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Abstract. We consider the minimization of a smooth convex function regular-
ized by the mixture of prior models. This problem is generally difficult to solve
even each simpler regularization problem is easy. In this paper, we present two
algorithms to effectively solve it. First, the original problem is decomposed into
multiple simpler subproblems. Then, these subproblems are efficiently solved
by existing techniques in parallel. Finally, the result of the original problem is
obtained from the weighted average of solutions of subproblems in an iterative
framework. We successfully applied the proposed algorithms to compressed MR
image reconstruction and low-rank tensor completion. Numerous experiments
demonstrate the superior performance of the proposed algorithm in terms of both
the accuracy and computational complexity.
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1 Introduction

The mixture of prior models have been used in many fields including sparse learning,
computer vision and compressive sensing. For example, in compressive sensing, the
linear combination of the total-variation (TV) norm and L1 norm is known as the most
powerful regularizer for compressive MR imaging [1–3] and widely used in recovering
the MR images.

In this paper, we propose two composite splitting algorithms to solve this problem:

min{F (x) ≡ f(x) +
m∑
i=1

gi(Bix), x ∈ Rp} (1)

where f is the loss function and {gi}i=1,...,m are the prior models; f and {gi}i=1,...,m

are convex functions and {Bi}i=1,...,m are orthogonal matrices. If the functions f and
{gi}i=1,...,m are well-structured, there are two classes of splitting algorithms to solve
this problem: operator splitting and variable splitting algorithms.

The operator-splitting algorithm is to search an x to make the sum of the corre-
sponding maximal-monotone operators equal to zero. Forward-Backward schemes are
widely used in operator-splitting algorithms [4–6]. These algorithms have been ap-
plied in sparse learning [7] and compressive MR imaging [2]. The Iterative Shrinkage-
Thresholding Algorithm (ISTA) and Fast ISTA (FISTA) [8] are two important Forward-
Backward methods. They have been successfully used in signal processing [8, 9], matrix
completion [10] and multi-task learning [11].
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The variable splitting algorithm is another choice to solve problem (1) based on the
combination of alternating direction methods (ADM) under an augmented Lagrangian
framework. It was firstly used to solve the numerical PDE problem in [12, 13]. Tseng
and He et al. extended it to solve variational inequality problems [14, 15]. There has
been a lot of interests from the field of compressive sensing [16, 17], where L1 reg-
ularization is a key problem and can be efficiently solved by this type of algorithms
[18–20]. It also shows the effectiveness for the sparse covariance selection problem in
[21]. The Multiple Splitting Algorithm (MSA) and Fast MSA (FaMSA) have been re-
cently proposed to efficiently solve (1), while {gi}i=1,...,m are assumed to be smooth
convex functions [22].

However, all these algorithms can not efficiently solve (1) with provable conver-
gence complexity. Moreover, none of them can provide the iteration complexity bounds
for their problems, except ISTA/FISTA in [8] and MSA/FaMSA in [22]. Both ISTA
and MSA are first order methods. Their complexity bounds are O(1/ϵ) for ϵ-optimal
solutions. Their fast versions, FISTA and FaMSA, have complexity bounds O(1/

√
ϵ)

correspondingly, which are inspired by the seminal results of Nesterov and are optimal
according to the conclusions of Nesterov [23, 24]. However, Both ISTA and FISTA are
designed for simpler regularization problems and can not be applied efficiently to the
composite regularization problem in our formulation. While the MSA/FaMSA in [22]
are designed to handle the case of m ≥ 1 in (1), they assume that all {gi}i=1,...,m

are smooth convex functions, which make them unable to directly solve the problem
(1). Before applying them, we have to smooth the nonsmooth function {gi}i=1,...,m

first. Since the smooth parameters are related to ϵ, the FaMSA with complexity bound
O(1/

√
ϵ) requires O(1/ϵ) iterations to compute an ϵ-optimal solution, which means

that it is not optimal for this problem.

In this paper, we propose two splitting algorithms based on the combination of vari-
able and operator splitting techniques. We dexterously decompose the hard composite
regularization problem (1) into m simpler regularization subproblems by: 1) splitting
the function f(x) into m functions fi(x) (for example: fi(x) = f(x)/m); 2) splitting
variable x into m variables {xi}i=1,...,m; 3) performing operator splitting to minimize
hi(xi) = fi(xi)+gi(Bixi) over {xi}i=1,...,m independently and 4) obtaining the solu-
tion x by the linear combination of {xi}i=1,...,m. This includes both function splitting,
variable splitting and operator splitting. We call them Composite Splitting Algorithms
(CSA) and fast CSA (FCSA). Compared to ISTA and MSA, CSA is more general as
it can efficiently solve composite regularization problems with m (m ≥ 1) nonsmooth
functions. More importantly, our algorithms can effectively decompose the original hard
problem into multiple simpler subproblems and efficiently solve them in parallel. Thus,
the required CPU time is not longer than the time required to solve the most difficult
subproblem using current parallel-processor techniques.

The remainder of the paper is organized as follows. Section 2 briefly reviews the
related algorithms. The composite splitting algorithm and its accelerated version are
proposed to solve problem (1) in section 3. Numerical experiment results are presented
in Section 4. Finally, we provide our conclusions in Section 5.
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Algorithm 1 ISTA
Input: ρ = 1/Lf , x0

repeat
for k = 1 to K do

xk = proxρ(g)(x
k−1 − ρ∇f(xk−1))

end for
until Stop criterions

2 Algorithm Review

2.1 Notations

We provide a brief summary of the notations used throughout this paper.
Matrix Norm and Trace:

1. Operator norm or 2-norm: ||X||;
2. L1 and Total Variation norm: ||X||1 and ||X||TV ;
3. Matrix inner product: ⟨X,Y ⟩ = trace(XHY ).

Gradient: ∇f(x) denotes the gradient of the function f at the point x.
The proximal map: given a continuous convex function g(x) and any scalar ρ > 0,

the proximal map associated to function g is defined as follows [9, 8]:

proxρ(g)(x) := argmin
u

{g(u) + 1

2ρ
∥u− x∥2} (2)

ϵ-optimal Solution: Suppose x∗ is an optimal solution to (1). x ∈ Rp is called an
ϵ-optimal solution to (1) if F (x)− F (x∗) ≤ ϵ holds.

2.2 ISTA and FISTA

The ISTA and FISTA consider the following optimization problem [8]:

min{F (x) ≡ f(x) + g(x), x ∈ Rp} (3)

Here, they make the following assumptions:

1. g : Rp → R is a continuous convex function, which is possibly nonsmooth;
2. f : Rp → R is a smooth convex function of type C1,1 and the continuously

differential function with Lipschitz constant Lf : ∥∇f(x1)−∇f(x2)∥ ≤ Lf∥x1−
x2∥ for every x1, x2 ∈ Rp;

3. Problem (3) is solvable.

Algorithm 1 outlines the ISTA. Beck and Teboulle show that it terminates in O(1/ϵ)
iterations with an ϵ-optimal solution in this case.

Theorem 1. (Theorem 3.1 in [8]): Suppose {xk} is iteratively obtained by the algo-
rithm of the ISTA, then, we have

F (xk)− F (x∗) ≤ Lf∥x0 − x∗∥2

2k
,∀x∗ ∈ X∗
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Algorithm 2 FISTA
Input: ρ = 1/Lf , r1 = x0, t1 = 1
repeat

for k = 1 to K do
xk = proxρ(g)(r

k − ρ∇f(rk))

tk+1 =
1+

√
1+4(tk)2

2

rk+1 = xk + tk−1
tk+1 (x

k − xk−1)
end for

until Stop criterions

Algorithm 2 outlines the FISTA. Compared with ISTA, the increased computation
burdens come from the second step and third step in each iteration, which is almost
negligible in large scale applications. Because of these advantages, the key idea of the
FISTA is recently widely used in large scale applications, such as compressive sensing
[8], image denoising and deblurring [9], matrix completion [10] and multi-task learning
[11]. It has been proven that (Theorem 4.1 in [8]), with this acceleration scheme, the
algorithm can terminate in O(1/

√
ϵ) iterations with an ϵ-optimal solution instead of

O(1/ϵ) for those of ISTA.

Theorem 2. (Theorem 4.1 in [8]): Suppose {xk} and {rk} are iteratively obtained by
the FISTA, then, we have

F (xk)− F (x∗) ≤ 2Lf∥x0 − x∗∥2

(k + 1)2
,∀x∗ ∈ X∗

The efficiency of the FISTA highly depends on being able to quickly solve their
first step xk = proxρ(g)(xg), where xg = rk − ρ∇f(rk). For simpler regularization
problems, it is possible, i.e, the FISTA can rapidly solve the L1 regularization prob-
lem with cost O(p log(p)) [8] (where n is the dimension of x), since the second step
xk = proxρ(β∥Φx∥1)(xg) has a close form solution; It can also quickly solve the TV
regularization problem, since the step xk = proxρ(α∥x∥TV )(xg) can be computed
with cost O(p) [9]. However, the FISTA can not efficiently solve the composite regu-
larization problem (1), since no efficient algorithm exists to solve the step

xk = argmin
x

1

2
∥x− xg∥2 +

m∑
i=1

gi(Bix) (4)

To solve (1), the key problem is thus to develop an efficient algorithm to solve
(4). In the following section, we will show that a scheme based on composite splitting
techniques can be used to do this.
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3 Composite Splitting Algorithms

3.1 Problem Definition

We consider the following minimization problem:

min{F (x) ≡ f(x) +

m∑
i=1

gi(Bix), x ∈ Rp} (5)

where we make the following assumptions:

1. gi : R
p → R is a continuous convex function for each i ∈ {1, · · · ,m}, which is

possibly nonsmooth;
2. f : Rp → R is a smooth convex function of type C1,1 and the continuously

differential function with Lipschitz constant Lf : ∥∇f(x1)−∇f(x2)∥ ≤ Lf∥x1−
x2∥ for every x1, x2 ∈ Rp;

3. {Bi ∈ Rp×p}i=1,...,m are orthogonal matrices;
4. Problem (5) is solvable.

If m = 1, this problem will degenerate to problem (3) and may be efficiently solved
by FISTA. However, it may be very hard to solve by ISTA/FISTA if m > 1. For exam-
ple, we can suppose m = 2, g1(x) = ||x||1 and g2(x) = ||x||TV . When g(x) = g1(x)
in the problem (3), the first step in Algorithm 2 has a closed form solution; When
g(x) = g2(x) in the problem (3), the first step in Algorithm 2 can also be solved iter-
atively in a few iterations [9]. However, if g(x) = g1(x) + g2(x) in (3), the first step
in Algorithm 2 is not easily solved, which makes the computational complexity of each
iteration so high that it is not practical to solve using FISTA.

When all function {gi}i=1,...,m are smooth convex functions, this problem can be
efficiently solved by the MSA/FaMSA. However, in our case, the function {gi}i=1,...,m

can be nonsmooth. Therefore, the MSA/FaMSA can not be directly applied to solve this
problem. Of course, we may smooth these nonsmooth function first and then apply the
FaMSA to solve it. However, in this case, the FaMSA with complexity bound O(1/

√
ϵ)

requires O(1/ϵ) iterations to compute an ϵ-optimal solution. It is obviously not optimal
for the first order methods [24].

In the following, we propose our algorithm that overcomes these difficulties. Our
algorithm decomposes the original problem (1) into m simpler regularization subprob-
lems, where each of them is more easily solved by the FISTA.

3.2 Building Blocks

From the above introduction, we know that, if we can develop a fast algorithm to solve
problem (4), the original composite regularization can then be efficiently solved by the
FISTA, which obtains an ϵ-optimal solution in O(1/

√
ϵ) iterations. Actually, problem

(4) can be considered as a denoising problem. We use composite splitting techniques
to solve this problem: 1) splitting variable x into multiple variables {xi}i=1,...,m; 2)
performing operator splitting over each of {xi}i=1,...,m independently and 3) obtaining
the solution x by linear combination of {xi}i=1,...,m. We call it Composite Splitting
Denoising (CSD) method, which is outlined in Algorithm 3. Its validity is guaranteed
by the following theorem:
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Theorem 3. Suppose {xj} the sequence generated by the CSD. If x∗ is the true solution
of problem (4), xj will strongly converges to x∗.

Due to page limitations, the proof for this theorem is given in the supplemental material.

Algorithm 3 CSD
Input: ρ = 1/L, α, β, {z0i }i=1,...,m = xg

for j = 1 to J do
for i = 1 to m do

xi = argminx
1

2m
∥x− zj−1

i ∥2 + gi(Bix)
end for
xj = 1

m

∑m
i=1 xi

for i = 1 to m do
zji = zj−1

i + xj − xi

end for
end for

3.3 Composite Splitting Algorithm (CSA)

Combining the CSD with ISTA, a new algorithm, CSA, is proposed for composite reg-
ularization problem (5). In practice, we found that a small iteration number J in the
CSD is enough for the CSA to obtain good reconstruction results. Especially, it is set as
1 in our algorithm. Numerous experimental results in the next section will show that it
is good enough for real composite regularization problem.

Algorithm 4 outlines the proposed CSA. In each iteration, Algorithm 4 decomposes
the original problem into m subproblems and solve them independently. For many prob-
lems in practice, these m subproblems are expected to be far easier to solve than the
original joint problem. Another advantage of this algorithm is that the decomposed
subproblems can be solved in parallel. Given xk−1, the m subproblems to compute
{yki }i=1,··· ,m are solved simultaneously in Algorithm 4.

3.4 Fast Composite Splitting Algorithms

In this section, a fast version of CSA named as FCSA is proposed to solve problem
(5), which is outlined in Algorithm 5. FCSA decomposes the difficult composite regu-
larization problem into multiple simpler subproblems and solve them in parallel. Each
subproblems can be solved by the FISTA, which requires only O(1/

√
ϵ) iterations to

obtain an ϵ-optimal solution.
In this algorithm, if we remove the acceleration step by setting tk+1 ≡ 1 in each

iteration, we will obtain the CSA. A key feature of the FCSA is its fast convergence
performance borrowed from the FISTA. From Theorem 2, we know that the FISTA can
obtain an ϵ-optimal solution in O(1/

√
ϵ) iterations.

Another key feature of the FCSA is that the cost of each iteration is O(mp log(p)),
as confirmed by the following observations. The step yki = proxρ(gi)(Bi(r

k− 1
L∇fi(r

k))
can be computed with the cost O(p log(p)) for a lot of prior models gi. The step
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Algorithm 4 CSA
Input: ρ = 1/L, x0

repeat
for k = 1 to K do

for i = 1 to m do
yk
i = proxρ(gi)(Bi(x

k−1 − 1
L
∇fi(x

k−1))
end for
xk = 1

m

∑m
i=1 B

−1
i yk

i

end for
until Stop criterions

Algorithm 5 FCSA
Input: ρ = 1/L, t1 = 1 x0 = r1

repeat
for k = 1 to K do

for i = 1 to m do
yk
i = proxρ(gi)(Bi(r

k − 1
L
∇fi(r

k))
end for
xk = 1

m

∑m
i=1 B

−1
i yk

i

tk+1 =
1+

√
1+4(tk)2

2

rk+1 = xk + tk−1
tk+1 (x

k − xk−1)
end for

until Stop criterions

xk = 1
m

∑m
i=1 B

−1
i yki can also be computed with the cost of O(p log(p)). Other steps

only involve adding vectors or scalars, thus cost only O(p) or O(1). Therefore, the total
cost of each iteration in the FCSA is O(mp log(p)).

With these two key features, the FCSA efficiently solves the composite regulariza-
tion problem (5) and obtains better results in terms of both the accuracy and computa-
tion complexity. The experimental results in the next section demonstrate its superior
performance.

4 Experiments

4.1 Application on MR Image Reconstruction

Specifically, we apply the CSA and FCSA to solve the Magnetic Resonance (MR) im-
age recovery problem in compressive sensing [1]:

min
x

F (x) ≡ 1

2
∥Ax− b∥2 + α∥Φ−1x∥TV + β∥x∥1 (6)

where A = RΦ−1, R is a partial Fourier transform, Φ−1 is the wavelet transform, b is
the under-sampled Fourier measurements, α and β are two positive parameters.

This model has been shown to be one of the most powerful models for the com-
pressed MR image recovery [1]. However, since the ∥Φ−1x∥TV and ∥x∥1 are both
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nonsmooth in x, this problem is much more difficult to solve than any of those with a
single nonsmooth term such as the L1 regularization problem or a total variation reg-
ularization problem. In this case, the FISTA can efficiently solve the L1 regularization
problem [8], since the first step xk = proxρ(∥x∥1)(rk − ρ∇f(rk)) has a close form
solution in Algorithm 2. The FISTA can also efficiently solve the total variation reg-
ularization problem [9], since the first step xk = proxρ(∥Φ−1x∥TV )(r

k − ρ∇f(rk))
can be computed quickly in Algorithm 2. However, the FISTA can not efficiently solve
the joint L1 and TV regularization problem (6), since xk = proxρ(α∥Φ−1x∥TV +
β∥x∥1)(rk − ρ∇f(rk)) can not be computed in a short time.

The Conjugate Gradient (CG) [1] has been applied to the problem (6) and it con-
verges very slowly. The computational complexity has been the bottleneck that made
(6) impractical in the past [1]. To use this model for practical MR image reconstruc-
tion, Ma et al. proposed a fast algorithm based on the operator splitting technique [2],
which is called TVCMRI. In [3], a variable splitting method (RecPF) was proposed to
solve the MR image reconstruction problem. Both of them can replace iterative linear
solvers with Fourier domain computations, which can gain substantial time savings. To
our knowledge, they are two of the fastest algorithms to solve problem (6) so far. Dif-
ferent from their algorithms, the CSA and FCSA directly attack the joint L1 and total
variation norm regularization problem by transferring it to the L1 regularization and TV
norm regularization subproblems, which can be efficiently solved. In the following, we
compare our CSA and FCSA with their algorithms. The results show that the FCSA is
far more efficient than the TVCMRI and RecPF.

Experiment Setup Suppose a MR image x has n pixels, the partial Fourier transform
R in problem (6) consists of m rows of a n × n matrix corresponding to the full 2D
discrete Fourier transform. The m selected rows correspond to the acquired b. The sam-
pling ratio is defined as m/n. The scanning duration is shorter if the sampling ratio is
smaller. In MR imaging, we have certain freedom to select rows, which correspond to
certain frequencies. In the k-space, we randomly obtain more samples in low frequen-
cies and less samples in higher frequencies. This sample scheme has been widely used
for compressed MR image reconstruction [1–3]. Practically, the sampling scheme and
speed in MR imaging also depend on the physical and physiological limitations [1].

All experiments are conducted on a 2.4GHz PC in Matlab environment. We compare
the CSA and FCSA with two of the fastest MR image reconstruction methods, TVCMRI
[2] and RecPF [3]. For fair comparisons, we download the codes from their websites
and carefully follow their experiment setup. For example, the observation measurement
b is synthesized as b = Rx + n, where n is the Gaussian white noise with standard
deviation σ = 0.01. The regularization parameter α and β are set as 0.001 and 0.035.
R and b are given as inputs, and x is the unknown target. For quantitative evaluation,
we compute the Signal-to-Noise Ratio (SNR) for each reconstruction result.

Numerical Results We perform experiments on a full body MR image with size of
924×208. Each algorithm runs 50 iterations. The sample ratio is set to be approximately
25%. To reduce the randomness, we run each experiments 100 times for each parameter
setting of each method. Due to page limitations, we include the experimental results and
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comparisons in the supplemental materials. The examples of the original and recovered
images by different algorithms are shown in Figure 1. From there, we can observe that
the results obtained by the FCSA are not only visibly better, but also superior in terms
of both the SNR and CPU time.

(a) (b) (c) (d) (e)

Fig. 1. Full Body MR image reconstruction from 25% sampling (a) Original image; (b), (c), (d)
and (e) are the reconstructed images by the TVCMRI [2], RecPF [3], CSA and FCSA. Their SNR
are 12.56, 13.06, 18.21 and 19.45 (db). Their CPU time are 12.57, 11.14, 10.20 and 10.64 (s).

To further evaluate the reconstruction performance, we use sampling ratio 25% to
obtain the measurement b. Different methods are then used to perform reconstruction.
To reduce the randomness, we run each experiments 100 times for each parameter set-
ting of each method. The SNR and CPU time are traced in each iteration for each meth-
ods. Figure 2 gives the performance comparisons between different methods in terms of
the CPU time and SNR. The reconstruction results produced by the FCSA are far better
than those produced by the CG, TVCMRI and RecPF. The reconstruction performance
of the FCSA is always the best in terms of both the reconstruction accuracy and the
computational complexity, which further demonstrate the effectiveness and efficiency
of the FCSA for the compressed MR image construction.
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Fig. 2. Performance comparisons with sampling ratio 25%: a) Iterations vs. SNR (db) and (b)
Iterations vs. CPU Time (s).

4.2 Application on Low-Rank Tensor Completion

We also apply the the proposed FCSA to the low rank tensor completion problem.
This problem has gained a lot of attentions recently [25, 26, 10, 27]. It is formulated as
follows:

min
X

F (X) ≡ 1

2
∥A(X)− b∥2 + α∥X∥∗ (7)

where X ∈ Rp×q is a unknown matrix, A : Rp×q → Rn is the linear map, and b ∈ Rn

is the observation. The nuclear norm is defined as ∥X∥∗ =
∑

i σi(X), where σi(X) is
the singular value of the matrix X . The accelerated proximal gradient (APG) scheme
in the FISTA has been used to solve (7) in [10]. In most cases, the APG gains the best
performance compared with other methods, since it can obtain an ϵ-optimal solution in
O(1/

√
ϵ) iterations.

Similarly, the tensor completion problem can be defined. We use the 3-mode tensor
as an example for the low rank tensor completion. It is easy to extend to the n-mode
tensor completion. The 3-mode tensor completion can be formulated as follows [28]:

min
X

F (X ) ≡ 1

2
∥A(X )− b∥2 +

m∑
i=1

αi∥BiX∥∗ (8)

where X ∈ Rp×q×m is the unknown 3-mode tensor, A : Rp×q×m → Rn is the
linear map, and b ∈ Rn is the observation. B1 is the “unfold” operation along the 1-
mode on a tensor X , which is defined as B1X := X(1) ∈ Rp×qm; B2 is the “unfold”
operation along the 2-mode on a tensor X , which is defined as B2X := X(2) ∈ Rq×pm;
B3 is the “unfold” operation along the 3-mode on a tensor X , which is defined as
B3X := X(3) ∈ Rm×pq. The opposite operation “fold” is defined as BT

i Xi = X
where i = 1, 2, 3.

Generally, it is far harder to solve the tensor completion problem than the matrix
completion because of the composite regularization. The solvers in [10] can not be used
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Table 1. Comparisons of the CPU Time and RSE

CGD-LRTC [28] APG-LRMC [10] FCSA-LRTC
Time (s) RSE Time (s) RSE Time (s) RSE

Window 133.21 0.3843 100.98 0.0962 133.56 0.0563
Cherry 134.39 0.5583 102.43 0.3201 134.65 0.1069
Sheep 134.96 0.5190 101.33 0.1784 131.23 0.1017
Fish 136.29 0.5886 99.89 0.2234 135.31 0.1056

to efficiently solve (8). In [28], a relaxation technique is used to separate the dependant
relationships and the block coordinate descent (BCD) method is used to solve the low
rank tensor completion problem. As far as we know, it is the best method for the low
rank tensor completion so far. However, it converges very slow due to the convergence
properties of the BCD. Fortunately, the proposed FCSA can be directly used to effi-
ciently solve 8. Different from the BCD method for LRTC using relaxation techniques
[28], the FCSA can directly attack the composite matrix nuclear norm regularization
problem by transforming it to multiple matrix nuclear norm regularization subproblems,
which can be efficiently solved in parallel. In the following, we compare the proposed
FCSA and BCD for the low rank tensor completion. We called them FCSA-LRTC and
CBD-LRTC respectively. The results show that the FCSA is far more efficient than the
BCD for the LRTC problem.

Experiment Setup Suppose a color image X with low rank has the size of h×w× d,
where h, w, d denote its height, width and color channel respectively. When the color
values of some pixels are missing in the image, the tensor completion is conducted to
recover the missed values. Suppose q pixels miss the color values in the image, the
sampling ratio is defined as (h×w× d− q× d)/(h×w× d). The known color values
in the image are called the samples for tensor completion. We randomly obtain these
samples or designate the samples before the tensor completion [28].

All experiments are conducted on a 2.4GHz PC in Matlab environment. We compare
the proposed FCSA-LRTC with the CGD-LRTC [28] for the tensor completion prob-
lem. To show the advantage of the LRTC over the low rank matrix completion (LRMC),
we also compare the proposed FCSA-LRTC with the APG based LRMC method (APG-
LRMC)[10]. As introduced in the above section, the APG-LRMC is not able to solve
the tensor completion problem (8) directly. For comparisons, we approximately solve
(8) by using the APG-LRMC to conduct the LRMC in d color channels independently.
For quantitative evaluation, we compute the Relative Square Error (RSE) for each com-
pletion result. The RSE is defined as ∥Xc − X∥F /∥X∥F , where Xc and X are the
completed image and ground-truth image respectively.

Numerical Results We apply different methods on four 2D color images respectively.
To perform fair comparisons, all methods run 50 iterations. Figure 3 shows the visual
comparisons of the completion results. In this case, the visual effects obtained by the
FCSA-LRTC are also far better than those of the CGD-LRTC [28] and slightly better
than those obtained by the APG-LRMC [10]. Table 1 tabulates the RSE and CPU Time
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(1)

(2)

(3)

(4)
(a) (b) (c) (d)

Fig. 3. Comparisons in terms of visual effects. Color images are: (1) Window; (2) Cherry; (3)
Sheep and (4) Fish. The column (a), (b), (c) and (d) correspond to the images before completion,
the obtained results by the CGD-LRTC [28], APG-LRMC [10] and FCSA-LRTC, respectively.
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by different methods on different color images. The FCSA-LRTC always obtains the
smallest RSE in all color images, which shows its good performance for the low rank
tensor completion.

5 Conclusion

In this paper, we proposed composite splitting algorithms based on splitting techniques
and optimal gradient techniques for the mixture prior model optimization. The proposed
algorithms decompose a hard composite regularization problem into multiple simpler
subproblems and efficiently solve them in parallel. This is very attractive for practical
applications involving large-scale data optimization. The computation complexities of
the proposed algorithms are very low in each iteration. The promising numerical results
on applications of compressed MR image reconstruction and low-rank tensor comple-
tion validate the advantages of the proposed algorithms.
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