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Abstract. Deformable models have been widely used with success in
medical image analysis. They combine bottom-up information derived
from image appearance cues, with top-down shape-based constraints
within a physics-based formulation. However, in many real world prob-
lems the observations extracted from the image data often contain gross
errors, which adversely affect the deformation accuracy. To alleviate this
issue, we introduce a new family of deformable models that are inspired
from compressed sensing, a technique for efficiently reconstructing a sig-
nal based on its sparseness in some domain. In this problem, we employ
sparsity to represent the outliers or gross errors, and combine it seam-
lessly with deformable models. The proposed new formulation is applied
to the analysis of cardiac motion, using tagged magnetic resonance imag-
ing (tMRI), where the automated tagging line tracking results are very
noisy due to the poor image quality. Our new deformable models track
the heart motion robustly, and the resulting strains are consistent with
those calculated from manual labels.

1 Introduction

Deformable models have been widely used in computer vision [8], computer graph-
ics [10] and medical image analysis [7]. They are able to solve diverse types of
problems, such as, but not limited to, image segmentation [6], shape reconstruc-
tion [16], andmotion tracking [11]. The name “deformablemodels” is derived from
nonrigid body mechanics, which describes how elastic objects respond to applied
forces. Starting from an initial shape, the model is deformed by two types of forces,
i.e., internal and external forces. The internal forces limit the geometric flexibility
of the shape, while the external forces drive the model to fit the observations. For
example, in the initial active contour models [6], the internal forces are based on
the first-order and second-order shape terms of the boundary. They regularize the
length and the curvature of the underlying shape, to ensure a smooth shape result.
The external forces drag the boundary to the positions that are more likely to be
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edges. Because of the success of the active contours, many methods have been pro-
posed since then to improve the performance of deformable models by modifying
either the internal or external forces.

The internal forces usually enforce the smoothness characteristics of
deformable models, such as the local continuity and curvature. 2D or 3D splines
are widely used to constrain the image deformation [1]. B-spline [12] and nonuni-
form rational B-splines (NURBS) [17] define the model motion inside the object
and on the boundary. They effectively reduce the degree of freedom for defor-
mation and regularize the curvature on the deformation field. The Laplacian co-
ordinate [15] is another well-known measurement for the local relative positions.
Comparing with spline-based method, methods based on Laplacian coordinate
allow more flexible shape representation. Sorkine et al. employed it to constrain
the smoothness and local similarity of the 2D mesh deformation in geometry
editing [15]. Shen et al. [14] decomposed the Laplacian coordinates into compo-
nents in the perpendicular and tangential directions of the model, to formulate a
detail-preserved internal force. Since the component of the perpendicular direc-
tion tends to shrink the model and eliminates the shape details, they proposed
an internal force based on the tangential direction, to better approach the sharp
features. In this paper, we apply the Laplacian coordinates on 3D volume models
to enforce the smoothness not only on the surface, but also inside the models.

The external forces usually drive the model based on the control points ex-
tracted from low-level image information [13]. However, their positions may not
be accurate, due to the noisy and/or weak image appearance cues. A general
strategy to apply the external force is to minimize the distances between the
control points extracted from image and the corresponding points on the initial
model [15,20]. They used a Euclidean distance or L2 norm to measure the dif-
ferences between the observations and the corresponding model control points.
This assumes intrinsically that the errors of the control points follow a Gaussian
distribution. Nevertheless, this is not always true in practice. They may contain
not only Gaussian noise, but also some gross errors or outliers due to the er-
roneous tracking. Therefore, the accuracy of the traditional deformable models
depends heavily on the control point accuracy. To improve the robustness of de-
formable models, Vogler et al. [18] explicitly modeled the distribution of control
points, and considered the points rejected by the distribution as outliers. The
local tracking results were first projected to the parameter space. Then they
estimated a normal distribution based on the observations and rejected that
with large Mahalanobis distance to the mean. Different from [18], our proposed
deformable models implicitly handle the outliers with no elimination step. The
influence of each local tracking observations is adaptively decided during the
optimization process. The models are general enough for arbitrary deformable
models with gross errors in the observations.

Inspired by the robust recovery power of the compressed sensing approach [3],
we propose a new class of deformable models using sparse constraints. Recent
research in compressed sensing shows that using an L1 norm can dramatically
increase the probability of accurate signal recovery, even when there are both
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sparse outliers and moderate Gaussian noise [3]. Thus, we first propose a de-
formable model with only a L1 norm constraint, which is able to handle outliers
robustly. However, when the variances of the Gaussian noise are large, solely us-
ing the L1 norm will cause overfitting problems because of its nature of pursuing
the sparse structure [3]. Therefore, we further propose a deformable model us-
ing a hybrid norm constraint able to handle both the Gaussian errors and gross
errors. We also generalize these two models in a unified formulation, named as
Sparse Deformable Models. We apply the models to left ventricle (LV) motion
analysis on mouse cardiac tagged MRI. The experiment results show that we
can robustly track the mouse heart motions even based on inaccurate control
point tracking results.

2 Methodology

Consider a set of points V , where each point has a neighborhood structure1,
and a subset as control points Vc that are computed from the observations (e.g.,
image information). Let the homogeneous coordinate of the point i be denoted
by vi = [xi, yi, zi, 1]

T and the position after deformation v′
i = [x′

i, y
′
i, z

′
i]
T , where

i = 1, 2, · · · , n. We denote the coordinates of all the points after deformation as:

V′ = [v′T
1 v

′T
2 · · ·v′T

n ]
T .

The goal of our deformable models is to track the motion of the whole shape,
given a set of control points. The deformation of each point i is parameter-
ized by an affine 3 × 4 transformation matrix Ti. The unknown transformation
parameters are organized in a 4n× 3 matrix:

T = [T1T2 · · ·Tn]
T .

In our model, the internal forces preserve the local shape structure with the
Laplacian coordinate, and the external forces minimize the difference between
the shape and the control points with our proposed sparse constraints.

2.1 Internal Force

Our internal force ensures that the deformation matrices are similar among the
neighborhood points. The similarity is measured based on the deformation they
generate. Specifically, if we apply transformation matrices of neighboring points
to the current one, the resulting displacements should be similar. For a point
i, its displacement after applying its own transformation matrix Ti should be
similar to applying its neighbor’s transformation matrix Tj . Thus, the energy
function of the internal force is:

Eint =
∑

i∈V

∑

j∈N (i)

wij‖Tivi − Tjvi‖22, (1)

1 Mesh and meshless-based models are the most widely used shape representations.
Our model works for both representations, and the neighborhood is defined by the
connectivity for the mesh model, or the distance for the meshless model.
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where‖ ·‖2 denotes the entry-wise matrix L2 norm2, and weight wij is related to
the distance between points i and j. Since this is a summation of the quadratic
forms of the transformation matrices Ti, we can represent the energy function
as a quadratic form of all the unknown transformations T . To do so, the point
position vi is encoded into matrix Ki as

Ki = Mi ⊗ vi,

where ⊗ is the Kronecker product, and Mi is a mi × n node-arc matrix of vi,
where mi is the number of its neighbors. For each neighbor vj , there is one row
in Mi where the ith element is wij and the jth element is −wij , while the other
elements are all zeros:

Mi =

( ith column jth column

· · · wij · · · −wij · · ·
...

...

)
, j ∈ N (vi).

KiT is the difference of the displacements based on different transformations of
the neighborhood of point i. We concatenate the matrix Ki for all the points to
form the matrix K = [KT

1 K
T
2 · · ·KT

n ]
T . Thus, the energy function of the internal

force (Eq.1) is formulated as:

Eint = ‖KT ‖22. (2)

2.2 External Force

Besides the shape constraint from the internal force, the deformable model also
aims to match the observations. For example, a point i on the model is expected
to fit to the given control point position v′

i after deformation Ti. We concatenate
the point coordinates into an n× 4n sparse matrix:

D =

⎡

⎢⎢⎢⎣

vT
1

vT
2

. . .

vT
n

⎤

⎥⎥⎥⎦ ,

where V′ = DT is the model deformation based on the transformation pa-
rameters T . We use a control point indicator c to select the rows of D and
V′ corresponding to the control points. Thus, the Laplacian deformable model
(LDM) is defined as:

arg min
T

{‖KT ‖22 + λ‖DcT −V′
c‖22}, (3)

where λ is the stiffness weight, which controls how much the model is able to
deform to match the control points. Larger λ results in a better fitting, but the

2 The matrix norms in the paper are all entry-wise norms.
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deformed shape may not be smooth. The L2 norm is used as a penalty function
in this formulation. As the standard norm on the Euclidean space, the L2 norm
is the most widely used distance metric. However, it may not be the most proper
metric in some applications, especially when there are gross errors or outliers.

The Sparse Prior Using L1 Norm. Gross errors are very common in some
applications, such as the erroneous detections in a noisy image. The L2 norm
follows a Gaussian distribution for residuals. It may overfit these sparse outliers,
and hence reduce the deformation accuracy. It is desirable to produce a sparse
solution that models the outliers. The L0 norm counts the number of non-zero
elements and can model such sparse errors exactly. However, the L0 norm is non-
convex, and solving an L0 norm problem is NP-hard. Recent developments in
compressed sensing [3] show that minimizing an L1 norm problem can produce
a nearly identical solution as using the L0 norm. Thus, we use convex relaxation
to define a sparse deformable model based on the L1 norm as:

arg min
T

{‖KT ‖22 + λ‖DcT −V′
c‖1}. (4)

The Sparse Prior Using Both L1 and L2 Norms. The sparsity constraint
is useful in many applications, such as signal reconstruction and background
subtraction. However, in most cases, the observations may still contain Gaussian
errors with large variations. Using the L1 norm alone may not be able to handle
them well [23]. Therefore, we combine both L1 and L2 norms and propose our
sparse deformable models for general problems:

arg min
T,e

{‖KT ‖22 + λ
(‖DcT −V′

c − e‖22 + γ‖e‖1
)}, (5)

where e represents the gross errors and is constrained by the L1 norm, and
γ ∈ [0, 1] controls how sparse e is. The new model combines the advantages of
both L1 and L2 norms. If γ is extremely large, e will be all zeros. Thus the model
degenerates to a method with only an L2 norm, as in (3). It will be sensitive to
any gross errors. If λ is extremely large and γ is small, the deformation errors
will be approximately equal to e. Thus the model is similar to models with only
sparse constraints, as in (4). It will be robust to the outliers, but can not handle
large Gaussian noise.

Optimization Framework. The above problem can be solved by the standard
convex optimization algorithm, while we propose an effective iterative optimiza-
tion algorithm that fully utilizes the special structure of the problem. The two
variables T and e are optimized alternatively, with an analytical solution. The
gross error e is initialized as zero. When e is fixed, the problem is reduced to
the conventional L2 norm constraints.

arg min
T

{‖KT ‖22 + λ‖DcT −V′
c − e‖22}, (6)
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It can be solved by least square minimization. Then T is fixed, and the opti-
mization problems for each term ei of the outlier e are independent:

arg min
ei

{((DcT )i −V′
ci − ei)

2
+ γ|ei|}, (7)

where (DcT )i is the ith element of the vector DcT . The minimums for the two
parts can be achieved at (DcT )i −V′

ci and 0 separately. Since both of them are
convex, the minimum of the energy function must lie between them. Therefore,
ei has the same sign as (DcT )i − V′

ci. After determining the sign of ei, the
problem reduces to a constrained quadratic function of ei. The solution is:

ei =

{
max{0, (DcT )i −V′

ci − γ/2} if (DcT )i −V′
ci ≥ 0,

min{0, (DcT )i −V′
ci + γ/2} otherwise.

(8)

The analytical solutions of the two sub-steps guarantee the energy monotonically
decreases until the minimum is achieved. The convexity of the whole problem
makes sure that this is the global solution of the problem.

2.3 Left Ventricle Motion Analysis

Fig. 1. Sample tagged SA image with tag-
ging line tracking result

Tagged MRI (tMRI) offers a pow-
erful non-invasive tool for making
measurements of the beating heart
that directly reflect its complex in
vivo physiology. It has been widely
used for the assessment of human
heart diseases as well as in exper-
imental heart disease models, as in
mice. Compared to the human heart,
the data acquisition from the mouse
heart is more challenging for achiev-
ing adequate spatial and temporal res-
olutions. The mouse heart is about
1000th the size of a human heart and beats much faster, at 400-600 beats per
minute (bpm), than the human heart, with 60-80 bpm. Currently available MRI
instruments for mouse imaging operate at a higher magnetic field strength (4.7T
or above) than clinical MRI scanners, but they are still unable to provide tem-
poral and spatial resolution in proportion with the mouse heart rate and size.
Consequently, the tagging lines extracted from the mouse tMRI images contain
more outliers than that from human data, as shown in Fig. 1.

MRI images are widely used for cardiac motion analysis [19]. In particular, the
3D characterization of the mouse cardiac mechanical function has been reported
in [5,21,24]. However, all the prior methods assume that the tagging lines are man-
ually labeled or correctly tracked. They cannot handle the tracking errors due to
low image quality. To solve this problem, we employ our sparse deformable models
to build an automatical strain analysis system based on tagged MRI images.
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The system consists of four major components: 1) tagging line tracking, 2)
control point tracking, 3) meshless model construction, and 4) meshless defor-
mation. A Gabor filter bank [4] has been implemented to generate corresponding
phase maps from low quality tagged MRI images. Then the 3D control points
are tracked, based on the tagging lines and the contours of separate slices. The
initial 3D meshless model of the end-diastole LV is built based on the sparse
2D contours [22]. First, a standard LV surface model, manually segmented from
3D CT data, is registered to the sample specified boundary using coherent point
drift (CPD) [9]. Then a dense 3D point cloud is generated based on the fitted
surface. When many LV surface samples are available, methods based on active
shape models, like SPASM [2], are able to capture more model details. How-
ever, it is hard to collect enough training data in reality. Our method generate
reasonable LV model with only one sample. Finally, the initial model is driven
by the control points to track the LV movement along a cardiac cycle with our
proposed sparse deformable model, and the motion strains are calculated locally
based on the tracking result.

3 Experiments

3.1 Validations on Synthetic Data

We tested our sparse deformable models (SDM) on synthetic 3D volumes with
known deformation. We first manually generated an LV volume model with the
internal points evenly distributed on SA and LA directions. Twenty percent
of SA slices with equal intervals were chosen as the control points. We then
applied random global transformations, such as scaling, rotation and twisting,
to the initial model. Two kinds of errors were applied to the deformed model
to simulate the noisy tracking results. Gaussian noise was added to all control
points, and a few points were selected randomly and large displacements were
applied to them to simulate gross errors. Based on the displacements of the
control points, we used the proposed sparse deformable models to reconstruct
the displacements of the other points. The deformable models were tested under
different parameters and different noise intensities. In each parameter setting,
we randomly generated 1000 samples and calculated the mean and variance of
deformation errors.

We first analyzed the relation between the deformation errors and the coef-
ficient γ, reflecting the balance between the L1 and L2 norms (Fig. 2(a)). The
sparse deformable models with both L1 and L2 norms were tested with different
γ. The deformation error is large when γ is close to zero, and reduces dramati-
cally when γ is a little larger. The combined norm is more like an L1 norm when
γ is small. This may imply that SDM with the L1 norm alone cannot handle
Gaussian error properly. As γ becomes even larger, the mean error increases
again. It becomes stable when γ is large enough, and it is similar to the result
using only the L2 norm. The results show that the sparse deformable models
with combined norm outperform the other models that use only one type of
norm. Theoretically, the model achieves the best result when the threshold γ is
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Fig. 2. (a) shows the deformation errors related to the coefficient γ of the L1 norm. (b)
and (c) show the deformation errors of different deformable models. They are compared
under different Gaussian noise variances and numbers of outliers, respectively. SDM
with combined norm out-performs the other two most of the time, while SDM with
the L1 norm is better when the Gaussian noise intensity is small.

similar to the variance of Gaussian noise. However, it is hard to measure the
noise variance exactly in real data. We set it to one tenth of the median of the
neighborhood distances empirically and the model shows good results.

We also tested our sparse deformable model under different noise intensities.
First, we increased the variance of Gaussian noise with fixed outliers. In Fig. 2(b),
SDM with L1 norm performs the best when the noise intensity is low. As the
variance increases, SDM with combined norm out-performs the others. LDM is
always the worst, due to the outliers. This experiment shows that our model
is more stable with moderate Gaussian noise. Then we tested the models with
different numbers of outliers. In Fig. 2(c), the errors of all models increase almost
linearly with the number of outliers. SDM with combined norm, which is still
the best among them, performs better than the SDM with L1 norm when there
are a few outliers. They achieve similar errors when the outliers are dominant.
Both of the experiments show that SDM with combined norm is more stable
under different noisy conditions.

3.2 Left Ventricle Motion Analysis

We also tested our method on mouse myocardial strain analysis. The strain com-
putation is especially sensitive to tracking outliers. Even when there are only a
small amount of outliers on deformation, the strains on points near these out-
liers will be affected. To obtain ground truth, we manually labeled the tagging
lines in each 2D image, and then used the tag motion to drive a 3D LV volume
model based on finite element method (FEM). This method is accurate. How-
ever, manual labeling is a long and tedious task and FEM is not efficient. In
this experiment, we used this method as reference, and compared our models
using automatic tagging line tracking results that contain outliers. The results
are compared between the LDM, SDM with only L1 norm and SDM with both L1
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and L2 norms. Table 1 shows the deformation errors of different models on our
9 datasets. SDM with the combined norm has smaller average error than the
others, owing to its robustness to outlier. Meanwhile, the results of SDM with
L1 norm alone are much more unstable than other two methods. This may be
because there is strong Gaussian noise in real data.

Table 1. Quantitative evaluation of deforma-
tion errors (Unit: mm)

Method Average Min Max Median

LDM 1.036 0.724 1.635 0.927
SDM, L1 2.107 0.437 3.580 2.069
SDM, L1+L2 0.482 0.341 0.719 0.469

We also computed the myocar-
dial strains over a cardiac cycle,
which are commonly used to de-
scribe the strength of the heart
motion. The strains are decom-
posed into radial, circumferential,
and longitude directions, and the
shear strains among them. Fig. 3
compares the strains generated
with different deformable mod-
els on three mouse datasets. The
rows correspond to different types of strains, and the columns correspond to
different mice. Each figure contains the strains generated from different models
in a cardiac cycle. The numbers of frames in the cardiac cycles may be different
on each mouse because of the acquisition procedures. The first column is from a
normal mouse, and the other two are from mice with myocardial infarction. We
observe that the strains generated from the healthy mouse are larger than from
the unhealthy ones. For each individual dataset, the strains generated from the
automatically tracked tagging lines are more unstable than those from manually
labeled ones, due to the tracking errors. The strains based on LDM are relatively
smooth, but this method tends to underestimate the strains. The results from
SDM with the L1 norm have the largest instability. This may be because of its
nature to pursue the sparse solution. Since the control points contain not only
outliers, but also strong Gaussian noise, the L1 norm cannot handle Gaussian
noise stably. The results from SDM with the combined norm best match the
reference strains. This shows that our model performs well in the LV motion
tracking based on inaccurate control points.

In order to analyze the local heart motion properties, we also visualize the
strains on the external and internal surfaces of the left ventricle. Since the points
of the surface mesh are all in the initial volume model, where the strains are
calculated, we use them as samples and linearly interpolate the strains on the
LV surface. The circumferential strains are shown locally on the LV external
and internal surfaces in Fig. 4. They indicate larger contraction near the endo-
cardium than near the epicardium. The high strain area begins near the apical
endocardium and extends quickly toward the base, which is similar to human
hearts.
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Fig. 3. Comparing the strains generated from different deformable models with the
reference model in three mouse cardiac data. Each column represents one dataset, and
each row represents one type of strain. In each figure, y-axis is the strain, and x-axis
means the frame in a cardiac cycle.
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Fig. 4. The deformations of the left ventricle on a cardiac cycle are colored by the
circumferential strain

4 Conclusions

In this paper, we introduce a group of sparse deformable models. Benefitted from
the sparsity techniques, these deformable models are able to handle outliers or
gross errors. Thus these models are robust when dealing with noisy images or
tracking errors. We have validated these methods on both synthetic data and
a cardiac motion tracking problem. Both qualitative and quantitative results
demonstrate that our methods outperform and are more robust than previous
ones. It is also noteworthy that the applications of our proposed methods are not
limited to cardiac motion analysis. It is flexible enough for many other medical
image problems.

In the future, we plan to extend the deformable models by using more con-
straints or priors. The left ventricle is conventionally separated into 17 segments.
This inspires us to add group constraints to the current sparse model. The group
sparsity and other structure sparsity constraints will further improve the robust-
ness of the model. The current regularization term is only related to the external
force based on noisy observations. It is easy to extend the other parts of the
model. The problem for modeling arbitrary internal force is that the resulting
model may not be a convex problem. The traditional finite difference method
can be employed to find a local minimum, while the performance should then
be further analyzed.
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