Design and Analysis of Algorithms

CSE 5311
Lecture 12 Dynamic Programming

Junzhou Huang, Ph.D.
Department of Computer Science and Engineering
Optimization Problems

• In which a set of choices must be made in order to arrive at an optimal (min/max) solution, subject to some constraints. (There may be several solutions to achieve an optimal value.)

• Two common techniques:
 – Dynamic Programming (global)
 – Greedy Algorithms (local)
Dynamic Programming (DP)

• Like divide-and-conquer, solve problem by combining the solutions to sub-problems.

• Differences between divide-and-conquer and DP:
 – Independent sub-problems, solve sub-problems independently and recursively, (so same sub(sub)problems solved repeatedly)
 – DP is applicable when the sub-problems are not independent, i.e. when sub-problems share sub-sub-problems. It solves every sub-sub-problem just once and save the results in a table to avoid duplicated computation.
Application domain of DP

- Optimization problem
 - Find a solution with optimal (maximum or minimum) value.
 - *An* optimal solution, not *the* optimal solution, since may more than one optimal solution, any one is OK.

- Typical steps
 - Characterize the structure of an optimal solution.
 - Recursively define the value of an optimal solution.
 - Compute the value of an optimal solution in a bottom-up fashion.
 - Compute an optimal solution from computed/stored information.
Elements of DP Algorithms

- **Sub-structure:** decompose problem into smaller sub-problems. Express the solution of the original problem in terms of solutions for smaller problems.

- **Table-structure:** Store the answers to the sub-problem in a table, because sub-problem solutions may be used many times.

- **Bottom-up computation:** combine solutions on smaller sub-problems to solve larger sub-problems, and eventually arrive at a solution to the complete problem.
Applicability to Optimization Problems

- **Optimal sub-structure (principle of optimality):** for the global problem to be solved optimally, each sub-problem should be solved optimally. This is often violated due to sub-problem overlaps. Often by being “less optimal” on one problem, we may make a big savings on another sub-problem.

- **Small number of sub-problems:** Many NP-hard problems can be formulated as DP problems, but these formulations are not efficient, because the number of sub-problems is exponentially large. Ideally, the number of sub-problems should be at most a polynomial number.
Optimized Chain Operations

• Determine the optimal sequence for performing a series of operations. (the general class of the problem is important in compiler design for code optimization & in databases for query optimization)

• For example: given a series of matrices: \(A_1 \ldots A_n \), we can “parenthesize” this expression however we like, since matrix multiplication is associative (but not commutative).

• Multiply a \(p \times q \) matrix \(A \) times a \(q \times r \) matrix \(B \), the result will be a \(p \times r \) matrix \(C \). (# of columns of \(A \) must be equal to # of rows of \(B \).)
Matrix Chain-Products

• Dynamic Programming is a general algorithm design paradigm.
 – Rather than give the general structure, let us first give a motivating example:
 – Matrix Chain-Products

• Review: Matrix Multiplication.
 – $C = A \times B$
 – A is $d \times e$ and B is $e \times f$
 – $O(d \cdot e \cdot f)$ time

$$C[i, j] = \sum_{k=0}^{e-1} A[i, k] \times B[k, j]$$
Matrix Chain-Products

• Matrix Chain-Product:
 – Compute $A = A_0 \cdot A_1 \cdot \ldots \cdot A_{n-1}$
 – A_i is $d_i \times d_{i+1}$
 – Problem: How to parenthesize?

• Example
 – B is 3×100
 – C is 100×5
 – D is 5×5
 – $(B \cdot C) \cdot D$ takes $1500 + 75 = 1575$ ops
 – $B \cdot (C \cdot D)$ takes $1500 + 2500 = 4000$ ops
Enumeration Approach

- **Matrix Chain-Product Algorithm:**
 - Try all possible ways to parenthesize $A = A_0 \times A_1 \times \ldots \times A_{n-1}$
 - Calculate number of ops for each one
 - Pick the one that is best

- **Running time:**
 - The number of parenthesizations is equal to the number of binary trees with n nodes
 - This is **exponential**!
 - It is called the Catalan number, and it is almost 4^n.
 - This is a terrible algorithm!
Greedy Approach

• Idea #1: repeatedly select the product that uses the fewest operations.

• Counter-example:
 – A is 101×11
 – B is 11×9
 – C is 9×100
 – D is 100×99
 – Greedy idea #1 gives $A \times ((B \times C) \times D)$, which takes $109989 + 9900 + 108900 = 228789$ ops
 – $(A \times B) \times (C \times D)$ takes $9999 + 89991 + 89100 = 189090$ ops

• The greedy approach is not giving us the optimal value.
“Recursive” Approach

• Define **subproblems**:
 – Find the best parenthesization of $A_i * A_{i+1} * \ldots * A_j$.
 – Let N_{ij} denote the number of operations done by this subproblem.
 – The optimal solution for the whole problem is $N_{0,n-1}$.

• **Subproblem optimality**: The optimal solution can be defined in terms of optimal subproblems
 – There has to be a final multiplication (root of the expression tree) for the optimal solution.
 – Say, the final multiplication is at index i: $(A_0 * \ldots * A_i) * (A_{i+1} * \ldots * A_{n-1})$.
 – Then the optimal solution $N_{0,n-1}$ is the sum of two optimal subproblems, $N_{0,i}$ and $N_{i+1,n-1}$ plus the time for the last multiplication.
Characterizing Equation

- The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiplication is at.
- Let us consider all possible places for that final multiplication:
 - Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix.
 - So, a characterizing equation for $N_{i,j}$ is the following:

 $$N_{i,j} = \min_{i \leq k < j} \{N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}\}$$

- Note that subproblems are not independent—the **subproblems overlap**.
Subproblem Overlap

Algorithm *RecursiveMatrixChain*(*S*, *i*, *j*):

- **Input:** sequence *S* of *n* matrices to be multiplied
- **Output:** number of operations in an optimal parenthesization of *S*

if *i* = *j*
 then return 0
for *k* ← *i* to *j* do
 \[N_{i,j} \leftarrow \min\{N_{i,j}, RecursiveMatrixChain(S, i, k) + RecursiveMatrixChain(S, k+1, j) + d_id_{k+1}d_{j+1}\}\]
return *N*_{*i*,*j*}
Subproblem Overlap

```
1..4
  /  \
1..2  3..4
     /  \
    1..1  2..2
     /  \
    3..3  4..4
```

```
1..1  2..4
  /  \
2..2  3..4
     /  \
    2..3  4..4
     /  \
    3..3  4..4
```

```
2..2
  /  \
3..3  4..4
```

```
1..3  4..4
```

...
This divide-and-conquer recursive algorithm solves the overlapping problems *over and over*.

In contrast, DP solves the same (overlapping) subproblems only once (at the first time), then store the result in a table, when the same subproblem is encountered later, just look up the table to get the result.

The computations in green color are replaced by table look up in \texttt{MEMOIZED-MATRIX-CHAIN(p,1,4)}.

The divide-and-conquer is better for the problem which generates brand-new problems at each step of recursion.
Dynamic Programming Algorithm

- Since subproblems overlap, we don’t use recursion.
- Instead, we construct optimal subproblems “bottom-up.”
- \(N_{i,i}’s \) are easy, so start with them.
- Then do problems of “length” 2, 3, … subproblems, and so on.
- Running time: \(O(n^3) \)

Algorithm matrixChain(S):

Input: sequence \(S \) of \(n \) matrices to be multiplied

Output: number of operations in an optimal parenthesization of \(S \)

\[
\begin{align*}
&\text{for } i \leftarrow 1 \text{ to } n - 1 \text{ do} \\
&\quad N_{i,i} \leftarrow 0 \\
&\text{for } b \leftarrow 1 \text{ to } n - 1 \text{ do} \\
&\quad \{ b = j - i \text{ is the length of the problem } \} \\
&\quad \text{for } i \leftarrow 0 \text{ to } n - b - 1 \text{ do} \\
&\quad \quad j \leftarrow i + b \\
&\quad \quad N_{i,j} \leftarrow +\infty \\
&\quad \quad \text{for } k \leftarrow i \text{ to } j - 1 \text{ do} \\
&\quad \quad \quad N_{i,j} \leftarrow \min \{N_{i,j}, N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}\} \\
&\text{return } N_{0,n-1}
\end{align*}
\]
Dynamic Programming Algorithm Visualization

- The bottom-up construction fills in the N array by diagonals
- \(N_{i,j} \) gets values from previous entries in i-th row and j-th column
- Filling in each entry in the N table takes \(O(n) \) time.
- Total run time: \(O(n^3) \)
- Getting actual parenthesization can be done by remembering “k” for each N entry

\[
N_{i,j} = \min_{i \leq k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}
\]
Dynamic Programming Algorithm Visualization

- A_0: 30 X 35; A_1: 35 X15; A_2: 15X5; A_3: 5X10; A_4: 10X20; A_5: 20 X 25

$$N_{i,j} = \min_{i \leq k < j} \{N_{i,k} + N_{k+1,j} + d_id_{k+1}d_{j+1}\}$$

$N_{1,4} = \min\{\}
\begin{align*}
N_{1,1} + N_{2,4} + d_1d_2d_5 &= 0 + 2500 + 35*15*20 = 13000, \\
N_{1,2} + N_{3,4} + d_1d_3d_5 &= 2625 + 1000 + 35*5*20 = 7125, \\
N_{1,3} + N_{4,4} + d_1d_4d_5 &= 4375 + 0 + 35*10*20 = 11375 \\
\end{align*}$

$= 7125$
Dynamic Programming Algorithm Visualization

\[(A_0 \cdot (A_1 \cdot A_2)) \cdot ((A_3 \cdot A_4) \cdot A_5)\]
Assembly-Line Scheduling

- Two parallel assembly lines in a factory, lines 1 and 2
- Each line has \(n \) stations \(S_{i,1} \ldots S_{i,n} \)
- For each \(j \), \(S_{1,j} \) does the same thing as \(S_{2,j} \), but it may take a different amount of assembly time \(a_{i,j} \)
- Transferring away from line \(i \) after stage \(j \) costs \(t_{i,j} \)
- Also entry time \(e_i \) and exit time \(x_i \) at beginning and end
Figure 15.1 A manufacturing problem to find the fastest way through a factory. There are two assembly lines, each with n stations; the jth station on line i is denoted $S_{i,j}$ and the assembly time at that station is $a_{i,j}$. An automobile chassis enters the factory, and goes onto line i (where $i = 1$ or 2), taking e_i time. After going through the jth station on a line, the chassis goes on to the $(j+1)$st station on either line. There is no transfer cost if it stays on the same line, but it takes time $t_{i,j}$ to transfer to the other line after station $S_{i,j}$. After exiting the nth station on a line, it takes x_i time for the completed auto to exit the factory. The problem is to determine which stations to choose from line 1 and which to choose from line 2 in order to minimize the total time through the factory for one auto.
Concrete Instance of ALS

(a) An instance of the assembly-line problem with costs e_i, $a_{i,j}$, t_i, t_i, and x_i indicated. The heavily shaded path indicates the fastest way through the factory. (b) The values of $f_i[j]$, f^*, $l_i[j]$, and I^* for the instance in part (a).
Brute Force Solution

- List all possible sequences,
- For each sequence of n stations, compute the passing time. (the computation takes $\Theta(n)$ time.)
- Record the sequence with smaller passing time.
- However, there are total 2^n possible sequences.
ALS --DP steps: Step 1

• Step 1: find the structure of the fastest way through factory
 – Consider the fastest way from starting point through station $S_{1,j}$
 (same for $S_{2,j}$)
 - $j=1$, only one possibility
 - $j=2,3,...,n$, two possibilities: from $S_{1,j-1}$ or $S_{2,j-1}$
 - from $S_{1,j-1}$, additional time $a_{1,j}$
 - from $S_{2,j-1}$, additional time $t_{2,j-1} + a_{1,j}$
 - suppose the fastest way through $S_{1,j}$ is through $S_{1,j-1}$, then the
 chassis must have taken a fastest way from starting point
 through $S_{1,j-1}$. Why???
 - Similarly for $S_{2,j-1}$.

DP step 1: Find Optimal Structure

- An optimal solution to a problem contains within it an optimal solution to subproblems.
- the fastest way through station $S_{i,j}$ contains within it the fastest way through station $S_{1,j-1}$ or $S_{2,j-1}$.
- Thus can construct an optimal solution to a problem from the optimal solutions to subproblems.
ALS --DP steps: Step 2

- Step 2: A recursive solution
- Let $f_i[j]$ ($i=1,2$ and $j=1,2,\ldots, n$) denote the fastest possible time to get a chassis from starting point through S_{ij}.
- Let f^* denote the fastest time for a chassis all the way through the factory. Then
 \[f^* = \min(f_1[n] + x_1, f_2[n] + x_2) \]
- $f_1[1] = e_1 + a_{1,1}$, fastest time to get through $S_{1,1}$
- $f_1[j] = \min(f_1[j-1] + a_{1,j}, f_2[j-1] + t_{2,j-1} + a_{1,j})$
- Similarly to $f_2[j]$.
ALS --DP steps: Step 2

- Recursive solution:
 \[f^* = \min(f_1[n] + x_1, f_2[n] + x_2) \]
 \[f_1[j] = e_1 + a_{1,1} \quad \text{if } j = 1 \]
 \[f_1[j] = \min(f_1[j-1] + a_{1,j}, f_2[j-1] + t_{2,j-1} + a_{1,j}) \quad \text{if } j > 1 \]
 \[f_2[j] = e_2 + a_{2,1} \quad \text{if } j = 1 \]
 \[f_2[j] = \min(f_2[j-1] + a_{2,j}, f_1[j-1] + t_{1,j-1} + a_{2,j}) \quad \text{if } j > 1 \]

- \(f_i[j] \) \((i=1,2; j=1,2,\ldots,n)\) records optimal values to the subproblems.

- To keep track of the fastest way, introduce \(l_i[j] \) to record the line number (1 or 2), whose station \(j-1 \) is used in a fastest way through \(S_{ij} \).

- Introduce \(l^* \) to be the line whose station \(n \) is used in a fastest way through the factory.
ALS --DP steps: Step 3

• Step 3: Computing the fastest time
 – One option: a recursive algorithm.
 ➢ Let $r_i(j)$ be the number of references made to $f_i[j]$
 - $r_1(n) = r_2(n) = 1$
 - $r_1(j) = r_2(j) = r_1(j+1) + r_2(j+1)$
 - $r_i(j) = 2^{n-j}$.
 - So $f_1[1]$ is referred to 2^{n-1} times.
 - Total references to all $f_i[j]$ is $\Theta(2^n)$.
 ➢ Thus, the running time is exponential.
 – Non-recursive algorithm.
ALS FAST-WAY Algorithm

FASTEST-WAY \((a, t, e, x, n)\)

1. \(f_1[1] \leftarrow e_1 + a_{1,1}\)
2. \(f_2[1] \leftarrow e_2 + a_{2,1}\)
3. for \(j \leftarrow 2\) to \(n\)
 4. do if \(f_1[j-1] + a_{1,j} \leq f_2[j-1] + t_{2,j-1} + a_{1,j}\)
 then \(f_1[j] \leftarrow f_1[j-1] + a_{1,j}\)
 \(l_1[j] \leftarrow 1\)
 5. else \(f_1[j] \leftarrow f_2[j-1] + t_{2,j-1} + a_{1,j}\)
 \(l_1[j] \leftarrow 2\)
 6. if \(f_2[j-1] + a_{2,j} \leq f_1[j-1] + t_{1,j-1} + a_{2,j}\)
 then \(f_2[j] \leftarrow f_2[j-1] + a_{2,j}\)
 \(l_2[j] \leftarrow 2\)
 7. else \(f_2[j] \leftarrow f_1[j-1] + t_{1,j-1} + a_{2,j}\)
 \(l_2[j] \leftarrow 1\)
 8. if \(f_1[n] + x_1 \leq f_2[n] + x_2\)
 then \(f^* = f_1[n] + x_1\)
 \(l^* = 1\)
 9. else \(f^* = f_2[n] + x_2\)
 \(l^* = 2\)

Running time: \(O(n)\).
ALS --DP steps: Step 4

- **Step 4:** Construct the fastest way through the factory

```plaintext
PRINT-STATIONS(l, n)
1    i ← l*
2    print "line \"i\", station \" n
3    for j ← n downto 2
4        do i ← l_i[j]
5        print "line \"i\", station \" j − 1
```
Optimal Substructure Varies in Two Ways

• How many subproblems
 – In assembly-line schedule, one subproblem
 – In matrix-chain multiplication: two subproblems

• How many choices
 – In assembly-line schedule, two choices
 – In matrix-chain multiplication: $j-i$ choices

• DP solve the problem in bottom-up manner.
Running Time for DP Programs

• #overall subproblems × #choices.
 – In assembly-line scheduling, $O(n) \times O(1) = O(n)$.
 – In matrix-chain multiplication, $O(n^2) \times O(n) = O(n^3)$

• The cost = costs of solving subproblems + cost of making choice.
 – In assembly-line scheduling, choice cost is
 $a_{i,j}$ if stay in the same line, $t_{i',j-1} + a_{i,j} (i' \neq i)$ otherwise.
 – In matrix-chain multiplication, choice cost is $p_{i-1}p_kp_j$.