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Abstract—The scenario of widely separated multi-input multi- in [12]-[19], where the transmit and receive antennas can be
output (MIMO) radar is considered. For a small number of placed on the nodes of a network. Following the observation
targets' tr:e dta[get returns o Spase tr(;e tar:geht ppace. 'lrsf:z that the target is sparse in the angle-Doppler-range sge,
?he esct?lzj&fre ;S?ﬁeaggrs?s Cm;tsrif rggzzfnbovsve'sc they |:é;pe0|sli2% recovery can enable target estimation ba_sed on a small qumbe
problem into a number of smaller size problems, thus reducig Of measurements obtained by each receive node. Combining a
computational complexity. Second, it is shown that by reordring  step-frequency approach during transmission with conspres
the columns of the basis matrix, group sparsity can be introdced sampling during reception and CS recovery, significant gjain
to the rert]“tms' Thh's Str‘.JCt‘.Jf.re C"’t‘” b? exploited by a group Laso i, range resolution can be achieved with a small number of
e e ygot local. (P ffequencies [16]{18]. Compressive sensing was iso a
ization, sparsity, group sparsity plied to MIMO radar with widely separately radar in [20] and

[21]. In [20], the authors applied CS for coherent processin
of a known number of point targets which uniformly reflect
. INTRODUCTION in all directions. The CS approach was utilized to produce
initial estimates on velocity and reflectivity for the likebod
ratio detector. In [21], extended targets were considevbith
reflect non-uniformly in different directions, and it wasosin
9hat the CS approach enables one to achieve a certain perfor-
mance level with fewer samples as compared to conventional
ethods.

rn this paper, we consider the same scenario as in [21], in
transmits independent probing signals from its antennas t hich targets are already sparse in the target space and CS

follow independent paths, and thus each target returnetsarﬁ eory can be applied for target recovery. In that scenan,

independent information about the target. Joint procgssin terfplore thet stpemelll Sp?r.s'ty lstrgcturg of radaihggnalfdtma:e
the target returns results in diversity gain, which enalthes € computational cost Invoived, or improve the perforneanc
of target detection. By using the orthogonality between the

MIMO radar to achieve high target resolution. Widely dis- bmatri f the basi i d | | .
tributed MIMO radar systems are shown to offer considerapfg P MAtrces orne basis matrix, we can decouple a large-siz

advantages for targets’ parameter estimation, such ala'dncal‘asso DFOb'em Into fsevgra_l _smaII—S|ze ones. In this way, the
[5] and velocity [6]. In the collocated scenario [1], thertsanit complexity of Lasso is significantly reduced. We also pr&pos

and receive antennas are located close to each other eelaqﬂ?t one can s;gmf;canttly t|21p:ove SSF'mt?]t'o? by tlndﬂg_ra
to the target, so that all antennas view the same aspect%?uD'.sDarse structure 1o the targets in the target spaes.
the target. In this scenario, the phase differences indbged IS ach|e_ved by .approprlately re-arranging the columns ef th
transmit and receive antennas can be exploited to form a Ioﬁﬁrsn‘ymg basis matrix during the CS recovery.

virtual array with number of elements equal to the product otation: Lower case and capital letters in bold denote

of the numbers of transmit and receive nodes. This enabl€SPECtively vectors and matrices. The expectation of dawn

i i H
the MIMO radar system to achieve superior resolution yariable is denoted by{-}. Superscripts(-)™ and Tx(.)

terms of direction of arrival (DOA) estimation and par(:mnetéjenqte respectively the Hermitian transpose and tracg of a
identification [1]. matrix. A(m,n) represents thém,n)-th entry of the matrix

Compressive sensing (CS) theory has drawn recent attent(d Orxm ar},d,,lLXM respectively denote ai x M matrix
in diverse fields [7]-[10]. According to CS theory, a signa‘f\'It 0" and *1" entries.
that is sparse with respect to some basis, can be recovered
from much fewer samples than required by Nyquist theory. Il. SIGNAL MODEL

The application of CS to colocated MIMO radar was explored

Multiple-input multiple-output (MIMO) radar have receive
considerable recent attention [1]-[4]. A MIMO radar comsis
of multiple transmit and receive antennas and is advantege
in two different scenarios, namelyidely separated antennas
[3][4], and collocated antennas [1][2]. In the former scenario,
the transmit antennas are located far apart from each ot
relative to their distance to the target. The MIMO radar eyst

Let us assume that there afé extended targets in the
This work was supported by the by the Office of Naval Researaen C€ll Under test and the targets are located in the same plane
Grant ONR-N-00014-09-1-0342. as the transmit and receive antennas. We also assume that



the transmit waveform is sufficiently narrowbanded such tha Let M; and N,. denote respectively the number of transmit
the scatters of a target cannot be resolved. Therefore, atld receive antennas. Let us define
the scatters of the:-th target can be represented by the

. . . . A 1N\T Np
gravity center of this target, which is denoted by, ;) Uy = [(T)", ..., (P
(in cartesian coordinates) at the initial time of sampling. U £ diag{[P11,..., ¥, N,]}- (5)
The k-th target moves at velociti®, v¥]. Let («f,4!) and
(«7,yr) denote the locations of theth transmit and receive We can stack the received samples durivgpulses from all
antenna, respectively. The parameters to be estimated the pairs of transmit and receive antenna into a vegtof
T, Yk, vk, vn k= 1,..., K. Therefore, we define the targetength M;N,.LN,, i.e.,
state vector agr, y, vz, vy "

The i-th antenna transmits the narrowband signalt). 7= [(z}l)T,...,(Zivf])Ta(z}Q)T-"’(Z%I:N)T}

Then the baseband signal at thth receive node arising due

)17,

to the transmission of theth node equals [4] =¥s+n (6)
K dL(8) + diy (1)« e i wheres is a concatenation of'!, ... s'Vr g2l . Note that
zi(t) = Z Bitai(t — L . B2V eI 2T IRt 4oy (t), for all 4,1, the vectors contains all zeros except at locations
k=1 corresponding to grid points occupied by targets. The ionat
l=1,...,M, (1) of the non-zero values is" are the same for all paths, {);

the actual non-zero values are different, depending onékie p
&',1). Thus,s is a sparse vector. In the next section, we will
explore the group sparse structuresof

where gi! and f/! represents the attenuation coefficient an
the Doppler shift associated with theth target and the
transmit-receive antenna p&it /), respectivelyn;; (¢) denotes
interferenceﬂiﬁ"(t) denotes the Euclidean distance between

the i-th transmit/receive antenna and theh target at timg,  |ll. SPARSE RECOVERY FOR WIDELY SEPARATEIMIMO
ie., RADAR
diﬁ"(t) _ \/(:CE/T R (y:/T g+ bt Based on the sparse model for the.recelved signal of widely
_ A . . . separated MIMO radar as shown in (6, the non-zero
and fil = Lelimtv Wi | va(ioon)do, Wi vl oy elements of which indicate the locations of targets in thgeta

MW (at—2i)2 4+l —ue)? A/ (@] —2e)?+ (7 —vk)? state space, can be recovered by the Lasso approach, i.e.,
The Doppler shift in (2) is based on the first order term of the

_ 1

Taylor expansion oﬁffi (t) arg min §H<I>(z —Ws)|3 + Alls|1. (7)
Let us discretize the target state space inarid points, ®

.8, [(zn, Yn, vy, vy),m = 1,...,N and let sl denote the where® is the measurement matrix, is the tradeoff coeffi-

coefficient associated with theth grid point for the transmit- cient. The Lasso approach above enables to recover a signal
receive antenna paif,!). The received signat;;(¢t) can be with any sparsity structure. However, the structure of tasid
rewritten as a linear combination of target returns reflgctenatrix can be further explored to either reduce complexity o
from all grid points, i.e., improve performance, as discussed in the subsequentrs&ctio

N
i ily g2 fit
zalt) = D shiwilt = m)el T 4 ma(r) A. Decoupled Lasso
n=1

— pg(t)sil + ni(t) (3) It can be seen from (5) that the basis matrix HesN,.
. ) blocks on its diagonal, each block corresponding to a pair
where 7! = im(t)%d@, fiis the Doppler shift cor- of TX/RX antenna. This enables us to divide into M, N,
responding to then-th grid point, p;(t) = [z(t — submatrices that are orthogonal to each other, ¥8,, i =
rilyei2mfi't gt —7i)es27INT andsi = [sil ... s]7.  1,..., M;N,. By successively multiplying the received signal
If the k-th target is located atr,, yn, vy, vy ), the coefficient by these submatrices, we can decompose the signal model of
st equalspi!; otherwise, it equals zero. (6) into M, N, smaller-size problems. i.e.,
On letting L denote the number df;-spacing samples and " . "

T denote pulse repetition interval, we staéksamples col- Py =" Ws+¥n
lected during then-th pulse for the transmit-receive antenna = \Ilfllllsl + \Ilfn, te,i=1,...,MyN, (8)

pair (i,1) into a vectorz} as
wheres; contains the elements efindexed agi — 1)N + 1

2 = [20(0Ts + (m — 1)T), ..., za((L — 1)Ts + (m — 1)T)]" to iN, and can be solved by applying the Lasso approach

= ost 4 (4) to (8). We can extract target information by adding up the

v square amplitudes of;, i = 1,..., M;N,. The size of the

where @7 = ei27f (m=DT[p,(0T,), ..., pu((L — 1)T,)]T signal model in (8) is\, which can be significantly smaller
andn}} = [ny(07s + (m — 1)T),...,ny((L — 1)Ts + (m — than that of (6). Therefore, solving the small-size protdem
n)*. via Lasso can significantly reduce overall computationatllo



B. Group Lasso of the matched filter method (MFM) for MIMO radar is also
Recall that if there is a target at theth grid point, then-th shown for comparison. Figure 2 shows the square amplitude

entries ofs; for all the TX-RX antenna pairs, i.esil, i = of estimateh for all grid points in one realization. It can seen
1,...,M;, | = 1,...,N,, are all non-zero. Therefore, bythat group Lasso produces smaller ripples than the othee thr

appropriately rearranging the columns®f the non-zero ele- methods and decoupled _Lasso perfprms S|m|larly to Lasso.
ments ofs corresponding to different paths and the same tarde@ure 3 shows the receiver operating characteristic (ROC)
can be clustered together (as seen in Fig. 1). In this way, &dves over00 random and independent runs. It is clegr that

can form groups with non-zero elements of cardinalifyN,., the group Lasso outperforms the other three me_thods in terms
in other words, we enforcgroup sparsity. Let u”, denote the of ROC. Figure 3 also demonstrates that increasing the numbe

n-th column of® ;. To create group sparsity, let us arrange tnef transmit/receive radars improves the detection perémce.
columns of ¥ to form ¥, defined as¥, = [\ifl, e \iINT

~ , , V. CONCLUSION
whereWw,, = [ufl, co Uiy UGy, u}LVItNT].

The sparse vecter associated withP,, containsK groups We have considered sparse recovery of target information in
of non-zeros entries and each of group is of lengihV,. the scenario of widely separated MIMO radar. By exploring

The group sparsity of can be exploited using a group Lasséhe sparsity structure of radar signal, we proposed to apply
approach [22]-[24], i.e., decoupled Lasso, or group Lasso to target detection. The

| N decoupled Lasso approach significantly reduces compugdtio

. 2 cost as compared to Lasso but offers no performance gain. On

arg §|\<1>(z ~ )l +A Z_:l Isnll2 ©) the other hand, the group Lasso approach produces significan
£1(s) - performance gains in terms of the detection accuracy ower th

f2(s) other two methods.

wheres,, has been defined in Section IlI-A but its element

locations have been changefd(s) can be recast thé norm Acknowledgment
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Fig. 3. ROC curves corresponding to GSR, SR and MFM for the cds
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