
F i n d i n g Al l W e a k l y - V i s i b l e C h o r d s o f a P o l y g o n in
Linear T i m e
(Extended Abstract)

Gautarn Das * and Paul J. Heffernan and Girl Narasimhan **

Memphis State University, Memphis, TN 38152.

Abstract . A chord of a simple polygon P is weaidy-uiaibleffevery point on P is
visible from some point on the chord. We give an optimal lineex-time algorithm
which computea a/l weakly-visible chords of a es polygon P with n vertices.

1 Introduction

In this paper we present an optimal-time algorithm which computes all ~eakly-~isible
chords of a simple polygon. For a simple polygon P with n vertices, our algorithm
requires time O(n). Previous results [3, 9] require O(nlogn) time and compute only
one weakly-visible chord. We also consider the case of rectilinear simple polygons, and
show a much simpler linear-time algorithm to compute all weakly-visible chords of the
polygon.

Two sets of points are said to be weahly-~isible if e~erlt point in either set is visible
from ~ome point in the other set. A weakly-vlsible chord c of a polygon P is one such
that c and P are weakly-visible. We state four versions of the weakly-visible chords
problem for a polygon P : (1) determine whether a given chord c is weakly-vlslble; (2)
determine whether there exists a weakly-visible chord; (3) return a weakly-visible chord
c, if indeed such a chord exists; and (4) return a/l weakly-visible chords. Version 4 is the
strongest, and an algorithm for it also solves the first three versions. In this paper we
solve to optimality version 4 and prove the theorem given below. Although a polygon
can have an infinite number of weakly-visible chords, the output can be described in
a piece-wise manner using only O(n) space as described later in the paper. In earlier
papers [3, 9], version 3 has been solved in O(nlogn) time.

T h e o r e m 1 Given a simple polygon P, there ezists a line,r-time algorithm ihc~t com-
pu~ea 611 ~oe~kll/-~iJible cltords of P.

The question of weakly-visible chords falls in the larger area of weak-visibility in
polygons, which has received much attention by r exa t~e r s . A simple polygon P is
weakly-visible from an edge �9 if �9 and P \ �9 are weakly-visible. Any two points z and
y of a polygon P partition P into two chains, which we call L and R, for left and right
chains. A polygon is LR.~isible for z and y if L and R are weakly-visible. A weakly-
visible chord c of P is one such that c and P are weak]y-vlslble. Weak-vislbility of a

�9 e-rnai~ dMgOnextl.mscl.memst.edu; Supported in part by NSF Grant CCR-930-6822
�9 * e-mail: giri@nextl.mscl.memst.edu; Supported in part by NSF Grant INT-911-5870

120

polygon from an edge was first studied in [1], and Sack and Suri [11] subsequently gave
a linear-time algorithm which computes all weakly-visible edges of a simple polygon.
Chen [2] gave a linear-time algorithm that finds the shortest weakly-visible edge, if
one exists. An O(n log n)-time algorithm that computes all LR-visible pairs z and !/is
given by Tseng and Lee [12], and Das, Heffernan and Narasimhan [4] subsequently gave
a linear-time algorithm that computes all LR-visible pairs s and t. The weakly-visible
chords problem was studied in [3, 9], and algorithms were developed which require
O(nlogn) time and compute only one weakly-visible chord. In this paper we present
a linear-time algorithm which computes all weakly-visible chords.

This paper is of interest not only because we present an optimal result for an
intriguing problem in polygonal visibility, but also on account of the techniques we em-
ploy, and because of the relationship between weakly-visible chords and other problems
in polygonal visibility, such as LR-vlsibility. LR-visibility is a subproblem of weakly-
visible chords, for it can be shown that two points z and 1/of P are the endpoints of
a weakly-visible chord of P if and only if zTY is a chord of P and P is LR-visible with
respect to z and II. In the current paper, the linear-time algorithm for computing all
LR-visible pairs in [4] is used as a subprocedure.

What is interesting about the techniques used here and in [4] is that both the
linear-time algorithms output a mass of information, which when sifted appropriately
can provide a wealth of visibility information for a simple polygon. Furthermore, the
result and techniques reported here were used effectively by Das and Narasimhan [5]
to solve to optimality the problem of finding the shortest weakly-visible segment (if
one exists) in the interior of a simple polygon.

Another problem which is closely related to weak-vlslbillty problems is the tz0o-
guard problem. While the two-guard problem has many formulations, we will state just
one for the sake of illustration: a polygon P is waikable from point z to point ~ if
one "guard ~ can traverse the left chain L and the other the right chain R from z to
1/ while always remaining co-visible. Other formulations require the guards to move
monotonically or that one guard traverses from ~ to z. For the two-guard problem,
currently there exist optimal linear-time algorithms for various formulations for fixed
z and y (version 1) [7], and O(nlogn)-time algorithms which find all pairs z and 1/
(version 4) for various formulations [12]. The authors are currently working to develop
optimal solutions for the all-pairs version (version 4) of various formulations of the
two-guard problem, and we feel that our recent efforts are important steps towards
this goal.

2 P r e l i m i n a r i e s

In this section we define notation for this paper, and summarize the LR-visihillty
algorithm in [4], which will be used as a subprocedure. A polT/gonal chain in the plane
is a concatenation of line segments or edges that connect ~erticea. If the segments
intersect only at the endpoints of adjacent segments, then the chain is simple, and if
a polygonal chain is closed we call it a polF9on. In this paper, we deal with a simple
polygon P, and its interior, int(P). Two points z, y E P are r~ible if ~ C P U int(P),

121

i.e., ~TY is a chord of P . For =, 3/E P , P e w (f , Y) (Pccw(=, Y)) is the subchain obtained
by traversing P clockwise (counterclockwise) from = to I/.

The ray shot from a vertex v in direction d consists of =shooting ~ a =bullet ~ from
in direction d which travels until it hits a point of P . Formally, if r is the ray rooted at

in direction d, then the hit pain./, of this ray shot is the point of (P \ {u}) n r closest
to s. Each reflex vertex defines two special ray shots as follows. Let u be a reflex vertex
and v" the vertex adjacent to v in the clockwise direction. Then the ray shot from ~ in
the direction from u" to v is called the clockudse ~zTI ahot of ~. If v~ is the hit point of
the clockwise ray shot, then the subchain Pcw(~, ~) is the clockwise component of u.
Counterclockwise ray shots and components are defined in the same way. A component
is redundsnt if it is a superset of another component.

We assume that the input is in general position, which means that no three vertices
are collinear, and no three lines defined by edges intersect at a common point. As noted
in [8], the family of components completely determines LR-vislbility of P , since a pair
of points z and l / admi t s LR-vlsibility if and only if each component of P contains
either z or y. The definition of redundant gives the following.

L e m m a 1 A polllgo,~ P is I,R-vlsible l#ith respect to s and t if and o~l~/ if each non-
redundant component of P co,fairys either s or t.

If a polygon has more than two disjoint components, this lemma shows that it is
not LR-visible. The LR-visibility algorithm in [4] outputs O(n) pairs of subchains of
the form (Ai, Bi) such that any point a on a subchain A~ is LR-vlslble to any point
on the corresponding subchaln Bi. We now describe A~ and Bi more rigorously. The
endpoints of non-redundant components partition P into a collection of intervals that
we call basic intervals, and denote A I , ' " , A~, ordered counterclockwise. (In the rest of
the paper, we use the term inteeva/to denote a subchain of the polygon's boundary).
A basic interval may or may not contain either of its endpoints. It is possible for a
degenerate basic interval consisting of a single point to exist. By lemma 1, all points
of a basic interval form LR-visible pairs with the same collection of partners. Thus, we
denote as B~ the set of points such that (z, ~) is s LR-visible pair for all z E A~ and

E Bi. The following two lemmas are proved in [4].

L e m m a 2 Bi is a connec,ted set; O~st is, it is either O~e entire pol~gor, P, or the empt~l
set, or a non~empt|/ s=b/,n'/.erva,/ of P compozed of O~e union of adjacent boric intervals.

L e m m a 3 Also, if A~ N Bi ~ 0, t~en B~ = P.

In [4], we gave a linear-time algorithm that constructs all LR-visihle pairs of inter-
vats (A1, B I) , . . . , (A~, Bk). The intervals A I , - " , Ak are disjoint and ordered counter-
clockwise on P. The intervals B1 , . . . , B~ are also ordered counterclockwise but are not
necessarily disjoint. As one moves counterclockwise from A~ to A~+I, one either leaves
or enters a non-redundant component, which may result in either the starting or end-
ing endpoint of B~ to move counterclockwise in order to form Bi+l. In the remaining
sections we develop the algorithm for constructing weakly-visible chords. Additional
notation is introduced where required.

122

3 Geometr i c Propert ies of the Prob lem

In this section we present the important geometric properties on which the algorithm
depends. The actual algorithm is presented in the next section. The following lemma
relates weakly-visible chords to LR-visibility and has a trivial proof.

L e m m a 4 For points z and y on P, the segment ~ is a weakly-visible chord of P if
a~d o,,~ ~f (I) ~ is a ~ o , ~ of P and (~) P is z~.~,~e for .. and ~.

The lemma suggests the algorithm: first compute LR-visibility using the algorithm
in [4], then compute all chords ~yy such that z E .4 /and y E B~.

We now develop further properties of basic intervals necessary for this task. The
kerne/, K, of a polygon P is defined as the collection of points in P u int(P) which are
visible from all points of P . The kernel is a convex set and a polygon with a non-empty
kernel is called star-sl~aped. The points of P in the kernel are exactly those which
intersect all components. It is clear that a point z E K n P forms a weakly-visible
chord with every other point of P . This means that the set of weakly-visible chords
containing a kernel point as an endpoint can be succinctly represented as the set Kf~P.

L e m m a 5 For a b~ie interval A~, B~ = P i/ and only if Ai is contained in K.

Proof. Let z E A~. If Bi = P then (z, z) is an LR-visible pair, so z intersects all
components and thus is in the kernel. Suppose A~ C K. Let z E A~. Then z intersects
all components, so (z, z) is an LR-visible pair; thus z E B~, and since Ai n B~ ~ 0 we
have B~ = P. []

We know that each basic interval consists entirely of points in K or points not
in K, and we call a basic interval that consists of kernel points a kernel interval A
basic interval A~ which is not a kernel interval is disjoint from B~; for such a case we
define D~ as the interval of points encountered as one traverses counterclockwise from
the ending point of A~ to the starting point of B~, and E~ as the interval encountered
counterclockwise from the ending point of B~ to the starting point of A~. We call D~
and Ei the side inte~'va~ of A~. The side intervals either contain or do not contain their
endpoints in such a manner that the four intervals A~, B~, D~ and E~ partition P. It is
possible for D~ and/or E~ to be empty.

As shown in [7], if w and v are points of P , and SP(w,v) is the shortest path
inside P directed from ~ to v, then any vertex of SP(tu, v) that lies on P c w (w , v)
(Pccw(w,v)) is a left (right) turn. We say that an interval F is well-behaved if the
shortest path between its endpoints inside P only touches points of F and not the rest
of the polygon. Thus if Pccw(w, v) is a well-behaved interval then SP(w, v) contains
no left turns. This is a stronger statement than simply saying that that SP(w, v) is
a convex chain, since it specifies the direction of any turns. The following lemmas
prove that the Ais, Dis, and E~s are well-behaved, which is useful in their ef~cient
computation as shown later.

L e m m a 6 Each no~-kernel bamic inte~al A~ is well-behaved.

123

Fig. 1. Proof of lemma 6

Proof. Each basic interval is contained in some non-redundant component. Let A~ =
Pccw(vJ, v), and let F be the non-redundant component containing it. Suppose SP(w, ~)
contains a point z of P c w (w , r) \ {,~,~}. Let z (y) be the first point of Pccw(~,~)
preceding (succeeding) z on SP(~, v) (see Figure 1). The chord that forms F partitions
P into two subpolygons, and since ~0 and u are in the same subpolygon, any point on
SP(uJ, ~) must also be in this subpolygon; thus z E F . Since z is on S P (~ , r) it is
a reflex vertex of P and therefore generates two components. The hit points of these
components must both be on Pccw(z, ~/), as one can see by considering that the ray
shots are contained in the suhpolygon formed by Pccw(z, ~) and SP(z, !/). Since z
and its two hit points all lie on F, one of the two components generated by z is strictly
contained in F, a contradiction of the fact that F is non-redundant. []

We next show that even the side intervals D~ and Fi are well-behaved. We first
consider the case where P does not have two disjoint components.

L e m m a 7 Let P be a polygon with no two disjoint component. Then for each non-
kernel A~, the corresponding Di and El are well-behaved.

Proof. We first prove that any non-redundant chord is a weakly-vislble chord. Suppose
we have a non-redundant component F. Since no two components are disjoint, F
intersects every other component. Furthermore, at least one endpoint of F intersects
another component G unless G is nested inside F, which is not possible since F is
non-redundant. Therefore the chord that forms F has endpoints which intersect every
component of P , and thus by lemmas 1 and 4 this is a weakly-visible chord of P .

Thus there are (at least two) weakly-visible chords between each non-kernel A~ and
its corresponding B~. Any one of these weakly-visible chords has one endpoint on A~
and the other on Bi, and therefore separates D~ and E~ into different subpolygons.
Thus, if D~ is not well-behaved it is because the shortest path between its endpoints
contains a point of A~ or of B~. Say it contains a point z of Ai that is not an endpoint of
A~. By an argument similar to that in the proof of lemma 6, z must be a reflex vertex
whose hit points lie inside D~. Thus z generates a component H that intersects both
A~ and Dr yet contains neither. H does not intersect B~, and does not contain the first

124

point of A / i n counterclockwise order. This contradicts the fact that each point of Ai
is LR-vislble with each point of B~. B

We now consider the case where P has at least two disjoint components. The fol-
lowing lemma is similar to the above, except that it somewhat less general.

Lernrna 8 Let P be a polygon with at least two disjoint components. I / there ezists a
weakJy-eisible chord in P , or i f there is more than one basic inteeuaJ Ai with non-empty
Bi, then each Di and E~ is well-beha~ed.

Proof. The proof of this 1emma is more involved than lamina 7. In the proof we first
show that if Di (Ei) is not well-behaved, then it cannot be because of A~ or Bi. Then
we show that if Di (El) is not well-behaved due to obstruction by E~ (Di), then the
LR-visible pairs of points axe not visible from each other, and consequently no weakly-
visible chords exist. Details of the proof can be found in a full version of the paper. []

We introduce the following notation. Let b(F) (e(F)) be the starting point (ending
point) of an interval F encountered in the counterclockwise direction. The following
lemma states that the visibility restrictions between points on A~ and points on Bi are
imposed only by the side intervals.

L e m m a 9 Let z be a point on Ai and y a point on Bi. I f the line ~ intersects the
polygon at a point w G P c c w (z , e (A ,)) U Pccw(b(B,) ,~), then it also crosses D~.
Similarly, iY'zT intersects the polygon at a point w E Pc c w (y, e(Bi)) U Pc c w (b(Ai) , z) ,
then it also crosses Ei.

By "crosses," we mean intersects such that there are points of Di (Ei) on either
side of the ray. The lemma essentially says that, if a point z E A~ cannot see a point
y E Bi, its visibility is blocked by Di or Ei. The proof uses techniques similar to ones
used in the previous lemmw, and we omit details in this version.

4 Computing Weakly-Visible Chords

4.1 Overv iew

We first give an overview of the algorithm. There are several preliminary steps. Our
algorithm first constructs the kernel K using the linear time method of [10] and then
constructs K N P. This latter step is easily accomplished since the algorithm of [10]
can return the vertices of K which lie on P. If this is not empty, the algorithm outputs
(K N P, P) which describes all weakly-visible chords with one endpoint in the kernel.

Then the LR-visibility algorithm in [4] is run, which gives us the non-redundant
components with endpoints in counterclockwise order, as well as the (A~, Bi) pairs.
If there is only one pair, we check if Dx and E1 are well-behaved, by running the
shortest-path algorithm of [6] from their endpoints. If one of them is not well-behaved,
the algorithm halts and reports that there are no weakly-visible chords.

We next determine in linear time whether there exist two disjoint components.
Suppose we find that P does have a pair of disjoint components F and G. Any LR-
visible pair of points must have one point on F and the other on G, so for any basic

4.2 I m p l e m e n t a t i o n Detai ls

interval .4/ in F we know that B~ is contained in G. It suffices to look only at A/ in F
(and their corresponding Be in G) and compute weakly-visible chords, if any. Suppose
P does not have two disjoint components. In this case the algorithm examines each
non-kernel .4/and its corresponding B~ in search of weakly-visibh chords.

In either case, the basic step consists of determining the weakly-visible chords be-
tween a non-kernel ,44 and its corresponding B~. By the definition of these intervals
we know that a point z G .4/ forms an LR-visible pair with a point 1/ if and only if
y E Bi. By lemma 4, therefore, we can construct the set of weakly-visible chords by
determining for each point z of a basic interval .4i the points of Bi from which it is
visible. Essentially, for each z we must determine the restrictions on its visibility with
Be. We also know that A/, Di and Ei are well-behaved, and visibility restrictions are
only imposed by the side intervals. Below we describe how to compute chords between
A/andB~ and the transition from iteration i to i + 1.

A~ z

125

Fig. 2.

The visibility between a point z E A~ and B~ is determined by a pair of constructs
we call the paeudo-iangen~. Consider Figure 2. The pseudo-tangent from z to I) / (E l)
is the unique line directed from z through a point s(z) of D~ (t(z) of E~) such that all
of Di (E~) lies on or to the]eft (right) of the line (pseudo-tangents are different from
tangent , which are also required to be chords). We denote the direction of the pseudo-
tangent to Di (El) by ~(z) ('?(z)). We give labels to two other special directions:
the direction from z to b(B~) (e(Bi)) is denoted c~(z) (6(z)). Sometimes we will use
abbreviated notation, for example a instead of a(z) , when the z under consideration
is clear.

The point z G A/ is visible from some point of B~ if and only if the special direc-
tions satisfy the following relationship: a < r ~ ~ c ~ 1' _<r 6 (where _<c~ means

126

=precedes or equals in counterclockwise order, as viewed from z~). Let us consider the
picture for a point z E A~ which is visible from B~. In this event the pseudo-tangencies
are actually tangencies, in the sense that they are chords of P . Let 7;(z) (z(z)) be the
other endpoint of the longest chord of P with one endpoint at z in direction fl (7).
Since a, fl, 7 and 6 are ordered counterclockwise, the points y and z lie on B~. Points of
B~ lying between b(B~) and y (z and e(B,)) are not visible from z because visibility is
blocked by D, (E,). However, all points of Pccw(~, z) are visible from z. Also, if b(B~)
(e(B,)) is the pseudo-tangent point of D, (E,), i.e. i r a = /3 (~f = 6), then b(Ei) (e(Bi))
is also visible from z. Thus we see that i f z is visible from Bi, its set of weakly-visible
partners consists of a closed subinterval P c c w (~ , z) of B~, plus possibly one or both
of the endpoints of B~.

If = is not visible from Bi, then the four special directions are not ordered properly.
If D~ (E~) blocks all of B~ from z, then we have the subordering a _<c~ 5 <cc~ /3
(1' <= ~ a ~ c ~ 5). If the ordering is ~ _ < ~ ~ < c ~ / 3 _ < ~ 6, then neither D~ nor E~
totally block visibility individually, but together they do. In this case we can still define

and z as the extensions of the pseudo-tangencies until they hit Bi, where the opposite
side interval is simply ignored. The fact that the ordering o f ~ and 7 is reversed means
that z precedes ~ counterclockwise on B~.

The algorithm uses the following strategy. We traverse P once counterclockwise
with a point z, calculating for each z of a basic interval A~ the pseudo-tangent to the
side interval D~. We then traverse P once clockwise in order to compute for each z the
pseudo-tangent to E~. We determine for which z the ordering a < = ~ fl < = ~ ~f ~ 6
is obeyed, and for these z we compute the extensions ~ and z to obtain the partner
interval Pccw(Y, z). We also note whether a = ~ (1, = 5) for any of these z, in which
case b(8~) (e(B~)) is also a partner. Since y and z are different for each z, and there
are an infinitude of values of z, we must exhibit care in our manner of computing and
storing the output; this issue will be addressed during the discussion below.

We describe the counterclockwise traversal of P with a point z, calculating for each
z in A~ the pseudo-tangents to D~; the procedure for E~ pseudo-tangents is symmetrical.
If, for some z in A~, ~ lies between a and ~, then we wish to compute the extension ~.
If a = ~3 then the extension y equals b(B~). If 5 < ~ a then = sees no point of B~ and
the extension y is undefined.

We now show that the functions ~3(z) and y(z) are monotonic, i.e as z moves coun-
terclockwise along the entire polygon, the direction/3(z) moves counterclockwise and
y(z) also moves counterclockwise along P. First, consider the motion of z within a basic
interval A~. As z moves counterclockwise the pseudo-tangent rotates counterclockwise
around the pseudo.t=ngent point (the point on D~ which the pseudo-tangent touches),
with the consequence that ~ (if defined) moves counterclockwise on B~. The pseudo-
tangent point may change to a point of D~ closer to b(D~), but this does not affect the
monotone motion. Next consider the transition of z to the next basic interval. When
z reaches e(A~) = b(D~), the basic interval is updated to A~+~ and the side interval
to D~+i. The new side interval is obtained from D~ by subtracting A~+i and possibly
adding some additional basic intervals at the far end. There are two cases. In the first
case (Figure 3(a)), the pseudo-tangents from z to both D~ and D~+z are the same, hence
9(e(A~)) ---- y(b(A~+x)). In the second case (Figure 3(b)), the pseudo-tangent from z to

127

Di+l is counterclockwise to the the pseudo-tangent from z to Di, hence ~/(b(A~+l))
is counterclockwise of y(e(A~)). Thus we see that ~(z) and ~/(z) moves monotonically
counterclockwise.

(~) (~)

Fig. 3.

Another important observation regards the monotone motion of the pseudo-tangent
point, s(z). As z progresses counterclockwise within a basic interval A~, s moves clock-
wise on Di. Furthermore, when the side interval and the pseudo-tangent point are
updated upon z reaching e(Ai), the updating occurs in such a way that no point which
has previously been the pseudo-tangent point can again become the pseudo-tangent
point at a later time. This observation is clear from Figures 3(a) and (b), and is crucial
in computing all pseudo-tangent points in overall linear time.

Since the side interval D~ is always well-behaved, the shortest path SP(b(D~), e(D~))
(which we will simply denote SP(D~)) is a convex chain consisting of only right turns.
This makes it easy to find and update tangencies. For z = b(Ai), traverse SP(s
from e(Di) until reaching the pseudo-tangent point (determining if a point of SP(D~)
is the pseudo-tangent point is accomplished in constant time by comparing directions
of the line from z with those of the adjacent edges). As z progresses counterclockwise
we can update the pseudo-tangent point by continuing to traverse SP(D~) towards
b(D~). No point of SP(D~) which is traversed will ever be a pseudo-tangent point in
the future, and the total time of this operation is proportional to the number of vertices
of SP(Di) traversed. The additional required ingredient, then, is an efficient manner
of maintaining SP(Di) for the current Di. We discuss this next.

Consider the first side interval DI, which corresponds to the first basic interval
A1. It is composed of a collection of basic intervals A2, . . . , Aj. The side interval Dj
is composed of the basic intervals Aj+I , . - . , At, and is the first side interval that does
not overlap with D1. We will essentially deal with D1 through Dj as a group. We will
preprocess the entire group in a manner that allows efficient updating.

128

The preprocessing is the construction of the shortest path tree from e(D1) to all
vertices of D1. Since D1 is well-behaved we perform this step in time proportional to the
sise of D~, by a modification of the algorithm of [6]. At any time we will store SP(D~)
in three pieces, namely as two shortest paths, SP(b(Di), e(D1)) and SP(e(D1), e(D~)),
plus the bridge between them (see Figure 4). The chain SP(b(Di), e(D1)) is obtained
from SP(b(D~-I), e(D1)) by using the shortest path tree. A depth-first search of this
tree allows one to visit all vertices of DI according to the counterclockwise order on
P, and thus allows us to maintain the current shortest path SP(b(Di), e(D1)). To
maintain the other shortest path, SP(e(D~), e(Di)), we observe that updating from
..gP(e(D1),e(Di-1)) consists of adding zero or more basic intervals. Since each basic
interval is well-behaved, the shortest path between its endpoints is convex. The bridge
between two convex chains with a common endpoint can be found in time proportional
to the number of vertices below the bridge on both chains. Since vertices below the
bridge cannot be pseudo-tangent points, this time-complexity is acceptable to us.

D1

A1

Fig. 4.

Thus, as z moves from A/-I to gi, we first update to obtain SP(b(Di), e(D1)) and
then update to obtain SP(e(D~), e(Di)). Our true goal is SP(D~), and to obtain it
we need the bridge between the two smaller shortest paths. Efficient computation and
maintenance of the bridge is possible because the bridge endpoints display a property
similar to that of the pseudo-tangents from z: the bridge endpoints progress monoton-
ically clockwise, and no point which has previously been a bridge endpoint can again
become a bridge at a later time.

In this manner we maintain the side interval while z traverses from A1 to Ai, in total
time proportional to the sise of A1 through At. If P has two disjoint components, then

129

all side intervals intersect D, and a single iteration of this procedure suffices. If P does
not have two disjoint components, then it is necessary to repeat the procedure, with
the next step beginning with Dj and ending at Di. This method "overlaps ~ portions
of P, but no basic interval is used in more than two iterations, so maintaining SP(D~)
while z traverses all of P requires only O(n) time.

We discuss how y(z) is efficiently computed and stored. Given z and the pseudo-
tangent to D~, we find 1/by extending the pseudo-tangent until it hits B~. As z pro-
gresses counterclockwise, several events can occur. For example, (1) z can reach a vertex
of A~, (2) 9 can reach a vertex of B~, or (3) the pseudo-tangent points can pivot about
an edge of SP(Di). Also, (4) when z reaches e(A~), both s and therefore 9 may need
to be updated. Between events, however, we have an edge containing z and another
containing 9, and a point s which lies on ~TY. Thus, even though we have an infinitude
of values of z, each with a unique 9, the function 9(z) can be described in constant
time. A particular value 9(z) is found in constant time by computing the intersection
of two lines.

In order to easily store 9(z), we introduce Steiner points at z and 9 (if z and/or
y are not already vertices) whenever one of the events (1)-(4) above occurs. The total
number of points introduced is O(n). In this way, every edge of a non-kernel basic
interval has s linear function 9(z).

A symmetric procedure has z traverse clockwise around P in order to compute
z(z) for each z. By merging the Steiner points introduced while computing z(z) with
those from the computation of 9(z), we have that for every edge of a non-kernel basic
interval, 9(z) and z(z) are linear functions. We check whether 9(z) precedes z(z)
counterclockwise for all z of the edge. For those z which violate this order, we return
that they have no weakly-visible partners. For those z which obey the order, the weakly-
visible partners are the points on the interval from 9(z) to z(z).

A final consideration concerns b(B~) and e(B~). We stated that if a = ~ (7 =
6) then b(Bi) (e(Bi)) is s weakly-visible partner of z, even though it is outside the
interval Pccw(y, z). Throughout the above procedure, then, b(B~) and e(B~) are stored
separately as weakly-visible partners whenever appropriate.

5 T h e R e c t i l i n e a r C a s e

In this section, we consider the simpler case where the given polygon P is a simple
rectilinear polygon. Simple geometric observations about rectilinear polygons are used
to construct a simpler algorithm for computing all non-redundant components and
consequently all weakly-visible chords in the rectilinear case. It may be noted that the
chords need not be rectilinear.

Before we proceed we need some notation. Components in rectilinear polygons are
produced by two kinds of ray shots - vertical and horizontal. We call these components
reetical (resp. horizon~O components. Furthermore, there are two kinds of horisontal
(vertical) components - components that lie ~bo~e (to the em left of) or below (to the
right of) the ray shot. We call the four type of components as lefl-rertic~ right-rertica[,
abo~e-horizonta~ and belo~o-horizontal components respectively. The left-vertical and
right-vertical types are called complementary types, as are the above-horizontal and

130

the below-horizontal types. It is easy to see that two components of the same type are
either disjoint or one contains the other (i.e., one is made redundant by the other).
For P-TAmple, there cannot be two partially overlapping left-vertical components. If
P has more than 3 disjoint components, then by lemma i P has no weakly-visible
chords. Hence for weakly-visible chords to exist there cannot be more than 12 non-
redundant components. In fact, we can make a stronger statement. It can be proved
that for a weakly-visible rectilinear polygon, if there are two disjoint non-redundant
components of a certain type, then there are no non-redundant of the complementary
type and there cannot be another non-redundant component that intersects both of
them. Consequently for a-weakly visible rectilinear polygon, if there arc two disjoint
left-vertical non-redundant components, then there are no right-vertical non-redundant
components. We state the following lemma without proof.

L e m m a 10 There are at most s ~ertical non-redundant components, sad at most
horizontal components in a LR-vbible rectilinear polygon. Also every non-redundant
, , e~cal (,'asp. ho~oat~l) compoae,, i~ ~-,~oaotoae (re,p. ~-~oao~oae).

Without getting into the details, we mention here that in 4 sweeps of the entire
polygon, all the non-redundant components can be identified.

References

1. Avis, D., Touss~int, G.T.: An optimM algorithm for determining the visibility of a polygon
from an edge. IEEE Transactions on Computers 30 (1981) 910-914

2. Chen, D.Z.: Optimally computing the shortest weakly-visible edge of a simple polygon~
Proc. Fourth ISAAC, LNCS 762 (1993) 323-332

3. Doh, J., Chwa, K.: An algorithm for determin;ng visibility of a simple polygon from an
Internal Line Segment. J. of Algorithms 14(1) (1993) 139-168

4. Du, D., Hetfernan, P.J., Nar~;mhan, G.: LR-visibility in polygons. Proc. 5th Canadian
Conference on Computational Geometry (1993) 303-308. Submitted to special issue of Com-
putational Geometry - Theory mud Appln.

5. Dss, G., Narasimhan, G.: Optimal Linear-Time Algorithm for the Shortest Kluminating
Line Segment in a Polygon. Proc. 10th Annual ACM Sympo on Computational Geometry
(1994)

6. Gulbu, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear time algorithms for
visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2
(1987) 209-233

7. Helfernan, P.J.: An optimal algorithm for the two-guard problem. Proc. 9th Annual ACM
Symp. on Computational Geometry (1993) 348-358

8. Icklng, C., Klein, R.: The two guards problem. Proc. 7th Annual ACM Syrup. on Compu-
tational Geometry (1991) 166-175

9. Ke, Y.: Detecting the weak visibility of a simple polygon and related problems. Tech.
Report, The Johns Hopkins University (1987)

10. Lee, D.T., Preparata, F.P.: An optimal algorithm for finding the kernel of a polygon.
Journal of the ACM, 26(3) (1979) 416-421

11. Sack, J.-R., Suri, S.: An optimal algorithm for detecting weak visibility. IEEE Transactions
on Computers 39(10) (1990) 1213-1219

12. Tseng, L.H., Lee, D.T.: Two-guard wallmbility of simple polygons, manuscript (1993)

