
CSE5311 Design and Analysis of Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 1

CSE 5311
Lecture 12 Dynamic Programming

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms

CSE5311 Design and Analysis of Algorithms 2Dept. CSE, UT Arlington

Optimization Problems

• In which a set of choices must be made in order to arrive at
an optimal (min/max) solution, subject to some
constraints. (There may be several solutions to achieve an
optimal value.)

• Two common techniques:
– Dynamic Programming (global)

– Greedy Algorithms (local)

CSE5311 Design and Analysis of Algorithms 3Dept. CSE, UT Arlington

3

Dynamic Programming (DP)

• Like divide-and-conquer, solve problem by combining the
solutions to sub-problems.

• Differences between divide-and-conquer and DP:
– Independent sub-problems, solve sub-problems independently

and recursively, (so same sub(sub)problems solved repeatedly)
– DP is applicable when the sub-problems are not independent, i.e.

when sub-problems share sub-sub-problems. It solves every sub-
sub-problem just once and save the results in a table to avoid
duplicated computation.

CSE5311 Design and Analysis of Algorithms 4Dept. CSE, UT Arlington

4

Application domain of DP

• Optimization problem
– Find a solution with optimal (maximum or minimum) value.
– An optimal solution, not the optimal solution, since may more

than one optimal solution, any one is OK.

• Typical steps
– Characterize the structure of an optimal solution.
– Recursively define the value of an optimal solution.
– Compute the value of an optimal solution in a bottom-up

fashion.
– Compute an optimal solution from computed/stored

information.

CSE5311 Design and Analysis of Algorithms 5Dept. CSE, UT Arlington

Elements of DP Algorithms

• Sub-structure: decompose problem into smaller sub-
problems. Express the solution of the original problem in
terms of solutions for smaller problems.

• Table-structure: Store the answers to the sub-problem in
a table, because sub-problem solutions may be used many
times.

• Bottom-up computation: combine solutions on smaller
sub-problems to solve larger sub-problems, and eventually
arrive at a solution to the complete problem.

CSE5311 Design and Analysis of Algorithms 6Dept. CSE, UT Arlington

Applicability to Optimization Problems

• Optimal sub-structure (principle of optimality): for
the global problem to be solved optimally, each sub-problem
should be solved optimally. This is often violated due to sub-
problem overlaps. Often by being “less optimal” on one
problem, we may make a big savings on another sub-problem.

• Small number of sub-problems: Many NP-hard problems
can be formulated as DP problems, but these formulations are
not efficient, because the number of sub-problems is
exponentially large. Ideally, the number of sub-problems should
be at most a polynomial number.

CSE5311 Design and Analysis of Algorithms 7Dept. CSE, UT Arlington

Optimized Chain Operations

• Determine the optimal sequence for performing a series of
operations. (the general class of the problem is important
in compiler design for code optimization & in databases for
query optimization)

• For example: given a series of matrices: A1…An , we can
“parenthesize” this expression however we like, since
matrix multiplication is associative (but not commutative).

• Multiply a p x q matrix A times a q x r matrix B, the result
will be a p x r matrix C. (# of columns of A must be equal
to # of rows of B.)

CSE5311 Design and Analysis of Algorithms 8Dept. CSE, UT Arlington

Matrix Chain-Products

• Dynamic Programming is a general
algorithm design paradigm.
– Rather than give the general structure, let us

first give a motivating example:

– Matrix Chain-Products

• Review: Matrix Multiplication.
– C = A*B
– A is d × e and B is e × f

– O(def) time

A C

B

d d

f

e

f

e

i

j

i,j





1

0

],[*],[],[
e

k

jkBkiAjiC

CSE5311 Design and Analysis of Algorithms 9Dept. CSE, UT Arlington

Matrix Chain-Products

• Matrix Chain-Product:
– Compute A=A0*A1*…*An-1

– Ai is di × di+1

– Problem: How to parenthesize?

• Example
– B is 3 × 100
– C is 100 × 5
– D is 5 × 5
– (B*C)*D takes 1500 + 75 = 1575 ops
– B*(C*D) takes 1500 + 2500 = 4000 ops

CSE5311 Design and Analysis of Algorithms 10Dept. CSE, UT Arlington

Enumeration Approach

• Matrix Chain-Product Algorithm.:
– Try all possible ways to parenthesize

A=A0*A1*…*An-1

– Calculate number of ops for each one
– Pick the one that is best

• Running time:
– The number of parenthesizations is equal to the

number of binary trees with n nodes
– This is exponential!
– It is called the Catalan number, and it is almost 4n.
– This is a terrible algorithm!

CSE5311 Design and Analysis of Algorithms 11Dept. CSE, UT Arlington

Greedy Approach

• Idea #1: repeatedly select the product that uses the fewest
operations.

• Counter-example:
– A is 101 × 11
– B is 11 × 9
– C is 9 × 100
– D is 100 × 99
– Greedy idea #1 gives A*((B*C)*D)), which takes

109989+9900+108900=228789 ops
– (A*B)*(C*D) takes 9999+89991+89100=189090 ops

• The greedy approach is not giving us the optimal value.

CSE5311 Design and Analysis of Algorithms 12Dept. CSE, UT Arlington

“Recursive” Approach

• Define subproblems:
– Find the best parenthesization of Ai*Ai+1*…*Aj.
– Let Ni,j denote the number of operations done by this subproblem.
– The optimal solution for the whole problem is N0,n-1.

• Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems
– There has to be a final multiplication (root of the expression tree)

for the optimal solution.
– Say, the final multiplication is at index i: (A0*…*Ai)*(Ai+1*…*An-1).
– Then the optimal solution N0,n-1 is the sum of two optimal

subproblems, N0,i and Ni+1,n-1 plus the time for the last
multiplication.

CSE5311 Design and Analysis of Algorithms 13Dept. CSE, UT Arlington

Characterizing Equation

• The global optimal has to be defined in terms of optimal
subproblems, depending on where the final multiplication is at.

• Let us consider all possible places for that final multiplication:
– Recall that Ai is a di× di+1 dimensional matrix.
– So, a characterizing equation for Ni,j is the following:

• Note that subproblems are not independent–the subproblems
overlap.

}{min 11,1,, 
 jkijkki

jki
ji dddNNN

CSE5311 Design and Analysis of Algorithms 14Dept. CSE, UT Arlington

Subproblem Overlap

Algorithm RecursiveMatrixChain(S, i, j):
Input: sequence S of n matrices to be multiplied
Output: number of operations in an optimal parenthesization of S
if i=j

then return 0
for k  i to j do

Ni, j  min{Ni,j, RecursiveMatrixChain(S, i ,k)+
RecursiveMatrixChain(S, k+1,j)+ di dk+1 dj+1}
return Ni,j

CSE5311 Design and Analysis of Algorithms 15Dept. CSE, UT Arlington

Subproblem Overlap

1..4

1..1 2..4 1..2 3..4 1..3 4..4

2..2 3..4 2..3 4..4 3..3 4..41..1 2..2

3..3 4..4 2..2 3..3

...

CSE5311 Design and Analysis of Algorithms 16Dept. CSE, UT Arlington

3..3

1..33..41..22..41..1 4..4

2..33..42..2 4..4 2..21..1 4..43..3 1..1 2..3 1..2 3..3

1..4

2..24..43..3 2..2 3..3 1..1 2..2
This divide-and-conquer recursive algorithm solves the overlapping problems over and over.

In contrast, DP solves the same (overlapping) subproblems only once (at the first time),
then store the result in a table, when the same subproblem is encountered later, just look up
the table to get the result.

The computations in green color are replaced by table look up in MEMOIZED-MATRIX-CHAIN(p,1,4)

The divide-and-conquer is better for the problem which generates brand-new problems at
each step of recursion.

Recursion tree for the computation of
RECURSIVE-MATRIX-CHAIN(p,1,4)

CSE5311 Design and Analysis of Algorithms 17Dept. CSE, UT Arlington

Dynamic Programming Algorithm

• Since subproblems
overlap, we don’t
use recursion.

• Instead, we
construct optimal
subproblems
“bottom-up.”

• Ni,i’s are easy, so
start with them

• Then do problems
of “length” 2,3,…
subproblems, and
so on.

• Running time:
O(n3)

Algorithm matrixChain(S):
Input: sequence S of n matrices to be multiplied
Output: number of operations in an optimal

parenthesization of S
for i  1 to n  1 do

Ni,i  0
for b  1 to n  1 do

{ b  j  i is the length of the problem }
for i  0 to n  b - 1 do

j  i  b
Ni,j  
for k  i to j  1 do

Ni,j  min{Ni,j, Ni,k + Nk+1,j + di dk+1 dj+1}
return N0,n-1

CSE5311 Design and Analysis of Algorithms 18Dept. CSE, UT Arlington

answer

N 0 1

0

1

2 …

n-1

…

n-1j

i

Dynamic Programming Algorithm Visualization

• The bottom-up
construction fills in the N
array by diagonals

• Ni,j gets values from
previous entries in i-th row
and j-th column

• Filling in each entry in the
N table takes O(n) time.

• Total run time: O(n3)

• Getting actual
parenthesization can be
done by remembering “k”
for each N entry

}{min 11,1,, 
 jkijkki

jki
ji dddNNN

i

j

CSE5311 Design and Analysis of Algorithms 19Dept. CSE, UT Arlington

• A0: 30 X 35; A1: 35 X15; A2: 15X5;

A3: 5X10; A4: 10X20; A5: 20 X 25

7125

}

1137520*10*3504375

,712520*5*3510002625

,1300020*15*3525000

min{

5414,43,1

5314,32,1

5214,21,1

4,1











dddNN

dddNN

dddNN

N

}{min 11,1,, 
 jkijkki

jki
ji dddNNN

Dynamic Programming Algorithm Visualization

CSE5311 Design and Analysis of Algorithms 20Dept. CSE, UT Arlington

(A0*(A1*A2))*((A3*A4)*A5)

Dynamic Programming Algorithm Visualization

CSE5311 Design and Analysis of Algorithms 21Dept. CSE, UT Arlington

Assembly-Line Scheduling

• Two parallel assembly lines in a factory, lines 1 and 2
• Each line has n stations Si,1…Si,n

• For each j, S1, j does the same thing as S2, j , but it may take
a different amount of assembly time ai, j

• Transferring away from line i after stage j costs ti, j
• Also entry time ei and exit time xi at beginning and end

CSE5311 Design and Analysis of Algorithms 22Dept. CSE, UT Arlington

22

Assembly Line Scheduling (ALS)

CSE5311 Design and Analysis of Algorithms 23Dept. CSE, UT Arlington

23

Concrete Instance of ALS

CSE5311 Design and Analysis of Algorithms 24Dept. CSE, UT Arlington

Brute Force Solution

– List all possible sequences,

– For each sequence of n stations, compute the passing time.
(the computation takes (n) time.)

– Record the sequence with smaller passing time.

– However, there are total 2n possible sequences.

CSE5311 Design and Analysis of Algorithms 25Dept. CSE, UT Arlington

ALS --DP steps: Step 1

• Step 1: find the structure of the fastest way through
factory
– Consider the fastest way from starting point through station S1,j

(same for S2,j)
j=1, only one possibility
j=2,3,…,n, two possibilities: from S1,j-1 or S2,j-1

– from S1,j-1, additional time a1,j

– from S2,j-1, additional time t2,j-1 + a1,j

suppose the fastest way through S1,j is through S1,j-1, then the
chassis must have taken a fastest way from starting point
through S1,j-1. Why???
Similarly for S2,j-1.

CSE5311 Design and Analysis of Algorithms 26Dept. CSE, UT Arlington

DP step 1: Find Optimal Structure

• An optimal solution to a problem contains within it an
optimal solution to subproblems.

• the fastest way through station Si,j contains within it the
fastest way through station S1,j-1 or S2,j-1 .

• Thus can construct an optimal solution to a problem from
the optimal solutions to subproblems.

CSE5311 Design and Analysis of Algorithms 27Dept. CSE, UT Arlington

ALS --DP steps: Step 2

• Step 2: A recursive solution
• Let fi[j] (i=1,2 and j=1,2,…, n) denote the fastest possible

time to get a chassis from starting point through Si,j.
• Let f* denote the fastest time for a chassis all the way

through the factory. Then
• f* = min(f1[n] +x1, f2[n] +x2)
• f1[1]=e1+a1,1, fastest time to get through S1,1

• f1[j]=min(f1[j-1]+a1,j, f2[j-1]+ t2,j-1+ a1,j)
• Similarly to f2[j].

CSE5311 Design and Analysis of Algorithms 28Dept. CSE, UT Arlington

ALS --DP steps: Step 2

• Recursive solution:
– f* = min(f1[n] +x1, f2[n] +x2)
– f1[j]= e1+a1,1 if j=1

– min(f1[j-1]+a1,j, f2[j-1]+ t2,j-1+ a1,j) if j>1

– f2[j]= e2+a2,1 if j=1

– min(f2[j-1]+a2,j, f1[j-1]+ t1,j-1+ a2,j) if j>1

• fi[j] (i=1,2; j=1,2,…,n) records optimal values to the subproblems.
• To keep track of the fastest way, introduce li[j] to record the line

number (1 or 2), whose station j-1 is used in a fastest way through
Si,j.

• Introduce l* to be the line whose station n is used in a fastest way
through the factory.

CSE5311 Design and Analysis of Algorithms 29Dept. CSE, UT Arlington

ALS --DP steps: Step 3

• Step 3: Computing the fastest time
– One option: a recursive algorithm.
Let ri(j) be the number of references made to fi[j]

– r1(n) = r2(n) = 1
– r1(j) = r2(j) = r1(j+1)+ r2(j+1)
– ri (j) = 2n-j.
– So f1[1] is referred to 2n-1 times.
– Total references to all fi[j] is (2n).

Thus, the running time is exponential.
– Non-recursive algorithm.

CSE5311 Design and Analysis of Algorithms 30Dept. CSE, UT Arlington

ALS FAST-WAY Algorithm

Running time:
O(n).

CSE5311 Design and Analysis of Algorithms 31Dept. CSE, UT Arlington

ALS --DP steps: Step 4

• Step 4: Construct the fastest way through the factory

CSE5311 Design and Analysis of Algorithms 32Dept. CSE, UT Arlington

Optimal Substructure Varies in Two Ways

• How many subproblems
– In assembly-line schedule, one subproblem

– In matrix-chain multiplication: two subproblems

• How many choices
– In assembly-line schedule, two choices

– In matrix-chain multiplication: j-i choices

• DP solve the problem in bottom-up manner.

CSE5311 Design and Analysis of Algorithms 33Dept. CSE, UT Arlington

Running Time for DP Programs

• #overall subproblems  #choices.
– In assembly-line scheduling, O(n)  O(1)= O(n) .

– In matrix-chain multiplication, O(n2)  O(n) = O(n3)

• The cost =costs of solving subproblems + cost of
making choice.
– In assembly-line scheduling, choice cost is

ai,j if stay in the same line, ti’,j-1+ai,j (ii) otherwise.

– In matrix-chain multiplication, choice cost is pi-1pkpj.

