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Abstract—Similarity measure is an essential component in image registration. In this article, we propose a novel similarity measure for

registration of two or more images. The proposed method is motivated by the fact that optimally registered images can be sparsified

hierarchically in the gradient domain and frequency domain with the separation of sparse errors. One of the key advantages of the

proposed similarity measure is its robustness in dealing with severe intensity distortions, which widely exist on medical images,

remotely sensed images and natural photos due to differences of acquisition modalities or illumination conditions. Two efficient

algorithms are proposed to solve the batch image registration and pair registration problems in a unified framework. We have validated

our method on extensive and challenging data sets. The experimental results demonstrate the robustness, accuracy and efficiency of

our method over nine traditional and state-of-the-art algorithms on synthetic images and a wide range of real-world applications.

Index Terms—Image registration, hierarchical sparse representation, sparse learning

Ç

1 INTRODUCTION

IMAGE registration is a fundamental task in image process-
ing and computer vision [1], [2], [3]. It aims to align two

or more images into the same coordinate system, and then
these images can be processed or compared. Accuracy and
robustness are two of the most important metrics to evalu-
ate a registration method. It has been shown that a mean
geometric distortion of only 0.3 pixel will result in a notice-
able effect on the pixel-to-pixel image fusion process [4].
Robustness is defined as the ability to get close to the accu-
rate results on different trials under diverse conditions.
Based on the feature used in registration, existing methods
can be classified into feature-based registration (e.g., [5], [6],
[7]) and pixel-based registration ([8], [9], [10], [11]). Feature-
based methods rely on the landmarks extracted from the
images. However, extracting reliable features is still an
open problem and an active topic of research [3]. In this arti-
cle, we approach image registration by directly using their
pixel values. In addition, we successfully registered the
images from a variety of applications in subpixel-level accu-
racy, as precisely as possible.

One key component for image registration is the energy
function to measure (dis)similarity. The optimized similarity
should lead to the correct spatial alignment. However,

finding a reliable similarity measure is quite challenging due
to the unpredicted variations of the input images. In many
real-world applications, the images to be registered may be
acquired at different times and locations, under various illu-
mination conditions and occlusions, or by different acquisi-
tion modalities. As a result, the intensity fields of the images
may vary significantly. For instance, slow-varying intensity
bias fields often exist in brain magnetic resonance images
[12]; the remotely sensed images may even have inverse
contrast for the same land objects, as multiple sensors have
different sensitivities to wavelength spectrum [13]. Unfortu-
nately, many existing pixel-based similarity measures are
not robust to these intensity variations, e.g., the widely used
sum-of-squared-difference (SSD) [2].

Recently, the sparsity-inducing similarity measures have
been repeatedly successful in overcoming such registration
difficulties [14], [15], [16], [17]. In RASL (Robust Alignment by
Sparse and Low-rankdecomposition) [15], the images are vec-
torized to form a data matrix. The transformations are esti-
mated to seek a low rank and sparse representation of the
aligned images. Two online alignment methods, ORIA [16]
(online robust image alignment) and t-GRASTA [17] (trans-
formed Grassmannian robust adaptive subspace tracking
algorithm) are proposed to improve the scalability of RASL.
The sparse and low-rank approaches (RASL and the follow-
ing works) have demonstrated some promising results. Simi-
lar ideas have been applied to many applications such as face
synthesis [18], face recovery in video restoration [19], back-
ground and foreground separation [20], and object detection
[21]. All of these methods (RASL, t-GTASTA, etc.) assume
that the large errors among the images are sparse (caused by
shadows and partial occlusions) and separable. However, as
we will show later, many real-world images contain severe
spatially-varying intensity distortions. These intensity varia-
tions are not sparse and, therefore, are difficult to be separated
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by these methods. As a result, the above measures may fail to
find the correct alignment and thus are less robust in these
challenging tasks.

The residual complexity (RC) [14] is one of the best meas-
ures for registering two images corrupted by severe inten-
sity distortion [22], which uses the discrete cosine transform
(DCT) to sparsify the residual of two images. RC is primary
used in medical image registration [3] such as MRIs. In this
scenario, the images are not only under simple global defor-
mations like affine transformations but may also have local
deformations. This makes the problem challenging. Further-
more, those images may also be corrupted by slow-varying
intensity bias fields [12], heterogeneous illumination and
reflectance artifacts [23]. Such distortions will violate the
assumptions of many existing approaches and will jeopar-
dize the registration performance. It has been demonstrated
that RC is able to handle those effects better than previous
counterparts in pair-image registration. However, for a
batch of images, RC has to register them pair-by-pair, and
the solution may be sub-optimal. In addition, DCT and
inverse DCT are required in each iteration, which slows
down the overall speed of registration. Finally, although RC
is robust to intensity distortions, the ability of RC to handle
partial occlusions is unknown.

In this article, we proposed a novel similarity measure
for robust and accurate image registration based on the hier-
archical sparse representation (HSR) of the natural images.
Unlike previous works that vectorize each image [15], [16],
[17], we arranged the input images into a 3D tensor to keep
their spatial structure. With this arrangement, the optimally
registered image tensor can be sparsified into a sparse fre-
quency tensor and a sparse error tensor (Fig. 1). Severe
intensity distortions and partial occlusions will be sparsified

and separated out in the first and second stages, while any
misalignment will increase the sparseness of the frequency
tensor (third stage). We propose a novel similarity measure
based on such hierarchical sparse representation of the nat-
ural images. Compared with the low rank similarity mea-
sure which requires a batch of input images, the proposed
similarity measure still works even when there are only two
input images. An efficient algorithm based on the Aug-
mented Lagrange Multiplier (ALM) method is proposed for
the batch mode, while the gradient descent method with
backtracking is presented to solve the pair registration prob-
lem. Both algorithms have very low computational com-
plexity in each iteration. We compare the proposed method
with nine traditional and state-of-the-art algorithms on a
wide range of natural image data sets, including medical
images, remotely sensed images and photos. Extensive
results demonstrate that our method is more robust to dif-
ferent types of intensity variations and always achieves
higher sub-pixel accuracy over all the tested methods.

Some of the preliminary results were initially published
in a CVPR 2015 paper [24]. This journal article has consider-
able changes compared with the conference paper, which
mainly includes:

(1) Theoretical convergence analysis. New discussion of
the convergence property of the proposed method
has been added, which uses the theory of strong
uniqueness.

(2) Extension to non-rigid registration. Non-rigid trans-
formation is another challenging class of registration
problem. Our journal version has extended the con-
ference one and proposed a new model to handle
this problem.

Fig. 1. Hierarchical sparse representation of the optimally registered images. First we sparsify the image tensor into the gradient tensor (1st stage).
The sparse error tensor is then separated out in the 2nd stage. The gradient tensor with repetitive patterns are sparsified in the frequency domain.
Finally we obtain an extremely sparse frequency tensor (composed of Fourier coefficients) in the 3rd stage.
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(3) Larger data set and broader application. Two case
studies are added to the preliminary data set, includ-
ing face images and non-rigid transformed brain
images. Experiments on the enlarged data set are
more convincing. Besides, these experimental results
better demonstrate the flexibility and effectiveness of
our approach.

(4) Clearer explanation. The proposed HSR and related
techniques are further explained with more details.
Especially, elaborate illustrations and mathematical
derivation are added to better demonstrate our
approach.

Organization. The remainder of this article is organized as
follows: In Section 2, we reviewed the basic idea of sparse
and low-rank model for image registration. In Section 3, we
introduce the hierarchical sparse representation approaches
for image registration, where we first discuss models for
both the batch and pair image registration and then pro-
posed the algorithms for solving the hierarchical sparse
representation problems. We provide experimental results
in Section 5 to demonstrate the efficiency and effectiveness
of our methods. Then in Section 6 we extend our approach
on non-rigid registration problems and give experimental
results. Section 8 provides concluding remarks and pro-
posed potential extensions to our approaches.

2 RELATED WORK

2.1 Image Registration

The measurement of similarities is the key component for
image registration problems. Suppose we have a batch of
gray-scale images I1; I2; . . . ; IN 2 Rw�h to be registered,
where N denotes the total number of images. First, we con-
sider the simplest case where all input images are perturbed
from a set of transformations t ¼ ft1; t2; . . . ; tNg.

One of the most popular ways to estimate the transfor-
mations is to minimize the rank of the data matrix [15]: Mea-
surement is based on matrix rank and the registration
problem can be formulated as

min
A;t

rankðAÞ; s:t: D � t ¼ A; (1)

where D � t¼: ½vecðI1Þ vecðI2Þ . . . vecðINÞ� 2 RM�N ; vec:
Rw�h 7�!RM denotes the vectorization operation; vecðI0t Þ � tt
denotes image It warped by tt for t ¼ 1; 2; . . . ; N . It is
assumed that the rank of A is low (ideally, it is one), since
that each column of A is the same after the transformations
are correctly estimated. This extreme case happens when all
the images are identical after they are aligned.

However, the low-rank assumption usually fails in prac-
tice because of apparent differences in images even when
they are aligned. This may be due to some partial occlusions
or pixel corruptions. In order to compensate this situation, a
sparse error term E is usually introduced. By replacing the
non-convex norm with the convex surrogate and using the
Lagrangian method, the object function can be written as

min
A;E;t

ksðAÞk1 þ �kEk1; s:t: kD � t �Aþ EkF � �; (2)

where the hyper-parameter � > 0 controls the tolerance of
the noise level; thus � > 0 is the hyper-parameter used to

balance the rank constraint and sparse constraint, while
sðAÞ is an operator that computes all the eigenvalues of A.
Here, svdðAÞ ¼ USVT is the singular value decomposition
of A, where U, V are orthogonal matrices and S is a diago-
nal matrix that contains all the eigenvalues of A on its diag-
onal. Therefore, we have sðAÞ ¼ diagðSÞ ¼ diagðUTAVÞ.
The ksðAÞk1 is also known as nuclear norm kAk�.

Equation (2) can be effectively solved by an off-the-shelf
optimization technique such as the augmented Lagrange
multiplier Methods [15], [25].

Here, we did not choose the low rank model since it
treats each image as a 1D signal without considering the
spatial prior information of natural images. Instead, the spa-
tial information will be utilized in our model.

2.2 Total Variation

Total Variation (TV) has been widely used in the image pro-
cess and in computer vision literature, especially as a sparse
regularization. This model was proposed by Rudin-Osher
and Fatemi (ROF) in [26], whose main goal was placing
proper constraint on edges and removing noise in a given
image. Let X 2 Rw�h be a 2D matrix. The basic form of TV
(semi)-norm can be written as kXkTV ¼ kDðXÞk‘, where Dð	Þ
is the differential operation and ‘ 2 f1; 2g. In image process-
ing problems, a discrete version of TV is usually used. There
are two commonly used discrete TVs. One is an ‘2-norm
based isotropic TV

kXkTV ¼
Xw�1

i¼1

Xh�1

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXi;j � Xiþ1;jÞ2 þ ðXi;j � Xi;jþ1Þ2

q

þ
Xw�1

i¼1

jXi;h � Xiþ1;hj þ
Xh�1

j¼1

jXw;j � Xw;jþ1j
(3)

The other one is an ‘1-norm based anisotropic TV

jjXjjTV ¼
Xw�1

i¼1

Xh�1

j¼1

jXi;j � Xiþ1;jj þ jXi;j � Xi;jþ1j
� �

þ
Xw�1

i¼1

jXi;h � Xiþ1;hj þ
Xh�1

j¼1

jXw;j � Xw;jþ1j
(4)

In both cases, we assume the borders satisfy the following
reflexive condition [27]

8j 2 1; . . . ; h;Xwþ1;j � Xw;j ¼ 0; (5)

8i 2 1; . . . ; w;Xi;hþ1 � Xi;h ¼ 0: (6)

In this article, we mainly use the anisotropic TV. Although,
TV has proved to be useful in many tasks, e.g., denoising,
deblurring and reconstruction [27], [28], [29]. However,
solving a TV-regularized problem is non-trivial. This is due
to the fact that TV operation is nontrivial. Another difficulty
is the scale of the these problems. This problem has
attracted a lot of attention in the literature. Many algorithms
have been applied to efficiently solve TV-based problems,
such as FISTA-TV [27], alternating direction method of mul-
tipliers (ADMM) [30], primal-dual approach [31], [32]. The
benefits of TV have also motivated several other variances
of TV such as non-local TV [28], directional total variation
[33], and higher-order total variation [34], [35].
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Natural images are often piece-wise smooth and they
have sparse gradients. Minimizing the TV norm is equiva-
lent to sparsifying the images in the gradient domain. In
this article, we will apply key idea of TV in our hierarchical
sparse representation pipeline.

3 IMAGE REGISTRATION VIA HIERARCHICAL

SPARSE REPRESENTATION

In this section, we use bold letters to denote multi-dimen-
sional data. For example, x denotes a vector, X denotes a
matrix and X is a 3D or third-order tensor. Xði;j;tÞ denotes
the entry in the ith row, jth column and tth slice. Xð:;:;tÞ
denotes the whole tth slice, which is, therefore, a matrix.
The ‘1 norm is the summation of absolute values of all
entries, which applies to vector, matrix and tensor.

3.1 Batch Mode

We introduce our hierarchical sparsity architecture in the
inverse order for easy understanding. Suppose the input
images are arranged into a 3D tensor D 2 Rw�h�N

Dð:;;;tÞ ¼ It; t ¼ 1; 2; . . . ; N: (7)

Again, let us consider the simplest case wherein all the
input images are identical and perturbed from a set of trans-
formations t ¼ ft1; t2; . . . ; tNg (which can be affine, non-
rigid, etc.). After removing the transformation perturba-
tions, the slices show repetitive patterns. We have seen how
the matrix of the vectorized similar/same images will dem-
onstrate low rank properties. Besides, such periodic signals
are also extremely sparse in the frequency domain. Here,
one can view the discrete Fourier transform as the counter-
part to the spectral decomposition in Equation (2) with a
known basis, i.e., the Fourier matrix. Ideally the Fourier
coefficients from the second slice to the last slice should all
be zeros. We can minimize the ‘1 norm of the Fourier coeffi-
cients to seek the optimal transformations

min
A;t

kFNAk1; s:t: D � t ¼ A; (8)

where FN denotes the Fourier transform in the third
dimension.

To understand the motivation of the Fourier transform
(FT) here, one can think of an extreme example of perform-
ing the Fourier transform on a constant vector (i.e., all the
elements in this vector are the same). In this case, only one
element of the Fourier coefficients will be non-zero, which
is a very sparse signal. This is due to the nature of FT, which
represent a signal in the frequency domain. So the more the
signal appears to repeat itself, the sparser the coefficients
will be.

The above model may perform poorly on practical cases
due to the corruptions and partial occlusions in the images.
Similar to the findings in [15], we assume the noise is negli-
gible in magnitude as compared to the error caused by
occlusions. Let E be the error tensor. We can separate it
from the image tensor if it is sparse enough and use the ‘1
norm to induce sparseness

min
A;E;t

kFNAk1; s:t: D � t ¼ Aþ E; kEk0 � k; (9)

where kEk0 counts the number non-zero entries in E and k is
a constant to constrain the sparseness. The nonconvexity
and nonsmoothness renders the ‘0-norm impractical for
real-world applications. Therefore, we use ‘1 norm to
encourage sparsity instead of the ‘0 norm

min
A;E;t

kFNAk1 þ �kEk1; s:t: D � t ¼ Aþ E; (10)

where � > 0 is a regularization parameter.
The above approach requires that the error E is sparse.

However, in many real-world applications, the images are
corrupted with spatially-varying intensity distortions. Exist-
ing methods such as RASL [15] and t-GRASTA [17] may fail
to separate these non-sparse errors. The last stage of our
method comes from the intuition that the locations of the
image gradients (edges) should be roughly keep the same,
even under severe intensity distortions. Therefore, we regis-
ter the images in the gradient domain

min
A;E;t

kFNAk1 þ �kEk1; s:t: rD � t ¼ Aþ E; (11)

where rD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrxDÞ2 þ ðryDÞ2

q
denotes the gradient ten-

sor along the two spatial directions. This is based on a mild
assumption that the intensity distortion fields of natural
images often change smoothly.

With this rationale, the input images can be sparsely rep-
resented in a three-stage architecture, which is shown in
Fig. 1. We call it hierarchical sparse representation of
images. Compared with existing popular low rank repre-
sentations [15], our modeling has two major advantages.
First, the low-rank representation treats each image as a 1D
signal, while our modeling exploits the spatial prior infor-
mation (piece-wise smoothness) of natural images. Second,
when the number of input images is not sufficient to form a
low rank matrix, our method is still effective. Next, we will
demonstrate how our method can register only two input
images.

3.2 Pair Mode

In this section, we turn to the registration problem of two
images, which is a special case of multiple image registra-
tion. In the pair registration case, we usually have one
image as the reference image and the goal is to register the
other image (usually called the source image) to the refer-
ence image. For registering a pair of images, our model can
be simplified and accelerated. After two-point discrete
Fourier transform (DFT) on the registered images, the first
entry is the sum and the second entry is the difference. The
difference term is much sparser than the sum term after
the two images have been registered. To better understand
the situation, suppose the gradient of two identical images,
if we sum them together, we will get the same number of
non-zero elements as the gradient of one image; on the other
hand, if we subtract one from the other, all the values
should be canceled out and we get a zero image, which is
much sparser than the summed result.

This property enables us to discard the sum term to
seek a sparser representation and only optimize on the dif-
ference term. Let I1 be the reference image, and I2 be the
source image to be registered. The problem (11) can be
simplified to
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min
A1;A2;E;t

kA1 �A2k1 þ �kEk1;

s:t: rI1 ¼ A1;rI2 � t ¼ A2 þ E:
(12)

Both ‘1 norms in (12) imply the same property, i.e., sparse-
ness of the residual image E. Therefore, we can further sim-
plify the above energy function

min
t

krI1 �rI2 � tk1: (13)

It’s interesting that (13) is equivalent to minimizing the total
variation of the residual image. TV has been successfully
utilized in many image reconstructions [38], [39] and non-
rigid registration [40] problems.

We compare the proposed similaritymeasurewith SSD [2],
RC [14], sum-of-absolute value (SAD) [2], correlation coeffi-
cient (CC) [36], CD2 [9], MS [37] andmutual information (MI)
[10] on a toy example. The Lena image is registered with
respect to the horizontal translations. The blue curves in Fig. 2
show the responses of different measures, all of which can
find the optimal alignment at the zero translation. After add-
ing intensity distortions and rescaling, the appearance of the
source image shown in Fig. 2b is not consistent with that of
the original Lena image. The results denoted by the red curves
show that only RC and the proposed pair mode can handle
this intensity distortion, while othermethods fail.

4 ALGORITHMS

4.1 Batch Mode

Problem (11) is difficult to solve directly due to the non-
linearity of the transformations t. We used the local first
order Taylor approximation for each image

rIt � ðtt þ~ttÞ 
 rIt � tt þ J t �~tt (14)

for t ¼ 1; 2; . . . ; N , where J t ¼ @
@z
ðrIt � zÞjz¼tt

2 Rw�h�p

when tt is defined by p parameters. The Tensor-Vector Prod-
uct of the last term is defined by:

Definition 1 (Tensor-Vector Product). The product of a ten-
sor A 2 Rn1�n2�n3 and a vector b 2 Rn3 is a matrix
C 2 Rn1�n2 . It is given by C ¼ A� b, where Cði;jÞ ¼Pn3

t¼1 Aði;j;tÞbðtÞ, for i ¼ 1; 2; . . . ; n1 and j ¼ 1; 2; . . . ; n2.

Based on this, the batch mode (11) can be rewritten as

min
A;E;~t

kFNAk1 þ �kEk1;

s:t: rD � t þ J �~t ¼ Aþ E;
(15)

This constrained problem can be solved by the augmented
Lagrange multiplier algorithm [15], [25]. The augmented
Lagrangian problem is to iteratively updateA; E;~t andY by

ðAkþ1; Ekþ1;~tkþ1Þ ¼ arg min
A;E;~t

LðA; E;~t;YÞ;

Ykþ1 ¼Yk þ mkhðAk; Ek;~tkÞ;
(16)

where k is the iteration counter and

LðA; E;~t;YÞ ¼ < Y; hðA; E;~tÞ > þkFNAk1
þ �kEk1 þ

m

2
khðA; E;~tÞk2F ;

(17)

where the inner product of two tensors is the sum of all the
element-wise products and

hðA; E;~tÞ ¼ rD � t þ J �~t �A� E: (18)

A common strategy to solve (16) is to minimize the function
against one unknown at one time. Each subproblem has a
closed form solution

Akþ1 ¼ F�1
N

�
T 1=mkðFNðrD � t þ J �~t þ 1

mk
Yk

� EkÞÞ
�

Ekþ1 ¼ T �=mk

�
rD � t þ J �~t þ 1

mk
Yk �Akþ1

�

~tkþ1
t ¼ J y

t �
�
Akþ1

ð:;:;tÞ þ Ekþ1
ð:;:;tÞ � rDð:;:;tÞ � t

� 1

mk
Yk

ð:;:;tÞ

�
; for t ¼ 1; 2; . . . ; N

(19)

where the T aðÞ denotes the soft thresholding operation with
threshold value a. In the third equation of (19), we use the
Tensor-Matrix Product and Tensor Transpose defined as
follows:

Fig. 2. A toy registration example with respect to horizontal translation using different similarity measures (SSD [2], RC [14], SAD [2], CC [36], CD2
[9], MS [37], MI [10] and the proposed pair mode). (a) The Lena image (128� 128). (b) A toy Lena image under a severe intensity distortion. Blue
curves show registration between (a) and (a); red curves show registration between (b) and (a).
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Definition 2 (Tensor-Matrix Product). The product of a
tensor A 2 Rn1�n2�n3 and a matrix B 2 Rn2�n3 is a vector
c 2 Rn1 . It is given by c ¼ A� B, where cðiÞ ¼

Pn2
j¼1

Pn3
t¼1

Aði;j;tÞBðj;tÞ, for i ¼ 1; 2; . . . ; n1.

Definition 3 (Tensor Transpose). The transpose of a tensor
A 2 Rn1�n2�n3 is the tensor AT 2 Rn3�n1�n2 .

The registration algorithm for the batch mode is summa-
rized in Algorithm 1. LetM ¼ w� h be the number of pixels
of each image. We set � ¼ 1=

ffiffiffiffiffi
M

p
and mk ¼ 1:25km0 in the

experiments, where m0 ¼ 1:25=krDk2. For the inner loop,
applying the fast Fourier transform (FFT) costs OðN logNÞ
for each pixel. All the other steps cost OðMNÞ. Therefore,
the total computation complexity of our method is
OðMNlogN þMNÞ, which is faster than OðN2MÞ when
applying SVD decomposition in RASL (ifM � N).

Algorithm 1. Image Registration via HSR - Batch Mode

Input: Images I1; I2; . . . ; IN , initial transformations
t1; t2; . . . ; tN , regularization parameter �.
repeat
1) Compute J t ¼ @

@z
ðrIt � zÞjz¼tt

, t ¼ 1; 2; . . . ; N ;

2) Warp and normalize the gradient images:

rD � t ¼ rI1 � t1
krI1 � t1kF

; . . . ;
rIN � tN

krIN � tNkF

� �
;

3) Use (19) to iteratively solve the minimization problem
of ALM:

A�; E�;~t� ¼ argminLðA; E;~t;YÞ;
4) Update transformations: t ¼ t þ~t�;

until Stop criteria

4.2 Pair Mode

Similar to that in the batch mode, we have

rI2 � ðt þ~tÞ 
 rI2 � t þ J �~t (20)

where J 2 Rw�h�p denotes the Jacobian. Thus, the pair
mode (13) is to minimize the energy function with respect
to~t

Eð~tÞ ¼ krI1 �rI2 � t � J �~tk1 (21)

The ‘1 norm in (21) is not smooth. We can have a tight
approximation for the absolute value: jxj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ �

p
, where

� is a small constant (e.g., 10�10). Let r ¼ rI1 �rI2 � t � J�
~t, and we can obtain the gradient of the energy function
by the chain rule

rEð~tÞ ¼ J T � rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r � rþ �

p (22)

where � denotes the Hadamard product. Note that the divi-
sion in (22) is element-wise.

Gradient descent with backtracking is used to minimize
the energy function (21), which is summarized in Algorithm
2. We set the initial step size m0 ¼ 1 and h ¼ 0:8. The compu-
tational complexity of each iteration isOðMÞ, which is much
faster than OðMlogMÞ in RC when fast cosine transform
(FCT) is applied [14]. Hierarchal estimation is used for both
rigid and non-rigid registration [41]. The function value is

calculated on the overlapped area of two images. Similar to
the batch mode, we used the normalized images to rule out
the trivial solutions. We used a coarse-to-fine hierarchical
registration architecture for both the batch mode and pair
mode.

Algorithm 2. Image Registration via HSR - Pair Mode

input: I1, I2, h < 1, t, m0.
repeat
1) Warp and normalize I2 with t;
2) m ¼ m0;
3) Compute~t ¼ �mrEð0Þ;
4) If Eð~tÞ > Eð0Þ,

set m ¼ hm and go back to 3);
5) Update transformation: t ¼ t þ~t;

until Stop criteria

4.3 Convergence and Optimality

The alternative optimization approach is a common practice
for solving difficult problems. Specifically, the original
problem is decomposed to a sequence of easier subpro-
blems and each subproblem is solved alternatively. The
properties of this approach have been extensively studied
and presented in the optimization literature. For example,
the batch mode of HSR is similar to the RASL [15] and can
be viewed as a Gauss-Newton method for optimizing a
composited objective of a nonsmooth function and a
smooth, nonlinear mapping. There are many existing stud-
ies on the convergence properties of these problems, and it
still an active research topic [42]. Here, we discuss the con-
vergence of our approach using the previous results of Jit-
torntrum and Osborne [43] and Cromme [44].

Given a problem of minimizing a composited function of
a norm k 	 k : Rn 7! R

min
x2Rp

kfðxÞk; (23)

where f : R 7! Rn is a C2 mapping. For the following itera-
tive algorithm

dk ¼ argmin
d2Rp

fðxkÞ þ
@f

@x
ðxkÞd

				
				

; (24)

xkþ1 ¼ xk þ dk; (25)

the authors of [43] and [44] demonstrated that if x� 2 Rp is a
strictly unique optima to problem (23), then the sequence of
(24) and (25) will have quadratic convergence to x�. The
concept of strictly unique is that

9a > 0;8d 2 Rp;

fðx�Þ þ @f

@x
ðx�Þd

				
				

� kfðx�Þk þ akdk:

(26)

In order to apply the results of [43] and [44] to our HSR
method, we need to demonstrate the connection of our
problem to (23). For the case of the batch mode, we need to
determine if the following equation is indeed a norm k 	 k.

kMk � min
M¼AþE

kFNAk1 þ �kEk1; (27)
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which is not hard to check kMk � 0, kMk ¼ 0 , M ¼ 0,
ktMk ¼ jtjkMk (for the linearity of Fourier transform and
‘1-norm). The triangle inequality follows from the convexity
of the function kFNAk1 þ �kEk1. Let the transformation t be
represented by unknown variables x. Then, we can define
fðxÞ � rD � t. Hence, the batch mode of HSR in (11) can be
regarded as solving the parameter x in (23) via iteration (24)
and (25). Hence, since the map x 7! fðxÞ is C2, the result of
[44] implies the quadratic convergence of the batch HSR.
For the pair mode HSR (13), a similar analysis can also be
applied. Although in general the manifolds of the trans-
formed images are most likely not C2, the transformed
image Ii � ti can be viewed as resampling transformations
[45] of a perfect bandlimited reconstruction Ii from the digi-
tal image Ii, in which case fðxÞ is smooth. One practical con-
cern is estimating the coefficient a in (26), which is still an
open problem in the literature. We will leave this to future
work and recommend [46] for more information.

5 EXPERIMENTAL RESULTS

In this section, we validate our method on a wide range of
applications. We compare our batch mode with RASL [15]
and t-GRASTA [17], and compare our pair mode with RC
[14] and SSD [2]. One of the most important advantages of
our method is its robustness and accuracy on natural
images under spatially-varying intensity distortions. As
shown in [14] and Fig. 2, SAD [2], CC [36], CD2 [9], MS [37],
MI [10] can easily fail in such cases. We do not include them
in the following experiments. All experiments were con-
ducted on a desktop computer with Intel i7-3770 CPU with
12 GB RAM.

First, we verified the accuracy and robustness on two
databases, both of which contain natural images captured
under different illumination conditions. We then compared
the accuracy of our method with RC on extensive synthetic
examples. Finally, we tested our method on real-world
multi-modal medical images and multi-sensor remotely
sensed images. For the batch mode evaluation, one most
important hyper-parameter is �, which controls the balance
between the tolerance of misalignment and the sparse error.
Its value depends on the data. Specifically, it reflect our
belief on the magnitude of the sparse error compared to the
other term. We experiment various values for � from
0:1=

ffiffiffiffiffi
M

p
to 1000=

ffiffiffiffiffi
M

p
and discover than the performance of

the proposed approach is quite robust to different �. There-
fore, in all the following experiments, we always fix
� ¼ 1=

ffiffiffiffiffi
M

p
without further tuning, where M is the number

of pixels.

5.1 Batch Image Registration

To evaluate the performance of our batch mode, we used a
popular database of naturally captured images in the VGG
viewpoint dataset [47]. We chose the four data sets with the
largest lighting variations: “NUTS”, “MOVI”, “FRUITS”
and “TOY”. These data sets are very challenging to register,
as they have up to 20 different lighting conditions and are
occluded by varying shadows. Random translations of both
directions were applied to the four data sets, which were
drawn from a uniform distribution in a range of 10 pixels.

After registration on the “NUTS” data set, the average of
perturbed images and results are shown in Fig. 3, where the
average image by the proposed method has significantly
sharper edges than those by the two existing methods. The
two components of each algorithm are shown in Fig. 4. RASL
[15] and t-GRASTA [17] failed to separate the shadows and
large errors; however, we were able to successfully find the
hierarchical sparse representation of the optimally registered
images. Since our model successfully captured the variances
in the variants like shadows (Fig. 4), we saw that the aligned
images inA (in our case the gradient of the images) lookmore
alike than the baseline approaches. The ability to capture the
variances is actually the key to forming good alignments.
The quantitative comparisons on the four data sets are listed
in Table 1 over 20 random runs. The overall average of errors
using our method was consistently lower than the average
erros using RASL and t-GRASTA. More importantly, only
our method can consistently achieve subpixel accuracy. For
20 images with a size of 128� 128 pixels, the registration time
is around 7 seconds for RASL and our method with the latter
slightly faster (roughly 0.5 second faster). The t-GRAST regis-
tration time was around 27 seconds. This might seem contra-
dictory to the previous complexity analysis. However, the
running time does not depend solely on computational com-
plexity but also depends on implementation skills that affect
the constant factor in the complexity. Since the N is small in
our case, it is reasonable that the proposed approach and
RASL have similar running times.

We evaluate these three methods on the Multi-PIE face
database [48]. This database contains 20 images of each sub-
ject captured under different illumination conditions. We
randomly initialized the transformations with rotations in a
range of 10� and translations in 10 pixels on the first 100
subjects from Session 1. After optimization, the resulted
transformations are expected to be the same, because the
original images are well aligned. As the optimal solution is
not unique (e.g., all images shift by 1 pixel), we compared
the standard derivation (STD) of the transformations after

Fig. 3. Registration results on the “NUTS” data set: (a) the original “NUTS” images, (b) the average image of perturbed images, (c) the average image
by RASL, (d) the average image by t-GRASTA, and (e) the average image by our method.

LI ETAL.: HIERARCHICAL SPARSE REPRESENTATION FOR ROBUST IMAGE REGISTRATION 2157

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 07,2020 at 00:58:10 UTC from IEEE Xplore.  Restrictions apply. 



registration. So ideally, the STD should be zero when all the
initial perturbations have been exactly removed. Fig. 5
shows the average registration results after over 20 runs for
each subject. We split each transformation parameter (i.e.,
rotation, x-axis translation and y-axis translation) to differ-
ent plots (Figs. 5b and 5d). Our method was more accurate
than RASL and t-GRASTA for almost every subject.

5.2 Pair Image Registration

5.2.1 Simulations

For quantitative comparisons, we evaluated SSD, RC and
the proposed method on the Lena image with random

intensity distortions (Fig. 2) and random affine transforma-
tions (with a similar range as shown in the previous set-
tings). The number of Gaussian intensity fields K is from 1
to 6. The reference image without intensity distortions was
used as ground-truth. The root-mean-square error (RMSE)
was used as the metric for error evaluation of both image
intensities and transformations. We ran this experiment 50
times and the results are plotted in Fig. 6. It can be observed
that the proposed method is consistently more accurate
than SSD and RC, with different intensity distortions. The
registration speed of our method is often faster than that of
RC. The average speed for the pair mode is 6.5 seconds per
registration on the brain image (216� 180) while that of RC
is 13.7 seconds per registration.

5.2.2 Multisensor Remotely Sensed Image Registration

Multisensor image registration is a key preprocessing oper-
ation in remote sensing, e.g., for image fusion [49] and
change detection. The same land objects may be acquired at
different times, under various illumination conditions by
different sensors. Therefore, it is very possible that the input

TABLE 1
Mean/Max Registration Errors in Pixels of RASL, t-GRASTA and

Our Method on the Four Lighting Data Sets.

RASL t-GRASTA Proposed

NUTS 0.670/2.443 1.153/3.842 0.061/0.488
MOVI 0.029/ 0.097 0.568/ 2.965 0.007/0.024
FRUITS 0.050/0.107 1.094/4.495 0.031/0.076
TOY 0.105/ 0.373 0.405/2.395 0.038/0.076

The first image is fixed to evaluate errors.

Fig. 5. (a) An example input of the Multi-PIE image database, (b) STD
(in degrees) of rotations after registration, (c) STD (in pixels) of
X-translation after registration, and (d) STD (in pixels) of Y-translation
after registration.

Fig. 6. Registration performance comparisons with random transforma-
tion perturbations and random intensity distortions: (a) intensity RMSE
on the Lena image and (b) transformation (affine) RMSE on the Lena
image.

Fig. 4. Batch image registration on the NUTS data sets: (a) low rank
component by RASL, (b) sparse errors by RASL, (c) subspace represen-
tation by t-GRASTA, (d) sparse errors by t-GRASTA, (e) visualization of
A by our method and (f) sparse error E by our method.
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images have significant dissimilarity in terms of intensity
values. Here, we register a panchromatic image to a multi-
spectral image acquired by the IKONOS multispectral
imaging satellite [50], which has been pre-registered at their
capture resolutions. The multispectral image has four
bands: blue, green, red and near-infrared, with four meter
resolutions (Fig. 7a). The Pan image has a 1-meter resolution
(Fig. 7b). The different image resolutions make this problem
more difficult. From the difference image in Fig. 7c, we can

observe that there exists misalignment in the northwest
direction.

We compare our method with SSD [2] and RC [14], and
the results are shown in Figs. 7d–f. It is assumed that the true
transformation is formed by pure translation. Although we
do not have the ground-truth, from the difference image, it
can be clearly observed that our method can reduce the
misalignment. The difference in images of the baseline
approaches demonstrate some “bright” areas, which means
the difference of these areas between the reference image
and the source image is big. On the other hand, the difference
in images of our approach looks darker, which means the
errors are smaller. In contrast, SSD and RC were not able to
find better alignments than the preregistration method. For
this experiment, running time is 1.8 second for SSD, 5.2
second for RC and 3.4 second for the proposedHSR.

We registered an aerial photograph to a digital ortho-
photo. The reference image is the orthorectified MassGIS
georegistered orthophoto [51]. The source image is a digital
aerial photograph, which does not have any particular
alignment or registration with respect to the earth. The
input images and the results are shown in Fig. 8. MATLAB
uses manually selected control points for registration, while
RC and our registrations are automatic. At the first glance,
all the methods obtained registration with good quality. A
closer look shows that our method has a higher accuracy
than the others. In the source image, two lanes can be clearly
observed in streets A and B. After registration and composi-
tion, Street B in the result by MATLAB and Street A in the
result by RC are blurry due to the misalignment. Our
method is robust to the local mismatches of vehicles.

5.3 Face Alignment and Verification in the Wild

We evaluated the performance of SSD, RC and the proposed
HSR on face images from the LFW dataset [52]. The faces for
each subject were captured at different times and locations,
with significant appearance inconsistency. In addition, the
various expressions on the face make this problemmore dif-
ficult. To handle such diversity, most existing methods
require a batch of images as the inputs [15], [16], [53]. Then
they can exploit the underlying structures of the image set,
e.g., low rank. However, a few of them can be applied for
the registration of only two images. A few methods could

Fig. 7. Registration of amultispectral image and a panchromatic image: (a)
reference image, (b) source image, (c) difference in image before registra-
tion, (d) difference in image by SSD, (e) difference in image by RC, and (f)
difference in image by our method. Visible misalignments are highlighted
by the yellow circles. Best viewed in�2 sized color pdf file.

Fig. 8. Registration of an aerial photograph and a digital orthophoto. From left to right, the images are: the reference image, the source image, the
overlay by MATLAB, the overlay by RC and the overlay by our method. The second row shows the zoomed-in areas of streets A and B. Best viewed
in �2 sized color pdf file.
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be used to align these images, but they require a batch of
images as the inputs [15], [16], [53]. Therefore, they cannot
be applied here for two-image based registration.

In order to provide quantitative analysis, we follow the
setting of [53] and conduct an experiment on face verifica-
tion. We measure the verification accuracy using View 1 of
LFW. We implement a variant of Cosine Similarity Metric
Learning (CSML) [54], which is also used in [53]. Each pair
of images are aligned separately using pair alignment
approaches. For preprocessing, whitening PCA is used to
reduce the representation dimension to 500. Then the fea-
ture vector is normalize for each image. A linear SVM is
applied to the each pair of image by combining the feature
vectors using element-wise multiplication. For simplicity,
we only used single image feature, the square root LBP fea-
tures [53], [54] on 150 � 80 cropping of the full LFW images.
Table 2 shows the results. The original column means the
accuracy of CSML on unaligned images. Both RC and
the proposed HSR have achieved better performance than
the unaligned version, while the proposed HSR performs
the best. SSD, however, achieves a suboptimal performance
than the original one. This effect can be validate on some
examples in Fig. 9, where SSD cannot capture the misalign-
ment hence will lead to unreasonable distortion. We have
also demonstrate this effect in Fig. 2. Here, we do not mean
HSR is more accurate than the batch alignment methods
[15], [16], [53]. However, when the number of images is lim-
ited, our method could be an alternative.

6 NON-RIGID TRANSFORMATION

In many real world applications, the deformation is not
always rigid. An example would be images with local
motions or other smooth deformations, such as changes in
facial expressions or organ motion in medical imaging. In
these cases, non-rigid registration is required. For this prob-
lem, we use the free form deformation (FFD) transformation
with B-spline control points [55], [56]. The basic idea behind
the FFD is to model the underlying deformation as a mesh
of control points. Suppose I1 is the reference image, and I2
is the source image to be registered. Let Iða; bÞ be the pixel
value in the position ða; bÞ. The problem is to find the non-
rigid transformation T : ða; bÞ 7! ða0; b0Þ. Also, let the domain
of the image volume be V ¼ fða; bÞj0 � a < w; 0 � b < hg
and let f be the n1 � n2 mesh of control points fi;j with uni-
form spacing d. Then the transformation on the image can
be formulated as

I � Tðx; yÞ ¼
X3
k¼0

X3
l¼0

BkðuÞBkðvÞfiþk;jþl; (28)

where i ¼ ba=n1c � 1; j ¼ bb=n2c � 1; u ¼ a=n1 � ba=n1c; v ¼
b=n2 � bb=n2c and Bl represents the l uniform cubic B-Spline
basis functions.

The nonrigid B-spline FFD model is much more flexible
than the affine transformation. The control points F are the
parameters that need to be solved for the B-spline FFD. For
a 10� 10 mesh grid of control 2-D points, a B-Spline FFD
has 200 degrees of freedom (DoF), which is much more than
the affine transformation (DoF = 6) on the 2-D image. There-
fore, with higher DoF, the non-rigid model is more flexible
and can handle more subtle local motions. The price for this
flexibility is computational complexity. The higher the DoF,
the longer it takes to compute the solution. For all the
experiments below, we set d ¼ 8 and use coarse-to-fine hier-
archical registration architecture.

With the FFD model, we can plug T into (13) and obtain
our hierarchical sparse algorithm for non-rigid transforma-
tion. In order to avoid unnatural wraps, we impose an Euclid-
ean loss upon the neighboring displacements of B-spline
control points. The resulting formulation is listed below:

min
T

krI1 �rI2 � Tk1 þ
�

2
krT�rT0k2F ; (29)

where T0 is the initial configuration of the control points
(i.e., the uniform spacing grid). Algorithm 2 can still be
used to solve (29) with only a small modification of adding
a term for the gradient regarding the regularization term.

7 EXPERIMENT RESULTS FOR NON-RIGID

REGISTRATION

7.1 BrainWeb Dataset

To evaluate the performance of the proposed method in
non-rigid transformed cases, we first conducted a simula-
tion on a brain MRI image from the BrainWeb dataset [57].
The source image is warped by a non-rigid transformation,
perturbed from random zero-mean Gaussians with three
pixels standard deviation. We added a few Gaussian

TABLE 2
Unconstrained Face Verification Accuracy on View 1 of LFW
Using Images Produced by Different Alignment Algorithms

Original SSD RC Proposed

Accuracy 0.742 0.726 0.755 0.759

Fig. 9. Face alignment results on the LFW data set [52]. Left to right: the
input images, the warped results by SSD, RC and HSR, the overlays by
SSD, RC and HSR.
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intensity fields to simulate the distortion and rescaled the
images to [0,1]. Fig. 10 shows the input images and results
by RC [14] and the proposed method. SSD is not compared
in non-rigid registration, as it always failed although differ-
ent settings were tried. Both results are very close to ground
truth. A visible artifact can be observed in the image recov-
ered by RC, which is highlighted by the blue circle. The esti-
mated transformation by our method is smoother, and
closer to the Gaussion perturbations. The corresponding
gradient images are shown in the second row. Despite sig-
nificant intensity differences, we were still able to find good
similarity in the image gradients after registration. We also
ran this experiment 50 times and show the RMSE in Fig. 11,
where the proposed method is consistently outperform RC,
with different intensity distortions (similar to Fig. 6). This
figure successfully interprets our motivation of registration
in the gradient domain. Under this severe intensity distor-
tion, our method proved to be more accurate than RC for
recovering image details.

7.2 Multimodal Medical Image Registration

We further validated the performance of different methods
on real-world medical images. Temporal and multimodal
registration procedures were performed on two retina
images taken two years apart [58].We call this the Retina data-
set. The reference image and source image are shown in
Figs. 12a and b. These retina images were quite difficult to
register with intensities. In order to avoid local minimum,
we used affine transformation for preregistration and the
result is shown in Fig. 12c. From the overlay in Fig. 12d, we
observed that misalignments still existed for the vessels at
the bottom half of the overlay. A local error was found in the
RC results, while ourmethod eliminated themisalignments.

The proposedmethod is comparedwith RC on two images
from a iris video sequence [14] (shown in Fig. 13). The defor-
mation between the source image and reference image is

highly nonlinear. The intensity artifact in the source image
makes this problem more challenging. The overlay without
registration is shown in Fig. 13c using green andmagenta col-
ors. The vessels are blurry due to themisalignment. After reg-
istration, both RC and the proposed method provided
accurate alignments on the vessels. However, the image regis-
tered by RC was partially distorted due to severe intensity
variance. For speed comparison, our approach ran 8 seconds
in this experiment, while RC ran 12 seconds.

8 CONCLUSION AND DISCUSSION

In this article, we proposed a novel similarity measure for
robust and accurate image registration. It was motivated by

Fig. 10. Synthetic experiment with non-rigid transformation: (a) refer-
ence image, (b) source image with intensity distortion, (c) registration
result by RC, (d) registration by our method, (e) transformation esti-
mated by RC, and (f) transformation estimated by our method. Best
viewed in a �2 sized color pdf file.

Fig. 11. Registration performance comparisons with random transforma-
tion perturbations and random intensity distortions: (a) intensity RMSE
on the brain image and (b) transformation (non-rigid) RMSE on the brain
image.

Fig. 12. Registration of two retina images [58]: (a) reference image, (b)
source image, (c) source image after affine preregistration, (d) overlay
before registration, (e) overlay after registration by RC, and (f) overlay after
registration by our method. Visual artifact is highlighted by the blue circle.
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hierarchical sparse representation of optimally registered
images. The benefit of the proposed method is three fold: (1)
Compared with existing approaches, it can handle severe
intensity distortions and partial occlusions simultaneously;
(2) it can be used for registration of two images or a batch of
images with various types of transformations; (3) its low
computational complexity makes it scalable to large data sets.
We conducted extensive experiments to test our method on
multiple challenging data sets. The promising results demon-
strate the robustness and accuracy of our method over the
state-of-the-art batch registration methods and pair registra-
tion methods, respectively. We also show that our method
can be used to reduce registration errors in many real-world
applications.

Due to the local linearization in the optimization, our
method as well as all the compared methods cannot han-
dle large transformations. However, this is not a big issue
for many real-world applications. For example, the
remotely sensed images can be coarsely georegistered by
their geographical coordinates. For images with large
transformations, we can use the FFT-based algorithm [11]
to coarsely register the images and then apply our
method as a refinement. Therefore, we did not test the
maximum amount of transformations that our method
can handle. So far, the proposed method can only be used
for offline registration. How to extend this method to the

online mode has been targeted as an excellent topic for
future research.
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