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Abstract—Recently with the explosive growth of visual content on the Internet,

large-scale image search has attracted intensive attention. It has been shown that

mapping high-dimensional image descriptors to compact binary codes can lead to

considerable efficiency gains in both storage and performing similarity computation

of images. However, most existing methods still suffer from expensive training

devoted to large-scale binary code learning. To address this issue, we propose

a sub-selection based matrix manipulation algorithm, which can significantly

reduce the computational cost of code learning. As case studies, we apply the

sub-selection algorithm to several popular quantization techniques including

cases using linear and nonlinear mappings. Crucially, we can justify the resulting

sub-selective quantization by proving its theoretic properties. Extensive

experiments are carried out on three image benchmarks with up to one million

samples, corroborating the efficacy of the sub-selective quantization method in

terms of image retrieval.

Index Terms—Feature quantization, dimensionality reduction, image search,

image retrieval, large-scale machine learning
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1 INTRODUCTION

THE explosive growth of the Internet has brought about great
opportunities as well as challenges to information technology
research. The number of webpages on the World Wide Web has
surpassed the trillion level. More than 5 billion images have been
uploaded to Flickr with an uploading rate of over 3,000 images per
minute. On the other hand, roughly more than 100 hours of videos
are uploaded to YouTube per minute. The rapid growth of the size
of data boosts the need of scalable techniques for handling large-
scale data sets. One of the most interesting and important problem
is Content-Based Image Retrieval (CBIR) on large-scale data sets.
This problem can be modeled as similarity search under some pre-
defined distance metrics.

Similarity search has served as a fundamental technique used in
many vision-related applications including object recognition [1],
[2], image retrieval [3], [4], image matching [5], [6], etc. It is a related
problem of nearest neighbor search (NNS) [7]. The naive solution to
NNS is exhaustively comparing a query point with each sample in
the database. Suppose that there are N data points in a database.
The time complexity will be linear OðNÞ, which is impractical for
many real-world applications on large-scale data sets. Another chal-
lenge of performing machine learning and data mining algorithms
on a large-scale data set is the curse of dimensionality [8], since multi-
media data is usually represented by features vectors with tens
of thousands of dimensions. The volume and dimensions of large-
scale data sets have led to challenges in both space and time.
In order to achieve sublinear time and space algorithms for NNS,
Approximate Nearest Neighbors (ANN) approaches are proposed,
which sacrifice a small fraction of effectiveness to achieve higher

efficiency, such as logarithmic (OðlogNÞ), or even constant (Oð1Þ)
query time. One popular family is the tree-based indexing app-
roaches, which include KD tree [9], ball tree [10], metric tree [11],
and vantage point tree [12]. However, there are also drawbacks of
these tree-based approaches. One is the high storage requirement,
and the other is the inefficiency in handling high-dimensional data.

To this end, mapping high-dimensional image descriptors to
compact binary codes has been suggested, leading to considerable
efficiency gains in both storage and similarity computation of images.
The reason is simple: compact binary codes are much more efficient
to store than floating-point feature vectors. Meanwhile, similarity
based on Hamming distances between binary bits is much easier to
compute than euclidean distances between real-valued features.

The benefits of binary encoding, also known as Hashing and
Quantization, have motivated a tremendous amount of research in
binary code generation such as [13], [14], [15], [16], [17] [18], [19],
[20], [21], [4], [22], [23], [24], [25], [6], [26], [27], [28], [29], [30], [31],
[32], [33]. A thorough survey is beyond the scope of this paper,
interested readers could refer to [27]. Common in many methods,
the first step of binary encoding leverages a linear mapping to proj-
ect original features in high dimensions to lower dimensions. The
representatives include Locality Sensitive Hashing (LSH) [13],
Spectral Hashing (SH) [18], PCA Quantization (PCAQ) [4], Iterative
Quantization (ITQ) [20], and Isotropic Hashing (IsoH) [34]. LSH
uses random projections to form linear mapping, which is catego-
rized into data-independent approaches since the used coding (hash)
functions are fully independent of training data. Although learn-
ing-free, LSH requires long codes to achieve satisfactory accuracy.
In contrast, data-dependent approaches can obtain high-quality com-
pact codes by learning from training data. Specifically, PCAQ
applies PCA to project input data onto a low-dimensional sub-
space, and then simply thresholds the projected data to generate
binary bits each of which corresponds to a single PCA projection.
Following PCAQ, SH, ITQ, and IsoH, all employ PCA to acquire
low-dimensional data embedding, and then propose different post-
processing schemes to produce binary bits. A common drawback
of the above learning-driven binary encoding methods is the
expensive computational cost of matrix manipulations.

In this paper, we demonstrate that the most time-consuming

matrix operations encountered in code learning, typically data pro-

jection and rotation, can be performed in a more efficient manner.

To this end, we propose a fast matrix multiplication algorithm using

a sub-selection [35] technique to accelerate the learning of coding

functions. Our algorithm is motivated by the observation that the

degree of algorithm parameters is usually very small compared to

the number of entire data samples. Therefore, we are able to deter-

mine these parameters by merely using partial data samples. This

result is closely related to thematrix sketching for computation [36].
The contributions of this paper are fourfold: (1) To handle large-

scale data, we propose a sub-selection based matrix multiplication
algorithm and demonstrate its benefits theoretically. (2) We
develop two fast quantization methods PCAQ-SS and ITQ-SS by
combining the sub-selective algorithm with PCAQ and ITQ. (3) We
also extend our approaches from linear embedding to non-linear
kernel cases with two new approaches. (4) Extensive experiments
are conducted to validate the efficiency and effectiveness of the
proposed sub-selective quantization approaches, which indicate
that these approaches can achieve acceleration up to 30 times in
binary code learning yet with an imperceptible loss of accuracy.

This paper is an extended version of the work initially pub-
lished in AAAI 2014 [37]. This paper differs greatly from the con-
ference paper with additions that include: 1) Improved methods:
Feature embedding has been extended from linear to nonlinear
using a kernel trick with two new kernelized binary encoding
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approaches proposed. 2) More extensive experiments: New studies
have been developed to the application of the sub-selection tech-
nique on the kernelized binary encoding approaches and we have
included more experimental results to better demonstrate the
computational efficiency and scalability of our method. 3) Clearer
explanation: The proposed sub-selective quantization approaches
and related techniques are further explained in more details.

2 BACKGROUND AND RELATED WORK

Before describing our methods, we will briefly introduce the binary
code learning problem and two popular approaches.

Binary Encoding. Is trying to seek a coding functionwhichmaps a
feature vector to short binary bits. Let X 2 Rn�d be the matrix of
input data samples, and the ith data sample xi 2 R1�d be the ith row
inX. In addition,X is made to be zero-centered. The goal is then to
learn a binary code matrixB 2 f�1; 1gn�c, where c denotes the code
length. The coding functions of several hashing and quantization
methods can be formulated into hkðxÞ ¼ sgnðxpkÞ (k ¼ 1; . . . ; c),
where pk 2 Rd and the sign function sgnð�Þ is defined as: sgnðvÞ ¼ 1
if v > 0, sgnðvÞ ¼ �1 otherwise. Hence, the coding process can be
written as B ¼ sgnðXP Þ, where P ¼ ½p1; � � � ; pc� 2 Rd�c is the projec-
tionmatrix.

PCA Quantization. [4] finds a linear transformation P ¼ W that
maximizes the variance of each bit and makes the c bits mutually
uncorrelated. W is obtained by running a Principal Components
Analysis (PCA). Let ½W;L� ¼ eigð�; cÞ be a functionwhich returns the
first c eigenvalues in a diagonal matrix S 2 Rc�c and the correspond-
ing eigenvectors as columns of W 2 Rd�c. The whole procedure is
summarized in Algorithm 1. While it is not a good coding method,
its PCA step has beenwidely used as an initial step ofmany sophisti-
cated coding methods. However, the computation of PCA involves
multiplication with the high-dimensional matrix X, which con-
sumes a considerable amount of memory and computation time.
Wewill address the efficiency issue of PCAQ in next section.

Algorithm 1. PCA Quantization (PCAQ)

1: Input: Zero-centered dataX 2 Rn�d, code length c.
2: Output: B 2 f�1; 1gn�c,W 2 Rd�c.
3: cov ¼ XTX;
4: ½W;L� ¼ eigðcov; cÞ;
5: B ¼ sgnðXWÞ.

Iterative Quantization. [20] improves the quality of PCAQ by iter-
atively finding the optimal rotation matrix R on the projected data
to minimize the quantization error. This is done through finding
an appropriate orthogonal rotation by minimizing

QðB;RÞ ¼ kB� VRk2F ; (1)

where V ¼ XW is the PCA projected data. This equation is mini-
mized using spectral clustering like the iterative quantization pro-
cedure [38]. The whole procedure is summarized in Algorithm 2,
where svdð�Þ indicates a singular value decomposition. The ITQ
method converges in a small number of iterations and is able to
achieve high-quality binary codes compared with state-of-the-art
coding methods. However, it involves not only multiplication with
high-dimensional matrices (e.g., XTX and BTV ) in the PCA step,
but also those inside each quantization iteration, which makes
it very slow in training. In next section, we will propose a method
to overcome this drawback while preserving almost the same level
of coding quality.

3 METHODOLOGY

According to our previous discussion, the common bottleneck of
many existing methods is high dimensional matrix multiplication.
However, dimensions of the product of these multiplication is

relatively small. This motivated us to search for good approxima-
tion of those products using a subset of data, which resulted in our
sub-selective matrix multiplication approach.

Algorithm 2. Iterative Quantization (ITQ)

1: Input: Zero-centered data X 2 Rn�d, code length c, iteration
number N .

2: Output: B 2 f�1; 1gn�c,W 2 Rd�c.
3: cov ¼ XTX;
4: ½W;L� ¼ eigðcov; cÞ;
5: V ¼ XW ;
6: initialize R as an Orthogonal Gaussian Random matrix;
7: for k ¼ 1 toN do
8: B ¼ sgnðVRÞ;
9: ½S;L; Ŝ� ¼ svdðBTV Þ;
10: R ¼ ŜST ;
11: end for
12: B ¼ sgnðVRÞ.

3.1 Sub-Selective Matrix Multiplication

The motivation behind sub-selective multiplication can be
explained intuitively using data distribution. First of all, the rank r

of the data matrixX is much smaller than nwhen d � n. Hence, all
samples can be linearly represented by a small subset of all. In previ-
ous discussion, the quantization algorithms were set up to learn the
parameters, i.e., W and R, that can transform data distribution
according to specific criteria (e.g., variances). If data have close to
uniform distribution, then a sufficient random subset can represent
the full set well enough. Therefore we can find those parameters by
solving the optimization problems in the selected subsets.

We begin with introduction to the notations of sub-selection.
Let V � f1; . . . ; ng denote the indexes of selected rows of matrix
ordered lexicographically and jVj ¼ m denote the cardinality of V.
With the same notations as Section 2, the sub-selection operation
onX can be expressed asXV 2 Rm�d that consists of the row subset
of X. For easy understanding we can consider XV as IVX where X
is multiplied by a matrix IV 2 f0; 1gm�n that consists of random
row subset of the identify matrix In.

With sub-selection operation for matrix Y 2 Rn�d1 and
Z 2 Rn�d2 where d1; d2 � n, sub-selective multiplication uses
n
m Y T

V ZV to approximate Y TZ. Moreover, for a special case Y TY , its
sub-selection approximation is n

m Y T
V YV. The complexity of multipli-

cation is now reduced from Oðnd1d2Þ toOðmd1d2Þ. Before we apply
this method to binary quantization, we will first check to see if it’s
theoretically sound.

We will prove an error bound for sub-selective multiplication.
Before providing our analysis, we first introduce a key result
(Lemma 3.1 below) that will be crucial later analysis.

Lemma 3.1 (McDiarmid’s Inequality [39]). Let X1; . . . ; Xn be
independent random variables, and assume f is a function for which
there exists ti, i ¼ 1; . . . ; n satisfying

sup
x1;...;xn;x̂i

fðx1; . . . ; xnÞ � fðx1; . . . ; x̂i; . . . ; xnÞj j 	 ti; (2)

where x̂i indicates replacing the sample value xi with any other of its
possible values. Call fðX1; . . . ; XnÞ :¼ Y . Then for any � > 0,

P Y 
 E½Y � þ �½ � 	 exp
�2�2Pn
i¼1 t

2
i

� �
(3)

P Y 	 E½Y � � �½ � 	 exp
�2�2Pn
i¼1 t

2
i

� �
: (4)
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Lemma 3.2 (Noncommutative Matrix Bernstein Inequality
[40], [41] version 2). Let X1; . . . ; Xm be independent zero-mean
random matrices of dimension d1 � d2. Suppose g ¼ maxfkE
½Pm

k¼1 XkX
T
k �k2; kE½

Pm
k¼1 X

T
k Xk�k2g and kXkk 	 M almost surely

for all k, where k � k2 is the matrix ‘2-norm (a.k.a. spectral norm).
Then for any t > 0,

P k
Xm
k¼1

Xkk2 > t

" #
	 ðd1 þ d2Þexp �t2=2

g þMt=3

� �
(5)

Let U be an n� rmatrix whose columns span the r-dimensional
subspace S. Let PS ¼ UðUTUÞ�1UT denotes the projection operator
onto S. The “coherence” [42] of U is defined as

mðSÞ :¼ n

r
maxjkPSejk22; (6)

where ej represents a standard basis element. mðSÞ measures the
maximum magnitude attainable by projecting a standard basis ele-
ment onto S. Note that 1 	 mðSÞ 	 n

r. Let z ¼ ½kU1k2; . . . ;
kUik2; . . . ; kUnk2�T 2 Rn, where each element of z is l2-norm of one
row in U . Thus, based on “coherence”, we define “row coherence” to
be the quantity

fðSÞ :¼ mðzÞ: (7)

By plugging in the definition, we have fðSÞ ¼ nkUk22;1
kUk2F

, where k � k2;1
means first compute the l2-norm of each row then compute

l1-norm of the result vector.

The key contribution of this paper is the following two theo-
rems that form the analysis of bounds to sub-selective matrix mul-
tiplication. We start from the special case Y T

V YV.

Theorem 3.1. Suppose d > 0, Y 2 Rn�d and jVj ¼ m, then

ð1� a1Þm
n
kY k2F 	 kYVk2F 	 ð1þ a1Þm

n
kY k2F ; (8)

with probability at least 1� 2d, where a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f1ðY Þ2

m log ð1
d
Þ

q
and

f1ðY Þ ¼ nkY k22;1
kY k2F

.

Proof. We use McDiarmid’s inequality from Lemma 3.1 for the
function fðX1; . . . ; XmÞ ¼

Pm
i¼1 Xi to prove this. Set Xi ¼Pd

j¼1 jYVðiÞ;jj2. Since
Pd

j¼1 jYVðiÞ;jj2 	 kY k22;1 for all i, we have

Xm
i¼1

Xi �
X
i 6¼k

Xi � X̂k

�����
����� ¼ Xk � X̂k

�� �� 	 2kY k22;1: (9)

We first calculate E½Pm
i¼1 Xi� as follows. Define Ifg to be the

indicator function, and assume that the samples are taken uni-

formly with replacement

E
Xm
i¼1

Xi

" #
¼ E

Xm
i¼1

Xd
j¼1

jYVði;jÞj2
" #

¼
Xm
i¼1

E
Xn
k¼1

Xd
j¼1

jYk;jj2IfVðiÞ¼kg

" #" #
¼ m

n
kY k2F :

(10)

Invoking the Lemma 3.1, the left hand side is

P
Xm
i¼1

Xi 	 E
Xm
i¼1

Xi

" #
� �

" #
¼ P

Xm
i¼1

Xi 	 m

n
kY k2F � �

" #
: (11)

We can let � ¼ a1
m
n kyk2F and then this probability is bounded

by

exp
�2a2

1ðmnÞ2kY k4F
4mkY k42;1

 !
: (12)

Thus, the resulting probability bound is

P kYVk2F 
 ð1� a1Þm
n
kY k2F

h i

 1� exp

�a2
1mkY k4F

2n2kY k42;1

 !
: (13)

Substituting our definitions of f1ðY Þ ¼ nkY k22;1
kY k2F

and

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f1ðY Þ2

m log ð1
d
Þ

q
shows that the lower bound holds with

probability at least 1� d. The argument for the upper bound

can be proved similarly. The theorem now follows by applying

the union bound. tu
Now we analyze the property of general case Y T

V ZV.

Theorem 3.2. : Suppose d > 0, Y 2 Rn�d1 , Z 2 Rn�d2 and jVj ¼ m,
then

kY T
V ZV �m

n
Y TZk2 	 b

m

n
kY TZk2; (14)

with probability at least 1� d, where M ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1d2mðSY ÞmðSZÞ=n2

p
,

g ¼ m
4nM

2 and d ¼ ðd1 þ d2Þexpð
�bm

2

n2
kY T Zk22=2

m
4nM

2þMbmnkY T Zk2=3
Þ.

Proof. This theorem can be proved by involving Noncommutative

Matrix Bernstein inequality. Let Si ¼ E½Y T
VðiÞZVðiÞ� 2 Rd1�d2 for

i 2 f1; . . . ;mg, where VðiÞ denotes the ith sample index,

YVðiÞ 2 Rd1�1 and ZVðiÞ 2 Rd2�1. First, we have Si ¼ E

Y T
VðiÞZVðiÞ

h i
¼ E

Pn
j¼1 YjZjIfVðiÞ¼jg

h i
¼Pn

j¼1 YjZj
1
n ¼ 1

n Y
TZ:.

That means Si is actually independent of index i. Therefore, later

on we will use S ¼ E½Y T
VðiÞZVðiÞ� ¼ 1

n Y
TZ to denote these expect-

ations. LetXi ¼ Y T
VðiÞZVðiÞ � S. Obviously, we have E½Xi� ¼ 0.

Then, we compute the upper bound of kXik2
kXik2 ¼ kY T

VðiÞZVðiÞ � Sk2 	 kY T
VðiÞZVðiÞk2 þ kSk2

	 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1d2mðSY ÞmðSZÞ=n2

p
¼ M:

(15)

Next, we bound kY T
VðiÞZVðiÞk2 for all i. Observe that

kYVðiÞkF ¼ kY Teik2 ¼ kPSY eik2 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1mðSY Þ=n

p
by assumption,

where SY refers to the subspace span by Y . Likewise, we have
kZVðiÞkF 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2mðSZÞ=n
p

, where SZ refers to the subspace span
by Z. Thus,

kY T
VðiÞZVðiÞk2 	 kY T

VðiÞZVðiÞkF 	 kYVðiÞkFkZVðiÞkF
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1d2mðSY ÞmðSZÞ=n2

p
:

(16)

Now we compute the bound of kE½Pm
k¼1 XkX

T
k �k2

kE½
Xm
k¼1

XkX
T
k �k2

¼ kE½
Xm
k¼1

ðY T
VðiÞZVðiÞ � SÞðY T

VðiÞZVðiÞ � SÞT �k2

¼ k
Xm
k¼1

E½Y T
VðiÞZVðiÞZT

VðiÞYVðiÞ� � SSTk2

	 max k
Xm
k¼1

E½Y T
VðiÞZVðiÞZT

VðiÞYVðiÞ�k2; mkSSTk2
( )

	 m

n
d1d2mðSY ÞmðSZÞ=n2 ¼ m

4n
M2:

(17)

Therefore, let M ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1d2mðSY ÞmðSZÞ=n2

p
, g ¼ m

4nM
2 and

t ¼ bm
n kY TZk2. Applying the Noncommutative Matrix
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Bernstein Inequality, we have

P kY T
V ZV �m

n
Y TZk2 	 b

m

n
kY TZk2

h i
	 1� d; (18)

where d ¼ ðd1 þ d2Þexp
�bm

2

n2
kY T Zk22=2

m
4nM

2þMbmnkY T Zk2=3

� �
. tu

The above two theorems prove that the product of sub-selective
multiplication will be very close the original product of full data
with high probability.

3.2 Case Studies

3.2.1 Unsupervised Sub-Selective Quantization

With the theoretical guarantee, we are now ready to apply sub-
selective multiplication on existing quantization methods, i.e.,
PCAQ [4] and ITQ [20]. A common initial step for each of them is
PCA projection (e.g., Algorithms 1 and 2). The time complexity for
matrix multiplication XTX is Oðnd2ÞÞ when d < n. For large n,
this step could take up a considerable amount of time. Hence, we
can approximate it by 1

mXT
VXV, which is surprisingly the covari-

ance matrix of the selected samples. From a statistics point of view,
this could be intuitively interpreted as using the variance matrix of
a random subset of samples to approximate the covariance matrix
of full ones when the data is redundant. Now the time complexity
is only Oðmd2Þ, wherem � n in a large data set. For ITQ, the learn-
ing process includes dozens of iterations to find rotation matrix R
(Algorithm 2 line 7 to 11). We approximate Rwith R̂ ¼ SrSl, where
SlLSr ¼ BT

VVV is the SVD of BT
VVV: BV and VV are a sub-selection

version of B and V in Algorithm 2 respectively. The time complex-
ity of compute R is reduced from Oðnc2Þ to Oðmc2Þ.

By replacing corresponding steps in original methods, we get
two sub-selective quantization methods corresponding to PCAQ
and ITQ, which are named PCAQ-SS, ITQ-SS. ITQ-SS is summa-
rized in Algorithm 3. PCAQ-SS is the same as first 5 lines in Algo-
rithm 3 plus one encoding step B ¼ sgnðV Þ. It is omitted because
of the page limits. Complexity of original ITQ is
Oðnd2 þ ðpþ 1Þnc2Þ. In contrast, complexity of ITQ-SS is reduced
to Oðmd2 þ pmc2 þ nc2Þ. The acceleration can be seen more clearly
in the experimental results in the next section.

Algorithm 3. ITQ with Sub-Selection (ITQ-SS)

Input: Zero-centered data X 2 Rn�d, code length c, iteration
number p.
Output: B 2 f�1; 1gn�c,W 2 Rd�c.

1) Uniformly randomly generate V � ½1 : n�;
2) XV ¼ V�X;
3) cov ¼ XT

VXV;
4) ½W;L� ¼ eigðcov; cÞ;
5) V ¼ XW ;
6) Initialize R as an orthogonal Gaussian random matrix;

for k ¼ 1 to p do
uniformly randomly generate V � ½1 : n�;
compute VV;
BV ¼ sgnðVVRÞ;
½S;L; Ŝ� ¼ svdðBT

VVVÞ;
R ¼ ŜST ;

end for
7. B ¼ sgnðVRÞ.

3.2.2 Kernelized Sub-Selective Quantization

The previous discussions are limited to linear embedding of the
data. Here we will extend our case studies to nonlinear cases. The
Kernel trick [43] is usually used for mapping data point xi to a
higher or even infinity dimension fðxiÞ. Then the kernel PCA

(KPCA) [43] is used for nonlinear embedding by performing the
eigendecomposition on the kernel matrix. The kernel matrix K is
an n� n matrix, where each element kij is the inner product of the
feature kij ¼ Kðxi; xjÞ ¼ hfðxiÞ;fðxjÞi. Here, we take the Guassian
kernel Kðx; yÞ ¼ expð�kx� yk2Þ=ð2s2Þ for example. Recently, the
explicit approximation of the Gaussian kernel has attracted much
attentions. Therefore, we employ one of the most popular approxi-
mations referred to as Random Fourier Feature (RFF) [44]. Based on
the definition of RFF, the feature vector of each data point x is com-
puted as

FDðxÞ ¼ ½Fw1 ;b1ðxÞ;Fw2;b2 ðxÞ; . . . ;FwD;bD ðxÞ�; (19)

where D is the user-specific dimension of RFF and FPw1; d1ðxÞ is
the value of one single coordinate of the feature vector and
wi; bi8i 2 ½1; D� represents the projected parameters. FPw; dðxÞ is
defined as

FPw; dðxÞ ¼
ffiffiffi
2

p
cosxwþ b; (20)

where w is a random projection vector drawn from normal distri-
bution Nð0; 1

2s2
IÞ, and b is another random vector drawn from uni-

form distribution U½0; 2p�. Note that explicit approximation for
many other types of kernels have been used [45], [46], [47]; how-
ever, we only focus on the RFF for approximation of the Gaussian
kernel here.

After transforming the original features to RFF, we can perform
KPCA on the RFF, which is similar to the ordinary PCA. By comb-
ing the KPCA with ITQ, one can get a kernelized quantization
approach KPCA-ITQ [20]. It is claimed that this nonlinear embed-
ding approach can improve performance. Another benefit of using
the kernel embedding is that one can achieve bit length greater
than the original feature dimension due to the higher dimensional
embedding. However, the kernel approach also leads to higher
computational complexity due to the construction of the kernel
and the embedding on higher dimensional features. Therefore, if
we can apply the proposed sub-selective technique on the KPCA
as well as the ITQ process, we can obtain a more efficient kernel-
ized quantization approach, dubbed KPCA-ITQ-SS.

4 EVALUATIONS

4.1 Experimental Settings

In this section, we evaluate the sub-selective quantization
approaches on three public data sets: CIFAR [48], 1MNIST2 and
Tiny-1M [4]. CIFAR consists of 60K 32� 32 color images that have
been manually labeled to ten categories. Each category contains 6K
samples. Each image in CIFAR is assigned to one mutually exclu-
sive class label and represented by a 512-dimension GIST feature
vector [49]. MNIST consists of 70K samples of a 784-dimension fea-
ture vector associated with digits from ‘0’ to ‘9’. The true neighbors
are defined as semantic neighbors based on the associated digit
labels. Tiny-1M consists of one million images. Each image is repre-
sented by a 384-dimension GIST vector. Since manually labels are
not available on Tiny-1M, euclidean neighbors are computed and
used as ground truth for nearest neighbor search.

We compare the proposed methods, PCAQ-SS and ITQ-SS, with
their corresponding unaccelerated methods, PCAQ [4] and ITQ
[20]. We also compare our methods to two baseline methods that
follow a similar quantization scheme B ¼ sgnðX ~WÞ: 1) LSH [13],
where ~W is a Gaussian random matrix and 2) SH [18], which is
based on quantizing the values of analytical eigenfunctions com-
puted along PCA directions of the data. All the compared codes
are provided by the authors.

1. http://www.cs.toronto.edu/ kriz/cifar.html
2. http://yann.lecun.com/exdb/mnist/
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Two types of evaluation are conducted following [20]. First,
semantic consistency of codes is evaluated for different meth-
ods while class labels are used as ground truth. We reported
four measures, the average precision of top 100 ranked images for
each query, mean average precision, recall-precision curve and
training time, in CIFAR and MNIST. Second, we used the gener-
ated codes for nearest neighbor search, where euclidean neigh-
bors are used as ground truth. This experiment is conducted
on a Tiny-1M data set. We reported three measures: average pre-
cision of top 5 percent ranked images for each query and training
time. For both types of evaluation, the query algorithm and cor-
responding structure of binary code were the same, so testing
time was exactly the same for all the methods except SH.
Hence, it’s omitted from the results. All our experiments were
conducted on a desktop computer with a 3.4 GHz Intel Core i7
and 12 GB RAM.

4.2 Unsupervised Binary Encoding Results on CIFAR

The CIFAR data set is partitioned into two parts: 59K images as a
training set and 1K images as a test query set evenly sampled from
ten classes. We uniformly and randomly generated our sub-
selective matrix V with cardinality equal to 1=40 of number of the
data points, i.e., jVj ¼ m ¼ n=40.

Figs. 1a and 1b show complete precision of top 100 ranked
images and the mean average precision (mAP) over 1K query
images for different numbers of bits. Fig. 1c shows recall-precision
curve of 64 bits. For these three metrics, ITQ and ITQ-SS have the
best performance. Both sub-selective methods (PCAQ-SS and ITQ-
SS) preserve the performance of original methods (i.e., PCAQ and
ITQ). Our results indicate that sub-selection preserves semantic
consistency of the original coding method. Fig. 1d shows the train-
ing time of the two methods. Our method is about 4 to 8 times faster
than ITQ [20]. Original ITQ is the slowest among all the comparing
methods, while the speed of the accelerated version ITQ-SS is
comparable, if not superior, to the fastest methods. This is due to
ITQ-SS reducing the dimension of the problem from a function of n
to that ofm, wherem � n. Figs. 2a and 2b show precision compari-
son between ITQ and ITQ-SS when changing the sampling ratio.
We can see that the precisions drop slowly when decreasing
the number of samples. These results validate the benefits of sub-
selection to preserve the performance of the original method with
far less training cost.

4.3 Unsupervised Binary Encoding Results on Tiny-1M

For experiment without labeled ground truth, a separate subset
of 2K images with 80 million images are used as the test set
while another one million images are used as the training set.
We uniformly and randomly generate our sub-selective matrix V

with cardinality equal to 1=1000 of number of data points, i.e.,
jVj ¼ m ¼ n=1000. Fig. 3a shows complete precision of the top
5 percent ranked images and mean average precision (mAP) over
1K query images for different numbers of bits. The difference
between sub-selective methods (i.e., PCAQ-SS, ITQ-SS) and their
counterparts (i.e., PCAQ, ITQ) were less than 1 percent. Fig. 3b
shows the training time of the two methods. ITQ-SS achieved an
even bigger speed advantage, which is about 10 to 30 times faster
than ITQ. This is because the larger data set samples were more
redundant, making it possible to use smaller portions of data.

4.4 Results of Kernel Embedding Binary Encoding

In this section, we evaluate the sub-selecitve version of our kernel-
ized quantization approach KPCA+ITQ-SS and compared it with
the baseline approaches. Similar to the linear embedding experi-
ments, we also evaluated the KPCA-Direst-SS that is the sub-
selective version of KPCA-Direst quantization. KPCA-direct is sim-
ilar to PCAQ [20] except that instead of performing PCA, it uses
KPCA. We also added another kernelized quantization approach
SKLSH [16] as a baseline. We conducted experiments on the
MNIST and the CIFAR data set and evaluated the precision, mAP
and training time. The results of quantization code, with a bit
length that varied from 32 to 256, are reported. For the RFF feature,
we set the mapping dimension D ¼ 3000 for the RFF feature in all
experiments. One exception of the mapping dimension setting is
SKLSH [16], which by definition uses the bit length as the mapping
dimension. Another important hyper-parameter is the bandwidth
s of the Gaussian kernel. We followed the setting in [20] that uses
the mean distance of the 50th nearest neighbor. Although in our
experience, we did discover that further setting, changing s to a
smaller value will bring about performance improvement; how-
ever, we did not further fine-tuning the parameter.

Figs. 4 and 5 showed experimental results on CIFAR andMNIST,
respectively. Figs. 4b and 4a show that the subselective algorithms,

Fig. 1. The results on CIFAR. All the subfigures share the same legends.

Fig. 2. The results on MNIST and CIFAR at 32 bits. Comparison of the deviation of
ITQ-SS and ITQ when changing sampling ratio.

Fig. 3. The results on Tiny-1M. All the subfigures share the same set of legends.
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KPCA+ITQ-SS and KPCA-Direct-SS, can achieve almost the same
level of accuracy/precision as their non-subselecvie counterpart.
And the algorithms that use ITQ or ITQ-SS have achieved the best
performance among all, which is consistency with existing studies.
Fig. 4c shows the running time. The figure clearly indicates that the
sub-selective technique greatly reduced the computational cost of
the training phrase. Similar trends can also be also witnessed in the
results onMNIST (Figs. 5a, 5b, and 5c).

One might notice that in Figs. 4c and 5c), KPCA-ITQ-SS, KPCA-
Direct-SS and KPCA-Direct are relatively flat on the plot. In other
words, the computational cost grows slowly as the number of bits
grow. This is due to the fact that a considerable amount of time is
spent on the RFF generation. Specifically, it is the cost of computing
feature projection and trigonometric function on the training set.
After utilizing the sub-selective technique, the feature projection
process becomes one of the bottlenecks. In practice, this can be eas-
ily parallelized by many off-the-shelf parallel software tools, e.g.,
Hadoop, Spark, GPGPU. However, we will omit an analysis this
improvement since it is not the focus of this paper.

5 DISCUSSION AND CONCLUSION

All of the experimental results presented herein verified the bene-
fits of the proposed sub-selective quantization technique whose
parameters can be automatically learned from a subset of the origi-
nal data set. The proposed PCAQ-SS and ITQ-SS methods can
achieve almost the same quantization quality as PCAQ and ITQ
with only a small portion of training time. The advantage in train-
ing time is more prominent on larger data sets, e.g., 10 to 30 times
faster on Tiny-1M. Hence, for larger data sets good quantization
quality can be achieved with an even lower sampling ratio. Fur-
thermore, we extended our approach to a kernelized scenario
approaches and proposed two novel binary encoding algorithms.
Similar acceleration has been achieved in these algorithms com-
pared to their original counterparts.

One may notice that the speed-up ratio is not as the same as the
sampling ratio. This is because the training process of quantization
includes not only finding the coding parameters but also generat-
ing the binary codes of the input data set. The latter inevitably
involves operations upon the whole data set, which requires a

considerable number of matrix multiplications. The proposed sub-
selective quantization technique represents one single step requir-
ing matrix multiplication, thus enabling an easy acceleration by
using parallel or distributed computing techniques.

We accredit the success of the proposed sub-selective quantiza-
tion technique to the effective use of sub-selection in accelerating
the quantization optimization that involves large-scale matrix mul-
tiplications. Moreover, the benefits of sub-selection were theoreti-
cally demonstrated. As a case study of sub-selective quantization,
we found that ITQ-SS can accomplish the same level of coding
quality with significantly reduced training time in contrast to exist-
ing methods. The extensive image retrieval results on large image
corpora scaling up to one million further empirically verified the
speed gain of sub-selective quantization.
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