Design and Analysis of Algorithms

CSE 5311
Lecture 11 Red-Black Trees

Junzhou Huang, Ph.D.
Department of Computer Science and Engineering
Reviewing: Binary Search Trees

• **Binary Search Trees (BSTs)** are an important data structure for dynamic sets
 – Each node has at most two children

• Each node contains:
 – key and data
 – left: points to the left child
 – right: points to the right child
 – p(parent): point to parent

• Binary-search-tree property:
 – y is a node in the left subtree of x: \(y.key \leq x.key \)
 – y is a node in the right subtree of x: \(y.key \geq x.key \)
 – Height: \(h \)
Review: Inorder Tree Walk

• An inorder walk prints the set in sorted order:

 TreeWalk(x)
 TreeWalk(left[x]);
 print(x);
 TreeWalk(right[x]);

 – Easy to show by induction on the BST property
 – Preorder tree walk: print root, then left, then right
 – Postorder tree walk: print left, then right, then root
Review: BST Search

TreeSearch(x, k)
 if (x = NULL or k = key[x])
 return x;
 if (k < key[x])
 return TreeSearch(left[x], k);
 else
 return TreeSearch(right[x], k);
Review: Sorting With BSTs

• **Basic algorithm:**
 – Insert elements of unsorted array from 1..n
 – Do an inorder tree walk to print in sorted order

• **Running time:**
 – Best case: $\Omega(n \lg n)$ (it’s a comparison sort)
 – Worst case: $O(n^2)$
 – Average case: $O(n \lg n)$ (it’s a quicksort!)
Review: More BST Operations

• **Minimum:**
 – Find leftmost node in tree

• **Successor:**
 – x has a right subtree: successor is minimum node in right subtree
 – x has no right subtree: successor is first ancestor of x whose left child is also ancestor of x
 ➢ Intuition: As long as you move to the left up the tree, you’re visiting smaller nodes.

• **Predecessor: similar to successor**
Review: More BST Operations

- **Delete:**
 - x has no children:
 - Remove x
 - x has one child:
 - Splice out x
 - x has two children:
 - Swap x with successor
 - Perform case 1 or 2 to delete it

Example: delete K or H or B
Red-Black Trees

- **Red-black trees:**
 - Binary search tree with an additional attribute for its nodes: color which can be red or black
 - “Balanced” binary search trees guarantee an $O(lgn)$ running time
 - Constrains the way nodes can be colored on any path from the root to a leaf:

 Ensures that no path is more than twice as long as any other path
 \[\Rightarrow \text{the tree is balanced}\]
Red-Black Properties (**Satisfy the binary search tree property**)

• The red-black properties:
 1. Every node is either red or black
 2. Every leaf (NULL pointer) is black
 ➢ Note: this means every “real” node has 2 children
 3. If a node is red, both children are black
 ➢ Note: can’t have 2 consecutive reds on a path
 4. Every path from node to descendent leaf contains the same number of black nodes
 5. The root is always black

black-height: #black nodes on path to leaf
Label example with b and bh values
Example: RED-BLACK-TREE

- For convenience we use a sentinel NIL[T] to represent all the NIL nodes at the leaves
 - NIL[T] has the same fields as an ordinary node
 - Color[NIL[T]] = BLACK
 - The other fields may be set to arbitrary values
Black-Height of a Node

- **Height of a node:** the number of edges in the longest path to a leaf

- **Black-height** of a node x: $bh(x)$ is the number of black nodes (including NIL) on the path from x to a leaf, not counting x
Height of Red-Black Trees

• **What is the minimum black-height of a node with height** \(h \)?

• A: a height-\(h \) node has black-height \(\geq h/2 \)

• **Theorem:** A red-black tree with \(n \) internal nodes has height \(h \leq 2 \log(n + 1) \)

• **How do you suppose we’ll prove this?**

• **Need to prove two claims first!!!**
4. If a node is red, then both its children are black

Claim 1

- Any node x with height $h(x)$ has $bh(x) \geq h(x)/2$
- **Proof**
 - By property 4, at most $h/2$ red nodes on the path from the node to a leaf
 - Hence at least $h/2$ are black
Claim 2

• A subtree rooted at a node x contains at least $2^{bh(x)} - 1$ internal nodes

• Proof:
 – Proof by induction on height h
 – Base step: x has height 0 (i.e., NULL leaf node)
 ➢ What is $bh(x)$?
 ➢ A: 0
 ➢ So…subtree contains $2^{bh(x)} - 1$
 $= 2^0 - 1$
 $= 0$ internal nodes (TRUE)
Claim 2: cont’d

- Inductive proof that subtree at node x contains at least $2^{bh(x)} - 1$ internal nodes
 - Inductive step: x has positive height and 2 children
 - Each child has black-height of $bh(x)$ (if the child is red) or $bh(x)-1$ (if the child is black)
 - The height of a child = (height of x) - 1
 - So the subtrees rooted at each child contain at least $2^{bh(x)} - 1 - 1$ internal nodes
 - Thus subtree at x contains $2^{bh(x)} - 1 - 1 + 2^{bh(x)} - 1 - 1 + 1 = 2 \cdot 2^{bh(x)-1} - 1 = 2^{bh(x)} - 1$ nodes

\[bh(l) \geq bh(x)-1 \]
\[bh(r) \geq bh(x)-1 \]
Height of Red-Black-Trees

Lemma: A red-black tree with \(n \) internal nodes has height at most \(2 \log(n + 1) \).

Proof:

\[
\text{number } n \text{ of internal nodes} \geq 2^{bh} - 1 \geq 2^{h/2} - 1
\]

since \(bh \geq h/2 \)

- Add 1 to both sides and then take logs:

\[
\begin{align*}
\text{n} + 1 & \geq 2^{bh} \geq 2^{h/2} \\
\lg(n + 1) & \geq h/2 \Rightarrow \\
h & \leq 2 \lg(n + 1)
\end{align*}
\]
RB Trees: Worst-Case Time

- So we’ve proved that a red-black tree has $O(lg \ n)$ height

- **Corollary:** These operations take $O(lg \ n)$ time:
 - Minimum(), Maximum()
 - Successor(), Predecessor()
 - Search()

- **Insert() and Delete():**
 - Will also take $O(lg \ n)$ time
 - But will need special care since they modify tree
 - We have to guarantee that the modified tree will still be a red-black tree
Red-Black Tree

• Recall binary search tree
 – Key values in the left subtree \leq the node value
 – Key values in the right subtree \geq the node value

• Operations:
 – insertion, deletion
 – Search, maximum, minimum, successor, predecessor.
 – $O(h)$, h is the height of the tree.
Red-black trees

• **Definition:** a binary tree, satisfying:
 1. Every node is red or black
 2. The root is black
 3. Every leaf is NIL and is black
 4. If a node is red, then both its children are black
 5. For each node, all paths from the node to descendant leaves contain the same number of black nodes.

• **Purpose:** keep the tree balanced.

• **Other balanced search tree:**
 – AVL tree, 2-3-4 tree, Splay tree, Treap
INSERT

INSERT: what color to make the new node?

- Red? Let’s insert 35!
 - Property 4 is violated: if a node is red, then both its children are black

- Black? Let’s insert 14!
 - Property 5 is violated: all paths from a node to its leaves contain the same number of black nodes
DELETE

DELETE: what color was the node that was removed? **Black**?

1. Every node is either **red** or **black** **OK!**

2. The root is **black** **Not OK!** If removing the root and the child that replaces it is **red**

3. Every leaf (NIL) is **black** **OK!**

4. If a node is red, then both its children are black **Not OK!** Could change the black heights of some nodes

5. For each node, all paths from the node to descendant leaves contain the same number of black nodes **Not OK!** Could create two red nodes in a row
Rotations

- Operations for re-structuring the tree after insert and delete operations on red-black trees

- **Rotations take a red-black-tree and a node within the tree and:**
 - Together with some node re-coloring they help restore the red-black-tree property
 - Change some of the pointer structure
 - **Do not** change the binary-search tree property

- **Two types of rotations:**
 - Left & right rotations
Left Rotations

• Assumptions for a left rotation on a node x:
 – The right child of x (y) is not NIL

• Idea:
 – Pivots around the link from x to y
 – Makes y the new root of the subtree
 – x becomes y’s left child
 – y’s left child becomes x’s right child
Example: LEFT-ROTATE

\text{LEFT-ROTATE}(T, x)

Before rotation:

\begin{itemize}
 \item Node 7
 \item Node 4
 \item Node 9
 \item Node 11
 \item Node 18
 \item Node 14
 \item Node 19
 \item Node 22
\end{itemize}

After rotation:

\begin{itemize}
 \item Node 7
 \item Node 4
 \item Node 9
 \item Node 11
 \item Node 18
 \item Node 14
 \item Node 19
 \item Node 22
\end{itemize}
LEFT-ROTATE(T, x)

1. $y \leftarrow \text{right}[x]$ \hspace{1cm} \triangleright \text{Set } y$
2. $\text{right}[x] \leftarrow \text{left}[y]$ \hspace{1cm} \triangleright \text{y’s left subtree becomes x’s right subtree}$
3. \text{if } \text{left}[y] \neq \text{NIL}$
4. \hspace{1cm} \text{then } p[\text{left}[y]] \leftarrow x \hspace{1cm} \triangleright \text{Set the parent relation from left}[y] \text{ to } x$
5. $p[y] \leftarrow p[x]$ \hspace{1cm} \triangleright \text{The parent of x becomes the parent of y}$
6. \text{if } p[x] = \text{NIL}$
7. \hspace{1cm} \text{then } \text{root}[T] \leftarrow y$
8.\text{ else if } x = \text{left}[p[x]]$
9. \hspace{1cm} \text{then } \text{left}[p[x]] \leftarrow y$
10. \hspace{1cm} \text{else } \text{right}[p[x]] \leftarrow y$
11. $\text{left}[y] \leftarrow x$ \hspace{1cm} \triangleright \text{Put x on y’s left}$
12. $p[x] \leftarrow y$ \hspace{1cm} \triangleright \text{y becomes x’s parent}$
Right Rotations

- **Assumptions for a right rotation on a node** \(x \):
 - The left child of \(y \) (\(x \)) is not NIL

- **Idea.**
 - Pivots around the link from \(y \) to \(x \)
 - Makes \(x \) the new root of the subtree
 - \(y \) becomes \(x \)’s right child
 - \(x \)’s right child becomes \(y \)’s left child
Insertion

• **Goal:**
 - Insert a new node z into a red-black-tree

• **Idea:**
 - Insert node z into the tree as for an ordinary binary search tree
 - Color the node **red**
 - Restore the red-black-tree properties

 ➢ Use an auxiliary procedure `RB-INSERT-FIXUP`
RB Properties Affected by Insert

1. Every node is either red or black
2. The root is black
3. Every leaf (NIL) is black
4. If a node is red, then both its children are black
5. For each node, all paths from the node to descendant leaves contain the same number of black nodes
RB-INSERT-FIXUP – Case 1

z’s “uncle” (y) is red

Idea: (z is a right child)

• \(p[p[z]] \) (z’s grandparent) must be black: z and \(p[z] \) are both red

• Color \(p[z] \) black
• Color y black
• Color \(p[p[z]] \) red
• \(z = p[p[z]] \)
 – Push the “red” violation up the tree
z’s “uncle” \((y) \) is red

Idea: (\(z \) is a left child)

- \(p[p[z]] \) (\(z \)’s grandparent) must be black: \(z \) and \(p[z] \) are both red

- color \(p[z] \leftarrow \text{black} \)
- color \(y \leftarrow \text{black} \)
- color \(p[p[z]] \leftarrow \text{red} \)
- \(z = p[p[z]] \)

- Push the “red” violation up the tree

RB-INSERT-FIXUP – Case 1

If \(z \) is a left child
RB-INSERT-FIXUP – Case 3

Case 3:
• z’s “uncle” (y) is black
• z is a left child

Idea:
• color p[z] ← black
• color p[p[z]] ← red
• RIGHT-ROTATE(T, p[p[z]])
• No longer have 2 reds in a row
• p[z] is now black
RB-INSERT-FIXUP – Case 2

Case 2:
• z’s “uncle” (y) is **black**
• z is a right child

Idea:
• \(z \leftarrow p[z] \)
• \(\text{LEFT-ROTATE}(T, z) \)

\(\Rightarrow \) now z is a left child, and both z and p[z] are red \(\Rightarrow \) case 3
RB-INSERT-FIXUP(T, z)

1. while color[p[z]] = RED
2. do if p[z] = left[p[p[z]]]
3. then y ← right[p[p[z]]]
4. if color[y] = RED
5. then Case1
6. else if z = right[p[z]]
7. then Case2
8. Case3
9. else (same as then clause with “right” and “left” exchanged)
10. color[root[T]] ← BLACK

The while loop repeats only when case1 is executed: O(lgn) times
Set the value of x’s “uncle”
We just inserted the root, or
The red violation reached the root
Example

Case 1

z and p[z] are both red
z’s uncle y is red

Case 2

z and p[z] are both red
z’s uncle y is black
z is a right child

Case 3

z and p[z] are red
z’s uncle y is black
z is a left child
RB-INSERT(T, z)

1. \(y \leftarrow \text{NIL} \) \quad \{ \text{Initialize nodes } x \text{ and } y \}
2. \(x \leftarrow \text{root}[T] \) \quad \{ \text{Throughout the algorithm } y \text{ points to the parent of } x \}
3. \textbf{while } x \neq \text{NIL}
4. \quad \textbf{do } y \leftarrow x
5. \quad \textbf{if } \text{key}[z] < \text{key}[x]
6. \quad \quad \textbf{then } x \leftarrow \text{left}[x]
7. \quad \textbf{else } x \leftarrow \text{right}[x]
8. \quad p[z] \leftarrow y \quad \{ \text{Sets the parent of } z \text{ to be } y \}

\quad \{ \text{Go down the tree until reaching a leaf} \}

\quad \{ \text{At that point } y \text{ is the parent of the node to be inserted} \}
RB-INSERT(T, z)

9. if y = NIL
 \[\text{The tree was empty: set the new node to be the root}\]
10. then root[T] ← z
11. else if key[z] < key[y]
12. then left[y] ← z
13. else right[y] ← z
14. left[z] ← NIL
15. right[z] ← NIL \[\text{Set the fields of the newly added node}\]
16. color[z] ← RED
17. RB-INSERT-FIXUP(T, z) \[\text{Fix any inconsistencies that could have been introduced by adding this new red node}\]
Analysis of RB-INSERT

• Inserting the new element into the tree $O(\log n)$

• RB-INSERT-FIXUP
 – The while loop repeats only if CASE 1 is executed
 – The number of times the while loop can be executed is $O(\log n)$

• Total running time of RB-INSERT: $O(\log n)$
Red-Black Trees - Summary

• Operations on red-black-trees:
 – SEARCH \(O(h) \)
 – PREDECESSOR \(O(h) \)
 – SUCCESOR \(O(h) \)
 – MINIMUM \(O(h) \)
 – MAXIMUM \(O(h) \)
 – INSERT \(O(h) \)
 – DELETE \(O(h) \)

• Red-black-trees guarantee that the height of the tree will be \(O(\lg n) \)
Problems

- What is the ratio between the longest path and the shortest path in a red-black tree?

 - The shortest path is at least $bh(root)$
 - The longest path is equal to $h(root)$
 - We know that $h(root) \leq 2bh(root)$
 - Therefore, the ratio is ≤ 2
What red-black tree property is violated in the tree below? How would you restore the red-black tree property in this case?

- Property violated: if a node is red, both its children are black
- Fixup: color 7 black, 11 red, then right-rotate around 11