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Abstract—The scenario of widely separated multi-input multi-
output (MIMO) radar is considered. For a small number of
targets, the target returns are sparse in the target space. First,
a decoupled Lasso approach is proposed, which by exploiting
the structure of the basis matrix decomposes the large size
problem into a number of smaller size problems, thus reducing
computational complexity. Second, it is shown that by reordering
the columns of the basis matrix, group sparsity can be introduced
to the returns. This structure can be exploited by a group Lasso
approach to achieve significant performance gains.
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I. I NTRODUCTION

Multiple-input multiple-output (MIMO) radar have received
considerable recent attention [1]-[4]. A MIMO radar consists
of multiple transmit and receive antennas and is advantageous
in two different scenarios, namely,widely separated antennas
[3][4], and collocated antennas [1][2]. In the former scenario,
the transmit antennas are located far apart from each other
relative to their distance to the target. The MIMO radar system
transmits independent probing signals from its antennas that
follow independent paths, and thus each target return carries
independent information about the target. Joint processing of
the target returns results in diversity gain, which enablesthe
MIMO radar to achieve high target resolution. Widely dis-
tributed MIMO radar systems are shown to offer considerable
advantages for targets’ parameter estimation, such as location
[5] and velocity [6]. In the collocated scenario [1], the transmit
and receive antennas are located close to each other relative
to the target, so that all antennas view the same aspect of
the target. In this scenario, the phase differences inducedby
transmit and receive antennas can be exploited to form a long
virtual array with number of elements equal to the product
of the numbers of transmit and receive nodes. This enables
the MIMO radar system to achieve superior resolution in
terms of direction of arrival (DOA) estimation and parameter
identification [1].

Compressive sensing (CS) theory has drawn recent attention
in diverse fields [7]-[10]. According to CS theory, a signal
that is sparse with respect to some basis, can be recovered
from much fewer samples than required by Nyquist theory.
The application of CS to colocated MIMO radar was explored
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in [12]-[19], where the transmit and receive antennas can be
placed on the nodes of a network. Following the observation
that the target is sparse in the angle-Doppler-range space,CS
recovery can enable target estimation based on a small number
of measurements obtained by each receive node. Combining a
step-frequency approach during transmission with compressive
sampling during reception and CS recovery, significant gains
in range resolution can be achieved with a small number of
step frequencies [16]-[18]. Compressive sensing was also ap-
plied to MIMO radar with widely separately radar in [20] and
[21]. In [20], the authors applied CS for coherent processing
of a known number of point targets which uniformly reflect
in all directions. The CS approach was utilized to produce
initial estimates on velocity and reflectivity for the likelihood
ratio detector. In [21], extended targets were considered,which
reflect non-uniformly in different directions, and it was shown
that the CS approach enables one to achieve a certain perfor-
mance level with fewer samples as compared to conventional
methods.

In this paper, we consider the same scenario as in [21], in
which targets are already sparse in the target space and CS
theory can be applied for target recovery. In that scenario,we
explore the special sparsity structure of radar signal to reduce
the computational cost involved, or improve the performance
of target detection. By using the orthogonality between the
submatrices of the basis matrix, we can decouple a large-size
Lasso problem into several small-size ones. In this way, the
complexity of Lasso is significantly reduced. We also propose
that one can significantly improve estimation by inducing a
group-sparse structure to the targets in the target space. This
is achieved by appropriately re-arranging the columns of the
sparsifying basis matrix during the CS recovery.

Notation: Lower case and capital letters in bold denote
respectively vectors and matrices. The expectation of a random
variable is denoted byE{·}. Superscripts(·)H and Tr(·)
denote respectively the Hermitian transpose and trace of a
matrix. A(m,n) represents the(m,n)-th entry of the matrix
A. 0L×M and 1L×M respectively denote anL × M matrix
with“0” and ”1” entries.

II. SIGNAL MODEL

Let us assume that there areK extended targets in the
cell under test and the targets are located in the same plane
as the transmit and receive antennas. We also assume that
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the transmit waveform is sufficiently narrowbanded such that
the scatters of a target cannot be resolved. Therefore, all
the scatters of thek-th target can be represented by the
gravity center of this target, which is denoted by(xk, yk)
(in cartesian coordinates) at the initial time of sampling.
The k-th target moves at velocity[vkx, v

k
y ]. Let (xt

i, y
t
i) and

(xr
i , y

r
i ) denote the locations of thei-th transmit and receive

antenna, respectively. The parameters to be estimated are
xk, yk, v

k
x, v

k
y , k = 1, . . . ,K. Therefore, we define the target

state vector as[x, y, vx, vy].
The i-th antenna transmits the narrowband signalxi(t).

Then the baseband signal at thel-th receive node arising due
to the transmission of thei-th node equals [4]

zil(t) =
K∑

k=1

βil
k xi(t−

dtki(t) + drkl(t)

c
)ej2πf

il
k t + nil(t),

l = 1, . . . ,Mr (1)

whereβil
k and f il

k represents the attenuation coefficient and
the Doppler shift associated with thek-th target and the
transmit-receive antenna pair(i, l), respectively;nil(t) denotes
interference;dt/rki (t) denotes the Euclidean distance between
the i-th transmit/receive antenna and thek-th target at timet,
i.e.,

d
t/r
ki (t) =

√

(x
t/r
i − xk + vkxt)

2 + (y
t/r
i − yk + vky t)

2

and f il
k =

vk
x(x

t
i−xk)+vk

y(y
t
i−yk)

λ
√

(xt
i
−xk)2+(yt

i
−yk)2

+
vk
x(x

r
l −xk)+vk

y (y
r
l −yk)

λ
√

(xr
l
−xk)2+(yr

l
−yk)2

.(2)

The Doppler shift in (2) is based on the first order term of the
Taylor expansion ofdt/rki (t)

Let us discretize the target state space intoN grid points,
i.e, [(xn, yn, v

n
x , v

n
y )], n = 1, . . . , N and let siln denote the

coefficient associated with then-th grid point for the transmit-
receive antenna pair(i, l). The received signalzil(t) can be
rewritten as a linear combination of target returns reflected
from all grid points, i.e.,

zil(t) =

N∑

n=1

silnxi(t− τ iln )e
j2πfil

n t + nil(t)

= pT
il(t)s

il + nil(t) (3)

where τ iln =
dt
ni(t)+dr

nl(t)
c , f il

n is the Doppler shift cor-
responding to then-th grid point, pil(t) = [x(t −
τ il1 )e

j2πfil
1
t, . . . , x(t− τ ilN )ej2πf

il
N t]T andsil = [sil1 , . . . , s

il
N ]T .

If the k-th target is located at(xn, yn, v
n
x , v

n
y ), the coefficient

siln equalsβil
k ; otherwise, it equals zero.

On lettingL denote the number ofTs-spacing samples and
T denote pulse repetition interval, we stackL samples col-
lected during them-th pulse for the transmit-receive antenna
pair (i, l) into a vectorzmil as

zmil = [zil(0Ts + (m− 1)T ), . . . , zil((L− 1)Ts + (m− 1)T )]
T

= Ψm
il s

il + nm
il (4)

whereΨm
il = ej2πf

il
n (m−1)T [pil(0Ts), . . . ,pil((L − 1)Ts)]

T

andnm
il = [nil(0Ts + (m− 1)T ), . . . , nil((L − 1)Ts + (m −

1)T )]T .

Let Mt andNr denote respectively the number of transmit
and receive antennas. Let us define

Ψil , [(Ψ1
il)

T , . . . , (Ψ
Np

il )T ]T ,

Ψ , diag{[Ψ11, . . . ,ΨMtNr
]}. (5)

We can stack the received samples duringNp pulses from all
the pairs of transmit and receive antenna into a vectorz of
lengthMtNrLNp, i.e.,

z =
[

(z111)
T , . . . , (z

Np

11 )
T , (z112)

T . . . , (z
Np

MtNr
)T

]T

= Ψs + n (6)

wheres is a concatenation ofs11, ..., s1Nr , s21, ...... Note that
for all i, l, the vectorsil contains all zeros except at locations
corresponding to grid points occupied by targets. The locations
of the non-zero values insil are the same for all paths (i, l);
the actual non-zero values are different, depending on the path
(i, l). Thus,s is a sparse vector. In the next section, we will
explore the group sparse structure ofs.

III. SPARSE RECOVERY FOR WIDELY SEPARATEDMIMO
RADAR

Based on the sparse model for the received signal of widely
separated MIMO radar as shown in (6),s, the non-zero
elements of which indicate the locations of targets in the target
state space, can be recovered by the Lasso approach, i.e.,

argmin
s

1

2
‖Φ(z−Ψs)‖22 + λ‖s‖1. (7)

whereΦ is the measurement matrix,λ is the tradeoff coeffi-
cient. The Lasso approach above enables to recover a signal
with any sparsity structure. However, the structure of the basis
matrix can be further explored to either reduce complexity of
improve performance, as discussed in the subsequent sections.

A. Decoupled Lasso

It can be seen from (5) that the basis matrix hasMtNr

blocks on its diagonal, each block corresponding to a pair
of TX/RX antenna. This enables us to divideΨ into MtNr

submatrices that are orthogonal to each other, i.e.,Ψi, i =
1, . . . ,MtNr. By successively multiplying the received signal
by these submatrices, we can decompose the signal model of
(6) into MtNr smaller-size problems. i.e.,

ΨH
i y = ΨH

i Ψs +ΨH
i n

= ΨH
i Ψisi +ΨH

i n, i.e., i = 1, . . . ,MtNr (8)

wheresi contains the elements ofs indexed as(i− 1)N + 1
to iN , and can be solved by applying the Lasso approach
to (8). We can extract target information by adding up the
square amplitudes ofsi, i = 1, . . . ,MtNr. The size of the
signal model in (8) isN , which can be significantly smaller
than that of (6). Therefore, solving the small-size problems
via Lasso can significantly reduce overall computational load.
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B. Group Lasso

Recall that if there is a target at then-th grid point, then-th
entries ofsil for all the TX-RX antenna pairs, i.e.,siln , i =
1, . . . ,Mt, l = 1, . . . , Nr, are all non-zero. Therefore, by
appropriately rearranging the columns ofΨ, the non-zero ele-
ments ofs corresponding to different paths and the same target
can be clustered together (as seen in Fig. 1). In this way, we
can form groups with non-zero elements of cardinalityMtNr,
in other words, we enforcegroup sparsity. Let un

il denote the
n-th column ofΨil. To create group sparsity, let us arrange the
columns ofΨ to form Ψg, defined asΨg =

[

Ψ̃1, . . . , Ψ̃N

]

,

whereΨ̃n =
[
un
11, . . . ,u

n
1Nr

,un
21, . . . ,u

n
MtNr

]
.

The sparse vectors associated withΨg containsK groups
of non-zeros entries and each of group is of lengthMtNr.
The group sparsity ofs can be exploited using a group Lasso
approach [22]-[24], i.e.,

argmin
s

1

2
‖Φ(z−Ψgs)‖22

︸ ︷︷ ︸

f1(s)

+λ

N∑

n=1

‖sn‖2
︸ ︷︷ ︸

f2(s)

(9)

where sn has been defined in Section III-A but its element
locations have been changed.f2(s) can be recast theℓ1 norm
of the vectorλ[‖s1‖2, . . . , ‖sN‖2]T . Minimization of f2(s)
produces a group-sparse solution [22]-[24]. Due to the nature
of ℓ2 norm, all entries of thenth group sn will be zero if
‖sn‖2 is zero, and would be non-zero otherwise. Sincef2(s)
is non-smooth, it is not trivial to directly solve (9). Instead
of minimizing f1(s) and f2(s) simultaneously, the proximal
gradient algorithm [34][35] proceeds by dealing withf1(s)
and fs(s) individually in an iterative way. An accelerated
version of the above algorithm above can be found in [35].

Let ŝ denote the solution to (9). We can formulate the target
indicator vector,h, so that its thenth entry equals to‖s̃n‖22.
The peaks ofh will give provide the target information.

IV. SIMULATION RESULTS

In this section, we demonstrate the performance of Lasso,
decoupled Lasso and group Lasso in the context of MIMO
radar. We consider a MIMO radar system with transmit/receive
radars that are uniformly located on a circle of radius1, 000m.
The carrier frequency isf = 5GHz. Each transmit radar uses
orthogonal quadrature phase shift keying (QPSK) waveform
sequences of lengthL = 45, and unit power. The received
signal is corrupted by zero-mean Gaussian noise and SNR is
set to20dB. Each radar receive45 measurements during each
pulse. Three targets are assumed to be present in the search s-
pace[8000, 8080, . . . , 8320]m×[8000, 8080, . . . , 8320]m, and
in each run, the targets are randomly located on grid points.
The target reflectivity is a Gaussian random variable with unit
variance. We use the term probability of detection (PD) to
denotes the percentage of cases in which all the targets are
detected. The percentage of cases in which false targets are
detected is denoted by the probability of false alarm (PFA).
For simplicity, the case of stationary targets is considered.
Figures 2 and 3 demonstrate the detection performance of
Lasso, decoupled Lasso and group Lasso. The performance

of the matched filter method (MFM) for MIMO radar is also
shown for comparison. Figure 2 shows the square amplitude
of estimateh for all grid points in one realization. It can seen
that group Lasso produces smaller ripples than the other three
methods and decoupled Lasso performs similarly to Lasso.
Figure 3 shows the receiver operating characteristic (ROC)
curves over400 random and independent runs. It is clear that
the group Lasso outperforms the other three methods in terms
of ROC. Figure 3 also demonstrates that increasing the number
of transmit/receive radars improves the detection performance.

V. CONCLUSION

We have considered sparse recovery of target information in
the scenario of widely separated MIMO radar. By exploring
the sparsity structure of radar signal, we proposed to apply
decoupled Lasso, or group Lasso to target detection. The
decoupled Lasso approach significantly reduces computational
cost as compared to Lasso but offers no performance gain. On
the other hand, the group Lasso approach produces significant
performance gains in terms of the detection accuracy over the
other two methods.
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Fig. 1. The group sparse structure of the basis matrix.
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