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Optimization Problems

• In which a set of choices must be made in order to arrive at 
an optimal (min/max) solution, subject to some 
constraints. (There may be several solutions to achieve an
optimal value.)

• Two common techniques:
– Dynamic Programming (global)

– Greedy Algorithms (local)
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Dynamic Programming (DP)

• Like divide-and-conquer, solve problem by combining the 
solutions to sub-problems.

• Differences between divide-and-conquer and DP:
– Independent sub-problems, solve sub-problems independently

and recursively, (so same sub(sub)problems solved repeatedly)
– DP is applicable when the sub-problems are not independent, i.e. 

when sub-problems share sub-sub-problems.  It solves every sub-
sub-problem just once and save the results in a table to avoid 
duplicated computation.
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Application domain of DP

• Optimization problem
– Find a solution with optimal (maximum or minimum) value.
– An optimal solution, not the optimal solution, since may more 

than one optimal solution, any one is OK.

• Typical steps
– Characterize the structure of an optimal solution.
– Recursively define the value of an optimal solution.
– Compute the value of an optimal solution in a bottom-up 

fashion.
– Compute an optimal solution from computed/stored 

information. 
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Elements of DP Algorithms

• Sub-structure: decompose problem into smaller sub-
problems.  Express the solution of the original problem in 
terms of solutions for smaller problems.

• Table-structure: Store the answers to the sub-problem in 
a table, because sub-problem solutions may be used many 
times.

• Bottom-up computation: combine solutions on smaller 
sub-problems to solve larger sub-problems, and eventually 
arrive at a solution to the complete problem.
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Applicability to Optimization Problems

• Optimal sub-structure (principle of optimality):  for 
the global problem to be solved optimally, each sub-problem 
should be solved optimally.  This is often violated due to sub-
problem overlaps.  Often by being “less optimal” on one 
problem, we may make a big savings on another sub-problem.

• Small number of sub-problems: Many NP-hard problems 
can be formulated as DP problems, but these formulations are 
not efficient, because the number of sub-problems is 
exponentially large.  Ideally, the number of sub-problems should 
be at most a polynomial number.
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Optimized Chain Operations

• Determine the optimal sequence for performing a series of 
operations.  (the general class of the problem is important 
in compiler design for code optimization & in databases for 
query optimization)

• For example: given a series of matrices: A1…An , we can 
“parenthesize”  this expression however we like, since 
matrix multiplication is associative (but not commutative).

• Multiply a p x q matrix A times a q x r matrix B, the result 
will be a  p x r matrix C.  (# of columns of A must be equal 
to # of rows of B.)
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Matrix Chain-Products

• Dynamic Programming is a general 
algorithm design paradigm.
– Rather than give the general structure, let us 

first give a motivating example:

– Matrix Chain-Products

• Review: Matrix Multiplication.
– C = A*B
– A is d × e and B is e × f

– O(def ) time
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Matrix Chain-Products

• Matrix Chain-Product:
– Compute A=A0*A1*…*An-1

– Ai is di × di+1

– Problem: How to parenthesize?

• Example
– B is 3 × 100
– C is 100 × 5
– D is 5 × 5
– (B*C)*D takes 1500 + 75 = 1575 ops
– B*(C*D) takes 1500 + 2500 = 4000 ops
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Enumeration Approach

• Matrix Chain-Product Algorithm.:
– Try all possible ways to parenthesize 

A=A0*A1*…*An-1

– Calculate number of ops for each one
– Pick the one that is best

• Running time:
– The number of parenthesizations is equal to the 

number of binary trees with n nodes
– This is exponential!
– It is called the Catalan number, and it is almost 4n.
– This is a terrible algorithm!
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Greedy Approach

• Idea #1: repeatedly select the product that uses the fewest 
operations.

• Counter-example: 
– A is 101 × 11
– B is 11 × 9
– C is 9 × 100
– D is 100 × 99
– Greedy idea #1 gives A*((B*C)*D)), which takes 

109989+9900+108900=228789 ops
– (A*B)*(C*D) takes 9999+89991+89100=189090 ops

• The greedy approach is not giving us the optimal value.
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“Recursive” Approach

• Define subproblems:
– Find the best parenthesization of Ai*Ai+1*…*Aj.
– Let Ni,j denote the number of operations done by this subproblem.
– The optimal solution for the whole problem is N0,n-1.

• Subproblem optimality: The optimal solution can be 
defined in terms of optimal subproblems
– There has to be a final multiplication (root of the expression tree) 

for the optimal solution.  
– Say, the final multiplication is at index i: (A0*…*Ai)*(Ai+1*…*An-1).
– Then the optimal solution N0,n-1 is the sum of two optimal 

subproblems, N0,i and Ni+1,n-1 plus the time for the last 
multiplication.
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Characterizing Equation

• The global optimal has to be defined in terms of optimal 
subproblems, depending on where the final multiplication is at.

• Let us consider all possible places for that final multiplication:
– Recall that Ai is a di× di+1 dimensional matrix.
– So, a characterizing equation for Ni,j is the following:

• Note that subproblems are not independent–the subproblems 
overlap.

}{min 11,1,, 
 jkijkki

jki
ji dddNNN
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Subproblem Overlap 

Algorithm RecursiveMatrixChain(S, i, j):
Input: sequence S of n matrices to be multiplied
Output: number of operations in an optimal parenthesization of S
if i=j

then return 0
for k  i to j do

Ni, j  min{Ni,j, RecursiveMatrixChain(S, i ,k)+
RecursiveMatrixChain(S, k+1,j)+ di dk+1 dj+1}
return Ni,j
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Subproblem Overlap 

1..4

1..1 2..4 1..2 3..4 1..3 4..4

2..2 3..4 2..3 4..4 3..3 4..41..1 2..2

3..3 4..4 2..2 3..3

...
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3..3

1..33..41..22..41..1 4..4

2..33..42..2 4..4 2..21..1 4..43..3 1..1 2..3 1..2 3..3

1..4

2..24..43..3 2..2 3..3 1..1 2..2
This divide-and-conquer recursive algorithm solves the overlapping problems over and over.

In contrast, DP solves the same (overlapping) subproblems only once (at the first time), 
then store the result in a table,  when the same subproblem is encountered later,  just look up 
the table to get the result.

The computations in green color are replaced by table look up in MEMOIZED-MATRIX-CHAIN(p,1,4)

The divide-and-conquer is better for the problem which generates brand-new problems at 
each step of  recursion.  

Recursion tree for the computation of 
RECURSIVE-MATRIX-CHAIN(p,1,4)
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Dynamic Programming Algorithm

• Since subproblems 
overlap, we don’t 
use recursion.

• Instead, we 
construct optimal 
subproblems 
“bottom-up.” 

• Ni,i’s are easy, so 
start with them

• Then do problems 
of “length” 2,3,… 
subproblems, and 
so on.

• Running time: 
O(n3)

Algorithm matrixChain(S):
Input: sequence S of n matrices to be multiplied
Output: number of operations in an optimal 

parenthesization of S
for i  1 to n  1 do

Ni,i  0
for b  1 to n  1 do  

{ b  j  i is the length of the problem }
for i  0 to n  b - 1 do

j  i  b
Ni,j  
for k  i to j  1 do

Ni,j  min{Ni,j, Ni,k + Nk+1,j + di dk+1 dj+1}
return N0,n-1
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Dynamic Programming Algorithm Visualization

• The bottom-up 
construction fills in the N 
array by diagonals

• Ni,j gets values from 
previous entries in i-th row 
and j-th column 

• Filling in each entry in the 
N table takes O(n) time.

• Total run time: O(n3)

• Getting actual 
parenthesization can be 
done by remembering “k” 
for each N entry

}{min 11,1,, 
 jkijkki

jki
ji dddNNN

i

j



CSE5311 Design and Analysis of  Algorithms 19Dept. CSE, UT Arlington

• A0: 30 X 35; A1: 35 X15; A2: 15X5;

A3: 5X10;    A4: 10X20;  A5: 20 X 25 
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Dynamic Programming Algorithm Visualization
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(A0*(A1*A2))*((A3*A4)*A5)

Dynamic Programming Algorithm Visualization
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Assembly-Line Scheduling

• Two parallel assembly lines in a factory, lines 1 and 2
• Each line has n stations Si,1…Si,n

• For each j, S1, j does the same thing as S2, j , but it may take 
a different amount of assembly time ai, j

• Transferring away from line i after stage j costs ti, j
• Also entry time ei and exit time xi at beginning and end
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Assembly Line Scheduling (ALS)
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Concrete Instance of ALS
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Brute Force Solution

– List all possible sequences, 

– For each sequence of n stations, compute the passing time. 
(the computation takes (n) time.)

– Record the sequence with smaller passing time. 

– However, there are total 2n possible sequences.
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ALS --DP steps: Step 1

• Step 1: find the structure of the fastest way through 
factory
– Consider the fastest way from starting point through station S1,j

(same for S2,j)
j=1, only one possibility
j=2,3,…,n,  two possibilities: from S1,j-1 or S2,j-1

– from S1,j-1, additional time a1,j

– from S2,j-1, additional time t2,j-1 + a1,j

suppose the fastest way through S1,j is through S1,j-1, then the 
chassis must have taken a fastest way from starting point 
through S1,j-1.    Why???
Similarly for S2,j-1.
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DP step 1: Find Optimal Structure

• An optimal solution to a problem contains within it an 
optimal solution to subproblems.

• the fastest way through station Si,j contains within it the 
fastest way through station S1,j-1 or S2,j-1 .

• Thus can construct an optimal solution to a problem from 
the optimal solutions to subproblems.
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ALS --DP steps: Step 2

• Step 2:  A recursive solution
• Let fi[j] (i=1,2 and j=1,2,…, n) denote the fastest possible 

time to get a chassis from starting point through Si,j.
• Let f* denote the fastest time for a chassis all the way 

through the factory. Then
• f* = min(f1[n] +x1, f2[n] +x2)
• f1[1]=e1+a1,1, fastest time to get through S1,1

• f1[j]=min(f1[j-1]+a1,j, f2[j-1]+ t2,j-1+ a1,j)
• Similarly to f2[j].
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ALS --DP steps: Step 2

• Recursive solution:
– f* = min(f1[n] +x1, f2[n] +x2)
– f1[j]=  e1+a1,1                                                                   if j=1

– min(f1[j-1]+a1,j, f2[j-1]+ t2,j-1+ a1,j) if j>1

– f2[j]=  e2+a2,1                                                                   if j=1

– min(f2[j-1]+a2,j, f1[j-1]+ t1,j-1+ a2,j) if j>1

• fi[j]  (i=1,2; j=1,2,…,n) records optimal values to the subproblems.
• To keep track of the fastest way, introduce li[j] to record the line 

number (1 or 2), whose station j-1 is used in a fastest way through 
Si,j.

• Introduce l* to be the line whose station n is used in a fastest way 
through the factory. 
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ALS --DP steps: Step 3

• Step 3:  Computing the fastest time
– One option: a recursive algorithm.
Let ri(j) be the number of references made to fi[j]

– r1(n) = r2(n) = 1
– r1(j) = r2(j) = r1(j+1)+ r2(j+1)
– ri (j) = 2n-j.  
– So  f1[1] is referred to 2n-1 times.  
– Total references to all fi[j] is (2n). 

Thus, the running time is exponential.
– Non-recursive algorithm.
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ALS FAST-WAY Algorithm

Running time: 
O(n).
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ALS --DP steps: Step 4

• Step 4:  Construct the fastest way through the factory
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Optimal Substructure Varies in Two Ways

• How many subproblems
– In assembly-line schedule, one subproblem

– In matrix-chain multiplication: two subproblems

• How many choices
– In assembly-line schedule, two choices

– In matrix-chain multiplication: j-i choices

• DP solve the problem in bottom-up manner.
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Running Time for DP Programs

• #overall subproblems  #choices.
– In assembly-line scheduling, O(n)  O(1)= O(n) .

– In matrix-chain multiplication, O(n2)  O(n) = O(n3)

• The cost =costs of solving subproblems + cost of 
making choice.
– In assembly-line scheduling, choice cost is

ai,j if stay in the same line, ti’,j-1+ai,j (ii) otherwise.

– In matrix-chain multiplication, choice cost is pi-1pkpj.


