Topological Sort
Topological Sort

Want to “sort” a directed acyclic graph (DAG).

Think of original DAG as a **partial order**.

Want a **total order** that extends this partial order.
Topological Sort

- Performed on a **DAG**.
- Linear ordering of the vertices of G such that if $(u, v) \in E$, then u appears somewhere before v.

Topological-Sort (G)

1. call DFS(G) to compute finishing times $f[v]$ for all $v \in V$
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

Time: $\Theta(V + E)$.

Example: On board.
Example

(Courtesy of Prof. Jim Anderson)

Linked List:
Example

Linked List:

A → B
C → B
D → E

B → 5/6
C → 6/5

D → 1/4
E → 2/3
Example

Linked List:

A → B → D
C → E

B → C

D → E

5/6
1/4
2/3
6/7

Dept. CSE, UT Arlington
CSE5311 Design and Analysis of Algorithms
Example

Linked List:
Example

Linked List:

B → 6/7 → 1/4 → 2/3
Example

Linked List:

A → B → C → D → E
Correctness Proof

• Just need to show if \((u, v) \in E\), then \(f[v] < f[u]\).
• When we explore \((u, v)\), what are the colors of \(u\) and \(v\)?
 – \(u\) is gray.
 – Is \(v\) gray, too?
 ➢ No, because then \(v\) would be ancestor of \(u\).
 ➢ \(\Rightarrow (u, v)\) is a back edge.
 ➢ \(\Rightarrow\) contradiction of Lemma 22.11 (DAG has no back edges).
 – Is \(v\) white?
 ➢ Then becomes descendant of \(u\).
 ➢ By parenthesis theorem, \(d[u] < d[v] < f[v] \leq f[u]\).
 – Is \(v\) black?
 ➢ Then \(v\) is already finished.
 ➢ Since we’re exploring \((u, v)\), we have not yet finished \(u\).
 ➢ Therefore, \(f[v] < f[u]\).
Strongly Connected Components

- G is strongly connected if every pair (u, v) of vertices in G is reachable from one another.
- A **strongly connected component** (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for all $u, v \in C$, both $u \sim v$ and $v \sim u$ exist.
Component Graph

- $G^{SCC} = (V^{SCC}, E^{SCC})$.
- V^{SCC} has one vertex for each SCC in G.
- E^{SCC} has an edge if there’s an edge between the corresponding SCC’s in G.
- G^{SCC} for the example considered:
G^{SCC} is a DAG

Lemma 22.13

Let C and C' be distinct SCC's in G, let $u, v \in C$, $u', v' \in C$, and suppose there is a path $u \sim u'$ in G. Then there cannot also be a path $v' \sim v$ in G.

Proof:

- Suppose there is a path $v' \sim v$ in G.
- Then there are paths $u \sim u' \sim v'$ and $v' \sim v \sim u$ in G.
- Therefore, u and v' are reachable from each other, so they are not in separate SCC's.
Transpose of a Directed Graph

• $G^T = \text{transpose}$ of directed G.

 – $G^T = (V, E^T)$, $E^T = \{(u, v) : (v, u) \in E\}$.

 – G^T is G with all edges reversed.

• Can create G^T in $\Theta(V + E)$ time if using adjacency lists.

• G and G^T have the same SCC’s. (u and v are reachable from each other in G if and only if reachable from each other in G^T.)

Algorithm to determine SCCs

\[\textbf{SCC}(G) \]

1. call DFS\((G)\) to compute finishing times \(f[u]\) for all \(u\)
2. compute \(G^T\)
3. call DFS\((G^T)\), but in the main loop, consider vertices in order of decreasing \(f[u]\) (as computed in first DFS)
4. output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

\textbf{Time:} \(\Theta(V + E)\).

\textbf{Example:} On board.
Example

(Courtesy of Prof. Jim Anderson)

G

a

13/14

b

11/16

c

1/10

d

8/9

e

12/15

f

3/4

g

2/7

h

5/6

(Courtesy of Prof. Jim Anderson)
Example

G^T
Example

\[\text{abe} \longrightarrow \text{cd} \]
\[\text{fg} \rightarrow \text{h} \]
Example (2)
Example (2) DFS
Example (2) G^T
Example (2) DFT in G^T
Example (2) SCC
How does it work?

Idea:
- By considering vertices in second DFS in decreasing order of finishing times from first DFS, we are visiting vertices of the component graph in topologically sorted order.
- Because we are running DFS on G^T, we will not be visiting any v from a u, where v and u are in different components.

Notation:
- $d[u]$ and $f[u]$ always refer to first DFS.
- Extend notation for d and f to sets of vertices $U \subseteq V$:
 - $d(U) = \min_{u \in U} \{d[u]\}$ (earliest discovery time)
 - $f(U) = \max_{u \in U} \{f[u]\}$ (latest finishing time)
SCCs and DFS finishing times

Lemma 22.14
Let C and C' be distinct SCC’s in $G = (V, E)$. Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then $f(C) > f(C')$.

Proof:
- **Case 1: $d(C) < d(C')$**
 - Let x be the first vertex discovered in C.
 - At time $d[x]$, all vertices in C and C' are white. Thus, there exist paths of white vertices from x to all vertices in C and C'.
 - By the white-path theorem, all vertices in C and C' are descendants of x in depth-first tree.
 - By the parenthesis theorem, $f[x] = f(C) > f(C')$.
SCCs and DFS finishing times

Lemma 22.14
Let C and C' be distinct SCC’s in $G = (V, E)$. Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then $f(C) > f(C')$.

Proof:

- **Case 2: $d(C) > d(C')$**
 - Let y be the first vertex discovered in C'.
 - At time $d[y]$, all vertices in C' are white and there is a white path from y to each vertex in $C' \Rightarrow$ all vertices in C' become descendants of y. Again, $f[y] = f(C')$.
 - At time $d[y]$, all vertices in C are also white.
 - By earlier lemma, since there is an edge (u, v), we cannot have a path from C' to C.
 - So no vertex in C is reachable from y.
 - Therefore, at time $f[y]$, all vertices in C are still white.
 - Therefore, for all $w \in C, f[w] > f[y]$, which implies that $f(C) > f(C')$.
SCCs and DFS finishing times

Corollary 22.15
Let C and C' be distinct SCC’s in $G = (V, E)$. Suppose there is an edge $(u, v) \in E^T$, where $u \in C$ and $v \in C'$. Then $f(C) < f(C')$.

Proof:

• $(u, v) \in E^T \Rightarrow (v, u) \in E$.
• Since SCC’s of G and G^T are the same, $f(C') > f(C)$, by Lemma 22.14.
Correctness of SCC

- When we do the second DFS, on G^T, start with SCC C such that $f(C)$ is maximum.
 - The second DFS starts from some $x \in C$, and it visits all vertices in C.
 - Corollary 22.15 says that since $f(C) > f(C')$ for all $C \neq C'$, there are no edges from C to C' in G^T.
 - Therefore, DFS will visit only vertices in C.
 - Which means that the depth-first tree rooted at x contains exactly the vertices of C.

Correctness of SCC

- The next root chosen in the second DFS is in SCC C' such that $f(C')$ is maximum over all SCC’s other than C.
 - DFS visits all vertices in C', but the only edges out of C' go to C, which we’ve already visited.
 - Therefore, the only tree edges will be to vertices in C'.
- We can continue the process.
- Each time we choose a root for the second DFS, it can reach only
 - vertices in its SCC—get tree edges to these,
 - vertices in SCC’s already visited in second DFS—get no tree edges to these.