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• Suppose we have 1000000000 (1G) character data file that 
we wish to include in an email.

• Suppose file only contains 26 letters {a,…,z}.

• Suppose each letter a in {a,…,z} occurs with frequency fa.

• Suppose we encode each letter by a binary code

• If we use a fixed length code, we need 5 bits for each 
character

• The resulting message length is

• Can we do better?

Data Compression

 zba fff 5
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Huffman Coding

• The basic idea 
– Instead of storing each character in a file as an 8-bit ASCII value, 

we will instead store the more frequently occurring characters 
using fewer bits and less frequently occurring characters using 
more bits

– On average this should decrease the filesize (usually ½)

• Huffman codes can be used to compress information
– Like WinZip – although WinZip doesn’t use the Huffman 

algorithm
– JPEGs do use Huffman as part of their compression process
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Data Compression: A Smaller Example

• Suppose the file only has 6 letters {a,b,c,d,e,f} with 
frequencies

• Fixed length 3G=3000000000 bits

• Variable length 

110011011111001010

101100011010001000

05.09.16.12.13.45.

fedcba

Fixed length 

Variable length

  G24.2405.409.316.312.313.145. 
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How to decode?

• At first it is not obvious how decoding will happen, but 
this is possible if we use prefix codes
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Prefix Codes

• No encoding of a character can be the prefix of the longer 
encoding of another character, for example, we could not 
encode t as 01 and x as 01101 since 01 is a prefix of 01101

• By using a binary tree representation we will generate prefix 
codes provided all letters are leaves
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Prefix codes

• A message can be decoded uniquely.

• Following the tree until it reaches to a leaf, and then repeat!

• Draw a few more tree and produce the codes!!!
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Some Properties

• Prefix codes allow easy decoding
– Given a: 0, b: 101, c: 100, d: 111, e: 1101, f: 1100

– Decode 001011101 going left to right, 0|01011101, a|0|1011101, 
a|a|101|1101, a|a|b|1101, a|a|b|e

• An optimal code must be a full binary tree (a tree where 
every internal node has two children)

• For C leaves there are C-1 internal nodes

• The number of bits to encode a file is

where f(c) is the freq of c, dT(c) is the tree depth of c, which 
corresponds to the code length of c
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Optimal Prefix Coding Problem

• Input: Given a set of n letters (c1,…, cn) with frequencies 
(f1,…, fn).

• Construct a full binary tree T to define a prefix code that 
minimizes the average code length

 iT

n

i i cfT length )Average(
1

 
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Greedy Algorithms

• Many optimization problems can be solved using a greedy 
approach
– The basic principle is that local optimal decisions may be used to 

build an optimal solution

– But the greedy approach may not always lead to an optimal 
solution overall for all problems

– The key is knowing which problems will work with  this 
approach and which will not

• We will study
– The problem of generating Huffman codes
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Greedy algorithms

• A greedy algorithm always makes the choice that looks best at 
the moment
– My everyday examples: 

Driving in Los Angeles, NY, or Boston for that matter

Playing cards

Invest on stocks

Choose a university

– The hope: a locally optimal choice will lead to a globally optimal 
solution

– For some problems, it works

• Greedy algorithms tend to be easier to code
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David Huffman’s idea

• A Term paper at MIT

• Build the tree (code) bottom-up in a greedy fashion

• Origami aficionado
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Story behind

• David Huffman was a student in an EE course in 1951. His
professor, Robert Fano, offered students a choice of taking a final
exam or writing a term paper.

• Huffman did not want to take the final so he started working on
the term paper. The topic of the paper was to find the most
efficient (optimal) code.

• The fact: it was an open research problem

• Huffman spent a lot of time on the problem and was ready to give
up when the solution suddenly came to him. It had the lowest
possible average message length.

• Later Huffman said that likely he would not have even attempted
the problem if he had known that it was an open research problem
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Building the Encoding Tree
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Building the Encoding Tree
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Building the Encoding Tree
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Building the Encoding Tree
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Building the Encoding Tree
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The Algorithm

• An appropriate data structure is a binary min-heap

• Rebuilding the heap is lg n and n-1 extractions are made, so 
the complexity is O( n lg n )

• The encoding is NOT unique, other encoding may work 
just as well, but none will work better

Q :priority queue
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Correctness of Huffman’s Algorithm

The idea of the proof is to take the tree T representing an arbitrary optimal prefix
code and modify it to make a tree representing another optimal prefix code such
that the characters x and y appear as sibling leaves of maximum depth in the new
tree.

If we can construct such a tree, then the codewords for x and y will have the same
length and differ only in the last bit.

Proof: 
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Lemma 16.2
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Lemma 16.2
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Lemma 16.2

B(T’’)  B(T), 

but T is optimal,  B(T)  B(T’’) 

 B(T’’) = B(T)
Therefore T’’ is an optimal tree in which x and y appear as 
sibling leaves of  maximum depth
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Correctness of Huffman’s Algorithm

• We first show that: B(T) = B(T’) + f[x] + f[y]  B(T’) = B(T)-f[x]-f[y]

–For each c C – {x, y}  dT(c) = dT’(c) f[c]dT(c) = f[c]dT’(c)

–dT(x) = dT(y) = dT’(z) + 1

–f[x]dT(x) + f[y]dT(y)  = (f[x] + f[y])(dT’(z) + 1) 

– = f[z]dT’(z) + (f[x] + f[y])
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B(T’) = B(T)-f[x]-f[y]

B(T) = 45*1+12*3+13*3+5*4+9*4+16*3

z:14

B(T’) = 45*1+12*3+13*3+(5+9)*3+16*3
= B(T) - 5 - 9
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Proof of Lemma 16.3

• Suppose that T does not represent an optimal prefix code 
for C. Then there exists a tree T’’ such that B(T’’) < B(T).

• Without loss of generality (by Lemma 16.2), T’’ has x and y 
as siblings. Let T’’’ be the tree T’’ with the common parent 
x and y replaced by a leaf with frequency  f[z] = f[x] + f[y].

• Then B(T’’’) = B(T’’)  - f[x] – f[y] 

< B(T) – f[x] – f[y] 

= B(T’)
– T’’’ is better than T’  contradiction to the assumption that T’ is 

an optimal prefix code for C’. Thus, T must represent an optimal 
prefix code for the alphabet C.

Prove by contradiction
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Example: Huffman Coding 

• As an example, lets take the string:
“duke blue devils”

• We first to a frequency count of the characters:
e:3, d:2, u:2, l:2, space:2, k:1, b:1, v:1, i:1, s:1

• Next we use a Greedy algorithm to build up a Huffman 
Tree
– We start with nodes for each character

e,3 d,2 u,2 l,2 sp,2 k,1 b,1 v,1 i,1 s,1
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Example: Huffman Coding 

• We then pick the nodes with the smallest frequency and 
combine them together to form a new node
– The selection of these nodes is the Greedy part

• The two selected nodes are removed from the set, but 
replace by the combined node

• This continues until we have only 1 node left in the set
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e,3 d,2 u,2 l,2 sp,2 k,1 b,1 v,1 i,1 s,1

Example: Huffman Coding
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e,3 d,2 u,2 l,2 sp,2 k,1 b,1 v,1

i,1 s,1

2

Example: Huffman Coding
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e,3 d,2 u,2 l,2 sp,2 k,1

b,1 v,1 i,1 s,1

22

Example: Huffman Coding
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e,3 d,2 u,2 l,2 sp,2

k,1 i,1 s,1

2

b,1 v,1

2

3

Example: Huffman Coding
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e,3 d,2 u,2

l,2 sp,2 k,1 i,1 s,1

2

b,1 v,1

2

34

Example: Huffman Coding
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e,3

d,2 u,2 l,2 sp,2 k,1 i,1 s,1

2

b,1 v,1

2

344

Example: Huffman Coding
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e,3

d,2 u,2 l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

44 5

Example: Huffman Coding
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e,3

d,2 u,2

l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

4

4

57

Example: Huffman Coding
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e,3

d,2 u,2 l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

44 5

7 9

Example: Huffman Coding
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e,3

d,2 u,2 l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

44 5

7 9

16

Example: Huffman Coding
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• Now we assign codes to the tree by placing a 0 on every 
left branch and a 1 on every right branch

• A traversal of the tree from root to leaf give the Huffman 
code for that particular leaf character

• Note that no code is the prefix of another code

Example: Huffman Coding
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Example: Huffman Coding

e,3

d,2 u,2 l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

44 5

7 9

16
e 00

d 010

u 011

l 100

sp 101

i 1100

s 1101

k 1110

b 11110

v 11111
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Example: Huffman Coding

• These codes are then used to encode the string

• Thus, “duke blue devils” turns into:
010 011 1110 00 101 11110 100 011 00 101 010 00 11111 1100 100 1101

• When grouped into 8-bit bytes:
01001111  10001011  11101000  11001010  10001111  11100100   1101xxxx

• Thus it takes 7 bytes of space compared to 16 characters * 
1 byte/char = 16 bytes uncompressed
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Example: Huffman Coding

• Uncompressing works by reading in the file bit by bit
– Start at the root of the tree
– If a 0 is read, head left
– If a 1 is read, head right
– When a leaf is reached decode that character and start over again 

at the root of the tree

• Thus, we need to save Huffman table information as a 
header in the compressed file
– Doesn’t add a significant amount of size to the file for large files 

(which are the ones you want to compress anyway)
– Or we could use a fixed universal set of codes/freqencies
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Exercise

• Prefix codes
– Given a: 0, b: 101, c: 100, d: 111, e: 1101, f: 1100

– Decode 001011101 going left to right

• Answer
– 001011101      0|01011101

– a|0|1011101  a|a|101|1101

– a|a|b|1101    a|a|b|e
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Exercise

• Prefix codes
– Given I: 0, L: 101, Y: 100, X: 111, T: 1101, Z: 1100

– Decode 01011001101 going left to right

• Answer
– 01011001101       0|1011001101 

– I|101|1001101   I|L|100|1101

– I|L|Y|1101        I|L|Y|T
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Next

• Graph Algorithms
– BFS & DFS
– Topological Sort
– Minimum Spanning Trees
– Single Source Shortest Path
– All-pairs Shortest Path
– Maximum Flow

• Important
– Please read Lecture/Textbook first


