and their corresponding Be in G) and compute weakly-visible chords, if any. Suppose 
P does not have two disjoint components. In this case the algorithm examines each 
non-kernel .4/and its corresponding B~ in search of weakly-visibh chords. 

In either case, the basic step consists of determining the weakly-visible chords be- 
tween a non-kernel ,44 and its corresponding B~. By the definition of these intervals 
we know that a point z G .4/ forms an LR-visible pair with a point 1/ if and only if 
y E Bi. By lemma 4, therefore, we can construct the set of weakly-visible chords by 
determining for each point z of a basic interval .4i the points of Bi from which it is 
visible. Essentially, for each z we must determine the restrictions on its visibility with 
Be. We also know that A/, Di and Ei are well-behaved, and visibility restrictions are 
only imposed by the side intervals. Below we describe how to compute chords between 
A/andB~ and the transition from iteration i to i + 1. 

A~ z 
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Fig. 2. 

The visibility between a point z E A~ and B~ is determined by a pair of constructs 
we call the paeudo-iangen~. Consider Figure 2. The pseudo-tangent from z to I ) / (E l )  
is the unique line directed from z through a point s(z) of D~ (t(z) of E~) such that all 
of Di (E~) lies on or to the ]eft (right) of the line (pseudo-tangents are different from 
tangent ,  which are also required to be chords). We denote the direction of the pseudo- 
tangent to Di (El) by ~(z) ('?(z)). We give labels to two other special directions: 
the direction from z to b(B~) (e(Bi)) is denoted c~(z) (6(z)). Sometimes we will use 
abbreviated notation, for example a instead of a(z) ,  when the z under consideration 
is clear. 

The point z G A/ is visible from some point of B~ if and only if the special direc- 
tions satisfy the following relationship: a < r  ~ ~ c ~  1' _<r 6 (where _<c~ means 
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=precedes or equals in counterclockwise order, as viewed from z~). Let us consider the 
picture for a point z E A~ which is visible from B~. In this event the pseudo-tangencies 
are actually tangencies, in the sense that they are chords of P .  Let 7;(z) (z(z)) be the 
other endpoint of the longest chord of P with one endpoint at z in direction fl (7). 
Since a,  fl, 7 and 6 are ordered counterclockwise, the points y and z lie on B~. Points of 
B~ lying between b(B~) and y (z and e(B,)) are not visible from z because visibility is 
blocked by D, (E,). However, all points of  Pccw(~, z) are visible from z. Also, if b(B~) 
(e(B,)) is the pseudo-tangent point of D, (E,), i.e. i r a  = /3  (~f = 6), then b(Ei) (e(Bi)) 
is also visible from z. Thus we see that i f z  is visible from Bi, its set of weakly-visible 
partners consists of a closed subinterval P c c w ( ~ , z )  of  B~, plus possibly one or both 
of the endpoints of B~. 

If  = is not visible from Bi, then the four special directions are not ordered properly. 
If D~ (E~) blocks all of B~ from z, then we have the subordering a _<c~ 5 <cc~ /3 
(1' <= ~  a ~ c ~  5). If the ordering is ~ _ < ~  ~ < c ~ / 3  _ < ~  6, then neither D~ nor E~ 
totally block visibility individually, but together they do. In this case we can still define 

and z as the extensions of the pseudo-tangencies until they hit Bi, where the opposite 
side interval is simply ignored. The fact that  the ordering o f ~  and 7 is reversed means 
that z precedes ~ counterclockwise on B~. 

The algorithm uses the following strategy. We traverse P once counterclockwise 
with a point z, calculating for each z of a basic interval A~ the pseudo-tangent to the 
side interval D~. We then traverse P once clockwise in order to compute for each z the 
pseudo-tangent to E~. We determine for which z the ordering a < = ~  fl < = ~  ~f ~ 6 
is obeyed, and for these z we compute the extensions ~ and z to obtain the partner 
interval Pccw(Y,  z). We also note whether a = ~ (1, = 5) for any of these z, in which 
case b(8~) (e(B~)) is also a partner. Since y and z are different for each z, and there 
are an infinitude of values of z, we must exhibit care in our manner of computing and 
storing the output; this issue will be addressed during the discussion below. 

We describe the counterclockwise traversal of P with a point z, calculating for each 
z in A~ the pseudo-tangents to D~; the procedure for E~ pseudo-tangents is symmetrical. 
If, for some z in A~, ~ lies between a and ~, then we wish to compute the extension ~. 
If  a = ~3 then the extension y equals b(B~). If  5 < ~  a then = sees no point of B~ and 
the extension y is undefined. 

We now show that  the functions ~3(z) and y(z) are monotonic, i.e as z moves coun- 
terclockwise along the entire polygon, the direction/3(z) moves counterclockwise and 
y(z) also moves counterclockwise along P.  First, consider the motion of z within a basic 
interval A~. As z moves counterclockwise the pseudo-tangent rotates counterclockwise 
around the pseudo.t=ngent point (the point on D~ which the pseudo-tangent touches), 
with the consequence that  ~ (if defined) moves counterclockwise on B~. The pseudo- 
tangent point may change to a point of D~ closer to b(D~), but this does not affect the 
monotone motion. Next consider the transition of z to the next basic interval. When 
z reaches e(A~) = b(D~), the basic interval is updated to A~+~ and the side interval 
to D~+i. The new side interval is obtained from D~ by subtracting A~+i and possibly 
adding some additional basic intervals at the far end. There are two cases. In the first 
case (Figure 3(a)), the pseudo-tangents from z to both D~ and D~+z are the same, hence 
9(e(A~)) ---- y(b(A~+x)). In the second case (Figure 3(b)), the pseudo-tangent from z to 
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Di+l is counterclockwise to the the pseudo-tangent from z to Di, hence ~/(b(A~+l)) 
is counterclockwise of y(e(A~)). Thus we see that ~(z) and ~/(z) moves monotonically 
counterclockwise. 

(~) (~) 

Fig. 3. 

Another important observation regards the monotone motion of the pseudo-tangent 
point, s(z). As z progresses counterclockwise within a basic interval A~, s moves clock- 
wise on Di. Furthermore, when the side interval and the pseudo-tangent point are 
updated upon z reaching e(Ai), the updating occurs in such a way that no point which 
has previously been the pseudo-tangent point can again become the pseudo-tangent 
point at a later time. This observation is clear from Figures 3(a) and (b), and is crucial 
in computing all pseudo-tangent points in overall linear time. 

Since the side interval D~ is always well-behaved, the shortest path SP(b(D~), e(D~)) 
(which we will simply denote SP(D~)) is a convex chain consisting of only right turns. 
This makes it easy to find and update tangencies. For z = b(Ai), traverse SP(s 
from e(Di) until reaching the pseudo-tangent point (determining if a point of SP(D~) 
is the pseudo-tangent point is accomplished in constant time by comparing directions 
of the line from z with those of the adjacent edges). As z progresses counterclockwise 
we can update the pseudo-tangent point by continuing to traverse SP(D~) towards 
b(D~). No point of SP(D~) which is traversed will ever be a pseudo-tangent point in 
the future, and the total time of this operation is proportional to the number of vertices 
of SP(Di) traversed. The additional required ingredient, then, is an efficient manner 
of maintaining SP(Di) for the current Di. We discuss this next. 

Consider the first side interval DI, which corresponds to the first basic interval 
A1. It is composed of a collection of basic intervals A2, . . . ,  Aj. The side interval Dj 
is composed of the basic intervals Aj+I , . - . ,  At, and is the first side interval that does 
not overlap with D1. We will essentially deal with D1 through Dj as a group. We will 
preprocess the entire group in a manner that allows efficient updating. 
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The preprocessing is the construction of the shortest path tree from e(D1) to all 
vertices of D1. Since D1 is well-behaved we perform this step in time proportional to the 
sise of D~, by a modification of the algorithm of [6]. At any time we will store SP(D~) 
in three pieces, namely as two shortest paths, SP(b(Di), e(D1)) and SP(e(D1), e(D~)), 
plus the bridge between them (see Figure 4). The chain SP(b(Di), e(D1)) is obtained 
from SP(b(D~-I), e(D1)) by using the shortest path tree. A depth-first search of this 
tree allows one to visit all vertices of DI according to the counterclockwise order on 
P, and thus allows us to maintain the current shortest path SP(b(Di), e(D1)). To 
maintain the other shortest path, SP(e(D~), e(Di)), we observe that updating from 
..gP(e(D1),e(Di-1)) consists of adding zero or more basic intervals. Since each basic 
interval is well-behaved, the shortest path between its endpoints is convex. The bridge 
between two convex chains with a common endpoint can be found in time proportional 
to the number of vertices below the bridge on both chains. Since vertices below the 
bridge cannot be pseudo-tangent points, this time-complexity is acceptable to us. 

D1 

A1 

Fig. 4. 

Thus, as z moves from A/-I to gi, we first update to obtain SP(b(Di), e(D1)) and 
then update to obtain SP(e(D~), e(Di)). Our true goal is SP(D~), and to obtain it 
we need the bridge between the two smaller shortest paths. Efficient computation and 
maintenance of the bridge is possible because the bridge endpoints display a property 
similar to that of the pseudo-tangents from z: the bridge endpoints progress monoton- 
ically clockwise, and no point which has previously been a bridge endpoint can again 
become a bridge at a later time. 

In this manner we maintain the side interval while z traverses from A1 to Ai, in total 
time proportional to the sise of A1 through At. If P has two disjoint components, then 
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all side intervals intersect D, and a single iteration of this procedure suffices. If P does 
not have two disjoint components, then it is necessary to repeat the procedure, with 
the next step beginning with Dj and ending at Di. This method "overlaps ~ portions 
of P, but no basic interval is used in more than two iterations, so maintaining SP(D~) 
while z traverses all of P requires only O(n) time. 

We discuss how y(z) is efficiently computed and stored. Given z and the pseudo- 
tangent to D~, we find 1/by extending the pseudo-tangent until it hits B~. As z pro- 
gresses counterclockwise, several events can occur. For example, (1) z can reach a vertex 
of A~, (2) 9 can reach a vertex of B~, or (3) the pseudo-tangent points  can pivot about 
an edge of SP(Di). Also, (4) when z reaches e(A~), both s and therefore 9 may need 
to be updated. Between events, however, we have an edge containing z and another 
containing 9, and a point s which lies on ~TY. Thus, even though we have an infinitude 
of values of z, each with a unique 9, the function 9(z) can be described in constant 
time. A particular value 9(z) is found in constant time by computing the intersection 
of two lines. 

In order to easily store 9(z), we introduce Steiner points at z and 9 (if z and/or 
y are not already vertices) whenever one of the events (1)-(4) above occurs. The total 
number of points introduced is O(n). In this way, every edge of a non-kernel basic 
interval has s linear function 9(z). 

A symmetric procedure has z traverse clockwise around P in order to compute 
z(z) for each z. By merging the Steiner points introduced while computing z(z) with 
those from the computation of 9(z), we have that for every edge of a non-kernel basic 
interval, 9(z) and z(z) are linear functions. We check whether 9(z) precedes z(z) 
counterclockwise for all z of the edge. For those z which violate this order, we return 
that they have no weakly-visible partners. For those z which obey the order, the weakly- 
visible partners are the points on the interval from 9(z) to z(z). 

A final consideration concerns b(B~) and e(B~). We stated that if a = ~ (7 = 
6) then b(Bi) (e(Bi)) is s weakly-visible partner of z, even though it is outside the 
interval Pccw(y, z). Throughout the above procedure, then, b(B~) and e(B~) are stored 
separately as weakly-visible partners whenever appropriate. 

5 T h e  R e c t i l i n e a r  C a s e  

In this section, we consider the simpler case where the given polygon P is a simple 
rectilinear polygon. Simple geometric observations about rectilinear polygons are used 
to construct a simpler algorithm for computing all non-redundant components and 
consequently all weakly-visible chords in the rectilinear case. It may be noted that the 
chords need not be rectilinear. 

Before we proceed we need some notation. Components in rectilinear polygons are 
produced by two kinds of ray shots - vertical and horizontal. We call these components 
reetical (resp. horizon~O components. Furthermore, there are two kinds of horisontal 
(vertical) components - components that lie ~bo~e (to the em left of) or below (to the 
right of) the ray shot. We call the four type of components as lefl-rertic~ right-rertica[, 
abo~e-horizonta~ and belo~o-horizontal components respectively. The left-vertical and 
right-vertical types are called complementary types, as are the above-horizontal and 
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the below-horizontal types. It is easy to see that two components of the same type are 
either disjoint or one contains the other (i.e., one is made redundant by the other). 
For P-TAmple, there cannot be two partially overlapping left-vertical components. If 
P has more than 3 disjoint components, then by lemma i P has no weakly-visible 
chords. Hence for weakly-visible chords to exist there cannot be more than 12 non- 
redundant components. In fact, we can make a stronger statement. It can be proved 
that for a weakly-visible rectilinear polygon, if there are two disjoint non-redundant 
components of a certain type, then there are no non-redundant of the complementary 
type and there cannot be another non-redundant component that intersects both of 
them. Consequently for a-weakly visible rectilinear polygon, if there arc two disjoint 
left-vertical non-redundant components, then there are no right-vertical non-redundant 
components. We state the following lemma without proof. 

L e m m a  10 There are at most s ~ertical non-redundant components, sad at most 
horizontal components in a LR-vbible rectilinear polygon. Also every non-redundant 
, , e~cal  (,'asp. ho~oat~l) compoae,, i~ ~-,~oaotoae (re,p. ~-~oao~oae). 

Without  getting into the details, we mention here that  in 4 sweeps of the entire 
polygon, all the non-redundant  components can be identified. 
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