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In this paper, we propose an efficient algorithm for dynamic magnetic resonance (MR) image reconstruc- 

tion. With the total variation (TV) and the nuclear norm (NN) regularization, the TVNNR model can utilize 

both spatial and temporal redundancy in dynamic MR images. Such prior knowledge can help model dy- 

namic MRI data significantly better than a low-rank or a sparse model alone. However, it is very challeng- 

ing to efficiently minimize the energy function due to the non-smoothness and non-separability of both 

TV and NN terms. To address this issue, we propose an efficient algorithm by solving a primal-dual form 

of the original problem. We theoretically prove that the proposed algorithm achieves a convergence rate 

of O(1 /N) for N iterations. In comparison with state-of-the-art methods, extensive experiments on single- 

coil and multi-coil dynamic MR data demonstrate the superior performance of the proposed method in 

terms of both reconstruction accuracy and time complexity. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Dynamic magnetic resonance imaging (dMRI) is an important

medical imaging technique that has been widely used for mul-

tiple clinical applications. However, dynamic MRI is inherently a

very slow process due to a combination of different constraints

such as nuclear relaxation times and peripheral nerve stimulation.

Since the speed of acquisition in dynamic MRI has physical limits,

there exists a trade-off between temporal and spatial resolution.

Additionally, long scan durations can make patient uncomfortable

and also increase the chance of motion artifacts. Hence, many ap-

proaches have been proposed to reduce scanning time by requir-

ing partial k-space data for reconstruction instead of full sampling.

Popular techniques are echo planar imaging ( Mansfield, 1977 ) and

parallel MR imaging ( Sodickson and Manning, 1997; Pruessmann

et al., 1999; Griswold et al., 2002; Larkman and Nunes, 2007; Feng

et al., 2014 ) with multiple receiver coils. 

In general, when k -space is under-sampled, the Nyquist crite-

rion is violated and the inverse Fourier transform will exhibit alias-

ing artifacts. Fortunately, it has recently received interest due to

the development of Compressive Sensing (CS) theory ( Candès et al.,

20 06; Donoho, 20 06 ). CS studies the topic of signal reconstruction

from incomplete measurements using the fact that the signal of
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nterest is sparse in its original representation or another domain

fter applying certain transformations. By incorporating prior in-

ormation, researchers have proposed different transformations to

epresent the MR signal ( Gamper et al., 2008; Lustig et al., 2006;

007; Huang et al., 2011b, 2011a ). For example, it is possible to

econstruct high quality MR images with the sparsity-induced reg-

larization such as Wavelets ( Lustig et al., 2007 ) or Total Varia-

ion ( Huang et al., 2011b, 2011a ). 

CS-MRI reconstructions typically suffer from artifacts at high

ndersampling factors with fixed, non-adaptive signal models like

avelets ( Ravishankar and Bresler, 2011a ). Therefore, there has

een interest in image reconstruction methods where the dictio-

ary is adapted to provide highly sparse representation of data. Re-

ent research has shown benefits for such adaptation of dictionar-

es in dynamic MRI ( Ravishankar and Bresler, 2011a; Lingala and

acob, 2013; Ravishankar and Bresler, 2011b; Huang et al., 2014b;

aballero et al., 2014 ). These models jointly estimate the image and

ictionary for the image patches from under-sampled k-space data.

hey assume that unknown image patches can be well approxi-

ated by a sparse linear combination of the atoms of a learned

ictionary. Although these models improve image reconstructions

ith dictionaries, they are harder than conventional compressed

ensing dynamic MRI approaches which take much more time to

rocess. For example, DLTG ( Caballero et al., 2014 ) usually takes

uch time to process one real dynamic MRI images. 

https://doi.org/10.1016/j.media.2017.11.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2017.11.003&domain=pdf
mailto:jzhuang@uta.edu
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Various alternative models have been explored for dynamic

ata in recent years. They used one important property that dy-

amic MRI provides redundant temporal information because it

ecords motions of organ(s). Since the changes of the same or-

an(s) are subtly slow, dynamic MR frames actually are tempo-

ally correlated through the whole image sequence. Such high cor-

elation in the temporal domain becomes one piece of important

rior knowledge for guiding dynamic MRI reconstruction. To use

uch correlation, Chen et al. (2014) applied a sparsity constraint in

he temporal domain and proposed Dynamic Total Variation (DTV).

everal work have demonstrated the efficacy of low-rank mod-

ls for dynamic MRI reconstruction ( Liang, 2007; Pedersen et al.,

009; Zhao et al., 2010 ). There has been growing interest in de-

omposing the data into the sum of a low-rank (L) and a sparse

S) component (L+S) ( Otazo et al., 2015; Trémoulhéac et al., 2014 ).

ome other related work consider modeling the dynamic image se-

uence as both low-rank and sparse (L & S) ( Zhao et al., 2012 ). In

ynamic MRI, since these methods collect the data from all frames

n the reconstruction, they can exploit the redundancies of the

hole dataset and reconstruct accurate results. However, when the

cquired data are contaminated with noise, the sparse prior can-

ot exploit the local spatial consistency of dynamic MR images and

hus make them sensitive to noise and unable to recover clean im-

ges. 

The limitation of the low-rank regularization in dynamic MR

mage reconstruction could be remedied by incorporating the

iecewise smoothness which can enforce the local spatial con-

istency during the optimization. One possible choice is to-

al variation (TV) ( Rudin et al., 1992 ) which has been widely

sed in CS-MRI as the piecewise smoothness constraint of MR

mages ( Shi et al., 2015; Huang et al., 2011b ) and Dynamic

RI ( Lingala et al., 2011a; Miao et al., 2016 ). The joint TV/NN

inimization problem may be efficiently solved by popular op-

imization techniques known as the Fast Composite Splitting Al-

orithm (FCSA) ( Huang et al., 2011b ) and Alternating Direction

ethod of Multipliers (ADMM) ( Boyd et al., 2011 ). FCSA has been

uccessfully applied in CS-MRI applications, e.g., multi-contrast

RI ( Huang et al., 2014a ), CS-MRI with tree sparsity ( Chen and

uang, 2012 ). ADMM has been applied for dynamic MRI in k −t

LR ( Lingala et al., 2011a ). Although the idea of combining low-

ank and total variation in a unified framework is intuitive and has

een explored in the literature ( Lingala et al., 2011b, 2011a ), the

roblem is very difficult to solve because of the non-separability

nd non-smoothness of the TV and NN term and there still lack of

fficient algorithms to provide theoretical guarantee for dynamic

RI reconstruction. 

In this paper, we propose a Fast algorithm for Total Varia-

ion and Nuclear Norm Regularization for dynamic MRI reconstruc-

ion (FTVNNR). In our TVNNR model, nuclear norm (NN) exploits

he low-rank property of dynamic MR images, while total varia-

ion encourages each MR frame’s intensities to be locally consis-

ent, which can enforce the piecewise smoothness constraint and

ake reconstruction more robust to noise. The intuition of com-

ining both TV and NN terms is simple, but the joint TV/NN min-

mization problem is actually difficult to solve because of the non-

eparability and non-smoothness of the two terms. A fast algo-

ithm (FTVNNR) is then proposed to efficiently solve this problem.

t can obtain a O(1 /N) convergence rate for N iterations. Our ap-

roach 1) exploits redundancies in both temporal and spatial do-

ains, 2) has an explicit solution in each step which can be solved

nexpensively, and 3) has a theoretically proved convergence rate.

xtensive experiments on dynamic MR data demonstrate its supe-

ior performance over all previous methods in terms of both re-

onstruction accuracy and computational complexity. 

A preliminary version of this work was presented in MICCAI

015 ( Yao et al., 2015 ). However, this journal paper has undergone
ignificant changes. First, this paper is considerably extended to

rovide more methodological details, validations, theoretical proof

nd discussion, which can better present techniques at the base

f it than the preliminary work. Second, more results have been

dded and conducted in experiments which better demonstrate

he performance of the proposed method. The rest of this paper

s organized as follows. In Section 2 , we will give a brief review

f the widely used dMRI reconstruction models. The motivation of

his work and details can be found in Section 3 . Experiments on

ynamic MR images of both single-coil and parallel imaging can

e found in Section IV. 

. Related work 

.1. Compressed sensing dynamic MRI reconstruction methods 

In this section, we describe how recent methods reconstruct

MRI images from a minimum number of samples. At first, we de-

ote one image at time t as x t ∈ C 

m ×n and X = [ x 1 , x 2 , . . . , x T ] de-

otes the whole T images. The acquisition domain for MR data is

-space, which is equivalent to the Fourier domain. The dMRI se-

uence in image space x t is related to the k-space data by ˆ x f =
 x t + ε, where F performs a 2D Discrete Fourier Transform (DFT)

n each temporal frame and ε ∈ C 

m ×n is additive white Gaus-

ian acquisition noise. The only data available for reconstruction is

nder-sampled k-space data, which is a subset � of k-space, refer-

ed to b t = R t ˆ x f . R t denotes the undersampling operator to acquire

nly a subset of k-space, which contains the rows from the iden-

ity matrix that corresponds to the samples of ˆ x f that are in �.

ince this problem is ill-posed and requires regularization, many

S-based methods were proposed to exploit the temporal correla-

ion in dMRI reconstruction. It can be formulated as: 

in �(X ) s . t . 
T ∑ 

t=1 

|| R t F x t − b t || 2 2 ≤ ε (1) 

here � denotes the regularization term. Based on �, here we

eview some of the widely used approaches. 

Temporal Fourier transform . Temporal Fourier transform is pro-

osed to sparsify periodic motions ( Lustig et al., 2006 ). That is

(X ) = || F t X || 1 , where F t denotes the Fourier transform along

he temporal direction, || · || 1 denotes the vector � 1 norm. This

echnique was used in many later works, e.g. ( Jung et al.,

009 Otazo et al., 2010 ). 

Temporal total variation . It assumes that the images change

moothly along the temporal direction ( Caballero et al., 2012 ).

herefore the gradient along the temporal direction should be

mall: �(X ) = ||∇ t X || 1 . In order to achieve the online scheme,

hen et al. ( Chen et al., 2014 ) extended the temporal TV to dy-

amic TV by using a reference image x 1 (e.g. the first frame):

(x t ) = || x t − x 1 || T V . 
Low rank approximation . Recently, researchers observed that the

atrix X may be usually rank deficient due to the high correla-

ion among different frames. Based on low rank assumption, some

ethods are proposed in dynamic MRI ( Zhao et al., 2010; Lin-

ala et al., 2011a; Miao et al., 2016; Trémoulhéac et al., 2014;

tazo et al., 2015 ). To achieve the rank deficient solution, the non-

onvex Schatten p -norm is used in k-t SLR ( Lingala et al., 2011a )

nd locally low rank method ( Miao et al., 2016 ). Another type of

ork ( Trémoulhéac et al., 2014; Otazo et al., 2015 ) focused on the

uclear norm as the convex envelope of rank operator. In this case,

( X ) can be defined as || X || ∗ where || · || ∗ denotes the nuclear norm

nd means the sum of singular value of X . 
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Algorithm 1 FCSA. 

input: ρ = 

1 
L , α, β , t 1 = 1 , r 1 = X 

0 

for i=1 to K do 

1) X g = r k − ρ∇ f (r k ) 

2) X 1 = prox ρg 1 ( X g ) 

3) X 2 = prox ρg 2 ( X g ) 

4) X 

k = 

X 1 + X 2 
2 ; t k +1 = 

1+ 
√ 

1+4(t k ) 2 

2 

5) r k +1 = X 

k + 

t k −1 
t k +1 

(X 

k − X 

k −1 ) 

end for 
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3. Method 

3.1. Framework 

Following the previous notations, we have the undersampling

k-space data at time t as 

b t = R t F x t + εt , (2)

where b t is the measurement vector which may contain noise ( εt 

represents noise in k-space). 

With prior knowledge in the temporal and spatial domains,

it is possible to reconstruct x t with fewer k-space measurements

b t . Based on a batch scheme, X = [ Vec (x 1 ) , Vec (x 2 ) , . . . , Vec (x t )] ∈
C 

P×T denotes the whole dynamic MR images. Since dynamic MRI

data are complex-valued and we first give the definition of matrix

inner product on complex space as < A , B > = tr(A 

H B ) where A 

H

denotes the Hermitian transpose of A . The Frobenius norm now is

defined as ‖ A ‖ F = 

√ 

tr(A 

H A ) and thus ‖ A ‖ 2 
F 

= tr(A 

H A ) . 

The proposed TVNNR model for dMRI reconstruction is defined

as follows 

min 

X 

1 

2 

‖ RF X − B ‖ 

2 
F + λ1 ‖ X ‖ T V + λ2 ‖ X ‖ ∗. (3)

where ‖ . ‖ ∗ is the nuclear norm—the sum of singular values of the

matrix X . ‖ . ‖ TV denotes the anisotropic total variation of the matrix

X . It is defined as 
∑ T 

t=1 

∑ 

i j (|∇ 1 x i, j,t | + |∇ 2 x i, j,t | ) where ∇ 1 and ∇ 2

denote the forward finite difference operators on the first and sec-

ond coordinates, respectively. If we define ∇ = [ ∇ 1 , ∇ 2 ] , ‖ X ‖ TV can

be simplified as ‖∇X ‖ 1 . B = [ b 1 , b 2 , . . . , b T ] 
T , which represents the

collection of all the measurements. In (3) , the Nuclear Norm regu-

larization considers the global information of the sequence, while

Total Variation minimization encourages each frame to be locally

consistent. The proposed TVNNR model (3) combines both types of

prior information by exploiting spatial and temporal redundancy to

achieve more robust performance. 

3.2. Fast composite splitting algorithm (FCSA) 

In fact, the joint TV/NN minimization (3) is very difficult to

solve due to the non-separability and non-smoothness of both

TV and NN terms. In the literature, proximal splitting meth-

ods ( Huang et al., 2011b ) provide possible ways for the optimiza-

tion. First, we rewrite the problem (3) as 

min 

X 
{ F (X ) = f (X ) + g 1 (X ) + g 2 (X ) } . (4)

where f ( X ) is defined as 1 
2 ‖ RF X − B ‖ 2 F and g 1 , g 2 are convex func-

tions, which are TV and NN norm in our case. 

One very popular choice to solve (4) is FCSA ( Huang et al.,

2011b ) which decomposes the original problem into two easy sub-

problems and separately solves each of them with FISTA ( Beck and

Teboulle, 2009 ). For each subproblem, FISTA can minimize the fol-

lowing problem 

min 

X 
f (X ) + g(X ) , (5)

where f is a smooth convex function with a Lipschitz constant L ,

and g is a convex function which may be non-smooth. 

The proximal map associated with function g is defined as 

prox ρg (X ) = argmin μ

{
g(μ) + 

1 

2 ρ
‖ μ − X ‖ 

2 

}
. (6)

Given the proximal maps with function g 1 , g 2 , the framework

of FCSA can be found in Algorithm 1 . 
.3. Alternating direction method of multipliers (ADMM) 

Another algorithm is the alternating direction method of multi-

liers (ADMM). ADMM has proven its efficiency for solving multi-

le non-smooth terms in the cost function (4) ( Boyd et al., 2011 ).

ased on ADMM, the augmented Lagrangian of the cost func-

ion (4) is written below 

 ρ (X , M , Y ) = f (X ) + g 1 (X ) + g 2 (M ) + �{〈 Y , X − M 〉} 
+ 

ρ

2 

‖ X − M ‖ 

2 
F . (7)

here M is introduced to simulate X , and Y is the Lagrange mul-

iplier. The inner product of two matrices is specified by 〈 A , B 〉 =
race (A 

H B ) and � denotes the real part. Then ADMM will break the

inimization into three subproblems that could be solved by iter-

tively updating the variables. Algorithm 2 presents the framework

lgorithm 2 ADMM. 

input: Initialize Y , ρ
for k=1 to K do 

1) X 

k +1 = argmin X L ρ (X , M 

k , Y 

k ) 

2) M 

k +1 = argmin M 

L ρ (X 

k +1 , M , Y 

k ) 

3) Y 

k +1 = Y 

k + ρ(X 

k +1 − M 

k +1 ) 

end for 

f ADMM. 

Algorithm 2 shows the general framework of ADMM and dif-

erent applications will moderately revise it to satisfy their needs.

n k-t SLR, Lingala et al. introduced two auxiliary variables to

onvert the original problem to an equivalent constrained prob-

em ( Lingala et al., 2011a ). In contrast to the three step mini-

ization in Algorithm 2 , k-t SLR uses a five step AL (Augmented

agrangian) schemes which requires to additionally update more

ariables and multipliers. The convex problem like our target joint

V/NN problem ( 3 ) has the convergence guarantee to a global op-

imum by ADMM ( Boyd et al., 2011 ). But to the best of our knowl-

dge, there are still not very clear theoretical convergence rate

uarantees for FCSA and ADMM when solving the joint TV/NN

roblem (3) . In the following sections, we will present the pro-

osed Fast algorithm to efficiently solve TVNNR model and theo-

etically prove its convergence rate. 

.4. Optimization 

Instead of directly solving the primal problem, we propose to

olve a primal-dual form ( Condat, 2013; He and Yuan, 2012 ) of the

riginal problem (3) . Motivated by recent algorithms ( Chambolle,

004; Chambolle and Pock, 2015 ) to solve TV regularization us-

ng its dual form, we can have the primal-dual form of the primal

roblem (3) by the Legendre-Fenchel transformation of total varia-

ion ( Boyd and Vandenberghe, 2004 , Example.3.26, p. 93) as 

in 

X 
max 

Y 

1 

2 

‖ RF X − B ‖ 

2 
F + λ2 ‖ X ‖ ∗ + λ1 �{〈∇X , Y 〉} − I B ∞ (Y ) , (8)
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here Y is the dual variable and I B ∞ 

(Y ) is the indicator function

f the � ∞ 

unit norm ball 

 B ∞ (Y ) = 

{
0 ‖ Y ‖ ∞ 

≤ 1 , 

+ ∞ otherwise . 
(9) 

First, we denote RF as A . Then we can get 

in 

X 
max 

Y 

1 

2 

‖A X − B ‖ 

2 
F + λ2 ‖ X ‖ ∗ + λ1 �{〈∇X , Y 〉} − I B ∞ (Y ) , (10) 

The min-max problem (10) can be solved by a splitting

cheme ( He and Yuan, 2012 ) as 

 

n +1 = arg min 

X 

1 

2 

‖ X − X 

n ‖ 

2 
F + 

t 1 
2 

‖A X − B ‖ 

2 
F + t 1 λ1 �{〈∇X , Y 

n 〉} 
+ t 1 λ2 ‖ X ‖ ∗ (11) 

 

n +1 = arg min 

Y 

1 

2 

‖ Y − Y 

n ‖ 

2 
F + I B ∞ (Y ) 

− t 2 λ1 �{〈∇(2 X 

n +1 − X 

n ) , Y 〉} , (12) 

here X 

n , Y 

n are the primal and dual variables in the n -th itera-

ion, respectively, and t 1 , t 2 denote the corresponding iteration step

izes. 

To simplify (11) , one widely used technique in many similar

ethods is to approximate the least squares term ( Nesterov, 2004;

eck and Teboulle, 2009 ). Let f (X ) = 

1 
2 ‖A X − B ‖ 2 

F 
. One can easily

erify that ∇ f (X ) = A 

H (A X − B ) where A 

H is the adjoint operator

f A . The (smallest) Lipschitz constant L is given by L = λmax (A 

H A )

here λmax (. ) denotes the largest eigenvalue of a linear operator

 Beck and Teboulle, 2009 ). 

Following the similar relaxation ( Beck and Teboulle, 2009 ), we

an relax (11) to 

 

n +1 = arg min 

X 

1 

2 

‖ X − X 

n ‖ 

2 
F + 

t 1 
2 

‖A X 

n − B ‖ 

2 
F + t 1 λ1 �{〈∇X , Y 

n 〉} 

+ 

t 1 L 

2 

‖ X − X 

n ‖ 

2 
F + t 1 λ2 ‖ X ‖ ∗

+ t 1 �{〈A 

H (A X 

n − B ) , X − X 

n 〉} , 
(13) 

mitting the constant term 

t 1 
2 ‖A X 

n − B ‖ 2 
F 

and combining least

quare terms, it can become 

 

n +1 = arg min 

X 

1 

2 

‖ X − (X 

n − t 1 
1 + t 1 L 

A 

H (A X 

n − B )) ‖ 

2 
F 

+ 

t 1 λ1 

1 + t 1 L 
�{〈∇X , Y 

n 〉} + 

t 1 λ2 

1 + t 1 L 
‖ X ‖ ∗. (14) 

So far, the closed-form solution of (14) is still unclear. To con-

inue simplifying the problem, we introduce the adjoint operator

f the difference operator. By reformulating the inner product term

o its adjoint one, we can convert the problem into a nuclear norm

egularized de-noising problem. First, we revisit the forward differ-

nce operator denoted by ∇X . It is written as 

X = (P, Q ) , 

here P ∈ C 

(m −1) ×n and Q ∈ C 

n ×(m −1) are the matrix defined by 

P i, j = x i, j − x i +1 , j , 

 i, j = x i, j − x i, j+1 . 

hus the dual variable Y is constructed by the matrix pair ( P, Q ).

y definition, the adjoint operator of ∇ denoted by ∇ 

H satisfies 

∇X , Y 〉 = 〈 X , ∇ 

H Y 〉 , 
here 

(∇ 

H Y ) i, j = (∇ 

H (P, Q )) i, j = P i, j + Q i, j − P i −1 , j − Q i, j−1 . (15) 
f
ollowing (15) , we could simplify problem (14) to the de-noising

roblem: 

 

n +1 = arg min 

X 

1 

2 

‖ X − X̄ 

n ‖ 

2 
F + λ‖ X ‖ ∗, (16) 

here 

¯
 

n = X 

n − t 1 
1 + t 1 L 

A 

H (A X 

n − B ) − t 1 λ1 

1 + t 1 L 
∇ 

H Y 

n , (17) 

= 

t 1 λ2 
1+ t 1 L and L = λmax (A 

H A ) . That’s problem (11) in this paper.

t is not hard to find that the problem has a closed-form solu-

ion by Matrix Shrinkage Operator ( Cai et al., 2010 ). Suppose that
¯
 

n = U diag(σ ( ̄X 

n )) V 

H is any singular value decomposition of X̄ 

n .

hen the solution of (16) can be obtained by the matrix shrinkage

perator as X 

n +1 = S λ( ̄X 

n ) = U diag( σλ( ̄X 

n )) V 

H where σλ( ̄X 

n ) =
ax (σ ( ̄X 

n ) − λ, 0) . 

Then we consider the Y subproblem in (12) 

 

n +1 = arg min 

Y 

1 

2 

‖ Y − Y 

n ‖ 

2 
F + I B ∞ (Y ) 

− t 2 λ1 �{〈∇(2 X 

n +1 − X 

n ) , Y 〉} , (18) 

fter simplification, it becomes 

 

n +1 = arg min 

Y 

1 

2 

‖ Y − Ȳ 

n ‖ 

2 
F + I B ∞ (Y ) , (19)

here 

¯
 

n = Y 

n + t 2 λ1 ∇(2 X 

n +1 − X 

n ) . 

he solution of (19) can be obtained by the Euclidean projection of
¯
 

n onto a � ∞ 

unit ball, which can be evaluated by 

 

n +1 = sgn ( ̄Y 

n ) · min (| ̄Y 

n | , 1) , (20) 

here sgn ( x ) is the sign function; it outputs 1 if x > 0, −1 if x < 0

nd zero otherwise. All the operations in (20) are element-wise. 

Now, the X, Y subproblems have been solved and we summa-

ize the proposed FTVNNR in Algorithm 3 . According to the nota-

lgorithm 3 FTVNNR. 

input: A = RF , B , λ1 , λ2 

initialization: X 0 , Y 0 , t 1 , t 2 , λ = t 1 λ2 / (1 + t 1 L ) 

while not converged do 

1) Compute: X̄ 

n = X 

n − t 1 
1+ t 1 L A 

H (A X 

n − B ) − t 1 λ1 
1+ t 1 L ∇ 

H Y 

n in

(17) 

2) Evaluate Matrix Shrinkage Operator: X 

n +1 = S λ( ̄X 

n ) 

3) Compute: Ȳ 

n = Y 

n + t 2 λ1 ∇(2 X 

n +1 − X 

n ) in (20) 
4) Project Ȳ 

n onto � ∞ unit ball: Y 

n +1 = sgn ( ̄Y 

n ) · min (| ̄Y 

n | , 1) 

(element-wise) 

end while 

ion, the dimension of input data X is P × T . 

• In the Step 1, the dominate operations are matrix multiplica-

tion A 

H (A X 

n − B ) and ∇ 

H Y 

n . In practice, the operator A is the

partial Fourier transform and performed on X at every time

step, so the cost of this operation is O(T P log P ) when the Fast

Fourier Transform (FFT) is applied. The cost of second linear op-

eration is O(T P ) . 
• In the Step 2, matrix shrinkage operator requires SVD compu-

tation, and its complexity is O(T 2 P ) because P > T in our case. 
• The Step 3 and 4 include linear and project operations where

each has the cost of O(T P ) . 

Considering the computational cost of each step, the main cost

f FTVNNR should be O(T 2 P ) in each iteration. A key feature of the

TVNNR is its fast convergence performance. In the next section,

e will prove the ergodic convergence rate of FTVNNR is O(1 /N)

or N iteration. 
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3.5. Convergence analysis 

In this section, we prove FTVNNR can converge with a O(1 /N)

rate. First, we denote the objective (energy) function E ( X, Y ) in the

primal-dual problem defined in the paper as 

E(X , Y ) = λ1 �{〈∇X , Y 〉} + 

1 

2 

‖A X − B ‖ 

2 
F + λ2 ‖ X ‖ ∗ − I B ∞ (Y ) , 

(21)

Here we continue to use A = RF . To investigate the convergence

rate, we need to establish an upper bound for the partial duality

gap. We first give two following useful lemmas. 

Lemma 3.1. For any X ∈ I and Y ∈ ∇I , ( X 

n , Y 

n ) are the sequences

generated by the iteration steps in Algorithm 3 , which means that (
L 

2 

+ 

1 

2 t 1 

)
‖ X − X 

n ‖ 

2 
F + 

1 

2 t 2 
‖ Y − Y 

n ‖ 

2 
F 

≥ E(X 

n +1 , Y ) − E(X , Y 

n +1 ) + 

(
L 

2 

+ 

1 

2 t 1 

)
‖ X − X 

n +1 ‖ 

2 
F 

+ 

1 

2 t 2 
‖ Y − Y 

n +1 ‖ 

2 
F + 

1 

2 t 1 
‖ X 

n +1 − X 

n ‖ 

2 
F 

+ 

1 

2 t 2 
‖ Y 

n +1 − Y 

n ‖ 

2 
F − λ1 �{〈∇(X − X 

n +1 ) , Y 

n − Y 

n +1 〉} 
+ λ1 �{〈∇(X 

n +1 − X 

n ) , Y − Y 

n +1 〉} . (22)

Lemma 3.2. Let 1 / 
√ 

t 1 t 2 ≥ λ1 ‖∇‖ . For any X , X 

′ ∈ I and Y , Y 

′ ∈ ∇I,

one has 

1 

2 t 1 
‖ X − X 

′ ‖ 

2 
F + 

1 

2 t 2 
‖ Y − Y 

′ ‖ 

2 
F − λ1 �{〈∇(X − X 

′ ) , Y − Y 

′ 〉} ≥ 0 . 

(23)

Proofs of those Lemmas can be found in the Appendix. In

Lemma 3.2 , we narrow down the step size choice to ensure the

convergence of our proposed method. Under the step size assump-

tion given in Lemma 3.2 , following Lemma 3.1 , we thus have our

main convergence rate result in Theorem 3.1 . 

Theorem 3.1. Let 1 / 
√ 

t 1 t 2 ≥ λ1 ‖∇‖ , ( X 

n , Y 

n ) be the iteration se-

quence generated by Algorithm 3 . ˜ X 

N = 

1 
N 

∑ N 
n =1 X 

n , ˜ Y 

N = 

1 
N 

∑ N 
n =1 Y 

n .

It holds that 

E( ̃  X 

N , Y ) − E(X , ̃  Y 

N ) ≤ 1 

N 

[(
L 

2 

+ 

1 

2 t 1 

)
‖ X − X 

0 ‖ 

2 
F 

+ 

1 

2 t 2 
‖ Y − Y 

0 ‖ 

2 
F − λ1 �{〈∇(X − X 

0 ) , Y − Y 

0 〉} 
]
. (24)

Proof. First we can easily get the following equation 

〈∇(X 

n +1 − X 

n ) , Y − Y 

n +1 〉 − 〈∇(X − X 

n +1 ) , Y 

n − Y 

n +1 〉 
= −〈∇(X − X 

n +1 ) , Y − Y 

n +1 〉 + 〈∇(X − X 

n ) , Y − Y 

n 〉 
−〈∇(X 

n +1 − X 

n ) , Y 

n +1 − Y 

n 〉 , (25)

Thus following (25) , we can rewrite (22) in Lemma 3.1 to 

E(X 

n +1 , Y ) − E(X , Y 

n +1 ) 

≤
[(

L 

2 

+ 

1 

2 t 1 

)
‖ X − X 

n ‖ 

2 
F + 

1 

2 t 2 
‖ Y − Y 

n ‖ 

2 
F 

−λ1 �{〈∇(X − X 

n ) , Y − Y 

n 〉} 
]

−
[(

L 

2 

+ 

1 

2 t 1 

)
‖ X − X 

n +1 ‖ 

2 
F + 

1 

2 t 2 
‖ Y − Y 

n +1 ‖ 

2 
F 

−λ1 �{〈∇(X − X 

n +1 ) , Y − Y 

n +1 〉} 
]

−
[

1 

2 t 1 
‖ X 

n +1 − X 

n ‖ 

2 
F + 

1 

2 t 2 
‖ Y 

n +1 − Y 

n ‖ 

2 
F 

−λ1 �{〈∇(X 

n +1 − X 

n ) , Y 

n +1 − Y 

n 〉} 
]
, (26)

Then by summing up (26) from n = 0 , 1 . . . , N − 1 , we thus

ave 

N ∑ 

n =1 

(E(X 

n , Y ) − E(X , Y 

n )) 

≤
[(

L 

2 

+ 

1 

2 t 1 

)
‖ X − X 

0 ‖ 

2 
F + 

1 

2 t 2 
‖ Y − Y 

0 ‖ 

2 
F 

−λ1 �{〈∇(X − X 

0 ) , Y − Y 

0 〉} 
]

−
[(

L 

2 

+ 

1 

2 t 1 

)
‖ X − X 

N ‖ 

2 
F + 

1 

2 t 2 
‖ Y − Y 

N ‖ 

2 
F 

−λ1 �{〈∇(X − X 

N ) , Y − Y 

N 〉} 
]

−
N ∑ 

n =1 

[
1 

2 t 1 
‖ X 

n − X 

n −1 ‖ 

2 
F + 

1 

2 t 2 
‖ Y 

n − Y 

n −1 ‖ 

2 
F 

−λ1 �{〈∇(X 

n − X 

n −1 ) , Y 

n − Y 

n −1 〉} 
]

≤
(

L 

2 

+ 

1 

2 t 1 

)
‖ X − X 

0 ‖ 

2 
F + 

1 

2 t 2 
‖ Y − Y 

0 ‖ 

2 
F 

−λ1 �{〈∇(X − X 

0 ) , Y − Y 

0 〉} , (27)

By Jensen’s Inequality, we instantly have 

E 

(
1 

N 

N ∑ 

n =1 

X 

n , Y 

)
− E 

(
X , 

1 

N 

N ∑ 

n =1 

Y 

n 

)
≤ 1 

N 

N ∑ 

n =1 

(E(X 

n , Y ) − E(X , Y 

n ))

≤ 1 

N 

[(
L 

2 

+ 

1 

2 t 1 

)
‖ X − X 

0 ‖ 

2 
F + 

1 

2 t 2 
‖ Y − Y 

0 ‖ 

2 
F 

−λ1 �{〈∇(X − X 

0 ) , Y − Y 

0 〉} 
]
. (28)

�

Theorem 3.1 proves the O(1 /N) convergence rate of the pro-

osed method in the sequence ( ̃  X 

N , ̃  Y 

N ) . We then prove the con-

ergence of ( ̃  X 

N , ̃  Y 

N ) , which actually implies the convergence of

 X 

n , Y 

n ) in Theorem 3.2 . 

heorem 3.2. Let (X 

∗, Y 

∗) ∈ I × ∇I be the optimal solution. we then

ave 

lim 

→∞ 

( ̃  X 

N , ̃  Y 

N ) = lim 

n →∞ 

(X 

n , Y 

n ) = (X 

∗, Y 

∗) . (29)

roof. The convergence rate bound (24) implies the convergence

f ( ̃  X 

N , ̃  Y 

N ) to a saddle point denoted by ( X 

∗, Y 

∗). ( X 

n , Y 

n ) is

 bounded sequence. There exists a subsequence (X 

n k , Y 

n k ) con-

erges to a cluster point (X 

+ , Y 

+ ) . Under the step size assumption

nd set (X , Y ) = (X 

+ , Y 

+ ) , we can sum (26) from n = n k to N sub-

ect to n k < N . Thus, we have [(
L 

2 

+ 

1 

2 t 1 

)
‖ X 

+ − X 

N ‖ 

2 
F + 

1 

2 t 2 
‖ Y 

+ − Y 

N ‖ 

2 
F −

λ1 �{〈∇(X 

+ − X 

N ) , Y 

+ − Y 

N 〉} 
]
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(a) (b)
Fig. 1. One frame of sample case from 2013 ISMRM challenge (a). The undersam- 

pling mask (b) was applied in k-space. 
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1 http://challenge.ismrm.org/node/53 . 
+ 

N ∑ 

n = n k 

[
1 

2 t 1 
‖ X 

n − X 

n −1 ‖ 

2 
F + 

1 

2 t 2 
‖ Y 

n − Y 

n −1 ‖ 

2 
F 

−λ1 �{〈∇(X 

n − X 

n −1 ) , Y 

n − Y 

n −1 〉} 
]

≤
[(

L 

2 

+ 

1 

2 t 1 

)
‖ X 

+ − X 

n k ‖ 

2 
F + 

1 

2 t 2 
‖ Y 

+ − Y 

n k ‖ 

2 
F 

−λ1 �{〈∇(X 

+ − X 

n k ) , Y 

+ − Y 

n k 〉} 
]

(30) 

hen n k → ∞ , by (30) and thanks to the non-negativity in each

air of brackets given by Lemma (3.2) , we have lim N→∞ 

(X 

N , Y 

N ) =
(X 

+ , Y 

+ ) . Note that both ( X 

∗, Y 

∗) and (X 

+ , Y 

+ ) are the fixed point

f solutions and thus (X 

∗, Y 

∗) = (X 

+ , Y 

+ ) . �

Based on Theorems 3.1 and 3.2 , we have proved the O(1 /N)

onvergence rate of our proposed algorithm. 

. Experimental results 

In this section, we first compare the convergence performance

f FTVNNR with two very popular algorithms - FCSA and ADMM.

hen the proposed method is compared extensively with state-of-

he-art schemes using real single coil and multi-coil dynamic MRI.

ll experiments were conducted with MATLAB R2015a on a stan-
Fig. 2. The convergence speeds of FCSA, k-t SLR and FTVNNR. Left: functio
ard PC using a single thread of an Intel core i7 4770 3.4GHz CPU

nd 16.0 GB RAM. 

.1. Convergence performance 

The experiments were tested using the simulation data from

013 ISMRM Challenge 1 Sample case (256 × 256, 20 frames). This

s a test dataset provided for method development and debug-

ing. Fig. 1 (a) shows one frame from the data. In this experi-

ent, we use Cartesian mask with 25% sampling ratio. The stop-

ing criteria for all algorithms is ‖ X 

n +1 − X 

n ‖ F / ‖ X 

n ‖ F < 10 −4 with

 maximum iteration number of 200. Two parameters are set as

1 = 0 . 01 and λ2 = 1 . Two metrics were chosen for quantitative

valuation against fully-sampled reference images: the peak signal-

o-noise ratio (PSNR) and high frequency error norm (HFEN) which

as used to evaluate the reconstruction of edges and fine struc-

ures ( Ravishankar and Bresler, 2011a; Lingala and Jacob, 2013 ). In

FEN, the kernel size is 15 × 15 pixels and the standard deviation

s 1.5 pixels. 

.1.1. Results 

In FCSA, it is time-consuming to solve TV subproblem to

chieve good results. We tune the iteration numbers in TV sub-

roblem from 50 to 10 to see if we can reach reasonable results

sing the minimum iterations. k −t SLR ( Lingala et al., 2011b ) in-

roduced ADMM to solve the TV/NN problem. It splits the joint

inimization to five subproblems by Augmented Lagrangian (AL)

cheme and needs a conjugate gradient (CG) to exactly solve the

rst subproblem. We keep the default CG solver parameters in k −t

LR for experiments. 

Fig. 2 presents their convergence performances. “FCSA-50” in

he figure refers to results from the FCSA using 50 iterations. It can

e seen that function values of FCSA and k-t SLR decrease slightly

aster than that of FTVNNR in the early stage (fewer than 40 it-

rations). However, the complexity of each iteration in FCSA and

 −t SLR is much higher than the cost of FTVNNR. The right plot

n Fig. 2 shows the decrease of function values for each method

ntil 80 s. We can see that the computational cost of k-t SLR is

igher than FTVNNR and FCSA. Even the iteration number is set to

0, FCSA is still slower than the proposed FTVNNR. The proposed

ethod converges much faster than FCSA and ADMM using much
n value vs.iteration number. Right: function value vs. CPU time (s). 

http://challenge.ismrm.org/node/53
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Original FTVNNR
(27.52 dB)

FCSA-50
(26.88 dB)

FCSA-20
(26.88 dB)

FCSA-10
(26.84 dB)

k-t SLR
(26.57 dB)

Fig. 3. The first row shows the reconstructed results, and the second row shows the close-up views of the selected regions. 

Fig. 4. Boxplot of PSNR and HFEN results. 

2,t1t

Fig. 5. PSNR with different ( t 1 , t 2 ) pairs. 
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smaller computational time. After convergence, the energy func-

tion value of the proposed algorithm is smaller than that of FCSA

and k −t SLR. 

Fig. 3 presents visual comparisons of the reconstructed 14th

frame using different algorithms. It can be seen that even though

FCSA and k −t SLR are solving the same optimization, they still can-

not achieve better results than FTVNNR. That’s because the main

subproblem might not be solved exactly while FTVNNR has closed-

form solution for each subproblem shown in Algorithm 3 . From the

close-up views of selected regions, one can clearly see that arti-

facts exist in results from FCSA and k −t SLR while the image from

FTVNNR is clean and perfect. 

Quantitative evaluations for selected regions on the whole se-

quence (20 frames) can be seen in Fig. 4 . The proposed FTVNNR

outperforms all other comparisons in terms of PSNR and HFEN.
ll experiments clearly illustrate that the proposed algorithm can

ore solve the TVNNR model much better than other optimization

echniques in terms of both efficiency and effectiveness. 

Table 1 summarizes the computational time and performances

f each method. From the table, we can reduce the iteration num-

er to 20 to have best reconstruction in FCSA but the proposed

TVNNR can still reconstruct higher quality images and it is ap-

roximately 7 times faster than FCSA. 

.1.2. The chosen of t 1 , t 2 
In this section, we show how we choose the t 1 , t 2 . Before tun-

ing t 1 , t 2 , we need to choose the Lipschitz constant L . The Lip-

chitz constant is defined as L = λmax (A 

H A ) where λmax denotes

he largest eigenvalue of a linear operator. Recall the definitation,

 is denoted by RF where F denotes the Fourier transform and R is

 sampling matrix. We observe that R H R is always diagonal. There-

ore, A 

H A = F H R H RF is diagonally dominant. Note that this struc-

ure is independent to the data X . By the properties of the Fourier

ransform, all the diagonal elements of A 

H A is equal to the mean

f diagonal elements of R H R which is the sampling ratio s . It can

e validated that the largest eigenvalue of the A 

H A is 1. Therefore,

he Lipschitz constant L is set to 1 in all experiments. 

t 1 , t 2 are step size hyper-parameters and follow the bound

n our theoretical analysis. In the convergence analysis, it is as-

umed that 1 √ 

t 1 t 2 
≥ λ1 ‖∇‖ . Thus, 

√ 

t 1 t 2 ≤ 1 
λ1 ‖∇‖ . ‖∇‖ is the op-

rator norm and it is bounded by 
√ 

8 (more details can be found

n Xu and Huang (2017) and Chambolle and Pock (2015) ). Here λ
1 
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Fig. 6. Results of the 29th frame of the perfusion sequence at 20% sampling ratio. 

Table 1 

Performances of different algorithms (Time: seconds). 

Proposed FCSA-50 FCSA-20 FCSA-10 k-t SLR 

Time 93 1434 613 339 872 

PSNR 27.08(0.30) 26.56(0.29) 26.57(0.29) 26.48(0.35) 26.20 (0.34) 

HFEN 0.202(0.011) 0.225(0.011) 0.224(0.011) 0.227(0.012) 0.223(0.011) 

Fig. 7. Average PSNR with different levels of under-sampling. 
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Fig. 8. Average HFEN with different levels of under-sampling. 
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d  
s set to 0.01 and then we calculate t 2 = 

1 

8 t 1 λ
2 
1 

with varying t 1 . We

mploy the line search to find the optimal pair of t 1 , t 2 and show

he mean PSNR values in Fig. 5 . We start t 1 from 2 −5 to 2 10 with

ncremental step size 1 and thus generate 16 ( t 1 , t 2 ) pairs in total.

t is clear to observe that FTVNNR achieves high mean PSNR values

n a quite large range of t 1 . Therefore, it is not difficult to find the

ood pair of t 1 , t 2 . In practice, we fix the step size t 1 as 4 and t 2 
ill be updated by λ using the upper bound. 
1 
.2. Real data evaluation 

We then explored our method on one real publicly available

ataset from ( Lingala and Jacob, 2013 ). The myocardial perfusion

RI data was acquired using a saturation recovery FLASH sequence

three slices, TR/TE = 2.5/1.5 ms, sat.recovery time = 100 ms,

hase × frequency encodes × time = 190 × 90 × 70). To test

he robustness of our method, the k-space data is corrupted with

dditional complex Gaussian white noises with varying standard

eviation. The most practical Cartesian masks with varying sam-
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Fig. 9. Results of 29th frame with σ = 0 . 05 . 
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2  
pling ratios were used as the undersampling mask in our experi-

ments. We compared our method with four state-of-the-art meth-

ods, the undersampled (k,t)-Space via low-rank plus sparse prior

(ktRPCA) ( Trémoulhéac et al., 2014 ), blind compressive sensing

(BCS) ( Lingala and Jacob, 2013 ), dictionary learning based method

DLTG ( Caballero et al., 2014 ) and k −t SLR ( Lingala et al., 2011a ).
Fig. 10. PSNR and HFEN metric
he source codes for these methods are downloaded from each au-

hor’s website. BCS is implemented with both 50 inner and outer

terations. The rest of the parameters in each method is tuned for

ach dataset separately to achieve the best performance. Similarly,

he regularization parameters ( λ1 , λ2 ) were selected empirically

y examining the reconstruction results over a range of possible

alues. The effect of varying the parameters is discussed later. We

hoose λ1 = 0.03 and λ2 = 100 by exploiting the best performances

rom parameter optimization. The effect of varying the parameters

n the reconstruction result is discussed in Section 4.3 . 

Fig. 6 presents the 29th reconstructed frame of the myocardial

erfusion data with 1/5 sampling ratio. Metrics were computed

ithin the manually defined region of interest. For each method,

he reconstructed image is presented together with its error. Clear

isible artifacts can be observed on the image by k −t SLR. Our

pproach achieves the lowest reconstruction error among all rest

ethods. 

Fig. 7 and Fig. 8 present PSNR and HFEN measurements for all

ethods while changing the sampling ratio from 0.17 to 0.47. It is

bvious that the proposed FTVNNR outperforms all other compar-

son methods in all undersampling cases for both PSNR and HFEN.

ompared with the other four methods, the proposed FTVNNR

an achieve the best reconstruction with different levels of under-

ampling. From the result, it is also observed that our approach is

ore robust to the changes of sampling ratios, compared to BCS. 

To test the reconstruction performance to noise, we

dded Gaussian white noise with standard deviation σ =
 0 . 01 , 0 . 03 , 0 . 05 , 0 . 07 , 0 . 09 , 0 . 1 } and applied the undersampling

ask with 20% ratio. Since DLTG requires much more time (1 and

 h) and thus we only compare the proposed with other compar-
s among all timeframes. 
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Fig. 11. Average PSNR and HFEN with different levels of noise. 

Fig. 12. CPU Time for each method with different sampling ratios. 

Fig. 13. CPU Time for each method with different noise levels. 

1

2

Fig. 14. Parameter optimization from different pairs of λ1 and λ2 . 
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T  
son methods. Fig. 9 shows visual comparisons when using noisy

ata at σ = 0 . 05 . It is evident from the error that our method

chieves superior visual reconstruction quality. The interest region

s zoomed up for better visual inspection. Compared to the original

mage, results of ktRPCA and ktSLR appear blurry. BCS provides

etter reconstruction while the proposed method shows more fine

nd clear details. From the figures, it can be seen that FTVNNR

etter preserves the various details in the images including edges

nd boundaries. 

All metrics among timeframes can be found in Fig. 10 . The

roposed method outperforms others almost every frame in both

SNR and HFEN. It can be seen that ktRPCA is unable to perform

ell on noisy data since the sparsity constraint cannot exploit the

ocal spatial consistency or piece-wise smoothness of dynamic MR

mages. 

Fig. 11 demonstrates the results when using noisy data chang-

ng σ from 0.01 to 0.1. Performance reduces when noise level in-

reases while the proposed FTVNNR still achieves best results than

ll comparison methods. That’s because the FTVNNR can utilize the

ocal consistency in the spatial domain which makes it more robust

o noise. 

Running time : Time usages of different methods in the case

f no noise and with noise can be seen in Figs. 12 and 13 .

able 2 summarizes the execution time of the methods in all cases.
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Fig. 15. Comparison of the reconstruction results from the 3rd frame. The radial mask with the sampling rate of 0.10 is used. The first row shows whole images. The second 

row shows images from ROIs and the third row shows the corresponding error images. 

Table 2 

The average time cost of different methods (Seconds). 

Methods No noise Noise 

FTVNNR 52.64 ± 9.17 59.70 ± 0.99 

ktRPCA 410.64 ± 7.14 208.26 ± 2.70 

BCS 896.53 ± 146.41 509.34 ± 151.41 

DLTG 4511.1 ± 8.98 –

ktSLR 399.26 ± 39.89 453.03 ± 9.32 
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2 http://challenge.ismrm.org/node/66 . 
We recorded the mean and standard deviation of the different run-

ning times for each method. 

One can see that DLTG requires nearly 1 and 2 h for processing.

The proposed method is significantly efficient over other methods,

which is almost at least 4 times faster than state-of-the-arts al-

gorithms. Therefore, the proposed method outperforms others in

terms of both accuracy and efficiency. 

4.3. Effect of parameters 

The performance of our FTVNNR methods depends on the reg-

ularization parameter pair ( λ1 , λ2 ). Parameters were optimized

based on the data using 1/5 undersampling ratio Cartesian mask

without noise ( σ = 0 ). The setting for total variation λ1 is from

0.01 to 7 while the low rank regularization setting λ2 is from 1 to

150. Fig. 14 shows PSNR results from different pairs of parameters.

We thus choose λ1 = 0.03 and λ2 = 100 by exploiting the best per-

formances from all candidate pairs. This parameter pair was also

used in the case of adding sampling noise. 

4.4. Parallel imaging 

Although the problem (3) is the single coil case, it has the

potential to process multi-coil parallel MRI data. When the coil

sensitivities are available, it can be combined with SENSE in the

k-t SPARSE-SENSE framework ( Otazo et al., 2010 ) by multiplying

coil sensitivities E after the undersampled Fourier transform, which

means the least square term in (3) will be || RF EX − B || 2 . 

F 
To further evaluate performances, we used one fully-sampled

ardiac cine data distributed by the 2013 ISMRM Recon Chal-

enge committee 2 . The data was collected using a 2D cine

reath-held bSSFP sequence with 32-channel cardiac receiver coils.

can parameters were spatial resolution 1 × 1 mm 

2 , matrix size

46 × 210 × 27. The data was retrospectively under-sampled using

artesian golden-angle radial sampling patterns with the accel-

ration factors ranged from 5 to 30 (sampling ratio from 1/5 to

/30). We compared the proposed method with three state-of-the-

rt parallel MRI approaches including low-rank plus sparse recon-

truction (L+S) ( Otazo et al., 2015 ), dynamic Total Variation (DTV)

 Chen et al., 2014 ) and k −t SPARSE-SENSE ( Otazo et al., 2010 ). For

ll methods, we tune parameters to achieve the best result un-

er the 1/30 sampling rate and then perform on other cases us-

ng these parameters. The stopping criteria for all methods is 10 −4 

ith a maximum iteration number of 50. All quantitative evalua-

ions are calculated within the Region of Interest (ROI). 

Reconstruction results at the sampling ratio 10% are shown in

ig. 15 . When looking at details of the cardiac region, it can be

bserved that FTVNNR presents less noisy and more clear results

ecause it can utilize the local consistency in the spatial domain

hile the temporal FFT in k −t SPARSE-SENSE and sparse prior in

+S cannot exploit the spatial sparsity. PSNR value of each time

rame can be seen in Fig. 16 . It can be seen that the proposed

TVNNR outperforms other state-of-the-arts parallel dynamic MRI

ethods in each time frame. 

Fig. 17 depicts the PSNR of the reconstructed images at different

ampling rates. DTV performs the worst when the sampling ratio is

ery low. That’s because DTV needs a relative high sampling rate

t the first frame to reconstruct the reference image. If the high

uality reference image cannot be guaranteed, it will not produce

atisfactory dynamic MR sequence. 

The average running time of all methods under different sam-

ling rates can be found in Table 3 . One can see that the proposed

http://challenge.ismrm.org/node/66
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Fig. 16. Results of every frame at the 10% sampling rate. 

Fig. 17. Results with different levels of under-sampling. 

Table 3 

The average time cost on different sampling ratios. “ktSS” is k −t 

SPARSE-SENSE. 

Time (Seconds) Proposed L + S ktSS DTV 

Data (346 × 210 × 27) 511.33 539.36 1298.6 960.81 
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ethod has the fastest reconstruction speed compared to others,

ue to its fewer iterations and faster convergence. 

. Conclusion 

We have proposed an efficient algorithm for dynamic MRI.

he contributions of our work are as follows. First, the proposed

TVNNR can achieve lower computation cost at each iteration than

ther popular optimization methods such as FCSA and ADMM.

he convergence rate can be theoretically proved as O(1 /N) . Sec-

nd, the proposed FTVNNR achieves the best reconstruction per-

ormance when compared to state-of-the art methods. Also, ex-

eriments demonstrate that it is faster than other dMRI methods.

hese properties make the proposed method more powerful than

onventional dMRI methods in terms of both accuracy and time ef-
ciency. Moreover, the proposed method can be easily extended to

arallel MRI. The parallel version of FTVNNR can also share good

roperties like fast convergence. Numerous experiments were con-

ucted to show its better performance. In our future work, we will

ntroduce existing online learning techniques to further speed up

he proposed FTVNNR and explore other applications in medical

maging. 
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ppendix A. Proof of Lemmas 

In this appendix, we provide technical proofs for

emmas 3.1 and 3.2 used in the paper. Before we give the

roofs, we will first investigate an important property shown

n Lemma Appendix A.1 of strong convexity which will be use-

ul in the following proofs. This Lemma has been proven in

hambolle and Pock (2015) . 

emma Appendix A.1. Let f : I → R be a proper closed convex

unction, X̄ ∈ I . Let 

ˆ 
 = arg min 

X ∈I 
1 

2 

‖ X − X̄ ‖ 

2 
F + f (X ) (A.1) 

hen for any X ∈ I

f (X ) + 

1 

2 

‖ X − X̄ ‖ 

2 
F ≥ f ( ̂  X ) + 

1 

2 

‖ ̂

 X − X̄ ‖ 

2 
F + 

1 

2 

‖ X − ˆ X ‖ 

2 
F (A.2) 

Lemma (3.1) : For any X ∈ I and Y ∈ ∇I , ( X 

n , Y 

n ) are the se-

uences generated by the iteration steps in algorithm (3) , then it

olds that (
L 

2 

+ 

1 

2 t 1 

)
‖ X − X 

n ‖ 

2 
F + 

1 

2 t 2 
‖ Y − Y 

n ‖ 

2 
F 

≥ E(X 

n +1 , Y ) − E(X , Y 

n +1 ) + 

(
L 

2 

+ 

1 

2 t 1 

)
‖ X − X 

n +1 ‖ 

2 
F 

+ 

1 

2 t 2 
‖ Y − Y 

n +1 ‖ 

2 
F 

+ 

1 

2 t 1 
‖ X 

n +1 − X 

n ‖ 

2 
F + 

1 

2 t 2 
‖ Y 

n +1 − Y 

n ‖ 

2 
F 

−λ1 �{〈∇(X − X 

n +1 ) , Y 

n − Y 

n +1 〉} 
+ λ1 �{〈∇(X 

n +1 − X 

n ) , Y − Y 

n +1 〉} . (A.3) 

roof. We take the following denotation for the brevity of descrip-

ion. 

 1 (X , Y ) = λ1 �{〈∇X , Y 〉} + 

1 

2 

‖A X − B ‖ 

2 
F + λ2 ‖ X ‖ ∗ (A.4) 

 2 (Y , X ) = I B ∞ (Y ) − λ1 �{〈∇X , Y 〉} (A.5) 

y Lemma Appendix A.1 and the iteration rule, let f (X ) =
t 1 

1+ t 1 L h 1 (X , Y 

n ) , then we have 

t 1 
1 + t 1 L 

h 1 (X , Y 

n ) + 

1 

2 

‖ X − X 

n ‖ 

2 
F 

≥ t 1 
1 + t 1 L 

h 1 (X 

n +1 , Y 

n ) + 

1 

2 

‖ X 

n +1 − X 

n ‖ 

2 
F + 

1 

2 

‖ X − X 

n +1 ‖ 

2 
F (A.6) 
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which is 

h 1 (X , Y 

n ) + 

(
1 

2 t 1 
+ 

L 

2 

)
‖ X − X 

n ‖ 

2 
F 

≥ h 1 (X 

n +1 , Y 

n ) + 

(
1 

2 t 1 
+ 

L 

2 

)
‖ X 

n +1 − X 

n ‖ 

2 
F 

+ 

(
1 

2 t 1 
+ 

L 

2 

)
‖ X − X 

n +1 ‖ 

2 
F (A.7)

then by L > 0 and ‖ · ‖ F ≥ 0, one can have 

h 1 (X , Y 

n ) + 

(
1 

2 t 1 
+ 

L 

2 

)
‖ X − X 

n ‖ 

2 
F 

≥ h 1 (X 

n +1 , Y 

n ) + 

1 

2 t 1 
‖ X 

n +1 − X 

n ‖ 

2 
F + 

(
1 

2 t 1 
+ 

L 

2 

)
‖ X − X 

n +1 ‖ 

2 
F 

(A.8)

Similarly, for h 2 ( Y, X ), 

h 2 (Y , 2 X 

n +1 − 2 X 

n ) + 

1 

2 t 2 
‖ Y − Y 

n ‖ 

2 
F 

≥h 2 (Y 

n +1 , 2 X 

n +1 − X 

n ) + 

1 

2 t 2 
‖ Y 

n +1 − Y 

n ‖ 

2 
F + 

1 

2 t 2 
‖ Y − Y 

n +1 ‖ 

2 
F 

(A.9)

Then by summing (A.8) and (A.9) , and we can prove this lemma. 

�

Lemma (3.2) Let 1 / 
√ 

t 1 t 2 ≥ λ1 ‖∇‖ . One has 

1 

2 t 1 
‖ X − X 

′ ‖ 

2 
F + 

1 

2 t 2 
‖ Y − Y 

′ ‖ 

2 
F − λ1 �{〈∇(X − X 

′ ) , Y − Y 

′ 〉} ≥ 0 . 

(A.10)

Proof. 

1 

2 t 1 
‖ X − X 

′ ‖ 

2 
F + 

1 

2 t 2 
‖ Y − Y 

′ ‖ 

2 
F − λ1 �{〈∇(X − X 

′ ) , Y − Y 

′ 〉} 

≥ 1 

2 t 1 
‖ X − X 

′ ‖ 

2 
F + 

1 

2 t 2 
‖ Y − Y 

′ ‖ 

2 
F − λ1 ‖∇(X − X 

′ ) ‖ F ‖ Y − Y 

′ ‖ F 

≥ 1 

2 t 1 
‖ X − X 

′ ‖ 

2 
F + 

1 

2 t 2 
‖ Y − Y 

′ ‖ 

2 
F − λ1 ‖∇‖‖ (X − X 

′ ) ‖ F ‖ Y − Y 

′ ‖ F 

≥ 1 √ 

t 1 t 2 
‖ X − X 

′ ‖ F ‖ Y − Y 

′ ‖ F − λ1 ‖∇‖‖ (X − X 

′ ) ‖ F ‖ Y − Y 

′ ‖ F 

= 

(
1 √ 

t 1 t 2 
− λ1 ‖∇‖ 

)
‖ X − X 

′ ‖ F ‖ Y − Y 

′ ‖ F ≥ 0 (A.11)
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