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The General Dynamic Programming Technique

• Applies to a problem that at first seems to require a lot of 
time (possibly exponential), provided we have:
– Subproblem optimality: the global optimum value can be 

defined in terms of optimal subproblems
– Subproblem overlap: the subproblems are not independent, but 

instead they overlap (hence, should be constructed bottom-up).
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Longest Common Subsequence

• Problem: Given 2 sequences, X = x1,...,xm and 
Y = y1,...,yn, find a common subsequence whose length is maximum. 

springtime ncaa tournament basketball

printing north carolina krzyzewski

Subsequence need not be consecutive, but must be in order.
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Other Sequence Questions

• Edit distance: Given 2 sequences, X = x1,...,xm and Y = 
y1,...,yn, what is the minimum number of deletions, 
insertions, and changes that you must do to change one to 
another? 

• Protein sequence alignment: Given a score matrix  on 
amino acid pairs, s(a,b) for a,b{}A, 
and 2 amino acid sequences, X = x1,...,xmAm and Y = 
y1,...,ynAn, find the alignment with lowest score…
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More Problems

Optimal BST: Given sequence K = k1 < k2 <··· < kn of n 
sorted keys, with a search probability pi for each key ki, 
build a binary search tree (BST) with minimum expected 
search cost.

Minimum convex decomposition of a polygon,

Hydrogen placement in protein structures, …
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Dynamic Programming

• Dynamic Programming is an algorithm design technique for 
optimization problems: often minimizing or maximizing.

• Like divide and conquer, DP solves problems by combining 
solutions to subproblems.

• Unlike divide and conquer, subproblems are not independent.
– Subproblems may share subsubproblems,
– However, solution to one subproblem may not affect the solutions to other 

subproblems of the same problem. (More on this later.)

• DP reduces computation by 
– Solving subproblems in a bottom-up fashion.
– Storing solution to a subproblem the first time it is solved.
– Looking up the solution when subproblem is encountered again.

• Key: determine structure of optimal solutions
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Recalling: Steps in Dynamic Programming

1. Characterize structure of an optimal solution.

2. Define value of optimal solution recursively.

3. Compute optimal solution values either top-down with 
caching or bottom-up in a table.

4. Construct an optimal solution from computed values.
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Naïve Algorithm

• For every subsequence of X = x1,...,xm, check whether 
it’s a subsequence of Y = y1,...,yn .

• Time: Θ(n2m).
– 2m subsequences of X to check.

– Each subsequence takes Θ(n) time to check: 
scan Y for first letter, for second, and so on.

springtime ncaa tournament basketball

printing north carolina krzyzewski
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Optimal Substructure

Notation:

prefix Xi = x1,...,xi is the first i letters of X.

This says what any longest common subsequence must look like; 
do you believe it?

k n n-1

Theorem 
Let Z = z1, . . . , zk be any LCS of  X and Y .
1. If  xm = yn, then zk = xm = yn and Zk-1 is an LCS of  Xm-1 and Yn-1.
2. If  xm  yn, then either zk  xm and Z is an LCS of  Xm-1 and Y .
3.                               or  zk  yn and Z is an LCS of  X and Yn-1.
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Optimal Substructure

Proof: (case 1: xm = yn)
Any sequence Z’ that does not end in xm = yn can be made longer by 

adding xm = yn to the end. Therefore, 
(1) longest common subsequence (LCS) Z must end in xm = yn. 
(2) Zk-1 is a common subsequence of Xm-1 and Yn-1, and 
(3) there is no longer CS of Xm-1 and Yn-1, or Z would not be an LCS.

k n n-1

Theorem 
Let Z = z1, . . . , zk be any LCS of  X and Y .
1. If  xm = yn, then zk = xm = yn and Zk-1 is an LCS of  Xm-1 and Yn-1.
2. If  xm  yn, then either zk  xm and Z is an LCS of  Xm-1 and Y .
3.                               or  zk  yn and Z is an LCS of  X and Yn-1.
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Optimal Substructure

Proof: (case 2: xm  yn, and zk  xm)

Since Z does not end in xm, 

(1) Z is a common subsequence of Xm-1 and Y, and 

(2) there is no longer CS of Xm-1 and Y, or Z would not be an LCS.

k n n-1

Theorem 
Let Z = z1, . . . , zk be any LCS of  X and Y .
1. If  xm = yn, then zk = xm = yn and Zk-1 is an LCS of  Xm-1 and Yn-1.
2. If  xm  yn, then either zk  xm and Z is an LCS of  Xm-1 and Y .
3.                               or  zk  yn and Z is an LCS of  X and Yn-1.
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Recursive Solution

• Define c[i, j] = length of LCS of Xi and Yj . 

• We want c[m,n].
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This gives a recursive algorithm and solves the problem.
But does it solve it well?
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prefixcprefixc

prefixprefixcc

c[springtime, printing]

c[springtim, printing]      c[springtime, printin]

[springti, printing] [springtim, printin]    [springtim, printin] [springtime, printi]

[springt, printing] [springti, printin] [springtim, printi] [springtime, print]

Recursive Solution
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•Keep track of  c[a,b] in 
a table of  nm entries:

•top/down 

•bottom/up

Recursive Solution
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Computing the length of an LCS

LCS-LENGTH (X, Y)

17.return c and b

LCS-LENGTH (X, Y)
1. m ← length[X]
2. n ← length[Y]
3. for i ← 1 to m
4. do c[i, 0] ← 0
5. for j ← 0 to n
6. do c[0, j ] ← 0
7. for i ← 1 to m
8. do for j ← 1 to n
9. do if xi = yj

10. then c[i, j ] ← c[i1, j1] + 1
11. b[i, j ] ← “   ”
12. else if c[i1, j ] ≥ c[i, j1]
13. then c[i, j ] ← c[i 1, j ]
14. b[i, j ] ← “↑”
15. else c[i, j ] ← c[i, j1]
16. b[i, j ] ← “←”
17.return c and b

b[i, j ] points to table entry 
whose subproblem we used 
in solving LCS of  Xi

and Yj.

c[m,n] contains the length of  
an LCS of  X and Y.

Time: O(mn)
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Constructing an LCS

PRINT-LCS (b, X, i, j)PRINT-LCS (b, X, i, j)
1. if i = 0 or j = 0
2. then return
3. if b[i, j ] = “   ”
4. then PRINT-LCS(b, X, i1, j1)
5. print xi

6. elseif b[i, j ] = “↑”
7. then PRINT-LCS(b, X, i1, j)
8. else PRINT-LCS(b, X, i, j1)

•Initial call is PRINT-LCS (b, X,m, n).
•When b[i, j ] =    , we have extended LCS by one character. So 
LCS = entries with      in them.

•Time: O(m+n)
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LCS Example

We’ll see how LCS algorithm works on the following 
example:

• X = ABCB

• Y = BDCAB

LCS(X, Y) = BCB
X = A B C B
Y =     B D C A B

What is the Longest Common Subsequence of  X and Y?
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LCS Example (0)

j       0        1          2         3        4         5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

X = ABCB;   m = |X| = 4
Y = BDCAB; n = |Y| = 5
Allocate array c[5,4]

ABCB
BDCAB
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LCS Example (1)

j       0        1          2         3        4         5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

for i = 1 to m c[i,0] = 0 
for j = 1 to n  c[0,j] = 0

ABCB
BDCAB
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LCS Example (2)

j       0        1 2         3        4         5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

0

ABCB
BDCAB
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LCS Example (3)

j       0        1          2         3        4         5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

0 0 0

ABCB
BDCAB
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LCS Example (4)

j       0        1          2         3        4 5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

0 0 0 1

ABCB
BDCAB
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LCS Example (5)

j       0        1          2         3        4         5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

000 1 1

ABCB
BDCAB
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LCS Example (6)

j       0        1 2         3        4         5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

0 0 10 1

1

ABCB
BDCAB



CSE5311 Design and Analysis of  Algorithms 25Dept. CSE, UT Arlington

LCS Example (7)

j       0        1          2         3        4 5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

1000 1

1 1 11

ABCB
BDCAB
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LCS Example (8)

j       0        1          2         3        4         5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

1000 1

1 1 1 1 2

ABCB
BDCAB
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LCS Example (10)

j       0        1          2 3        4         5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

1000 1

21 1 11

1 1

ABCB
BDCAB
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LCS Example (11)

j       0        1          2         3 4         5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

1000 1

1 21 11

1 1 2

ABCB
BDCAB
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LCS Example (12)

j       0        1          2         3        4         5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

1000 1

1 21 1

1 1 2

1

22

ABCB
BDCAB
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LCS Example (13)

j       0        1 2         3        4         5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

1000 1

1 21 1

1 1 2

1

22

1

ABCB
BDCAB
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LCS Example (14)

j       0        1          2         3 4 5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

1000 1

1 21 1

1 1 2

1

22

1 1 2 2

ABCB
BDCAB
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LCS Example (15)

j       0        1          2         3        4         5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3

ABCB
BDCAB
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LCS Algorithm Running Time

• LCS algorithm calculates the values of each entry of 
the array c[m,n]

• So what is the running time?

O(m*n)

since each c[i,j] is calculated in constant time, and 
there are m*n elements in the array



CSE5311 Design and Analysis of  Algorithms 34Dept. CSE, UT Arlington

How to find actual LCS

• So far, we have just found the length of LCS, but not LCS 
itself.

• We want to modify this algorithm to make it output 
Longest Common Subsequence of X and Y

Each c[i,j] depends on c[i-1,j] and c[i,j-1]

or c[i-1, j-1]

For each c[i,j] we can say how it was acquired:

2

2 3

2 For example, here 
c[i,j] = c[i-1,j-1] +1 = 2+1=3
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How to find actual LCS - continued

• Remember that









otherwise]),1[],1,[max(

],[][ if1]1,1[
],[

jicjic

jyixjic
jic

 So we can start from c[m,n] and go backwards

 Whenever c[i,j] = c[i-1, j-1]+1, remember x[i]   (because 
x[i] is a part  of  LCS)

 When i=0 or j=0 (i.e. we reached the beginning), output 
remembered letters in reverse order
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Finding LCS

j       0        1          2         3        4         5 

0

1

2

3

4

i

Xi

A

B

C

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3B
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Finding LCS (2)

j       0        1          2         3        4         5 

0

1

2

3

4

i

Xi

A

B

C

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3B

B C BLCS (reversed order):

LCS (straight order): B  C  B
(this string turned out to be a palindrome)


