
CSE5311 Design and Analysis of Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 1

CSE 5311
Lecture 14 Dynamic Programming

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms

CSE5311 Design and Analysis of Algorithms 2Dept. CSE, UT Arlington

The General Dynamic Programming Technique

• Applies to a problem that at first seems to require a lot of
time (possibly exponential), provided we have:
– Subproblem optimality: the global optimum value can be

defined in terms of optimal subproblems
– Subproblem overlap: the subproblems are not independent, but

instead they overlap (hence, should be constructed bottom-up).

CSE5311 Design and Analysis of Algorithms 3Dept. CSE, UT Arlington

Longest Common Subsequence

• Problem: Given 2 sequences, X = x1,...,xm and
Y = y1,...,yn, find a common subsequence whose length is maximum.

springtime ncaa tournament basketball

printing north carolina krzyzewski

Subsequence need not be consecutive, but must be in order.

CSE5311 Design and Analysis of Algorithms 4Dept. CSE, UT Arlington

Other Sequence Questions

• Edit distance: Given 2 sequences, X = x1,...,xm and Y =
y1,...,yn, what is the minimum number of deletions,
insertions, and changes that you must do to change one to
another?

• Protein sequence alignment: Given a score matrix on
amino acid pairs, s(a,b) for a,b{}A,
and 2 amino acid sequences, X = x1,...,xmAm and Y =
y1,...,ynAn, find the alignment with lowest score…

CSE5311 Design and Analysis of Algorithms 5Dept. CSE, UT Arlington

More Problems

Optimal BST: Given sequence K = k1 < k2 <··· < kn of n
sorted keys, with a search probability pi for each key ki,
build a binary search tree (BST) with minimum expected
search cost.

Minimum convex decomposition of a polygon,

Hydrogen placement in protein structures, …

CSE5311 Design and Analysis of Algorithms 6Dept. CSE, UT Arlington

Dynamic Programming

• Dynamic Programming is an algorithm design technique for
optimization problems: often minimizing or maximizing.

• Like divide and conquer, DP solves problems by combining
solutions to subproblems.

• Unlike divide and conquer, subproblems are not independent.
– Subproblems may share subsubproblems,
– However, solution to one subproblem may not affect the solutions to other

subproblems of the same problem. (More on this later.)

• DP reduces computation by
– Solving subproblems in a bottom-up fashion.
– Storing solution to a subproblem the first time it is solved.
– Looking up the solution when subproblem is encountered again.

• Key: determine structure of optimal solutions

CSE5311 Design and Analysis of Algorithms 7Dept. CSE, UT Arlington

Recalling: Steps in Dynamic Programming

1. Characterize structure of an optimal solution.

2. Define value of optimal solution recursively.

3. Compute optimal solution values either top-down with
caching or bottom-up in a table.

4. Construct an optimal solution from computed values.

CSE5311 Design and Analysis of Algorithms 8Dept. CSE, UT Arlington

Naïve Algorithm

• For every subsequence of X = x1,...,xm, check whether
it’s a subsequence of Y = y1,...,yn .

• Time: Θ(n2m).
– 2m subsequences of X to check.

– Each subsequence takes Θ(n) time to check:
scan Y for first letter, for second, and so on.

springtime ncaa tournament basketball

printing north carolina krzyzewski

CSE5311 Design and Analysis of Algorithms 9Dept. CSE, UT Arlington

Optimal Substructure

Notation:

prefix Xi = x1,...,xi is the first i letters of X.

This says what any longest common subsequence must look like;
do you believe it?

k n n-1

Theorem
Let Z = z1, . . . , zk be any LCS of X and Y .
1. If xm = yn, then zk = xm = yn and Zk-1 is an LCS of Xm-1 and Yn-1.
2. If xm yn, then either zk xm and Z is an LCS of Xm-1 and Y .
3. or zk yn and Z is an LCS of X and Yn-1.

CSE5311 Design and Analysis of Algorithms 10Dept. CSE, UT Arlington

Optimal Substructure

Proof: (case 1: xm = yn)
Any sequence Z’ that does not end in xm = yn can be made longer by

adding xm = yn to the end. Therefore,
(1) longest common subsequence (LCS) Z must end in xm = yn.
(2) Zk-1 is a common subsequence of Xm-1 and Yn-1, and
(3) there is no longer CS of Xm-1 and Yn-1, or Z would not be an LCS.

k n n-1

Theorem
Let Z = z1, . . . , zk be any LCS of X and Y .
1. If xm = yn, then zk = xm = yn and Zk-1 is an LCS of Xm-1 and Yn-1.
2. If xm yn, then either zk xm and Z is an LCS of Xm-1 and Y .
3. or zk yn and Z is an LCS of X and Yn-1.

CSE5311 Design and Analysis of Algorithms 11Dept. CSE, UT Arlington

Optimal Substructure

Proof: (case 2: xm yn, and zk xm)

Since Z does not end in xm,

(1) Z is a common subsequence of Xm-1 and Y, and

(2) there is no longer CS of Xm-1 and Y, or Z would not be an LCS.

k n n-1

Theorem
Let Z = z1, . . . , zk be any LCS of X and Y .
1. If xm = yn, then zk = xm = yn and Zk-1 is an LCS of Xm-1 and Yn-1.
2. If xm yn, then either zk xm and Z is an LCS of Xm-1 and Y .
3. or zk yn and Z is an LCS of X and Yn-1.

CSE5311 Design and Analysis of Algorithms 12Dept. CSE, UT Arlington

Recursive Solution

• Define c[i, j] = length of LCS of Xi and Yj .

• We want c[m,n].

. and 0, if])1,[],,1[max(

, and 0, if1]1,1[

,0or 0 if0

],[

ji

ji

yxjijicjic

yxjijic

ji

jic

. and 0, if])1,[],,1[max(

, and 0, if1]1,1[

,0or 0 if0

],[

ji

ji

yxjijicjic

yxjijic

ji

jic

This gives a recursive algorithm and solves the problem.
But does it solve it well?

CSE5311 Design and Analysis of Algorithms 13Dept. CSE, UT Arlington

.)end()end(if]),[],,[max(

,)end()end(if1],[

,empty or empty if0

],[

prefixcprefixc

prefixprefixcc

.)end()end(if]),[],,[max(

,)end()end(if1],[

,empty or empty if0

],[

prefixcprefixc

prefixprefixcc

c[springtime, printing]

c[springtim, printing] c[springtime, printin]

[springti, printing] [springtim, printin] [springtim, printin] [springtime, printi]

[springt, printing] [springti, printin] [springtim, printi] [springtime, print]

Recursive Solution

CSE5311 Design and Analysis of Algorithms 14Dept. CSE, UT Arlington

.)end()end(if]),[],,[max(

,)end()end(if1],[

,empty or empty if0

],[

prefixcprefixc

prefixprefixcc

.)end()end(if]),[],,[max(

,)end()end(if1],[

,empty or empty if0

],[

prefixcprefixc

prefixprefixcc

p r i n t i n g

S

P

r

i

n

g

t

i

m

e

•Keep track of c[a,b] in
a table of nm entries:

•top/down

•bottom/up

Recursive Solution

CSE5311 Design and Analysis of Algorithms 15Dept. CSE, UT Arlington

Computing the length of an LCS

LCS-LENGTH (X, Y)

17.return c and b

LCS-LENGTH (X, Y)
1. m ← length[X]
2. n ← length[Y]
3. for i ← 1 to m
4. do c[i, 0] ← 0
5. for j ← 0 to n
6. do c[0, j] ← 0
7. for i ← 1 to m
8. do for j ← 1 to n
9. do if xi = yj

10. then c[i, j] ← c[i1, j1] + 1
11. b[i, j] ← “ ”
12. else if c[i1, j] ≥ c[i, j1]
13. then c[i, j] ← c[i 1, j]
14. b[i, j] ← “↑”
15. else c[i, j] ← c[i, j1]
16. b[i, j] ← “←”
17.return c and b

b[i, j] points to table entry
whose subproblem we used
in solving LCS of Xi

and Yj.

c[m,n] contains the length of
an LCS of X and Y.

Time: O(mn)

CSE5311 Design and Analysis of Algorithms 16Dept. CSE, UT Arlington

Constructing an LCS

PRINT-LCS (b, X, i, j)PRINT-LCS (b, X, i, j)
1. if i = 0 or j = 0
2. then return
3. if b[i, j] = “ ”
4. then PRINT-LCS(b, X, i1, j1)
5. print xi

6. elseif b[i, j] = “↑”
7. then PRINT-LCS(b, X, i1, j)
8. else PRINT-LCS(b, X, i, j1)

•Initial call is PRINT-LCS (b, X,m, n).
•When b[i, j] = , we have extended LCS by one character. So
LCS = entries with in them.

•Time: O(m+n)

CSE5311 Design and Analysis of Algorithms 17Dept. CSE, UT Arlington

LCS Example

We’ll see how LCS algorithm works on the following
example:

• X = ABCB

• Y = BDCAB

LCS(X, Y) = BCB
X = A B C B
Y = B D C A B

What is the Longest Common Subsequence of X and Y?

CSE5311 Design and Analysis of Algorithms 18Dept. CSE, UT Arlington

LCS Example (0)

j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

X = ABCB; m = |X| = 4
Y = BDCAB; n = |Y| = 5
Allocate array c[5,4]

ABCB
BDCAB

CSE5311 Design and Analysis of Algorithms 19Dept. CSE, UT Arlington

LCS Example (1)

j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

for i = 1 to m c[i,0] = 0
for j = 1 to n c[0,j] = 0

ABCB
BDCAB

CSE5311 Design and Analysis of Algorithms 20Dept. CSE, UT Arlington

LCS Example (2)

j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

0

ABCB
BDCAB

CSE5311 Design and Analysis of Algorithms 21Dept. CSE, UT Arlington

LCS Example (3)

j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

0 0 0

ABCB
BDCAB

CSE5311 Design and Analysis of Algorithms 22Dept. CSE, UT Arlington

LCS Example (4)

j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

0 0 0 1

ABCB
BDCAB

CSE5311 Design and Analysis of Algorithms 23Dept. CSE, UT Arlington

LCS Example (5)

j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

000 1 1

ABCB
BDCAB

CSE5311 Design and Analysis of Algorithms 24Dept. CSE, UT Arlington

LCS Example (6)

j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

0 0 10 1

1

ABCB
BDCAB

CSE5311 Design and Analysis of Algorithms 25Dept. CSE, UT Arlington

LCS Example (7)

j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 1 11

ABCB
BDCAB

CSE5311 Design and Analysis of Algorithms 26Dept. CSE, UT Arlington

LCS Example (8)

j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 1 1 1 2

ABCB
BDCAB

CSE5311 Design and Analysis of Algorithms 27Dept. CSE, UT Arlington

LCS Example (10)

j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

21 1 11

1 1

ABCB
BDCAB

CSE5311 Design and Analysis of Algorithms 28Dept. CSE, UT Arlington

LCS Example (11)

j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 21 11

1 1 2

ABCB
BDCAB

CSE5311 Design and Analysis of Algorithms 29Dept. CSE, UT Arlington

LCS Example (12)

j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 21 1

1 1 2

1

22

ABCB
BDCAB

CSE5311 Design and Analysis of Algorithms 30Dept. CSE, UT Arlington

LCS Example (13)

j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 21 1

1 1 2

1

22

1

ABCB
BDCAB

CSE5311 Design and Analysis of Algorithms 31Dept. CSE, UT Arlington

LCS Example (14)

j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 21 1

1 1 2

1

22

1 1 2 2

ABCB
BDCAB

CSE5311 Design and Analysis of Algorithms 32Dept. CSE, UT Arlington

LCS Example (15)

j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3

ABCB
BDCAB

CSE5311 Design and Analysis of Algorithms 33Dept. CSE, UT Arlington

LCS Algorithm Running Time

• LCS algorithm calculates the values of each entry of
the array c[m,n]

• So what is the running time?

O(m*n)

since each c[i,j] is calculated in constant time, and
there are m*n elements in the array

CSE5311 Design and Analysis of Algorithms 34Dept. CSE, UT Arlington

How to find actual LCS

• So far, we have just found the length of LCS, but not LCS
itself.

• We want to modify this algorithm to make it output
Longest Common Subsequence of X and Y

Each c[i,j] depends on c[i-1,j] and c[i,j-1]

or c[i-1, j-1]

For each c[i,j] we can say how it was acquired:

2

2 3

2 For example, here
c[i,j] = c[i-1,j-1] +1 = 2+1=3

CSE5311 Design and Analysis of Algorithms 35Dept. CSE, UT Arlington

How to find actual LCS - continued

• Remember that

otherwise]),1[],1,[max(

],[][if1]1,1[
],[

jicjic

jyixjic
jic

 So we can start from c[m,n] and go backwards

 Whenever c[i,j] = c[i-1, j-1]+1, remember x[i] (because
x[i] is a part of LCS)

 When i=0 or j=0 (i.e. we reached the beginning), output
remembered letters in reverse order

CSE5311 Design and Analysis of Algorithms 36Dept. CSE, UT Arlington

Finding LCS

j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3B

CSE5311 Design and Analysis of Algorithms 37Dept. CSE, UT Arlington

Finding LCS (2)

j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3B

B C BLCS (reversed order):

LCS (straight order): B C B
(this string turned out to be a palindrome)

