
CSE5311 Design and Analysis of Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 1

CSE 5311
Lecture 17 Greedy algorithms: Huffman

Coding

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms

CSE5311 Design and Analysis of Algorithms 2Dept. CSE, UT Arlington

• Suppose we have 1000000000 (1G) character data file that
we wish to include in an email.

• Suppose file only contains 26 letters {a,…,z}.

• Suppose each letter a in {a,…,z} occurs with frequency fa.

• Suppose we encode each letter by a binary code

• If we use a fixed length code, we need 5 bits for each
character

• The resulting message length is

• Can we do better?

Data Compression

 zba fff 5

CSE5311 Design and Analysis of Algorithms 3Dept. CSE, UT Arlington

Huffman Coding

• The basic idea
– Instead of storing each character in a file as an 8-bit ASCII value,

we will instead store the more frequently occurring characters
using fewer bits and less frequently occurring characters using
more bits

– On average this should decrease the filesize (usually ½)

• Huffman codes can be used to compress information
– Like WinZip – although WinZip doesn’t use the Huffman

algorithm
– JPEGs do use Huffman as part of their compression process

CSE5311 Design and Analysis of Algorithms 4Dept. CSE, UT Arlington

Data Compression: A Smaller Example

• Suppose the file only has 6 letters {a,b,c,d,e,f} with
frequencies

• Fixed length 3G=3000000000 bits

• Variable length

110011011111001010

101100011010001000

05.09.16.12.13.45.

fedcba

Fixed length

Variable length

  G24.2405.409.316.312.313.145. 

CSE5311 Design and Analysis of Algorithms 5Dept. CSE, UT Arlington

How to decode?

• At first it is not obvious how decoding will happen, but
this is possible if we use prefix codes

CSE5311 Design and Analysis of Algorithms 6Dept. CSE, UT Arlington

Prefix Codes

• No encoding of a character can be the prefix of the longer
encoding of another character, for example, we could not
encode t as 01 and x as 01101 since 01 is a prefix of 01101

• By using a binary tree representation we will generate prefix
codes provided all letters are leaves

CSE5311 Design and Analysis of Algorithms 7Dept. CSE, UT Arlington

Prefix codes

• A message can be decoded uniquely.

• Following the tree until it reaches to a leaf, and then repeat!

• Draw a few more tree and produce the codes!!!

CSE5311 Design and Analysis of Algorithms 8Dept. CSE, UT Arlington

Some Properties

• Prefix codes allow easy decoding
– Given a: 0, b: 101, c: 100, d: 111, e: 1101, f: 1100

– Decode 001011101 going left to right, 0|01011101, a|0|1011101,
a|a|101|1101, a|a|b|1101, a|a|b|e

• An optimal code must be a full binary tree (a tree where
every internal node has two children)

• For C leaves there are C-1 internal nodes

• The number of bits to encode a file is

where f(c) is the freq of c, dT(c) is the tree depth of c, which
corresponds to the code length of c

CSE5311 Design and Analysis of Algorithms 9Dept. CSE, UT Arlington

Optimal Prefix Coding Problem

• Input: Given a set of n letters (c1,…, cn) with frequencies
(f1,…, fn).

• Construct a full binary tree T to define a prefix code that
minimizes the average code length

 iT

n

i i cfT length)Average(
1

 

CSE5311 Design and Analysis of Algorithms 10Dept. CSE, UT Arlington

Greedy Algorithms

• Many optimization problems can be solved using a greedy
approach
– The basic principle is that local optimal decisions may be used to

build an optimal solution

– But the greedy approach may not always lead to an optimal
solution overall for all problems

– The key is knowing which problems will work with this
approach and which will not

• We will study
– The problem of generating Huffman codes

CSE5311 Design and Analysis of Algorithms 11Dept. CSE, UT Arlington

Greedy algorithms

• A greedy algorithm always makes the choice that looks best at
the moment
– My everyday examples:

Driving in Los Angeles, NY, or Boston for that matter

Playing cards

Invest on stocks

Choose a university

– The hope: a locally optimal choice will lead to a globally optimal
solution

– For some problems, it works

• Greedy algorithms tend to be easier to code

CSE5311 Design and Analysis of Algorithms 12Dept. CSE, UT Arlington

David Huffman’s idea

• A Term paper at MIT

• Build the tree (code) bottom-up in a greedy fashion

• Origami aficionado

CSE5311 Design and Analysis of Algorithms 13Dept. CSE, UT Arlington

Story behind

• David Huffman was a student in an EE course in 1951. His
professor, Robert Fano, offered students a choice of taking a final
exam or writing a term paper.

• Huffman did not want to take the final so he started working on
the term paper. The topic of the paper was to find the most
efficient (optimal) code.

• The fact: it was an open research problem

• Huffman spent a lot of time on the problem and was ready to give
up when the solution suddenly came to him. It had the lowest
possible average message length.

• Later Huffman said that likely he would not have even attempted
the problem if he had known that it was an open research problem

CSE5311 Design and Analysis of Algorithms 14Dept. CSE, UT Arlington

Building the Encoding Tree

CSE5311 Design and Analysis of Algorithms 15Dept. CSE, UT Arlington

Building the Encoding Tree

CSE5311 Design and Analysis of Algorithms 16Dept. CSE, UT Arlington

Building the Encoding Tree

CSE5311 Design and Analysis of Algorithms 17Dept. CSE, UT Arlington

Building the Encoding Tree

CSE5311 Design and Analysis of Algorithms 18Dept. CSE, UT Arlington

Building the Encoding Tree

CSE5311 Design and Analysis of Algorithms 19Dept. CSE, UT Arlington

The Algorithm

• An appropriate data structure is a binary min-heap

• Rebuilding the heap is lg n and n-1 extractions are made, so
the complexity is O(n lg n)

• The encoding is NOT unique, other encoding may work
just as well, but none will work better

Q :priority queue

CSE5311 Design and Analysis of Algorithms 20Dept. CSE, UT Arlington

Correctness of Huffman’s Algorithm

The idea of the proof is to take the tree T representing an arbitrary optimal prefix
code and modify it to make a tree representing another optimal prefix code such
that the characters x and y appear as sibling leaves of maximum depth in the new
tree.

If we can construct such a tree, then the codewords for x and y will have the same
length and differ only in the last bit.

Proof:

CSE5311 Design and Analysis of Algorithms 21Dept. CSE, UT Arlington

Lemma 16.2

CSE5311 Design and Analysis of Algorithms 22Dept. CSE, UT Arlington

Lemma 16.2

0

))()(])([][(

)(][)(][)(][)(][

)(][)(][)(][)(][

)()()()()'()(

''

'










xdadxfaf

xdafadxfadafxdxf

adafxdxfadafxdxf

cdcfcdcfTBTB

TT

TTTT

TTTT

Cc
T

Cc
T

Why?

CSE5311 Design and Analysis of Algorithms 23Dept. CSE, UT Arlington

Lemma 16.2

B(T’’)  B(T),

but T is optimal, B(T)  B(T’’)

 B(T’’) = B(T)
Therefore T’’ is an optimal tree in which x and y appear as
sibling leaves of maximum depth

CSE5311 Design and Analysis of Algorithms 24Dept. CSE, UT Arlington

Correctness of Huffman’s Algorithm

• We first show that: B(T) = B(T’) + f[x] + f[y]  B(T’) = B(T)-f[x]-f[y]

–For each c C – {x, y}  dT(c) = dT’(c) f[c]dT(c) = f[c]dT’(c)

–dT(x) = dT(y) = dT’(z) + 1

–f[x]dT(x) + f[y]dT(y) = (f[x] + f[y])(dT’(z) + 1)

– = f[z]dT’(z) + (f[x] + f[y])

CSE5311 Design and Analysis of Algorithms 25Dept. CSE, UT Arlington

B(T’) = B(T)-f[x]-f[y]

B(T) = 45*1+12*3+13*3+5*4+9*4+16*3

z:14

B(T’) = 45*1+12*3+13*3+(5+9)*3+16*3
= B(T) - 5 - 9

CSE5311 Design and Analysis of Algorithms 26Dept. CSE, UT Arlington

Proof of Lemma 16.3

• Suppose that T does not represent an optimal prefix code
for C. Then there exists a tree T’’ such that B(T’’) < B(T).

• Without loss of generality (by Lemma 16.2), T’’ has x and y
as siblings. Let T’’’ be the tree T’’ with the common parent
x and y replaced by a leaf with frequency f[z] = f[x] + f[y].

• Then B(T’’’) = B(T’’) - f[x] – f[y]

< B(T) – f[x] – f[y]

= B(T’)
– T’’’ is better than T’  contradiction to the assumption that T’ is

an optimal prefix code for C’. Thus, T must represent an optimal
prefix code for the alphabet C.

Prove by contradiction

CSE5311 Design and Analysis of Algorithms 27Dept. CSE, UT Arlington

Example: Huffman Coding

• As an example, lets take the string:
“duke blue devils”

• We first to a frequency count of the characters:
e:3, d:2, u:2, l:2, space:2, k:1, b:1, v:1, i:1, s:1

• Next we use a Greedy algorithm to build up a Huffman
Tree
– We start with nodes for each character

e,3 d,2 u,2 l,2 sp,2 k,1 b,1 v,1 i,1 s,1

CSE5311 Design and Analysis of Algorithms 28Dept. CSE, UT Arlington

Example: Huffman Coding

• We then pick the nodes with the smallest frequency and
combine them together to form a new node
– The selection of these nodes is the Greedy part

• The two selected nodes are removed from the set, but
replace by the combined node

• This continues until we have only 1 node left in the set

CSE5311 Design and Analysis of Algorithms 29Dept. CSE, UT Arlington

e,3 d,2 u,2 l,2 sp,2 k,1 b,1 v,1 i,1 s,1

Example: Huffman Coding

CSE5311 Design and Analysis of Algorithms 30Dept. CSE, UT Arlington

e,3 d,2 u,2 l,2 sp,2 k,1 b,1 v,1

i,1 s,1

2

Example: Huffman Coding

CSE5311 Design and Analysis of Algorithms 31Dept. CSE, UT Arlington

e,3 d,2 u,2 l,2 sp,2 k,1

b,1 v,1 i,1 s,1

22

Example: Huffman Coding

CSE5311 Design and Analysis of Algorithms 32Dept. CSE, UT Arlington

e,3 d,2 u,2 l,2 sp,2

k,1 i,1 s,1

2

b,1 v,1

2

3

Example: Huffman Coding

CSE5311 Design and Analysis of Algorithms 33Dept. CSE, UT Arlington

e,3 d,2 u,2

l,2 sp,2 k,1 i,1 s,1

2

b,1 v,1

2

34

Example: Huffman Coding

CSE5311 Design and Analysis of Algorithms 34Dept. CSE, UT Arlington

e,3

d,2 u,2 l,2 sp,2 k,1 i,1 s,1

2

b,1 v,1

2

344

Example: Huffman Coding

CSE5311 Design and Analysis of Algorithms 35Dept. CSE, UT Arlington

e,3

d,2 u,2 l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

44 5

Example: Huffman Coding

CSE5311 Design and Analysis of Algorithms 36Dept. CSE, UT Arlington

e,3

d,2 u,2

l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

4

4

57

Example: Huffman Coding

CSE5311 Design and Analysis of Algorithms 37Dept. CSE, UT Arlington

e,3

d,2 u,2 l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

44 5

7 9

Example: Huffman Coding

CSE5311 Design and Analysis of Algorithms 38Dept. CSE, UT Arlington

e,3

d,2 u,2 l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

44 5

7 9

16

Example: Huffman Coding

CSE5311 Design and Analysis of Algorithms 39Dept. CSE, UT Arlington

• Now we assign codes to the tree by placing a 0 on every
left branch and a 1 on every right branch

• A traversal of the tree from root to leaf give the Huffman
code for that particular leaf character

• Note that no code is the prefix of another code

Example: Huffman Coding

CSE5311 Design and Analysis of Algorithms 40Dept. CSE, UT Arlington

Example: Huffman Coding

e,3

d,2 u,2 l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

44 5

7 9

16
e 00

d 010

u 011

l 100

sp 101

i 1100

s 1101

k 1110

b 11110

v 11111

CSE5311 Design and Analysis of Algorithms 41Dept. CSE, UT Arlington

Example: Huffman Coding

• These codes are then used to encode the string

• Thus, “duke blue devils” turns into:
010 011 1110 00 101 11110 100 011 00 101 010 00 11111 1100 100 1101

• When grouped into 8-bit bytes:
01001111 10001011 11101000 11001010 10001111 11100100 1101xxxx

• Thus it takes 7 bytes of space compared to 16 characters *
1 byte/char = 16 bytes uncompressed

CSE5311 Design and Analysis of Algorithms 42Dept. CSE, UT Arlington

Example: Huffman Coding

• Uncompressing works by reading in the file bit by bit
– Start at the root of the tree
– If a 0 is read, head left
– If a 1 is read, head right
– When a leaf is reached decode that character and start over again

at the root of the tree

• Thus, we need to save Huffman table information as a
header in the compressed file
– Doesn’t add a significant amount of size to the file for large files

(which are the ones you want to compress anyway)
– Or we could use a fixed universal set of codes/freqencies

CSE5311 Design and Analysis of Algorithms 43Dept. CSE, UT Arlington

Exercise

• Prefix codes
– Given a: 0, b: 101, c: 100, d: 111, e: 1101, f: 1100

– Decode 001011101 going left to right

• Answer
– 001011101  0|01011101

– a|0|1011101  a|a|101|1101

– a|a|b|1101  a|a|b|e

CSE5311 Design and Analysis of Algorithms 44Dept. CSE, UT Arlington

Exercise

• Prefix codes
– Given I: 0, L: 101, Y: 100, X: 111, T: 1101, Z: 1100

– Decode 01011001101 going left to right

• Answer
– 01011001101  0|1011001101

– I|101|1001101  I|L|100|1101

– I|L|Y|1101  I|L|Y|T

CSE5311 Design and Analysis of Algorithms 45Dept. CSE, UT Arlington

Next

• Graph Algorithms
– BFS & DFS
– Topological Sort
– Minimum Spanning Trees
– Single Source Shortest Path
– All-pairs Shortest Path
– Maximum Flow

• Important
– Please read Lecture/Textbook first

